Detecting congestive heart failure by extracting multimodal features with synthetic minority oversampling technique (SMOTE) for imbalanced data using robust machine learning techniques

The incidence of congestive heart failure (CHF) is approximately 10 per 1000 for Americans over the age of 65 years. The dynamics of CHF are highly complex, nonlinear, and temporal dynamics. Based on these characteristics, we extracted multimodal features from congestive heart failure (CHF) and norm...

Full description

Saved in:
Bibliographic Details
Published inWaves in random and complex media Vol. 32; no. 3; pp. 1079 - 1102
Main Authors Hussain, Lal, Lone, Kashif Javed, Awan, Imtiaz Ahmed, Abbasi, Adeel Ahmed, Pirzada, Jawad-ur-Rehman
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 04.05.2022
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The incidence of congestive heart failure (CHF) is approximately 10 per 1000 for Americans over the age of 65 years. The dynamics of CHF are highly complex, nonlinear, and temporal dynamics. Based on these characteristics, we extracted multimodal features from congestive heart failure (CHF) and normal sinus rhythm (NSR) signals. We performed the synthetic minority over-sampling technique (SMOTE) to increase the number of CHF subjects to balance our train data. The classification between these subjects with original data and SMOTE data was performed using machine learning classifiers such as classification and regression tree (CART), support vector machine linear (SVM-L), Naïve Bayes, neural network, and ensemble classifiers such as random forest (RF), XG boost, averaged neural network (AVNNET). With the original data, the highest performance was obtained using SVM-L with accuracy (94.28%), sensitivity (84.61%), specificity (100%), p-value (0.0002), AUC (0.9605) with 95% CI: 0.9006-1.00. By applying the SMOET, the highest performance was obtained with SVM-L with accuracy (97.14%), sensitivity (92.30%), specificity (100%), p-value (7.99e-06), AUC (0.9650) with 95% CI: 0.8945-1.00. The results reveal that proposed approach with SMOTE improved the detection performance which can be very effective and computationally efficient tool for automatic detection of congestive heart failure patients.
AbstractList The incidence of congestive heart failure (CHF) is approximately 10 per 1000 for Americans over the age of 65 years. The dynamics of CHF are highly complex, nonlinear, and temporal dynamics. Based on these characteristics, we extracted multimodal features from congestive heart failure (CHF) and normal sinus rhythm (NSR) signals. We performed the synthetic minority over-sampling technique (SMOTE) to increase the number of CHF subjects to balance our train data. The classification between these subjects with original data and SMOTE data was performed using machine learning classifiers such as classification and regression tree (CART), support vector machine linear (SVM-L), Naïve Bayes, neural network, and ensemble classifiers such as random forest (RF), XG boost, averaged neural network (AVNNET). With the original data, the highest performance was obtained using SVM-L with accuracy (94.28%), sensitivity (84.61%), specificity (100%), p-value (0.0002), AUC (0.9605) with 95% CI: 0.9006-1.00. By applying the SMOET, the highest performance was obtained with SVM-L with accuracy (97.14%), sensitivity (92.30%), specificity (100%), p-value (7.99e-06), AUC (0.9650) with 95% CI: 0.8945-1.00. The results reveal that proposed approach with SMOTE improved the detection performance which can be very effective and computationally efficient tool for automatic detection of congestive heart failure patients.
