On the geometric structures of transmission eigenfunctions with a conductive boundary condition and applications

This paper is concerned with the intrinsic geometric structures of conductive transmission eigenfunctions. The geometric properties of interior transmission eigenfunctions were first studied in Blåsten, E., Liu, H. (2017). On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273...

Full description

Saved in:
Bibliographic Details
Published inCommunications in partial differential equations Vol. 46; no. 4; pp. 630 - 679
Main Authors Diao, Huaian, Cao, Xinlin, Liu, Hongyu
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 11.05.2021
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0360-5302
1532-4133
DOI10.1080/03605302.2020.1857397

Cover

Loading…
Abstract This paper is concerned with the intrinsic geometric structures of conductive transmission eigenfunctions. The geometric properties of interior transmission eigenfunctions were first studied in Blåsten, E., Liu, H. (2017). On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273(11):3616-3632. It is shown in two scenarios that the interior transmission eigenfunction must be locally vanishing near a corner of the domain with an interior angle less than π. We significantly extend and generalize those results in several aspects. First, we consider the conductive transmission eigenfunctions which include the interior transmission eigenfunctions as a special case. The geometric structures established for the conductive transmission eigenfunctions in this paper include the results in Blåsten, E., Liu, H. (2017). On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273(11):3616-3632 as a special case. Second, the vanishing property of the conductive transmission eigenfunctions is established for any corner as long as its interior angle is not π when the conductive transmission eigenfunctions satisfy certain Herglotz functions approximation properties. That means, as long as the corner singularity is not degenerate, the vanishing property holds if the underlying conductive transmission eigenfunctions can be approximated by a sequence of Herglotz functions under mild approximation rates. Third, the regularity requirements on the interior transmission eigenfunctions in Blåsten, E., Liu, H. (2017). On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273(11):3616-3632 are significantly relaxed in the present study for the conductive transmission eigenfunctions. In order to establish the geometric properties for the conductive transmission eigenfunctions, we develop technically new methods and the corresponding analysis is much more complicated than that in Blåsten, E., Liu, H. (2017). On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273(11):3616-3632. Finally, as an interesting and practical application of the obtained geometric results, we establish a unique recovery result for the inverse problem associated with the transverse electromagnetic scattering by a single far-field measurement in simultaneously determining a polygonal conductive obstacle and its surface conductive parameter.
AbstractList This paper is concerned with the intrinsic geometric structures of conductive transmission eigenfunctions. The geometric properties of interior transmission eigenfunctions were first studied in Blåsten, E., Liu, H. (2017). On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273(11):3616–3632. It is shown in two scenarios that the interior transmission eigenfunction must be locally vanishing near a corner of the domain with an interior angle less than π. We significantly extend and generalize those results in several aspects. First, we consider the conductive transmission eigenfunctions which include the interior transmission eigenfunctions as a special case. The geometric structures established for the conductive transmission eigenfunctions in this paper include the results in Blåsten, E., Liu, H. (2017). On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273(11):3616–3632 as a special case. Second, the vanishing property of the conductive transmission eigenfunctions is established for any corner as long as its interior angle is not π when the conductive transmission eigenfunctions satisfy certain Herglotz functions approximation properties. That means, as long as the corner singularity is not degenerate, the vanishing property holds if the underlying conductive transmission eigenfunctions can be approximated by a sequence of Herglotz functions under mild approximation rates. Third, the regularity requirements on the interior transmission eigenfunctions in Blåsten, E., Liu, H. (2017). On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273(11):3616–3632 are significantly relaxed in the present study for the conductive transmission eigenfunctions. In order to establish the geometric properties for the conductive transmission eigenfunctions, we develop technically new methods and the corresponding analysis is much more complicated than that in Blåsten, E., Liu, H. (2017). On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273(11):3616–3632. Finally, as an interesting and practical application of the obtained geometric results, we establish a unique recovery result for the inverse problem associated with the transverse electromagnetic scattering by a single far-field measurement in simultaneously determining a polygonal conductive obstacle and its surface conductive parameter.
