On the geometric structures of transmission eigenfunctions with a conductive boundary condition and applications
This paper is concerned with the intrinsic geometric structures of conductive transmission eigenfunctions. The geometric properties of interior transmission eigenfunctions were first studied in Blåsten, E., Liu, H. (2017). On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273...
Saved in:
Published in | Communications in partial differential equations Vol. 46; no. 4; pp. 630 - 679 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
11.05.2021
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0360-5302 1532-4133 |
DOI | 10.1080/03605302.2020.1857397 |
Cover
Loading…
Abstract | This paper is concerned with the intrinsic geometric structures of conductive transmission eigenfunctions. The geometric properties of interior transmission eigenfunctions were first studied in Blåsten, E., Liu, H. (2017). On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273(11):3616-3632. It is shown in two scenarios that the interior transmission eigenfunction must be locally vanishing near a corner of the domain with an interior angle less than π. We significantly extend and generalize those results in several aspects. First, we consider the conductive transmission eigenfunctions which include the interior transmission eigenfunctions as a special case. The geometric structures established for the conductive transmission eigenfunctions in this paper include the results in Blåsten, E., Liu, H. (2017). On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273(11):3616-3632 as a special case. Second, the vanishing property of the conductive transmission eigenfunctions is established for any corner as long as its interior angle is not π when the conductive transmission eigenfunctions satisfy certain Herglotz functions approximation properties. That means, as long as the corner singularity is not degenerate, the vanishing property holds if the underlying conductive transmission eigenfunctions can be approximated by a sequence of Herglotz functions under mild approximation rates. Third, the regularity requirements on the interior transmission eigenfunctions in Blåsten, E., Liu, H. (2017). On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273(11):3616-3632 are significantly relaxed in the present study for the conductive transmission eigenfunctions. In order to establish the geometric properties for the conductive transmission eigenfunctions, we develop technically new methods and the corresponding analysis is much more complicated than that in Blåsten, E., Liu, H. (2017). On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273(11):3616-3632. Finally, as an interesting and practical application of the obtained geometric results, we establish a unique recovery result for the inverse problem associated with the transverse electromagnetic scattering by a single far-field measurement in simultaneously determining a polygonal conductive obstacle and its surface conductive parameter. |
---|---|