Author Lone, Kashif Javed
Pirzada, Jawad-ur-Rehman
Hussain, Lal
Awan, Imtiaz Ahmed
Abbasi, Adeel Ahmed
Author_xml – sequence: 1
  givenname: Lal
  orcidid: 0000-0003-1103-4938
  surname: Hussain
  fullname: Hussain, Lal
  email: lall_hussain2008@live.com
  organization: Department of Computer Science & Information Technology, Chattar Kalas Campus, University of Azad Jammu & Kashmir
– sequence: 2
  givenname: Kashif Javed
  surname: Lone
  fullname: Lone, Kashif Javed
  organization: Department of Computer Science & Information Technology, Chattar Kalas Campus, University of Azad Jammu & Kashmir
– sequence: 3
  givenname: Imtiaz Ahmed
  surname: Awan
  fullname: Awan, Imtiaz Ahmed
  organization: Department of Computer Science & Information Technology, Chattar Kalas Campus, University of Azad Jammu & Kashmir
– sequence: 4
  givenname: Adeel Ahmed
  surname: Abbasi
  fullname: Abbasi, Adeel Ahmed
  organization: Department of Computer Science & Information Technology, Chattar Kalas Campus, University of Azad Jammu & Kashmir
– sequence: 5
  givenname: Jawad-ur-Rehman
  surname: Pirzada
  fullname: Pirzada, Jawad-ur-Rehman
  organization: Department of Computer Science & Information Technology, Chattar Kalas Campus, University of Azad Jammu & Kashmir
BookMark eNqFUc1qFTEYDVLBtvoIQsCNLm7N78xc3ChtbYVKF9Z1yGS-dFIyyTXJtM6b-XhmuFXQha4SDufn45wjdBBiAIReUnJCSUfe0lZISTg5YYRVqKOEN-IJOlzxjSRie_D7z8kzdJTzHSGCNJQdoh9nUMAUF26xieEWcnH3gEfQqWCrnZ8T4H7B8L0kvadNsy9uioP22IIulZDxgysjzksoIxRn8ORCTK4sON5Dynra-VVYc8bgvs2AX3_5fH1z_gbbmLCbeu11MDDgQReN57xyU-znXPCkzegCYF_vCX945OfoqdU-w4vH9xh9_Xh-c3q5ubq--HT64WpjOO_KhhnRDK0VQoIw0LVMM97aoTPENo1pbN8Mkpq-Fy3lltGeWdsS0O2K2J5Qfoxe7X13Ka65Rd3FOYUaqVgjt1I27ZZXltyzTIo5J7Bql9yk06IoUetI6tdIah1JPY5Ude_-0hlXdHEx1L6d_6_6_V7tQq1y0g8x-UEVvfiYbKqluqz4vy1-AtCHsnY
CitedBy_id crossref_primary_10_1038_s41598_022_19563_0
crossref_primary_10_1080_08839514_2022_2112545
crossref_primary_10_1080_17455030_2021_1971325
crossref_primary_10_1088_2631_8695_adad3a
crossref_primary_10_3390_app14188274
crossref_primary_10_1080_17455030_2022_2155327
crossref_primary_10_3390_math11224681
crossref_primary_10_1007_s40031_024_01085_0
crossref_primary_10_1142_S0217984925501404
crossref_primary_10_1155_2022_3649406
crossref_primary_10_3389_fdgth_2021_662343
crossref_primary_10_1016_j_measurement_2021_109345
crossref_primary_10_1080_10580530_2024_2312380
crossref_primary_10_1007_s41060_021_00300_1
crossref_primary_10_1007_s41019_024_00257_8
crossref_primary_10_1109_TNSRE_2024_3416446
crossref_primary_10_1371_journal_pone_0298298
crossref_primary_10_1177_23977914241270753
crossref_primary_10_2196_28856
Cites_doi 10.3233/CBM-170643
10.1155/2020/4281243
10.3390/app8081325
10.1016/j.compbiomed.2015.03.004
10.1109/TrustCom/BigDataSE.2018.00057
10.1111/j.1540-8167.1994.tb01164.x
10.1046/j.1365-2281.2001.00359.x
10.1002/ehf2.12005