Author Cao, Xinlin
Diao, Huaian
Liu, Hongyu
Author_xml – sequence: 1
  givenname: Huaian
  orcidid: 0000-0002-3787-9608
  surname: Diao
  fullname: Diao, Huaian
  organization: School of Mathematics and Statistics, Northeast Normal University
– sequence: 2
  givenname: Xinlin
  surname: Cao
  fullname: Cao, Xinlin
  organization: Department of Mathematics, Hong Kong Baptist University
– sequence: 3
  givenname: Hongyu
  orcidid: 0000-0002-2930-3510
  surname: Liu
  fullname: Liu, Hongyu
  organization: Department of Mathematics, City University of Hong Kong
BookMark eNqFkE1LAzEQhoMo2Ko_QQh4Xp0kTZviRRG_oNCLnkOajxrZJmuSVfz3Zlu9eNDTMMP7zDDPGO2HGCxCpwTOCQi4ADYFzoCeU6B1JPiMzWd7aEQ4o82EMLaPRkOmGUKHaJzzKwARdD4ZoW4ZcHmxeG3jxpbkNc4l9br0yWYcHS5JhbzxOfsYsPVrG1wfdKldxh--vGCFdQymEv7d4lXsg1HpczvzQwqrYLDqutZrtaWO0YFTbbYn3_UIPd_dPt08NIvl_ePN9aLRjInSUEGIgInV3HE2IVQ5OreEOUM4cbOZsW4KRinDgTiuV2y1IlpNuQUDTIAW7Aid7fZ2Kb71Nhf5GvsU6klJORVTTimBmuK7lE4x52Sd7JLf1A8kATnIlT9y5SBXfsut3OUvTvuyfbAK8-2_9NWO9sHFtFEfMbVGFvXZxuSqcO2zZH-v-ALhiJc2
CitedBy_id crossref_primary_10_1016_j_jde_2023_07_002
crossref_primary_10_1088_1361_6420_ac23c2
crossref_primary_10_1121_10_0007047
crossref_primary_10_1080_00036811_2023_2181167
crossref_primary_10_2140_apde_2021_14_2207
crossref_primary_10_1088_1361_6420_ac4838
crossref_primary_10_1137_20M1388498
crossref_primary_10_1137_21M1413547
crossref_primary_10_1088_1361_6420_abefeb
crossref_primary_10_3390_axioms11120661
crossref_primary_10_3934_ipi_2022025
crossref_primary_10_1051_m2an_2022021
crossref_primary_10_1051_m2an_2024003
crossref_primary_10_1007_s00526_022_02211_w
crossref_primary_10_1007_s00526_022_02278_5
crossref_primary_10_3934_math_20231392
crossref_primary_10_1137_20M1323576
crossref_primary_10_1017_S0956792524000287
crossref_primary_10_1137_20M1384002
crossref_primary_10_3233_ASY_221794
crossref_primary_10_1007_s44198_023_00114_8
crossref_primary_10_1007_s40687_021_00299_8
crossref_primary_10_1016_j_jde_2021_11_039
crossref_primary_10_1111_sapm_12656
crossref_primary_10_3390_app13031874
crossref_primary_10_3934_era_2022090
crossref_primary_10_3934_ipi_2021063
crossref_primary_10_3934_math_2023487
crossref_primary_10_1137_22M1538417
crossref_primary_10_3934_math_20231206
crossref_primary_10_3390_axioms11040161
crossref_primary_10_3390_math11194086
crossref_primary_10_1007_s42985_021_00131_6
Cites_doi 10.1137/070697525
10.1088/1361-6420/aa8826
10.1088/0266-5611/23/6/005
10.4208/csiam-am.2020-0020
10.1137/18M1182048
10.1007/s00526-020-01830-5
10.1088/0266-5611/29/10/104002
10.1109/TAP.1975.1141099
10.1137/0519043
10.1016/j.jfa.2017.08.023
10.1137/0520096
10.1090/S0002-9939-05-07810-X
10.1088/0266-5611/24/3/035018
10.4171/JEMS/895
10.1088/0266-5611/29/9/095021
10.4171/RMI/975
10.1016/j.jde.2016.10.021
10.1016/j.matpur.2020.09.011
10.1007/s00220-014-2030-0
10.1088/0266-5611/23/1/016
10.1007/978-3-662-03537-5
10.1016/j.jde.2017.05.022
10.1007/BFb0086682
