Detecting congestive heart failure by extracting multimodal features with synthetic minority oversampling technique (SMOTE) for imbalanced data using robust machine learning techniques
The incidence of congestive heart failure (CHF) is approximately 10 per 1000 for Americans over the age of 65 years. The dynamics of CHF are highly complex, nonlinear, and temporal dynamics. Based on these characteristics, we extracted multimodal features from congestive heart failure (CHF) and norm...
Saved in:
Published in | Waves in random and complex media Vol. 32; no. 3; pp. 1079 - 1102 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
04.05.2022
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The incidence of congestive heart failure (CHF) is approximately 10 per 1000 for Americans over the age of 65 years. The dynamics of CHF are highly complex, nonlinear, and temporal dynamics. Based on these characteristics, we extracted multimodal features from congestive heart failure (CHF) and normal sinus rhythm (NSR) signals. We performed the synthetic minority over-sampling technique (SMOTE) to increase the number of CHF subjects to balance our train data. The classification between these subjects with original data and SMOTE data was performed using machine learning classifiers such as classification and regression tree (CART), support vector machine linear (SVM-L), Naïve Bayes, neural network, and ensemble classifiers such as random forest (RF), XG boost, averaged neural network (AVNNET). With the original data, the highest performance was obtained using SVM-L with accuracy (94.28%), sensitivity (84.61%), specificity (100%), p-value (0.0002), AUC (0.9605) with 95% CI: 0.9006-1.00. By applying the SMOET, the highest performance was obtained with SVM-L with accuracy (97.14%), sensitivity (92.30%), specificity (100%), p-value (7.99e-06), AUC (0.9650) with 95% CI: 0.8945-1.00. The results reveal that proposed approach with SMOTE improved the detection performance which can be very effective and computationally efficient tool for automatic detection of congestive heart failure patients. |
---|---|
AbstractList | The incidence of congestive heart failure (CHF) is approximately 10 per 1000 for Americans over the age of 65 years. The dynamics of CHF are highly complex, nonlinear, and temporal dynamics. Based on these characteristics, we extracted multimodal features from congestive heart failure (CHF) and normal sinus rhythm (NSR) signals. We performed the synthetic minority over-sampling technique (SMOTE) to increase the number of CHF subjects to balance our train data. The classification between these subjects with original data and SMOTE data was performed using machine learning classifiers such as classification and regression tree (CART), support vector machine linear (SVM-L), Naïve Bayes, neural network, and ensemble classifiers such as random forest (RF), XG boost, averaged