A Review on Gold Nanoclusters for Cancer Phototherapy
Cancer phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has been extensively studied in recent years because of its noninvasive properties, high efficiency, improved selectivity, and reduced side effects. Gold nanoclusters (AuNCs) have the advantages of high biocomp...
Saved in:
Published in | ACS applied bio materials Vol. 6; no. 11; pp. 4504 - 4517 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
20.11.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | Cancer phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has been extensively studied in recent years because of its noninvasive properties, high efficiency, improved selectivity, and reduced side effects. Gold nanoclusters (AuNCs) have the advantages of high biocompatibility, high biosafety, excellent photoresponse, and high tumor penetration ability. This review analyzes the use of AuNCs in tumor phototherapy in recent years from three aspects, namely, AuNCs in PDT, AuNCs in PTT, and AuNCs in combination therapy, and presents the high potential of AuNCs in cancer phototherapy. This review aims to provide readers with the unique advantages, diversified application approaches, and bright application prospects of AuNCs in phototherapy and to provide insights into strategies for applying AuNCs to tumor phototherapy.Cancer phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has been extensively studied in recent years because of its noninvasive properties, high efficiency, improved selectivity, and reduced side effects. Gold nanoclusters (AuNCs) have the advantages of high biocompatibility, high biosafety, excellent photoresponse, and high tumor penetration ability. This review analyzes the use of AuNCs in tumor phototherapy in recent years from three aspects, namely, AuNCs in PDT, AuNCs in PTT, and AuNCs in combination therapy, and presents the high potential of AuNCs in cancer phototherapy. This review aims to provide readers with the unique advantages, diversified application approaches, and bright application prospects of AuNCs in phototherapy and to provide insights into strategies for applying AuNCs to tumor phototherapy. |
---|---|
AbstractList | Cancer phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has been extensively studied in recent years because of its noninvasive properties, high efficiency, improved selectivity, and reduced side effects. Gold nanoclusters (AuNCs) have the advantages of high biocompatibility, high biosafety, excellent photoresponse, and high tumor penetration ability. This review analyzes the use of AuNCs in tumor phototherapy in recent years from three aspects, namely, AuNCs in PDT, AuNCs in PTT, and AuNCs in combination therapy, and presents the high potential of AuNCs in cancer phototherapy. This review aims to provide readers with the unique advantages, diversified application approaches, and bright application prospects of AuNCs in phototherapy and to provide insights into strategies for applying AuNCs to tumor phototherapy.Cancer phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has been extensively studied in recent years because of its noninvasive properties, high efficiency, improved selectivity, and reduced side effects. Gold nanoclusters (AuNCs) have the advantages of high biocompatibility, high biosafety, excellent photoresponse, and high tumor penetration ability. This review analyzes the use of AuNCs in tumor phototherapy in recent years from three aspects, namely, AuNCs in PDT, AuNCs in PTT, and AuNCs in combination therapy, and presents the high potential of AuNCs in cancer phototherapy. This review aims to provide readers with the unique advantages, diversified application approaches, and bright application prospects of AuNCs in phototherapy and to provide insights into strategies for applying AuNCs to tumor phototherapy. |