AbstractList | This paper is concerned with the intrinsic geometric structures of conductive transmission eigenfunctions. The geometric properties of interior transmission eigenfunctions were first studied in Blåsten, E., Liu, H. (2017). On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273(11):3616–3632. It is shown in two scenarios that the interior transmission eigenfunction must be locally vanishing near a corner of the domain with an interior angle less than π. We significantly extend and generalize those results in several aspects. First, we consider the conductive transmission eigenfunctions which include the interior transmission eigenfunctions as a special case. The geometric structures established for the conductive transmission eigenfunctions in this paper include the results in Blåsten, E., Liu, H. (2017). On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273(11):3616–3632 as a special case. Second, the vanishing property of the conductive transmission eigenfunctions is established for any corner as long as its interior angle is not π when the conductive transmission eigenfunctions satisfy certain Herglotz functions approximation properties. That means, as long as the corner singularity is not degenerate, the vanishing property holds if the underlying conductive transmission eigenfunctions can be approximated by a sequence of Herglotz functions under mild approximation rates. Third, the regularity requirements on the interior transmission eigenfunctions in Blåsten, E., Liu, H. (2017). On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273(11):3616–3632 are significantly relaxed in the present study for the conductive transmission eigenfunctions. In order to establish the geometric properties for the conductive transmission eigenfunctions, we develop technically new methods and the corresponding analysis is much more complicated than that in Blåsten, E., Liu, H. (2017). On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273(11):3616–3632. Finally, as an interesting and practical application of the obtained geometric results, we establish a unique recovery result for the inverse problem associated with the transverse electromagnetic scattering by a single far-field measurement in simultaneously determining a polygonal conductive obstacle and its surface conductive parameter. |
Author | Cao, Xinlin Diao, Huaian Liu, Hongyu |
Author_xml | – sequence: 1 givenname: Huaian orcidid: 0000-0002-3787-9608 surname: Diao fullname: Diao, Huaian organization: School of Mathematics and Statistics, Northeast Normal University – sequence: 2 givenname: Xinlin surname: Cao fullname: Cao, Xinlin organization: Department of Mathematics, Hong Kong Baptist University – sequence: 3 givenname: Hongyu orcidid: 0000-0002-2930-3510 surname: Liu fullname: Liu, Hongyu organization: Department of Mathematics, City University of Hong Kong |
BookMark | eNqFkE1LAzEQhoMo2Ko_QQh4Xp0kTZviRRG_oNCLnkOajxrZJmuSVfz3Zlu9eNDTMMP7zDDPGO2HGCxCpwTOCQi4ADYFzoCeU6B1JPiMzWd7aEQ4o82EMLaPRkOmGUKHaJzzKwARdD4ZoW4ZcHmxeG3jxpbkNc4l9br0yWYcHS5JhbzxOfsYsPVrG1wfdKldxh--vGCFdQymEv7d4lXsg1HpczvzQwqrYLDqutZrtaWO0YFTbbYn3_UIPd_dPt08NIvl_ePN9aLRjInSUEGIgInV3HE2IVQ5OreEOUM4cbOZsW4KRinDgTiuV2y1IlpNuQUDTIAW7Aid7fZ2Kb71Nhf5GvsU6klJORVTTimBmuK7lE4x52Sd7JLf1A8kATnIlT9y5SBXfsut3OUvTvuyfbAK8-2_9NWO9sHFtFEfMbVGFvXZxuSqcO2zZH-v-ALhiJc2 |