neural network (AVNNET). With the original data, the highest performance was obtained using SVM-L with accuracy (94.28%), sensitivity (84.61%), specificity (100%), p-value (0.0002), AUC (0.9605) with 95% CI: 0.9006-1.00. By applying the SMOET, the highest performance was obtained with SVM-L with accuracy (97.14%), sensitivity (92.30%), specificity (100%), p-value (7.99e-06), AUC (0.9650) with 95% CI: 0.8945-1.00. The results reveal that proposed approach with SMOTE improved the detection performance which can be very effective and computationally efficient tool for automatic detection of congestive heart failure patients. |
Author | Lone, Kashif Javed Pirzada, Jawad-ur-Rehman Hussain, Lal Awan, Imtiaz Ahmed Abbasi, Adeel Ahmed |
Author_xml | – sequence: 1 givenname: Lal orcidid: 0000-0003-1103-4938 surname: Hussain fullname: Hussain, Lal email: lall_hussain2008@live.com organization: Department of Computer Science & Information Technology, Chattar Kalas Campus, University of Azad Jammu & Kashmir – sequence: 2 givenname: Kashif Javed surname: Lone fullname: Lone, Kashif Javed organization: Department of Computer Science & Information Technology, Chattar Kalas Campus, University of Azad Jammu & Kashmir – sequence: 3 givenname: Imtiaz Ahmed surname: Awan fullname: Awan, Imtiaz Ahmed organization: Department of Computer Science & Information Technology, Chattar Kalas Campus, University of Azad Jammu & Kashmir – sequence: 4 givenname: Adeel Ahmed surname: Abbasi fullname: Abbasi, Adeel Ahmed organization: Department of Computer Science & Information Technology, Chattar Kalas Campus, University of Azad Jammu & Kashmir – sequence: 5 givenname: Jawad-ur-Rehman surname: Pirzada fullname: Pirzada, Jawad-ur-Rehman organization: Department of Computer Science & Information Technology, Chattar Kalas Campus, University of Azad Jammu & Kashmir |
BookMark | eNqFUc1qFTEYDVLBtvoIQsCNLm7N78xc3ChtbYVKF9Z1yGS-dFIyyTXJtM6b-XhmuFXQha4SDufn45wjdBBiAIReUnJCSUfe0lZISTg5YYRVqKOEN-IJOlzxjSRie_D7z8kzdJTzHSGCNJQdoh9nUMAUF26xieEWcnH3gEfQqWCrnZ8T4H7B8L0kvadNsy9uioP22IIulZDxgysjzksoIxRn8ORCTK4sON5Dynra-VVYc8bgvs2AX3_5fH1z_gbbmLCbeu11MDDgQReN57xyU-znXPCkzegCYF_vCX945OfoqdU-w4vH9xh9_Xh-c3q5ubq--HT64WpjOO_KhhnRDK0VQoIw0LVMM97aoTPENo1pbN8Mkpq-Fy3lltGeWdsS0O2K2J5Qfoxe7X13Ka65Rd3FOYUaqVgjt1I27ZZXltyzTIo5J7Bql9yk06IoUetI6tdIah1JPY5Ude_-0hlXdHEx1L6d_6_6_V7tQq1y0g8x-UEVvfiYbKqluqz4vy1-AtCHsnY |
CitedBy_id | crossref_primary_10_1038_s41598_022_19563_0 crossref_primary_10_1080_08839514_2022_2112545 crossref_primary_10_1080_17455030_2021_1971325 crossref_primary_10_1088_2631_8695_adad3a crossref_primary_10_3390_app14188274 crossref_primary_10_1080_17455030_2022_2155327 crossref_primary_10_3390_math11224681 crossref_primary_10_1007_s40031_024_01085_0 crossref_primary_10_1142_S0217984925501404 crossref_primary_10_1155_2022_3649406 crossref_primary_10_3389_fdgth_2021_662343 crossref_primary_10_1016_j_measurement_2021_109345 crossref_primary_10_1080_10580530_2024_2312380 crossref_primary_10_1007_s41060_021_00300_1 crossref_primary_10_1007_s41019_024_00257_8 crossref_primary_10_1109_TNSRE_2024_3416446 crossref_primary_10_1371_journal_pone_0298298 crossref_primary_10_1177_23977914241270753 crossref_primary_10_2196_28856 |