Author | Yang, Zhuoren Yang, Xiebingqing Kawasaki, Hideya Guo, Yahui |
Author_xml | – sequence: 1 givenname: Zhuoren orcidid: 0009-0002-1269-1294 surname: Yang fullname: Yang, Zhuoren organization: State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China – sequence: 2 givenname: Xiebingqing surname: Yang fullname: Yang, Xiebingqing organization: State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China – sequence: 3 givenname: Yahui orcidid: 0000-0002-6512-355X surname: Guo fullname: Guo, Yahui organization: State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita 564-8680, Japan – sequence: 4 givenname: Hideya orcidid: 0000-0003-2713-2057 surname: Kawasaki fullname: Kawasaki, Hideya organization: Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita 564-8680, Japan |
BookMark | eNp1kEtLAzEUhYNUsNZuXWfpZmpek8eyFF9QVKT7cJPJ0JHppCap0n9vpV2I4Orcxfnuge8SjYY4BISuKZlRwugt-AxuM-OekJrqMzRmtZKVFIyNft0XaJrzOyGEEcKpNmNUz_Fb-OzCF44Dfoh9g59hiL7f5RJSxm1MeAGDDwm_rmOJZR0SbPdX6LyFPofpKSdodX-3WjxWy5eHp8V8WXnOdak4abhkQrTGE1E7dxhumHKqaRxRQtbCUeMMSAlBitDI2jAvQHsFraGs5RN0c3y7TfFjF3Kxmy770PcwhLjLlmmluFZG60N1dqz6FHNOobXb1G0g7S0l9seQPRqyJ0MHQPwBfFegdHEoCbr-P-wbmQtsxg |
CitedBy_id | crossref_primary_10_1021_acs_chemrev_3c00896 crossref_primary_10_3390_polym16030378 crossref_primary_10_1021_acsanm_4c04389 crossref_primary_10_1002_smsc_202400156 crossref_primary_10_1016_j_ccr_2025_216544 crossref_primary_10_3390_jfb16030089 crossref_primary_10_1186_s12951_023_02280_9 crossref_primary_10_3390_molecules29071574 crossref_primary_10_1039_D4BM00455H crossref_primary_10_1002_anie_202407518 crossref_primary_10_3390_inorganics13030072 crossref_primary_10_1021_cbmi_4c00021 crossref_primary_10_3390_molecules29071537 crossref_primary_10_1002_ange_202407518 crossref_primary_10_1016_j_mtbio_2024_101358 crossref_primary_10_1002_adom_202400472 crossref_primary_10_1021_acsmacrolett_4c00306 crossref_primary_10_1039_D4RA05501B crossref_primary_10_1016_j_mtbio_2024_101355 |
Cites_doi | 10.1021/acs.bioconjchem.0c00172 10.3390/pharmaceutics14081645 10.1016/j.jconrel.2022.05.010 10.1002/anie.202010089 10.1021/acsanm.1c03209 10.1016/j.ijpharm.2020.120112 10.1021/acs.langmuir.9b00998 10.1039/D0CC02946G 10.1002/anie.202210249 10.1021/acsabm.8b00746 10.1007/s42765-022-00199-8 10.1016/j.dyepig.2016.06.019 10.1016/j.pdpdt.2021.102585 10.1021/acsami.7b13100 10.1021/acsnanoscienceau.1c00008 10.1016/j.bios.2022.114451 10.1021/acsabm.2c00891 10.1021/acsami.1c11138 10.1007/s40242-021-1117-3 10.1016/j.colsurfa.2022.128934 10.1016/j.jphotochem.2022.114063 10.1016/j.cej.2022.136383 10.1186/s12951-021-01004-1 10.1016/j.onano.2023.100184 10.1038/nphoton.2008.112 10.1016/j.isci.2022.105022 10.1016/j.jphotobiol.2020.112111 10.1038/s41565-019-0527-6 10.1002/adma.202003471 10.1016/j.jcis.2022.07.084 10.1021/acsabm.0c00706 10.1016/j.biomaterials.2018.03.048 10.1021/jacs.9b09066 10.1002/anie.202010870 10.1002/ange.201903256 10.1016/j.biomaterials.2020.120590 10.1016/j.ejmech.2022.114516 10.1016/j.apmt.2022.101453 10.1021/acssuschemeng.2c03605 