CitedBy_id | crossref_primary_10_1016_j_jde_2023_07_002 crossref_primary_10_1088_1361_6420_ac23c2 crossref_primary_10_1121_10_0007047 crossref_primary_10_1080_00036811_2023_2181167 crossref_primary_10_2140_apde_2021_14_2207 crossref_primary_10_1088_1361_6420_ac4838 crossref_primary_10_1137_20M1388498 crossref_primary_10_1137_21M1413547 crossref_primary_10_1088_1361_6420_abefeb crossref_primary_10_3390_axioms11120661 crossref_primary_10_3934_ipi_2022025 crossref_primary_10_1051_m2an_2022021 crossref_primary_10_1051_m2an_2024003 crossref_primary_10_1007_s00526_022_02211_w crossref_primary_10_1007_s00526_022_02278_5 crossref_primary_10_3934_math_20231392 crossref_primary_10_1137_20M1323576 crossref_primary_10_1017_S0956792524000287 crossref_primary_10_1137_20M1384002 crossref_primary_10_3233_ASY_221794 crossref_primary_10_1007_s44198_023_00114_8 crossref_primary_10_1007_s40687_021_00299_8 crossref_primary_10_1016_j_jde_2021_11_039 crossref_primary_10_1111_sapm_12656 crossref_primary_10_3390_app13031874 crossref_primary_10_3934_era_2022090 crossref_primary_10_3934_ipi_2021063 crossref_primary_10_3934_math_2023487 crossref_primary_10_1137_22M1538417 crossref_primary_10_3934_math_20231206 crossref_primary_10_3390_axioms11040161 crossref_primary_10_3390_math11194086 crossref_primary_10_1007_s42985_021_00131_6 |
Cites_doi | 10.1137/070697525 10.1088/1361-6420/aa8826 10.1088/0266-5611/23/6/005 10.4208/csiam-am.2020-0020 10.1137/18M1182048 10.1007/s00526-020-01830-5 10.1088/0266-5611/29/10/104002 10.1109/TAP.1975.1141099 10.1137/0519043 10.1016/j.jfa.2017.08.023 10.1137/0520096 10.1090/S0002-9939-05-07810-X 10.1088/0266-5611/24/3/035018 10.4171/JEMS/895 10.1088/0266-5611/29/9/095021 10.4171/RMI/975 10.1016/j.jde.2016.10.021 10.1016/j.matpur.2020.09.011 10.1007/s00220-014-2030-0 10.1088/0266-5611/23/1/016 10.1007/978-3-662-03537-5 10.1016/j.jde.2017.05.022 10.1007/BFb0086682 10.1137/0522109 10.1002/mma.448 10.1139/p62-067 10.1088/0266-5611/22/2/008 10.1137/090769338 10.1093/imamat/37.3.213 10.3934/era.2020090 10.1080/00036811.2016.1204440 10.1051/m2an/2018031 10.1088/0266-5611/19/6/008 10.1080/00036811.2018.1504028 10.1137/0152092 10.1088/1361-6420/ab958f 10.1512/iumj.2008.57.3217 10.1002/mana.19931620117 10.1088/0266-5611/29/10/104003 10.1088/0266-5611/29/10/104001 10.1137/16M110753X 10.1093/qjmam/41.1.97 |
ContentType | Journal Article |
Copyright | 2020 Taylor & Francis Group, LLC 2020 2020 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2020 Taylor & Francis Group, LLC 2020 – notice: 2020 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SC 8FD H8D JQ2 L7M L~C L~D |
DOI | 10.1080/03605302.2020.1857397 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1532-4133 |
EndPage | 679 |
ExternalDocumentID | 10_1080_03605302_2020_1857397 1857397 |
Genre | Research Article |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z N9A NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 7SC 8FD H8D JQ2 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c338t-2811804ec5f53412af29e13fd151f77def60daad501f5cb3bb1ca65e0d0380c83 |
ISSN | 0360-5302 |
IngestDate | Wed Aug 13 04:33:25 EDT 2025 Thu Apr 24 22:55:50 EDT 2025 Tue Jul 01 03:00:53 EDT 2025 Wed Dec 25 09:08:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-2811804ec5f53412af29e13fd151f77def60daad501f5cb3bb1ca65e0d0380c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3787-9608 0000-0002-2930-3510 |
PQID | 2528652210 |
PQPubID | 186205 |
PageCount | 50 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_03605302_2020_1857397 crossref_citationtrail_10_1080_03605302_2020_1857397 proquest_journals_2528652210 crossref_primary_10_1080_03605302_2020_1857397 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-11 |
PublicationDateYYYYMMDD | 2021-05-11 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Communications in partial differential equations |