10.1137/0522109
10.1002/mma.448
10.1139/p62-067
10.1088/0266-5611/22/2/008
10.1137/090769338
10.1093/imamat/37.3.213
10.3934/era.2020090
10.1080/00036811.2016.1204440
10.1051/m2an/2018031
10.1088/0266-5611/19/6/008
10.1080/00036811.2018.1504028
10.1137/0152092
10.1088/1361-6420/ab958f
10.1512/iumj.2008.57.3217
10.1002/mana.19931620117
10.1088/0266-5611/29/10/104003
10.1088/0266-5611/29/10/104001
10.1137/16M110753X
10.1093/qjmam/41.1.97
ContentType Journal Article
Copyright 2020 Taylor & Francis Group, LLC 2020
2020 Taylor & Francis Group, LLC
Copyright_xml – notice: 2020 Taylor & Francis Group, LLC 2020
– notice: 2020 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1080/03605302.2020.1857397
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-4133
EndPage 679
ExternalDocumentID 10_1080_03605302_2020_1857397
1857397
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
N9A
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c338t-2811804ec5f53412af29e13fd151f77def60daad501f5cb3bb1ca65e0d0380c83
ISSN 0360-5302
IngestDate Wed Aug 13 04:33:25 EDT 2025
Thu Apr 24 22:55:50 EDT 2025
Tue Jul 01 03:00:53 EDT 2025
Wed Dec 25 09:08:01 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-2811804ec5f53412af29e13fd151f77def60daad501f5cb3bb1ca65e0d0380c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3787-9608
0000-0002-2930-3510
PQID 2528652210
PQPubID 186205
PageCount 50
ParticipantIDs informaworld_taylorfrancis_310_1080_03605302_2020_1857397
crossref_citationtrail_10_1080_03605302_2020_1857397
proquest_journals_2528652210
crossref_primary_10_1080_03605302_2020_1857397
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-11
PublicationDateYYYYMMDD 2021-05-11
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-11
  day: 11
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in partial differential equations
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
Blåsten E. (CIT0021) 2020
CIT0031
CIT0034
McLean W. (CIT0039) 2010
CIT0033
Grisvard P. (CIT0049) 1985
CIT0036
CIT0035
CIT0038
CIT0037
CIT0040
CIT0043
CIT0042
CIT0001
CIT0045
CIT0044
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0004
CIT0048
CIT0007
Cakoni F. (CIT0013) 2013; 60
CIT0006
CIT0009
CIT0008
CIT0050
CIT0010
CIT0012
CIT0011
CIT0014
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
Liu H. (CIT0032) 2009; 2
CIT0020
CIT0023
CIT0022
Abramowitz M. (CIT0041) 1964; 55
CIT0025
CIT0024
CIT0027
CIT0026
CIT0029
CIT0028
References_xml – ident: CIT0007
  doi: 10.1137/070697525
– ident: CIT0017
  doi: 10.1088/1361-6420/aa8826
– volume-title: Boundary Value Problems in Non-Smooth Domains
  year: 1985
  ident: CIT0049
– ident: CIT0033
  doi: 10.1088/0266-5611/23/6/005
– ident: CIT0050
  doi: 10.4208/csiam-am.2020-0020
– year: 2020
  ident: CIT0021
  publication-title: Indiana Univ. Math. J
– ident: CIT0019
  doi: 10.1137/18M1182048
– ident: CIT0026
  doi: 10.1007/s00526-020-01830-5
– ident: CIT0001