10.1016/j.bbrc.2007.03.162
10.1109/ACCESS.2018.2855420
10.1243/09544119JEIM642
10.1016/S0165-0270(00)00356-3
10.1016/j.compbiomed.2007.01.012
10.2174/092986612799789387
10.1016/j.cmpb.2019.03.008
10.1016/j.patrec.2010.03.014
10.1016/j.jbi.2012.04.013
10.3390/e19090488
10.1016/j.asoc.2013.09.014
10.2174/1573405614666180718123533
10.1007/s10439-010-0180-6
10.1371/journal.pone.0093950
10.1109/TKDE.2008.239
10.1016/j.ins.2018.06.056
10.1111/pace.13271
10.1021/pr060635i
10.1016/j.aap.2016.02.002
10.1016/j.compedu.2013.06.009
10.1016/j.eswa.2006.06.001
10.1371/journal.pone.0179805
10.3390/sym10040079
10.1109/ACCESS.2019.2917303
10.1002/jmv.25285
10.2147/VHRM.S10669
10.1016/j.ins.2008.08.006
10.1142/S0219519416400029
10.1016/j.eswa.2011.04.222
10.1002/clc.4960230311
10.1214/aos/1013203451
10.1016/j.neucom.2011.06.010
10.1080/17455030.2018.1554926
10.1515/bmt-2017-0041
10.1016/j.compbiomed.2013.12.010
10.1002/dir.20028
10.1117/12.2512059
10.1109/TITB.2010.2091647
10.1109/ICOSST.2013.6720618
10.1016/j.asoc.2014.05.023
10.1253/circj.68.343
10.1186/s40101-017-0136-8
10.1016/j.rppneu.2011.06.007
10.1007/BF00058655
10.1016/j.knosys.2013.10.016
10.1561/0600000035
10.1145/2939672.2939785
10.1007/s11571-018-9477-1
10.2333/bhmk.26.145
10.1103/PhysRevLett.89.068102
10.1109/TCYB.2014.2348012
10.1109/TKDE.2012.196
10.1016/j.knosys.2015.02.011
10.1371/journal.pone.0107676
10.1073/pnas.88.6.2297
10.1109/TIFS.2012.2223675
10.1016/j.ab.2007.07.006
10.1007/s10439-009-9863-2
10.1109/CompComm.2017.8322749
10.1089/tmj.2010.0182
10.1515/msr-2015-0027
10.1016/j.ehj.2003.12.003
10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.53
10.1038/sj.jea.7500447
10.1016/j.ins.2017.10.017
10.1080/03091900601050862
10.1109/IGARSS.2018.8517540
10.1109/ACCESS.2018.2844303
10.1016/j.ins.2012.07.049
10.1093/bioinformatics/bth466
10.1161/01.CIR.101.23.e215
10.1186/cc2948
10.1016/j.compbiomed.2013.11.016
10.1109/ICMCS.2011.5945658
ContentType Journal Article
Copyright 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
2020 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
– notice: 2020 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1080/17455030.2020.1810364
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-5049
EndPage 1102
ExternalDocumentID 10_1080_17455030_2020_1810364
1810364
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
123
29R
30N
4.4
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
C5L
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GCUZY
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NZ-
O9-
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEX
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~02
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
TASJS
ID FETCH-LOGICAL-c338t-2c46d7f445e4ce872a237fd8c0f66c6fb6d51cbb4713f21b2ff70ea7bb47fb013
ISSN 1745-5030
IngestDate Fri Jul 25 07:18:07 EDT 2025
Thu Apr 24 22:58:02 EDT 2025