Cites_doi | 10.3233/CBM-170643 10.1155/2020/4281243 10.3390/app8081325 10.1016/j.compbiomed.2015.03.004 10.1109/TrustCom/BigDataSE.2018.00057 10.1111/j.1540-8167.1994.tb01164.x 10.1046/j.1365-2281.2001.00359.x 10.1002/ehf2.12005 10.1016/j.bbrc.2007.03.162 10.1109/ACCESS.2018.2855420 10.1243/09544119JEIM642 10.1016/S0165-0270(00)00356-3 10.1016/j.compbiomed.2007.01.012 10.2174/092986612799789387 10.1016/j.cmpb.2019.03.008 10.1016/j.patrec.2010.03.014 10.1016/j.jbi.2012.04.013 10.3390/e19090488 10.1016/j.asoc.2013.09.014 10.2174/1573405614666180718123533 10.1007/s10439-010-0180-6 10.1371/journal.pone.0093950 10.1109/TKDE.2008.239 10.1016/j.ins.2018.06.056 10.1111/pace.13271 10.1021/pr060635i 10.1016/j.aap.2016.02.002 10.1016/j.compedu.2013.06.009 10.1016/j.eswa.2006.06.001 10.1371/journal.pone.0179805 10.3390/sym10040079 10.1109/ACCESS.2019.2917303 10.1002/jmv.25285 10.2147/VHRM.S10669 10.1016/j.ins.2008.08.006 10.1142/S0219519416400029 10.1016/j.eswa.2011.04.222 10.1002/clc.4960230311 10.1214/aos/1013203451 10.1016/j.neucom.2011.06.010 10.1080/17455030.2018.1554926 10.1515/bmt-2017-0041 10.1016/j.compbiomed.2013.12.010 10.1002/dir.20028 10.1117/12.2512059 10.1109/TITB.2010.2091647 10.1109/ICOSST.2013.6720618 10.1016/j.asoc.2014.05.023 10.1253/circj.68.343 10.1186/s40101-017-0136-8 10.1016/j.rppneu.2011.06.007 10.1007/BF00058655 10.1016/j.knosys.2013.10.016 10.1561/0600000035 10.1145/2939672.2939785 10.1007/s11571-018-9477-1 10.2333/bhmk.26.145 10.1103/PhysRevLett.89.068102 10.1109/TCYB.2014.2348012 10.1109/TKDE.2012.196 10.1016/j.knosys.2015.02.011 10.1371/journal.pone.0107676 10.1073/pnas.88.6.2297 10.1109/TIFS.2012.2223675 10.1016/j.ab.2007.07.006 10.1007/s10439-009-9863-2 10.1109/CompComm.2017.8322749 10.1089/tmj.2010.0182 10.1515/msr-2015-0027 10.1016/j.ehj.2003.12.003 10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.53 10.1038/sj.jea.7500447 10.1016/j.ins.2017.10.017 10.1080/03091900601050862 10.1109/IGARSS.2018.8517540 10.1109/ACCESS.2018.2844303 10.1016/j.ins.2012.07.049 10.1093/bioinformatics/bth466 10.1161/01.CIR.101.23.e215 10.1186/cc2948 10.1016/j.compbiomed.2013.11.016 10.1109/ICMCS.2011.5945658 |
ContentType | Journal Article |
Copyright | 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 2020 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1080/17455030.2020.1810364 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1745-5049 |
EndPage | 1102 |
ExternalDocumentID | 10_1080_17455030_2020_1810364 1810364 |