10.1097/MD.0000000000015311 10.1021/acsami.1c23780 10.1021/acsomega.2c05852 10.3788/CJL202249.1507101 10.1016/j.actbio.2017.12.034 10.1016/j.talanta.2022.123789 10.1016/j.bios.2022.114805 10.1021/acsami.7b13782 10.1021/acsnano.9b05169 10.1016/S0140-6736(22)01430-1 10.1016/j.jconrel.2022.10.019 10.1016/j.ijpharm.2018.10.063 10.1002/advs.201801122 10.1021/acsami.1c21109 10.1002/adma.201601498 10.1039/d0cc08219h 10.1016/j.carbpol.2020.116344 10.1016/j.jconrel.2019.04.036 10.1016/j.bios.2022.114692 10.1016/j.pdpdt.2022.103194 10.1021/cm500260z 10.1021/acsanm.9b02272 10.1016/j.diamond.2022.108831 10.1016/j.colsurfb.2022.112895 10.1016/j.colsurfb.2021.111593 10.1016/j.jphotobiol.2020.111802 10.1038/s41563-019-0566-2 10.1038/s41467-019-11082-3 10.1002/smll.201603935 10.1016/j.colsurfa.2020.124764 10.1016/j.ijbiomac.2023.124294 10.1021/jp305902w 10.1016/j.tsf.2009.07.104 10.1021/acsabm.0c00941 10.3389/fphar.2022.924131 10.1016/j.colsurfb.2022.112686 10.1039/D1TB00276G 10.1016/j.mtsust.2021.100078 10.1016/j.mtnano.2022.100258 10.3390/pharmaceutics14112451 10.1021/acsami.0c00310 10.1021/acs.analchem.1c05154 10.2217/nnm-2022-0065 10.1016/j.jphotobiol.2009.04.001 10.1021/nl2045759 10.1021/acsnano.0c06415 10.3390/cancers9020019 10.3390/biomedicines8110521 10.1002/adom.202002177 10.1016/j.actbio.2022.06.007 10.1016/j.mattod.2021.09.022 10.1039/D2BM01239A 10.1021/acsnano.1c08485 10.1016/j.bmc.2016.02.025 10.1021/acssuschemeng.2c04857 10.1016/j.nano.2020.102241 10.1016/j.drudis.2018.02.005 10.1016/j.eng.2021.07.023 10.1016/j.jconrel.2018.04.005 10.1016/j.apsb.2018.09.001 10.1016/j.jcis.2018.06.055 10.1021/acsabm.0c01611 10.1002/adfm.202002546 10.1016/j.biomaterials.2017.05.030 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acsabm.3c00518 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2576-6422 |
EndPage | 4517 |
ExternalDocumentID | 10_1021_acsabm_3c00518 |
GroupedDBID | 53G AAYXX ABBLG ABJNI ABLBI ABQRX ABUCX ACS AHGAQ ALMA_UNASSIGNED_HOLDINGS BAANH CITATION CUPRZ EBS GGK VF5 VG9 7X8 |
ID | FETCH-LOGICAL-c338t-30d36244f9c045bb000d27b7ddb074654b19b9a66ae64ed6592c4a8c7af912f3 |
IEDL.DBID | ACS |
ISSN | 2576-6422 |
IngestDate | Thu Jul 10 23:36:40 EDT 2025 Thu Apr 24 22:55:02 EDT 2025 Tue Jul 01 04:25:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c338t-30d36244f9c045bb000d27b7ddb074654b19b9a66ae64ed6592c4a8c7af912f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2713-2057 0000-0002-6512-355X 0009-0002-1269-1294 |
PQID | 2877387988 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2877387988 crossref_primary_10_1021_acsabm_3c00518 crossref_citationtrail_10_1021_acsabm_3c00518 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-20 |
PublicationDateYYYYMMDD | 2023-11-20 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | ACS applied bio materials |
PublicationYear | 2023 |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref23/cit23 ref2/cit2 ref77/cit77 ref71/cit71 ref20/cit20 ref48/cit48 ref74/cit74 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref13/cit13 ref61/cit61 ref67/cit67 ref38/cit38 ref90/cit90 ref64/cit64 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref33/cit33 ref87/cit87 ref44/cit44 ref70/cit70 ref98/cit98 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref94/cit94 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref68/cit68 doi: 10.1021/acs.bioconjchem.0c00172 – ident: ref47/cit47 doi: 10.3390/pharmaceutics14081645 – ident: ref96/cit96 