Tue Jul 01 01:43:53 EDT 2025
Wed Dec 25 09:06:58 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-2c46d7f445e4ce872a237fd8c0f66c6fb6d51cbb4713f21b2ff70ea7bb47fb013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1103-4938
PQID 2659556793
PQPubID 2045224
PageCount 24
ParticipantIDs crossref_primary_10_1080_17455030_2020_1810364
proquest_journals_2659556793
informaworld_taylorfrancis_310_1080_17455030_2020_1810364
crossref_citationtrail_10_1080_17455030_2020_1810364
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-04
PublicationDateYYYYMMDD 2022-05-04
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-04
  day: 04
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Waves in random and complex media
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0072
CIT0071
CIT0030
CIT0074
CIT0073
CIT0032
CIT0076
CIT0075
CIT0078
CIT0077
CIT0070
Zaidi NA (CIT0060) 2017; 01
Hussain L (CIT0035) 2015; 3
CIT0036
Hussain L (CIT0043) 2017; 28
CIT0079
CIT0038
CIT0037
CIT0039
CIT0083
CIT0082
CIT0041
Wang D (CIT0052) 2011; 38
CIT0085
CIT0084
Chawla LOK (CIT0023) 2002; 16
CIT0087
CIT0042
CIT0086
CIT0001
CIT0045
CIT0089
CIT0044
CIT0088
CIT0080
CIT0003
CIT0047
CIT0046
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
Hussain L (CIT0051) 2017; 0
CIT0009
CIT0008
Glass L (CIT0040) 1993; 19
CIT0050
CIT0094
CIT0093
CIT0095
CIT0010
CIT0054
CIT0053
CIT0012
CIT0056
CIT0011
CIT0055
CIT0090
CIT0092
CIT0091
CIT0014
CIT0058
CIT0013
CIT0057
CIT0016
CIT0015
CIT0059
CIT0018
CIT0017
CIT0019
CIT0061
CIT0063
CIT0062
CIT0021
CIT0065
CIT0020
CIT0067
CIT0022
CIT0066
Hussain L (CIT0033) 2017; 17
Rathore S (CIT0031) 2012; 281
Hussain L (CIT0034) 2015; 2
Pagani M. (CIT0002) 2000; 13
Kumari G (CIT0081) 2018; 07
CIT0025
CIT0069
CIT0024
CIT0068
CIT0027
CIT0026
CIT0029
Huang T (CIT0064) 2006; 7
CIT0028
References_xml – ident: CIT0044
  doi: 10.3233/CBM-170643
– ident: CIT0009
  doi: 10.1155/2020/4281243
– ident: CIT0024
  doi: 10.3390/app8081325
– ident: CIT0032
  doi: 10.1016/j.compbiomed.2015.03.004
– ident: CIT0042
  doi: 10.1109/TrustCom/BigDataSE.2018.00057
– ident: CIT0003
  doi: 10.1111/j.1540-8167.1994.tb01164.x
– ident: CIT0015
  doi: 10.1046/j.1365-2281.2001.00359.x
– ident: CIT0010
  doi: 10.1002/ehf2.12005
– ident: CIT0067
  doi: 10.1016/j.bbrc.2007.03.162
– volume: 01
  start-page: 1701
  year: 2017
  ident: CIT0060
  publication-title: J Mach Learn Res
– ident: CIT0088
  doi: 10.1109/ACCESS.2018.2855420
– ident: CIT0091
  doi: 10.1243/09544119JEIM642
– ident: CIT0053
  doi: 10.1016/S0165-0270(00)00356-3
– ident: CIT0089
  doi: 10.1016/j.compbiomed.2007.01.012
– ident: CIT0071
  doi: 10.2174/092986612799789387
– ident: CIT0006
  doi: 10.1016/j.cmpb.2019.03.008
– volume: 281
  start-page: 373
  year: 2012
  ident: CIT0031
  publication-title: Commun Comput Inf Sci
– ident: CIT0073
  doi: 10.1016/j.patrec.2010.03.014