  doi: 10.1088/0266-5611/29/10/104002
– ident: CIT0043
  doi: 10.1109/TAP.1975.1141099
– volume-title: Strongly Elliptic Systems and Boundary Integral Equations
  year: 2010
  ident: CIT0039
– volume: 55
  volume-title: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables
  year: 1964
  ident: CIT0041
– ident: CIT0038
  doi: 10.1137/0519043
– ident: CIT0016
  doi: 10.1016/j.jfa.2017.08.023
– volume: 2
  start-page: 1
  year: 2009
  ident: CIT0032
  publication-title: Numer. Math.: TMA
– ident: CIT0003
  doi: 10.1137/0520096
– ident: CIT0020
  doi: 10.1090/S0002-9939-05-07810-X
– ident: CIT0027
  doi: 10.1088/0266-5611/24/3/035018
– ident: CIT0029
  doi: 10.4171/JEMS/895
– ident: CIT0011
  doi: 10.1088/0266-5611/29/9/095021
– ident: CIT0015
  doi: 10.4171/RMI/975
– ident: CIT0028
  doi: 10.1016/j.jde.2016.10.021
– ident: CIT0024
  doi: 10.1016/j.matpur.2020.09.011
– ident: CIT0014
  doi: 10.1007/s00220-014-2030-0
– ident: CIT0035
  doi: 10.1088/0266-5611/23/1/016
– ident: CIT0040
  doi: 10.1007/978-3-662-03537-5
– ident: CIT0042
– ident: CIT0030
  doi: 10.1016/j.jde.2017.05.022
– ident: CIT0048
  doi: 10.1007/BFb0086682
– ident: CIT0009
  doi: 10.1137/0522109
– ident: CIT0037
  doi: 10.1002/mma.448
– ident: CIT0044
  doi: 10.1139/p62-067
– ident: CIT0034
  doi: 10.1088/0266-5611/22/2/008
– ident: CIT0002
  doi: 10.1137/090769338
– ident: CIT0005
  doi: 10.1093/imamat/37.3.213
– ident: CIT0023
  doi: 10.3934/era.2020090
– ident: CIT0018
– ident: CIT0010
  doi: 10.1080/00036811.2016.1204440
– ident: CIT0046
  doi: 10.1051/m2an/2018031
– ident: CIT0025
  doi: 10.1088/0266-5611/19/6/008
– ident: CIT0012
  doi: 10.1080/00036811.2018.1504028
– volume: 60
  start-page: 529
  volume-title: Inverse Problems and Applications: Inside Out II
  year: 2013
  ident: CIT0013
– ident: CIT0045
  doi: 10.1137/0152092
– ident: CIT0022
  doi: 10.1088/1361-6420/ab958f
– ident: CIT0036
  doi: 10.1512/iumj.2008.57.3217
– ident: CIT0047
  doi: 10.1002/mana.19931620117
– ident: CIT0006
  doi: 10.1088/0266-5611/29/10/104003
– ident: CIT0008
  doi: 10.1088/0266-5611/29/10/104001
– ident: CIT0031
  doi: 10.1137/16M110753X
– ident: CIT0004
  doi: 10.1093/qjmam/41.1.97
SSID ssj0018294
Score 2.5219975
Snippet This paper is concerned with the intrinsic geometric structures of conductive transmission eigenfunctions. The geometric properties of interior transmission...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 630
SubjectTerms 78A46 (primary)
81U40 (secondary)
Approximation
Boundary conditions
Conductive transmission eigenfunctions
corner singularity
Corners
Eigenvectors
Electromagnetic scattering
Far fields
geometric structures
Inverse problems
inverse scattering
Mathematical analysis
single far-field pattern
uniqueness
vanishing
Title On the geometric structures of transmission eigenfunctions with a conductive boundary condition and applications
URI https://www.tandfonline.com/doi/abs/10.1080/03605302.2020.1857397