doi: 10.1016/j.jconrel.2022.05.010 – ident: ref40/cit40 doi: 10.1002/anie.202010089 – ident: ref35/cit35 doi: 10.1021/acsanm.1c03209 – ident: ref76/cit76 doi: 10.1016/j.ijpharm.2020.120112 – ident: ref30/cit30 doi: 10.1021/acs.langmuir.9b00998 – ident: ref87/cit87 doi: 10.1039/D0CC02946G – ident: ref99/cit99 doi: 10.1002/anie.202210249 – ident: ref74/cit74 doi: 10.1021/acsabm.8b00746 – ident: ref93/cit93 doi: 10.1007/s42765-022-00199-8 – ident: ref12/cit12 doi: 10.1016/j.dyepig.2016.06.019 – ident: ref14/cit14 doi: 10.1016/j.pdpdt.2021.102585 – ident: ref82/cit82 doi: 10.1021/acsami.7b13100 – ident: ref81/cit81 doi: 10.1021/acsnanoscienceau.1c00008 – ident: ref53/cit53 doi: 10.1016/j.bios.2022.114451 – ident: ref23/cit23 doi: 10.1021/acsabm.2c00891 – ident: ref94/cit94 doi: 10.1021/acsami.1c11138 – ident: ref39/cit39 doi: 10.1007/s40242-021-1117-3 – ident: ref104/cit104 doi: 10.1016/j.colsurfa.2022.128934 – ident: ref7/cit7 doi: 10.1016/j.jphotochem.2022.114063 – ident: ref4/cit4 doi: 10.1016/j.cej.2022.136383 – ident: ref75/cit75 doi: 10.1186/s12951-021-01004-1 – ident: ref72/cit72 doi: 10.1016/j.onano.2023.100184 – ident: ref43/cit43 doi: 10.1038/nphoton.2008.112 – ident: ref11/cit11 doi: 10.1016/j.isci.2022.105022 – ident: ref66/cit66 doi: 10.1016/j.jphotobiol.2020.112111 – ident: ref56/cit56 doi: 10.1038/s41565-019-0527-6 – ident: ref41/cit41 doi: 10.1002/adma.202003471 – ident: ref91/cit91 doi: 10.1016/j.jcis.2022.07.084 – ident: ref21/cit21 doi: 10.1021/acsabm.0c00706 – ident: ref92/cit92 doi: 10.1016/j.biomaterials.2018.03.048 – ident: ref52/cit52 doi: 10.1021/jacs.9b09066 – ident: ref64/cit64 doi: 10.1002/anie.202010870 – ident: ref67/cit67 doi: 10.1002/ange.201903256 – ident: ref90/cit90 doi: 10.1016/j.biomaterials.2020.120590 – ident: ref98/cit98 doi: 10.1016/j.ejmech.2022.114516 – ident: ref84/cit84 doi: 10.1016/j.apmt.2022.101453 – ident: ref26/cit26 doi: 10.1021/acssuschemeng.2c03605 – ident: ref73/cit73 doi: 10.1097/MD.0000000000015311 – ident: ref3/cit3 doi: 10.1021/acsami.1c23780 – ident: ref24/cit24 doi: 10.1021/acsomega.2c05852 – ident: ref36/cit36 doi: 10.3788/CJL202249.1507101 – ident: ref78/cit78 doi: 10.1016/j.actbio.2017.12.034 – ident: ref103/cit103 doi: 10.1016/j.talanta.2022.123789 – ident: ref9/cit9 doi: 10.1016/j.bios.2022.114805 – ident: ref15/cit15 doi: 10.1021/acsami.7b13782 – ident: ref45/cit45 doi: 10.1021/acsnano.9b05169 – ident: ref2/cit2 doi: 10.1016/S0140-6736(22)01430-1 – ident: ref1/cit1 doi: 10.1016/j.jconrel.2022.10.019 – ident: ref60/cit60 doi: 10.1016/j.ijpharm.2018.10.063 – ident: ref49/cit49 doi: 10.1002/advs.201801122 – ident: ref80/cit80 doi: 10.1021/acsami.1c21109 – ident: ref69/cit69 doi: 10.1002/adma.201601498 – ident: ref44/cit44 doi: 10.1039/d0cc08219h – ident: ref71/cit71 doi: 10.1016/j.carbpol.2020.116344 – ident: ref59/cit59 doi: 10.1016/j.jconrel.2019.04.036 – ident: ref54/cit54 doi: 10.1016/j.bios.2022.114692 – ident: ref22/cit22 doi: 10.1016/j.pdpdt.2022.103194 – ident: ref33/cit33 doi: 10.1021/cm500260z – ident: ref46/cit46 doi: 10.1021/acsanm.9b02272 – ident: ref48/cit48 doi: 10.1016/j.diamond.2022.108831 – ident: ref6/cit6 doi: 10.1016/j.colsurfb.2022.112895 – ident: ref27/cit27 doi: 10.1016/j.colsurfb.2021.111593 – ident: ref34/cit34 doi: 10.1016/j.jphotobiol.2020.111802 – ident: ref17/cit17 doi: 10.1038/s41563-019-0566-2 – ident: ref102/cit102 doi: 10.1038/s41467-019-11082-3 – ident: ref37/cit37 doi: 10.1002/smll.201603935 – ident: ref62/cit62 doi: 10.1016/j.colsurfa.2020.124764 – ident: ref88/cit88 doi: 10.1016/j.ijbiomac.2023.124294 – ident: ref32/cit32 doi: 10.1021/jp305902w – ident: ref57/cit57 doi: 10.1016/j.tsf.2009.07.104 – ident: ref25/cit25 doi: 10.1021/acsabm.0c00941 – ident: ref70/cit70 doi: 10.3389/fphar.2022.924131 – ident: ref97/cit97 doi: 10.1016/j.colsurfb.2022.112686 – ident: ref29/cit29 doi: 10.1016/j.isci.2022.105022 – ident: ref18/cit18 doi: 10.1039/D1TB00276G – ident: ref50/cit50 doi: 10.1016/j.mtsust.2021.100078 – ident: ref79/cit79 doi: 10.1016/j.mtnano.2022.100258 – ident: ref83/cit83 doi: 10.3390/pharmaceutics14112451 – ident: ref65/cit65 doi: 10.1021/acsami.0c00310 – ident: ref8/cit8 doi: 10.1021/acs.analchem.1c05154 – ident: ref16/cit16 doi: 10.2217/nnm-2022-0065 – ident: ref20/cit20 doi: 10.1016/j.jphotobiol.2009.04.001 – ident: ref55/cit55 doi: 10.1021/nl2045759 – ident: ref85/cit85 doi: 10.1021/acsnano.0c06415 – ident: ref19/cit19 doi: 10.3390/cancers9020019 – ident: ref86/cit86 doi: 10.3390/biomedicines8110521 – ident: ref38/cit38 doi: 10.1002/adom.202002177 – ident: ref101/cit101 doi: 10.1016/j.actbio.2022.06.007 – ident: ref31/cit31 doi: 10.1016/j.mattod.2021.09.022 – ident: ref95/cit95 doi: 10.1039/D2BM01239A – ident: ref51/cit51 doi: 10.1021/acsnano.1c08485 – ident: ref100/cit100 doi: 10.1016/j.bmc.2016.02.025 – ident: ref28/cit28 doi: 10.1021/acssuschemeng.2c04857 – ident: ref89/cit89 doi: 10.1016/j.nano.2020.102241 – ident: ref13/cit13 doi: 10.1016/j.drudis.2018.02.005 – ident: ref5/cit5 doi: 10.1016/j.eng.2021.07.023 – ident: ref61/cit61 doi: 10.1016/j.jconrel.2018.04.005 – ident: ref63/cit63 doi: 10.1016/j.apsb.2018.09.001 – ident: ref10/cit10 doi: 10.1016/j.jcis.2018.06.055 – ident: ref77/cit77 doi: 10.1021/acsabm.0c01611 – ident: ref42/cit42 doi: 10.1002/adfm.202002546 – ident: ref58/cit58 doi: 10.1016/j.biomaterials.2017.05.030 |
SSID | ssj0002003189 |
Score | 2.3949077 |
SecondaryResourceType | review_article |
Snippet | Cancer phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has been extensively studied in recent years because of its... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 4504 |
Title | A Review on Gold Nanoclusters for Cancer Phototherapy |
URI | https://www.proquest.com/docview/2877387988 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-ykx78FucXEQRPmW2aNO1xDOcQFMEJu5V8FcHZytoe9K83r-2mc4jeegghvPyS93t5fb-H0IU7P8akVBLlnBNhEVdESapIyONUcy8VVEOh8N19OHpitxM--Xrv-JnBp_6V1IVUr71AA37qql7BQCS_P3hcPKbQGptAdYE_E8ep6VygcWWGZQe0fP_WTmW41SgcFbUWIfxL8tKrStXTH6tKjX-udxtttswS9xso7KA1m-2ijW96g3uI93GTC8B5hm_yqcHucs31tAK1hAI7_ooHgIIZfnjOy7Y2630fjYfX48GItH0TiHYBZ0kCzzi3xFgaa0fYFPh5Q4USxijoLsKZ8mMVyzCUNmTWQGJVMxlpIdPYp2lwgDpZntlDhCm3Jo64VIHjXSL13AePRGoDpriLNGwXkbktE91qikNri2lS57apnzTWSFprdNHlYvxbo6bx68jz-dYkDvCQxZCZzasicSGeCCKQWTv692zHaB3axEMNIfVOUKecVfbUkYlSndVA-gTtRMSy |
linkProvider | American Chemical Society |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+on+Gold+Nanoclusters+for+Cancer+Phototherapy&rft.jtitle=ACS+applied+bio+materials&rft.au=Yang%2C+Zhuoren&rft.au=Yang%2C+Xiebingqing&rft.au=Guo%2C+Yahui&rft.au=Kawasaki%2C+Hideya&rft.date=2023-11-20&rft.issn=2576-6422&rft.eissn=2576-6422&rft.volume=6&rft.issue=11&rft.spage=4504&rft_id=info:doi/10.1021%2Facsabm.3c00518&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-6422&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-6422&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-6422&client=summon |