PublicationYear | 2021 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0030 Blåsten E. (CIT0021) 2020 CIT0031 CIT0034 McLean W. (CIT0039) 2010 CIT0033 Grisvard P. (CIT0049) 1985 CIT0036 CIT0035 CIT0038 CIT0037 CIT0040 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0004 CIT0048 CIT0007 Cakoni F. (CIT0013) 2013; 60 CIT0006 CIT0009 CIT0008 CIT0050 CIT0010 CIT0012 CIT0011 CIT0014 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 Liu H. (CIT0032) 2009; 2 CIT0020 CIT0023 CIT0022 Abramowitz M. (CIT0041) 1964; 55 CIT0025 CIT0024 CIT0027 CIT0026 CIT0029 CIT0028 |
References_xml | – ident: CIT0007 doi: 10.1137/070697525 – ident: CIT0017 doi: 10.1088/1361-6420/aa8826 – volume-title: Boundary Value Problems in Non-Smooth Domains year: 1985 ident: CIT0049 – ident: CIT0033 doi: 10.1088/0266-5611/23/6/005 – ident: CIT0050 doi: 10.4208/csiam-am.2020-0020 – year: 2020 ident: CIT0021 publication-title: Indiana Univ. Math. J – ident: CIT0019 doi: 10.1137/18M1182048 – ident: CIT0026 doi: 10.1007/s00526-020-01830-5 – ident: CIT0001 doi: 10.1088/0266-5611/29/10/104002 – ident: CIT0043 doi: 10.1109/TAP.1975.1141099 – volume-title: Strongly Elliptic Systems and Boundary Integral Equations year: 2010 ident: CIT0039 – volume: 55 volume-title: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables year: 1964 ident: CIT0041 – ident: CIT0038 doi: 10.1137/0519043 – ident: CIT0016 doi: 10.1016/j.jfa.2017.08.023 – volume: 2 start-page: 1 year: 2009 ident: CIT0032 publication-title: Numer. Math.: TMA – ident: CIT0003 doi: 10.1137/0520096 – ident: CIT0020 doi: 10.1090/S0002-9939-05-07810-X – ident: CIT0027 doi: 10.1088/0266-5611/24/3/035018 – ident: CIT0029 doi: 10.4171/JEMS/895 – ident: CIT0011 doi: 10.1088/0266-5611/29/9/095021 – ident: CIT0015 doi: 10.4171/RMI/975 – ident: CIT0028 doi: 10.1016/j.jde.2016.10.021 – ident: CIT0024 doi: 10.1016/j.matpur.2020.09.011 – ident: CIT0014 doi: 10.1007/s00220-014-2030-0 – ident: CIT0035 doi: 10.1088/0266-5611/23/1/016 – ident: CIT0040 doi: 10.1007/978-3-662-03537-5 – ident: CIT0042 – ident: CIT0030 doi: 10.1016/j.jde.2017.05.022 – ident: CIT0048 doi: 10.1007/BFb0086682 – ident: CIT0009 doi: 10.1137/0522109 – ident: CIT0037 doi: 10.1002/mma.448 – ident: CIT0044 doi: 10.1139/p62-067 – ident: CIT0034 doi: 10.1088/0266-5611/22/2/008 – ident: CIT0002 doi: 10.1137/090769338 – ident: CIT0005 doi: 10.1093/imamat/37.3.213 – ident: CIT0023 doi: 10.3934/era.2020090 – ident: CIT0018 – ident: CIT0010 doi: 10.1080/00036811.2016.1204440 – ident: CIT0046 doi: 10.1051/m2an/2018031 – ident: CIT0025 doi: 10.1088/0266-5611/19/6/008 – ident: CIT0012 doi: 10.1080/00036811.2018.1504028 – volume: 60 start-page: 529 volume-title: Inverse Problems and Applications: Inside Out II year: 2013 ident: CIT0013 – ident: CIT0045 doi: 10.1137/0152092 – ident: CIT0022 doi: 10.1088/1361-6420/ab958f – ident: CIT0036 doi: 10.1512/iumj.2008.57.3217 – ident: CIT0047 doi: 10.1002/mana.19931620117 – ident: CIT0006 doi: 10.1088/0266-5611/29/10/104003 – ident: CIT0008 doi: 10.1088/0266-5611/29/10/104001 – ident: CIT0031 doi: 10.1137/16M110753X – ident: CIT0004 doi: 10.1093/qjmam/41.1.97 |
SSID | ssj0018294 |
Score | 2.5219975 |
Snippet | This paper is concerned with the intrinsic geometric structures of conductive transmission eigenfunctions. The geometric properties of interior transmission... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 630 |