Genre | Research Article |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 123 29R 30N 4.4 AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA C5L CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B GCUZY GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NZ- O9- RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEX TFL TFT TFW TTHFI TUROJ TWF UT5 UU3 ZGOLN ~02 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7TB 8FD FR3 H8D KR7 L7M TASJS |
ID | FETCH-LOGICAL-c338t-2c46d7f445e4ce872a237fd8c0f66c6fb6d51cbb4713f21b2ff70ea7bb47fb013 |
ISSN | 1745-5030 |
IngestDate | Fri Jul 25 07:18:07 EDT 2025 Thu Apr 24 22:58:02 EDT 2025 Tue Jul 01 01:43:53 EDT 2025 Wed Dec 25 09:06:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-2c46d7f445e4ce872a237fd8c0f66c6fb6d51cbb4713f21b2ff70ea7bb47fb013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1103-4938 |
PQID | 2659556793 |
PQPubID | 2045224 |
PageCount | 24 |
ParticipantIDs | crossref_primary_10_1080_17455030_2020_1810364 proquest_journals_2659556793 informaworld_taylorfrancis_310_1080_17455030_2020_1810364 crossref_citationtrail_10_1080_17455030_2020_1810364 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-04 |
PublicationDateYYYYMMDD | 2022-05-04 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Waves in random and complex media |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0072 CIT0071 CIT0030 CIT0074 CIT0073 CIT0032 CIT0076 CIT0075 CIT0078 CIT0077 CIT0070 Zaidi NA (CIT0060) 2017; 01 Hussain L (CIT0035) 2015; 3 CIT0036 Hussain L (CIT0043) 2017; 28 CIT0079 CIT0038 CIT0037 CIT0039 CIT0083 CIT0082 CIT0041 Wang D (CIT0052) 2011; 38 CIT0085 CIT0084 Chawla LOK (CIT0023) 2002; 16 CIT0087 CIT0042 CIT0086 CIT0001 CIT0045 CIT0089 CIT0044 CIT0088 CIT0080 CIT0003 CIT0047 CIT0046 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 Hussain L (CIT0051) 2017; 0 CIT0009 CIT0008 Glass L (CIT0040) 1993; 19 CIT0050 CIT0094 CIT0093 CIT0095 CIT0010 CIT0054 CIT0053 CIT0012 CIT0056 CIT0011 CIT0055 CIT0090 CIT0092 CIT0091 CIT0014 CIT0058 CIT0013 CIT0057 CIT0016 CIT0015 CIT0059 CIT0018 CIT0017 CIT0019 CIT0061 CIT0063 CIT0062 CIT0021 CIT0065 CIT0020 CIT0067 CIT0022 CIT0066 Hussain L (CIT0033) 2017; 17 Rathore S (CIT0031) 2012; 281 Hussain L (CIT0034) 2015; 2 Pagani M. (CIT0002) 2000; 13 Kumari G (CIT0081) 2018; 07 CIT0025 CIT0069 CIT0024 CIT0068 CIT0027 CIT0026 CIT0029 Huang T (CIT0064) 2006; 7 CIT0028 |
References_xml | – ident: CIT0044 doi: 10.3233/CBM-170643 – ident: CIT0009 doi: 10.1155/2020/4281243 – ident: CIT0024 doi: 10.3390/app8081325 – ident: CIT0032 doi: 10.1016/j.compbiomed.2015.03.004 – ident: CIT0042 doi: 10.1109/TrustCom/BigDataSE.2018.00057 – ident: CIT0003 doi: 10.1111/j.1540-8167.1994.tb01164.x – ident: CIT0015 doi: 10.1046/j.1365-2281.2001.00359.x – ident: CIT0010 doi: 10.1002/ehf2.12005 – ident: CIT0067 doi: 10.1016/j.bbrc.2007.03.162 – volume: 01 start-page: 1701 year: 2017 ident: CIT0060 publication-title: J Mach Learn Res – ident: CIT0088 doi: 10.1109/ACCESS.2018.2855420 – ident: CIT0091 doi: 10.1243/09544119JEIM642 – ident: CIT0053 doi: 10.1016/S0165-0270(00)00356-3 – ident: CIT0089 doi: 10.1016/j.compbiomed.2007.01.012 – ident: CIT0071 doi: 10.2174/092986612799789387 – ident: CIT0006 doi: 10.1016/j.cmpb.2019.03.008 – volume: 281 start-page: 373 year: 2012 ident: CIT0031 publication-title: Commun Comput Inf Sci – ident: CIT0073 doi: 10.1016/j.patrec.2010.03.014 – ident: CIT0095 doi: 10.1016/j.jbi.2012.04.013 – ident: CIT0020 doi: 10.3390/e19090488 – ident: CIT0056 doi: 10.1016/j.asoc.2013.09.014 – ident: CIT0048 doi: 10.2174/1573405614666180718123533 – ident: CIT0012 doi: 10.1007/s10439-010-0180-6 – ident: CIT0079 doi: 10.1371/journal.pone.0093950 – ident: CIT0058 doi: 10.1109/TKDE.2008.239 – ident: CIT0087 doi: 10.1016/j.ins.2018.06.056 – ident: CIT0083 doi: 10.1111/pace.13271 – ident: CIT0068 doi: 10.1021/pr060635i – volume: 07 start-page: 796 issue: 01 year: 2018 ident: CIT0081 publication-title: Int J Curr Res Life Sci – ident: CIT0062 doi: 10.1016/j.aap.2016.02.002 – ident: CIT0021 doi: 10.1016/j.compedu.2013.06.009 – volume: 16 start-page: 321 year: 2002 ident: CIT0023 publication-title: J Artif Intell – ident: CIT0055 doi: 10.1016/j.eswa.2006.06.001 – ident: CIT0027 doi: 10.1371/journal.pone.0179805 – ident: CIT0028 doi: 10.3390/sym10040079 – ident: CIT0046 doi: 10.1109/ACCESS.2019.2917303 – ident: CIT0022 doi: 10.1002/jmv.25285 – ident: CIT0011 doi: 10.2147/VHRM.S10669 – ident: CIT0016 doi: 10.1016/j.ins.2008.08.006 – ident: CIT0001 doi: 10.1142/S0219519416400029 – volume: 38 start-page: 14314 issue: 11 year: 2011 ident: CIT0052 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.04.222 – volume: 2 start-page: 126 issue: 1 year: 2015 ident: CIT0034 publication-title: J Multidiscip Eng Sci Technol – ident: CIT0005 doi: 10.1002/clc.4960230311 – ident: CIT0076 doi: 10.1214/aos/1013203451 – ident: CIT0085 doi: 10.1016/j.neucom.2011.06.010 – ident: CIT0038 doi: 10.1080/17455030.2018.1554926 – ident: CIT0045 doi: 10.1515/bmt-2017-0041 – ident: CIT0030 doi: 10.1016/j.compbiomed.2013.12.010 – ident: CIT0078 doi: 10.1002/dir.20028 – ident: CIT0080 doi: 10.1117/12.2512059 – ident: CIT0092 doi: 10.1109/TITB.2010.2091647 – volume: 17 start-page: 52 issue: 8 year: 2017 ident: CIT0033 publication-title: Int J Comput Sci Netw Secur – ident: CIT0047 doi: 10.1109/ICOSST.2013.6720618 – ident: CIT0086 doi: 10.1016/j.asoc.2014.05.023 – ident: CIT0018 doi: 10.1253/circj.68.343 – ident: CIT0041 doi: 10.1186/s40101-017-0136-8 – volume: 7 start-page: 85 year: 2006 ident: CIT0064 publication-title: J Mach Learn Res – ident: CIT0013 doi: 10.1016/j.rppneu.2011.06.007 – ident: CIT0074 doi: 10.1007/BF00058655 – ident: CIT0063 doi: 10.1016/j.knosys.2013.10.016 – ident: CIT0072 doi: 10.1561/0600000035 – ident: CIT0075 doi: 10.1145/2939672.2939785 – ident: CIT0037 doi: 10.1007/s11571-018-9477-1 – ident: CIT0077 doi: 10.2333/bhmk.26.145 – ident: CIT0050 doi: 10.1103/PhysRevLett.89.068102 – ident: CIT0066 doi: 10.1109/TCYB.2014.2348012 – ident: CIT0059 doi: 10.1109/TKDE.2012.196 – ident: CIT0014 doi: 10.1016/j.knosys.2015.02.011 – ident: CIT0057 doi: 10.1371/journal.pone.0107676 – ident: CIT0049 doi: 10.1073/pnas.88.6.2297 – ident: CIT0094 – ident: CIT0061 doi: 10.1109/TIFS.2012.2223675 – ident: CIT0069 doi: 10.1016/j.ab.2007.07.006 – ident: CIT0007 doi: 10.1007/s10439-009-9863-2 – ident: CIT0025 doi: 10.1109/CompComm.2017.8322749 – volume: 13 start-page: 341 issue: 6 year: 2000 ident: CIT0002 publication-title: Diabetes Nutr Metab – volume: 3 start-page: 13 year: 2015 ident: CIT0035 publication-title: Int J Darshan Inst Eng Res Emerg Technol – ident: CIT0008 doi: 10.1089/tmj.2010.0182 – ident: CIT0082 doi: 10.1515/msr-2015-0027 – ident: CIT0004 doi: 10.1016/j.ehj.2003.12.003 – ident: CIT0084 doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.53 – ident: CIT0019 doi: 10.1038/sj.jea.7500447 – volume: 0 issue: 0 year: 2017 ident: CIT0051 publication-title: Biomed Eng/Biomed Tech – ident: CIT0026 doi: 10.1016/j.ins.2017.10.017 – ident: CIT0017 doi: 10.1080/03091900601050862 – volume: 19 start-page: 115 issue: 1992 year: 1993 ident: CIT0040 publication-title: Med Prog Technol – ident: CIT0065 doi: 10.1109/IGARSS.2018.8517540 – ident: CIT0036 doi: 10.1109/ACCESS.2018.2844303 – ident: CIT0054 doi: 10.1016/j.ins.2012.07.049 – ident: CIT0070 doi: 10.1093/bioinformatics/bth466 – ident: CIT0029 doi: 10.1161/01.CIR.101.23.e215 – ident: CIT0039 doi: 10.1186/cc2948 – ident: CIT0090 doi: 10.1016/j.compbiomed.2013.11.016 – volume: 28 start-page: 7104 issue: 16 year: 2017 ident: CIT0043 publication-title: Biomed Res – ident: CIT0093 doi: 10.1109/ICMCS.2011.5945658 |
SSID | ssj0040612 |
Score | 2.3698032 |
Snippet | The incidence of congestive heart failure (CHF) is approximately 10 per 1000 for Americans over the age of 65 years. The dynamics of CHF are highly complex,... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1079 |
SubjectTerms | Classification Classifiers Congestive heart failure decision tree Feature extraction Heart failure Machine learning multimodal features Neural networks Nonlinear dynamics normal sinus rhythm Oversampling Regression analysis Sensitivity support vector machine Support vector machines |
Title | Detecting congestive heart failure by extracting multimodal features with synthetic minority oversampling technique (SMOTE) for imbalanced data using robust machine learning techniques |
URI | https://www.tandfonline.com/doi/abs/10.1080/17455030.2020.1810364 https://www.proquest.com/docview/2659556793 