– ident: CIT0095
  doi: 10.1016/j.jbi.2012.04.013
– ident: CIT0020
  doi: 10.3390/e19090488
– ident: CIT0056
  doi: 10.1016/j.asoc.2013.09.014
– ident: CIT0048
  doi: 10.2174/1573405614666180718123533
– ident: CIT0012
  doi: 10.1007/s10439-010-0180-6
– ident: CIT0079
  doi: 10.1371/journal.pone.0093950
– ident: CIT0058
  doi: 10.1109/TKDE.2008.239
– ident: CIT0087
  doi: 10.1016/j.ins.2018.06.056
– ident: CIT0083
  doi: 10.1111/pace.13271
– ident: CIT0068
  doi: 10.1021/pr060635i
– volume: 07
  start-page: 796
  issue: 01
  year: 2018
  ident: CIT0081
  publication-title: Int J Curr Res Life Sci
– ident: CIT0062
  doi: 10.1016/j.aap.2016.02.002
– ident: CIT0021
  doi: 10.1016/j.compedu.2013.06.009
– volume: 16
  start-page: 321
  year: 2002
  ident: CIT0023
  publication-title: J Artif Intell
– ident: CIT0055
  doi: 10.1016/j.eswa.2006.06.001
– ident: CIT0027
  doi: 10.1371/journal.pone.0179805
– ident: CIT0028
  doi: 10.3390/sym10040079
– ident: CIT0046
  doi: 10.1109/ACCESS.2019.2917303
– ident: CIT0022
  doi: 10.1002/jmv.25285
– ident: CIT0011
  doi: 10.2147/VHRM.S10669
– ident: CIT0016
  doi: 10.1016/j.ins.2008.08.006
– ident: CIT0001
  doi: 10.1142/S0219519416400029
– volume: 38
  start-page: 14314
  issue: 11
  year: 2011
  ident: CIT0052
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.04.222
– volume: 2
  start-page: 126
  issue: 1
  year: 2015
  ident: CIT0034
  publication-title: J Multidiscip Eng Sci Technol
– ident: CIT0005
  doi: 10.1002/clc.4960230311
– ident: CIT0076
  doi: 10.1214/aos/1013203451
– ident: CIT0085
  doi: 10.1016/j.neucom.2011.06.010
– ident: CIT0038
  doi: 10.1080/17455030.2018.1554926
– ident: CIT0045
  doi: 10.1515/bmt-2017-0041
– ident: CIT0030
  doi: 10.1016/j.compbiomed.2013.12.010
– ident: CIT0078
  doi: 10.1002/dir.20028
– ident: CIT0080
  doi: 10.1117/12.2512059
– ident: CIT0092
  doi: 10.1109/TITB.2010.2091647
– volume: 17
  start-page: 52
  issue: 8
  year: 2017
  ident: CIT0033
  publication-title: Int J Comput Sci Netw Secur
– ident: CIT0047
  doi: 10.1109/ICOSST.2013.6720618
– ident: CIT0086
  doi: 10.1016/j.asoc.2014.05.023
– ident: CIT0018
  doi: 10.1253/circj.68.343
– ident: CIT0041
  doi: 10.1186/s40101-017-0136-8
– volume: 7
  start-page: 85
  year: 2006
  ident: CIT0064
  publication-title: J Mach Learn Res
– ident: CIT0013
  doi: 10.1016/j.rppneu.2011.06.007
– ident: CIT0074
  doi: 10.1007/BF00058655
– ident: CIT0063
  doi: 10.1016/j.knosys.2013.10.016
– ident: CIT0072
  doi: 10.1561/0600000035
– ident: CIT0075
  doi: 10.1145/2939672.2939785
– ident: CIT0037
  doi: 10.1007/s11571-018-9477-1
– ident: CIT0077
  doi: 10.2333/bhmk.26.145
– ident: CIT0050
  doi: 10.1103/PhysRevLett.89.068102
– ident: CIT0066
  doi: 10.1109/TCYB.2014.2348012
– ident: CIT0059
  doi: 10.1109/TKDE.2012.196
– ident: CIT0014
  doi: 10.1016/j.knosys.2015.02.011
– ident: CIT0057