SubjectTerms | 78A46 (primary) 81U40 (secondary) Approximation Boundary conditions Conductive transmission eigenfunctions corner singularity Corners Eigenvectors Electromagnetic scattering Far fields geometric structures Inverse problems inverse scattering Mathematical analysis single far-field pattern uniqueness vanishing |
Title | On the geometric structures of transmission eigenfunctions with a conductive boundary condition and applications |
URI | https://www.tandfonline.com/doi/abs/10.1080/03605302.2020.1857397 https://www.proquest.com/docview/2528652210 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gIHxFMUCvKBW5VV4ryPVWm1QqV7yYoVFyt2nCoSZPtIDuWf8G-ZsZ2so60ocIk23nWczXzxjMcz3xDyUWBIYyzgTfNz5SGhkicqP_USWAyxqpIyqDXb50WyWEWf1_F6NvvlRC31nZjLn_fmlfyPVKEN5IpZsv8g2fGi0ACfQb5wBAnD8a9kvDQxipdq8wMLY8kjwwbb3xgm2Q71EMgRHWJHCmk3UYuZ0DeT04ZB50j4qkPYdYGlmzvd1nRDmLK7w-1aspPMEhOMjneo93xMzRV9oq57py9azE2pvbOLvnSQeWIa1w0Sd4xBQk2vf7lpL-961z3BAtxZD7buiWKnUogTrmSytnwPKxcZfTRMwswD5Rq6s7R1VDauC0JPuYnd1zHaOzGlaXYUg42khNFwsDncKTRmcRqa6OApEffFkp-tzs95cbouHpF9BisQmPP3jxefvn0dt6gylltuMvMHhvQwJG6_b5iJ4TOhxd0xA7RtUzwjT-2ihB4bhD0nM9W-IE--jIy-ty_J1bKlcEpHrNEt1uimpi7W6BRrFLFGS7rFGh2wRkesUcAadbH2iqzOTouThWerdXgyDLPOYxmyCUZKxnUMphEra5arIKwrsCnrNK1UnfhVWVaxH9SxFKEQgSyTWPmVH2a-zMLXZK_dtOoNoTVYkXmcR_DY8wi0iojSFH31Mof1gi_UAYmGR8mlpbLHiirfeTAw3loJcJQAtxI4IPOx25XhcnmoQ-7KiXcazLXBMQ8f6Hs4CJXbKeOWsxgTwRkL_Ld__vodebx9mQ7JHkhUvQfrtxMfLA5_AyCrr8E |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1Eo4IE1xXHiJB4RApVXWVqpmxU7NgPQVhAG-PXcOUlVQIiBMZbOcux7-_wdIScaSxqFBklj0gYIqBTogqVBAsEQLwpjQufRPvtJbxhfj8Ro7i0MllViDO0qoAivq1G4MRndlMSdgtZl2O0GwjsOQ5lIwaoukiUhkxSFM2L92U1CxmUNIcUCpGle8fw2zRf79AW99Ie29ibocp2YZvFV5clj963UXfPxDdfxf3-3QdZqD5WeVSy1SRbseIus3s3gXV-3yfR-TOGTPtjJM3bkMrSCoX2D2J1OHC3RAAIDYSaOWsT7RPPpOZxi4pfmFMJwRJoFXUu17-z08u7HfAUZhcXT-av1HTK8vBic94K6dUNgIOYtA54htFxsjXAC7CTPHZc2jFwBDoZL08K6hBV5XggWOmF0pHVo8kRYVrAoYyaLdklrPBnbPUIduBRSyBhCVRmDitFxmmLi1khwHpm2bRI3B6ZMjWuO7TWeVNjAn9YbqnBDVb2hbdKdkU0rYI-_COQ8N6jSZ1Rc1f5ERX_QdhrWUbWOeFVc4KtgDjH3_j-mPibLvcHdrbq96t8ckBWOJTcILht2SAuO3h6Cz1TqIy8Un3ijCAU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsQwELU4JAQFN2I5XdBmcZw4R4mAFedCARKdFV8UQHbFZgv4emacZMUhREEZS2M59nhmnj1-Q8iBwpRGoWCnsdwGSKgUKMPSIAEwxI3ROnSe7bOfnN3HFw-izSYcNWmViKFdTRThbTVu7qFxbUbcIRhdhsVuAN1xaMpECk51mswmeMmHrzhYf3KRkPG8YZBiAcq0j3h-6-aLe_pCXvrDWHsP1Fsiqh17nXjy1B1Xqqvfv9E6_uvnlsliE5_So1qhVsiULVfJwvWE3HW0RoY3JYVP-mgHL1iPS9OahHYMyJ0OHK3Q_YH64Dkctcj2ic7T6zfFY19aUADhyDMLlpYqX9fp9c23-fwxCmOnny_W18l97_Tu-CxoCjcEGhBvFfAMieViq4UT4CV54Xhuw8gZCC9cmhrrEmaKwggWOqFVpFSoi0RYZliUMZ1FG2SmHJR2k1AHAUUu8hiAah6DgVFxmuKxrc4hdGTKdkjcrpfUDas5Ftd4lmFLftpMqMQJlc2Edkh3IjasaT3-Esg_K4Os_HmKq4ufyOgP2Z1Wc2RjIUaSC3wTzAFxb_2j630yd3vSk1fn_cttMs8x3waZZcMdMgMrb3chYKrUnt8SHyiYBqk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+geometric+structures+of+transmission+eigenfunctions+with+a+conductive+boundary+condition+and+applications&rft.jtitle=Communications+in+partial+differential+equations&rft.au=Diao%2C+Huaian&rft.au=Cao%2C+Xinlin&rft.au=Liu%2C+Hongyu&rft.date=2021-05-11&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0360-5302&rft.eissn=1532-4133&rft.volume=46&rft.issue=4&rft.spage=630&rft.epage=679&rft_id=info:doi/10.1080%2F03605302.2020.1857397&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5302&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5302&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5302&client=summon |