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbKEBIviKsYDOQHHkBRSutc-1jB0BjbeKATe4tsx9YqNWnVpMD2y_hvvHCO7VymVRqXl6hyGifR-WJ_Pv7OOYS8UkykMmSJrycs90MeMZ8DLffjXId5Ok7kRKND__gkPjgND8-is8HgV0-1tKnFUF5ujSv5F6tCG9gVo2T_wrJtp9AAv8G-cAQLw_GPbPxe4RaADZstcaMIZUBYorr2NJ-j4BzZJQy_JhQK_mbkg8Uyx6hFZVJ6uui26qIEJojJW4t5uVwbnQYKNjgKzjGgqk31Coz0y_Hn2T66E1CiOC8EqiNRRoBqU29jnA_rpdhUtVcYqaZqalP0-qn6rPgr_2Z0YR5MnPmyaGLtVgv1w4a2dOCrKm6zHhzxVhtytLRu2U9YGEp7h9Bb3gL5u_XwfixgKLv0pudF75yAOdyoGaa5UoveSecGgRU0ig47N-jsWkWS3qCehJEfjdz-j-q32XSpzUzQeVo7R8HKVead9CgCUCa2dfqxek3sG283hOeExnSMe73dfNuqIN2ZW-Q2gzUOlt8IRicNjUCixWw0r334JvwsHb3deoMrxOpK2t1rNMNwp9l9cs8teujUIvgBGajyIbljxMeyekR-tjimHY6pwTF1OKbignY4ph2OaYNjijimLY5pg2PaxzFt8UdfGxS_ofACtMMwRQxTg2FqMUwdhmmD4a6P6jE5_bA_e3fgu4oivgyCtPaZDOM80WEYqVCqNGGcBYnOUznScSxjLeI8GkshgLEFmo0F0zoZKZ5gi8YdgydkpwRMPyVU8EgFXMNRYco6WCixVOY8ilOZMi30Lgkbc2TSpdvHqi-LbOyy8jZWzNCKmbPiLhm2l61svpmbLpj0bZ3V5kPQ9hvIghuu3WuAkblhrcoYZhiNYpi3n_1H18_J3e4r3SM79XqjXgB9r8VLA_Pfw1PzTA |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCNELb9RCgTlwgEOWjWM72SOCVgt0lwNbqTfLT7SCzaImeyi_jJ_HjJNUWxDqoZccrIzzsD0zHn_zDWOvAreVE7zM4oT7TBjJM4NueaZ8FL7KSzeJFNCfzdX0RHw6ladbuTAEq6Q9dOyIIpKupsVNwegBEvcWvWh0rIsxbu84NlU5HabdZLfkRJVUxaAYzwdtTPaKd0mRMiOZIYvnf91csk-X2Ev_0dbJBB3dY254-Q558n20ae3I_fqL1_F6X3ef3e09VHjXTakH7EaoH7LbCSnqmkfs94dA5w5o8QC30nQ6hfoSqC52C9EsCeUO9hxQ56f8K7wtYRZXa4-dxpB4RBug8C805zW6n_gYWC3rNVXRAwKUNoZQ7ih4wS8Lr7_OviwO3wD-JliuLMExXfBA8FYg5P43OFvbTdPCKmFDA_TFMLb6aB6zk6PDxftp1pd_yBzum9uMO6F8GYWQQbhQldzwooy-cuOolFPRKi9zZy2a1yLy3PIYy3EwJbVECu8-YTv1ug57DKyRoTARr4H4xdCr5ZXzRqrKVTzauM_EMOja9dzoVKLjh857CtVhUDQNiu4HZZ-NLsR-duQgVwlMtmeUblNUJnYlVHRxhezBMP10r2cazYkOUipUsk-v0fVLdme6mB3r44_zz8_YLqcMD8J0igO2055twnP0u1r7Ii2sP1ZbI34 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCNQLb0RLW-bAAQ5ZNo7jZI-IdlUeXZBoJW5W_JhqBZutmuyh_DJ-HjNOUrVUVQ-95GBlnIftedjffCPEmyBt6ZQsEpxIn6gql0lFbnmiPSpfpoWbIG_oH8z0_pH6_DMf0IRND6vkGBo7ooioq3lxn3gcEHHvyYkmvzobU3QnqalM-SztrrinmTycszjGs0EZs7mSXU5knrDMkMRzXTeXzNMl8tIryjpaoOkjYYd374Anv0ar1o7cn_9oHW_1cY_Fw94_hQ_dhHoi7oT6qbgfcaKueSb-7gY-dSB7BxRI89kUaUvgqtgtYDVnjDvYMyCNH7Ov6LaIWFwsPXWKIbKINsCbv9Cc1eR80mNgMa-XXEMPGE7aVIxxJ8Fzdll4--Pg2-HeO6C_BPOFZTCmCx4Y3AqM2z-G06VdNS0sIjI0QF8K40IfzXNxNN07_Lif9MUfEkdRc5tIp7QvUKk8KBfKQlYyK9CXboxaO41W-zx11pJxzVCmViIW41AV3IK8uftCrNXLOrwUYKs8ZBXSNTC7GPm0snS-ynXpSokWN4Qaxty4nhmdC3T8NmlPoDoMiuFBMf2gbIjRudhJRw1yk8Dk4oQybdyTwa6AislukN0aZp_ptUxjJJNB5ppU7OYtun4tHnzfnZqvn2ZfXol1yekdDOhUW2KtPV2FbXK6WrsTl9U_piMiIg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+congestive+heart+failure+by+extracting+multimodal+features+with+synthetic+minority+oversampling+technique+%28SMOTE%29+for+imbalanced+data+using+robust+machine+learning+techniques&rft.jtitle=Waves+in+random+and+complex+media&rft.au=Hussain%2C+Lal&rft.au=Lone%2C+Kashif+Javed&rft.au=Awan%2C+Imtiaz+Ahmed&rft.au=Abbasi%2C+Adeel+Ahmed&rft.date=2022-05-04&rft.pub=Taylor+%26+Francis&rft.issn=1745-5030&rft.eissn=1745-5049&rft.volume=32&rft.issue=3&rft.spage=1079&rft.epage=1102&rft_id=info:doi/10.1080%2F17455030.2020.1810364&rft.externalDocID=1810364 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-5030&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-5030&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-5030&client=summon |