  doi: 10.1371/journal.pone.0107676
– ident: CIT0049
  doi: 10.1073/pnas.88.6.2297
– ident: CIT0094
– ident: CIT0061
  doi: 10.1109/TIFS.2012.2223675
– ident: CIT0069
  doi: 10.1016/j.ab.2007.07.006
– ident: CIT0007
  doi: 10.1007/s10439-009-9863-2
– ident: CIT0025
  doi: 10.1109/CompComm.2017.8322749
– volume: 13
  start-page: 341
  issue: 6
  year: 2000
  ident: CIT0002
  publication-title: Diabetes Nutr Metab
– volume: 3
  start-page: 13
  year: 2015
  ident: CIT0035
  publication-title: Int J Darshan Inst Eng Res Emerg Technol
– ident: CIT0008
  doi: 10.1089/tmj.2010.0182
– ident: CIT0082
  doi: 10.1515/msr-2015-0027
– ident: CIT0004
  doi: 10.1016/j.ehj.2003.12.003
– ident: CIT0084
  doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.53
– ident: CIT0019
  doi: 10.1038/sj.jea.7500447
– volume: 0
  issue: 0
  year: 2017
  ident: CIT0051
  publication-title: Biomed Eng/Biomed Tech
– ident: CIT0026
  doi: 10.1016/j.ins.2017.10.017
– ident: CIT0017
  doi: 10.1080/03091900601050862
– volume: 19
  start-page: 115
  issue: 1992
  year: 1993
  ident: CIT0040
  publication-title: Med Prog Technol
– ident: CIT0065
  doi: 10.1109/IGARSS.2018.8517540
– ident: CIT0036
  doi: 10.1109/ACCESS.2018.2844303
– ident: CIT0054
  doi: 10.1016/j.ins.2012.07.049
– ident: CIT0070
  doi: 10.1093/bioinformatics/bth466
– ident: CIT0029
  doi: 10.1161/01.CIR.101.23.e215
– ident: CIT0039
  doi: 10.1186/cc2948
– ident: CIT0090
  doi: 10.1016/j.compbiomed.2013.11.016
– volume: 28
  start-page: 7104
  issue: 16
  year: 2017
  ident: CIT0043
  publication-title: Biomed Res
– ident: CIT0093
  doi: 10.1109/ICMCS.2011.5945658
SSID ssj0040612
Score 2.3698032
Snippet The incidence of congestive heart failure (CHF) is approximately 10 per 1000 for Americans over the age of 65 years. The dynamics of CHF are highly complex,...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1079
SubjectTerms Classification
Classifiers
Congestive heart failure
decision tree
Feature extraction
Heart failure
Machine learning
multimodal features
Neural networks
Nonlinear dynamics
normal sinus rhythm
Oversampling
Regression analysis
Sensitivity
support vector machine
Support vector machines
Title Detecting congestive heart failure by extracting multimodal features with synthetic minority oversampling technique (SMOTE) for imbalanced data using robust machine learning techniques
URI https://www.tandfonline.com/doi/abs/10.1080/17455030.2020.1810364
https://www.proquest.com/docview/2659556793