https://www.proquest.com/docview/2528652210
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gIHxFMUCvKBW5VV4ryPVWm1QqV7yYoVFyt2nCoSZPtIDuWf8G-ZsZ2so60ocIk23nWczXzxjMcz3xDyUWBIYyzgTfNz5SGhkicqP_USWAyxqpIyqDXb50WyWEWf1_F6NvvlRC31nZjLn_fmlfyPVKEN5IpZsv8g2fGi0ACfQb5wBAnD8a9kvDQxipdq8wMLY8kjwwbb3xgm2Q71EMgRHWJHCmk3UYuZ0DeT04ZB50j4qkPYdYGlmzvd1nRDmLK7w-1aspPMEhOMjneo93xMzRV9oq57py9azE2pvbOLvnSQeWIa1w0Sd4xBQk2vf7lpL-961z3BAtxZD7buiWKnUogTrmSytnwPKxcZfTRMwswD5Rq6s7R1VDauC0JPuYnd1zHaOzGlaXYUg42khNFwsDncKTRmcRqa6OApEffFkp-tzs95cbouHpF9BisQmPP3jxefvn0dt6gylltuMvMHhvQwJG6_b5iJ4TOhxd0xA7RtUzwjT-2ihB4bhD0nM9W-IE--jIy-ty_J1bKlcEpHrNEt1uimpi7W6BRrFLFGS7rFGh2wRkesUcAadbH2iqzOTouThWerdXgyDLPOYxmyCUZKxnUMphEra5arIKwrsCnrNK1UnfhVWVaxH9SxFKEQgSyTWPmVH2a-zMLXZK_dtOoNoTVYkXmcR_DY8wi0iojSFH31Mof1gi_UAYmGR8mlpbLHiirfeTAw3loJcJQAtxI4IPOx25XhcnmoQ-7KiXcazLXBMQ8f6Hs4CJXbKeOWsxgTwRkL_Ld__vodebx9mQ7JHkhUvQfrtxMfLA5_AyCrr8E
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1Eo4IE1xXHiJB4RApVXWVqpmxU7NgPQVhAG-PXcOUlVQIiBMZbOcux7-_wdIScaSxqFBklj0gYIqBTogqVBAsEQLwpjQufRPvtJbxhfj8Ro7i0MllViDO0qoAivq1G4MRndlMSdgtZl2O0GwjsOQ5lIwaoukiUhkxSFM2L92U1CxmUNIcUCpGle8fw2zRf79AW99Ie29ibocp2YZvFV5clj963UXfPxDdfxf3-3QdZqD5WeVSy1SRbseIus3s3gXV-3yfR-TOGTPtjJM3bkMrSCoX2D2J1OHC3RAAIDYSaOWsT7RPPpOZxi4pfmFMJwRJoFXUu17-z08u7HfAUZhcXT-av1HTK8vBic94K6dUNgIOYtA54htFxsjXAC7CTPHZc2jFwBDoZL08K6hBV5XggWOmF0pHVo8kRYVrAoYyaLdklrPBnbPUIduBRSyBhCVRmDitFxmmLi1khwHpm2bRI3B6ZMjWuO7TWeVNjAn9YbqnBDVb2hbdKdkU0rYI-_COQ8N6jSZ1Rc1f5ERX_QdhrWUbWOeFVc4KtgDjH3_j-mPibLvcHdrbq96t8ckBWOJTcILht2SAuO3h6Cz1TqIy8Un3ijCAU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsQwELU4JAQFN2I5XdBmcZw4R4mAFedCARKdFV8UQHbFZgv4emacZMUhREEZS2M59nhmnj1-Q8iBwpRGoWCnsdwGSKgUKMPSIAEwxI3ROnSe7bOfnN3HFw-izSYcNWmViKFdTRThbTVu7qFxbUbcIRhdhsVuAN1xaMpECk51mswmeMmHrzhYf3KRkPG8YZBiAcq0j3h-6-aLe_pCXvrDWHsP1Fsiqh17nXjy1B1Xqqvfv9E6_uvnlsliE5_So1qhVsiULVfJwvWE3HW0RoY3JYVP-mgHL1iPS9OahHYMyJ0OHK3Q_YH64Dkctcj2ic7T6zfFY19aUADhyDMLlpYqX9fp9c23-fwxCmOnny_W18l97_Tu-CxoCjcEGhBvFfAMieViq4UT4CV54Xhuw8gZCC9cmhrrEmaKwggWOqFVpFSoi0RYZliUMZ1FG2SmHJR2k1AHAUUu8hiAah6DgVFxmuKxrc4hdGTKdkjcrpfUDas5Ftd4lmFLftpMqMQJlc2Edkh3IjasaT3-Esg_K4Os_HmKq4ufyOgP2Z1Wc2RjIUaSC3wTzAFxb_2j630yd3vSk1fn_cttMs8x3waZZcMdMgMrb3chYKrUnt8SHyiYBqk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+geometric+structures+of+transmission+eigenfunctions+with+a+conductive+boundary+condition+and+applications&rft.jtitle=Communications+in+partial+differential+equations&rft.au=Diao%2C+Huaian&rft.au=Cao%2C+Xinlin&rft.au=Liu%2C+Hongyu&rft.date=2021-05-11&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0360-5302&rft.eissn=1532-4133&rft.volume=46&rft.issue=4&rft.spage=630&rft.epage=679&rft_id=info:doi/10.1080%2F03605302.2020.1857397&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5302&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5302&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5302&client=summon