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbKEBIviKsYDOQHHkBRSutc-1jB0BjbeKATe4tsx9YqNWnVpMD2y_hvvHCO7VymVRqXl6hyGifR-WJ_Pv7OOYS8UkykMmSJrycs90MeMZ8DLffjXId5Ok7kRKND__gkPjgND8-is8HgV0-1tKnFUF5ujSv5F6tCG9gVo2T_wrJtp9AAv8G-cAQLw_GPbPxe4RaADZstcaMIZUBYorr2NJ-j4BzZJQy_JhQK_mbkg8Uyx6hFZVJ6uui26qIEJojJW4t5uVwbnQYKNjgKzjGgqk31Coz0y_Hn2T66E1CiOC8EqiNRRoBqU29jnA_rpdhUtVcYqaZqalP0-qn6rPgr_2Z0YR5MnPmyaGLtVgv1w4a2dOCrKm6zHhzxVhtytLRu2U9YGEp7h9Bb3gL5u_XwfixgKLv0pudF75yAOdyoGaa5UoveSecGgRU0ig47N-jsWkWS3qCehJEfjdz-j-q32XSpzUzQeVo7R8HKVead9CgCUCa2dfqxek3sG283hOeExnSMe73dfNuqIN2ZW-Q2gzUOlt8IRicNjUCixWw0r334JvwsHb3deoMrxOpK2t1rNMNwp9l9cs8teujUIvgBGajyIbljxMeyekR-tjimHY6pwTF1OKbignY4ph2OaYNjijimLY5pg2PaxzFt8UdfGxS_ofACtMMwRQxTg2FqMUwdhmmD4a6P6jE5_bA_e3fgu4oivgyCtPaZDOM80WEYqVCqNGGcBYnOUznScSxjLeI8GkshgLEFmo0F0zoZKZ5gi8YdgydkpwRMPyVU8EgFXMNRYco6WCixVOY8ilOZMi30Lgkbc2TSpdvHqi-LbOyy8jZWzNCKmbPiLhm2l61svpmbLpj0bZ3V5kPQ9hvIghuu3WuAkblhrcoYZhiNYpi3n_1H18_J3e4r3SM79XqjXgB9r8VLA_Pfw1PzTA
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCNELb9RCgTlwgEOWjWM72SOCVgt0lwNbqTfLT7SCzaImeyi_jJ_HjJNUWxDqoZccrIzzsD0zHn_zDWOvAreVE7zM4oT7TBjJM4NueaZ8FL7KSzeJFNCfzdX0RHw6ladbuTAEq6Q9dOyIIpKupsVNwegBEvcWvWh0rIsxbu84NlU5HabdZLfkRJVUxaAYzwdtTPaKd0mRMiOZIYvnf91csk-X2Ev_0dbJBB3dY254-Q558n20ae3I_fqL1_F6X3ef3e09VHjXTakH7EaoH7LbCSnqmkfs94dA5w5o8QC30nQ6hfoSqC52C9EsCeUO9hxQ56f8K7wtYRZXa4-dxpB4RBug8C805zW6n_gYWC3rNVXRAwKUNoZQ7ih4wS8Lr7_OviwO3wD-JliuLMExXfBA8FYg5P43OFvbTdPCKmFDA_TFMLb6aB6zk6PDxftp1pd_yBzum9uMO6F8GYWQQbhQldzwooy-cuOolFPRKi9zZy2a1yLy3PIYy3EwJbVECu8-YTv1ug57DKyRoTARr4H4xdCr5ZXzRqrKVTzauM_EMOja9dzoVKLjh857CtVhUDQNiu4HZZ-NLsR-duQgVwlMtmeUblNUJnYlVHRxhezBMP10r2cazYkOUipUsk-v0fVLdme6mB3r44_zz8_YLqcMD8J0igO2055twnP0u1r7Ii2sP1ZbI34
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCNQLb0RLW-bAAQ5ZNo7jZI-IdlUeXZBoJW5W_JhqBZutmuyh_DJ-HjNOUrVUVQ-95GBlnIftedjffCPEmyBt6ZQsEpxIn6gql0lFbnmiPSpfpoWbIG_oH8z0_pH6_DMf0IRND6vkGBo7ooioq3lxn3gcEHHvyYkmvzobU3QnqalM-SztrrinmTycszjGs0EZs7mSXU5knrDMkMRzXTeXzNMl8tIryjpaoOkjYYd374Anv0ar1o7cn_9oHW_1cY_Fw94_hQ_dhHoi7oT6qbgfcaKueSb-7gY-dSB7BxRI89kUaUvgqtgtYDVnjDvYMyCNH7Ov6LaIWFwsPXWKIbKINsCbv9Cc1eR80mNgMa-XXEMPGE7aVIxxJ8Fzdll4--Pg2-HeO6C_BPOFZTCmCx4Y3AqM2z-G06VdNS0sIjI0QF8K40IfzXNxNN07_Lif9MUfEkdRc5tIp7QvUKk8KBfKQlYyK9CXboxaO41W-zx11pJxzVCmViIW41AV3IK8uftCrNXLOrwUYKs8ZBXSNTC7GPm0snS-ynXpSokWN4Qaxty4nhmdC3T8NmlPoDoMiuFBMf2gbIjRudhJRw1yk8Dk4oQybdyTwa6AislukN0aZp_ptUxjJJNB5ppU7OYtun4tHnzfnZqvn2ZfXol1yekdDOhUW2KtPV2FbXK6WrsTl9U_piMiIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+congestive+heart+failure+by+extracting+multimodal+features+with+synthetic+minority+oversampling+technique+%28SMOTE%29+for+imbalanced+data+using+robust+machine+learning+techniques&rft.jtitle=Waves+in+random+and+complex+media&rft.au=Hussain%2C+Lal&rft.au=Lone%2C+Kashif+Javed&rft.au=Awan%2C+Imtiaz+Ahmed&rft.au=Abbasi%2C+Adeel+Ahmed&rft.date=2022-05-04&rft.pub=Taylor+%26+Francis&rft.issn=1745-5030&rft.eissn=1745-5049&rft.volume=32&rft.issue=3&rft.spage=1079&rft.epage=1102&rft_id=info:doi/10.1080%2F17455030.2020.1810364&rft.externalDocID=1810364
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-5030&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-5030&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-5030&client=summon