Model averaging for multiple quantile regression with covariates missing at random
In this paper, we develop a model averaging estimation procedure for multiple quantile regression where missingness occurs to the covariates. Our concern is on the improvement of prediction accuracy for multiple quantiles of response conditional on observed covariates. A set of candidate models is c...
Saved in:
Published in | Journal of statistical computation and simulation Vol. 91; no. 11; pp. 2249 - 2275 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
24.07.2021
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0094-9655 1563-5163 |
DOI | 10.1080/00949655.2021.1890733 |
Cover
Abstract | In this paper, we develop a model averaging estimation procedure for multiple quantile regression where missingness occurs to the covariates. Our concern is on the improvement of prediction accuracy for multiple quantiles of response conditional on observed covariates. A set of candidate models is constructed according to missingness data patterns. In this model set, one model is based on the subjects with complete-case data, and the remaining models are based on the subsets of covariates with observed data. The weights for our model averaging are determined by a leave-one-out cross-validation criterion that is minimized over the complete case datasets. Under certain regularity conditions, we establish the asymptotic optimality for the selected weights in the sense of minimizing the out-of-sample combined quantile prediction error. Simulation studies are presented to demonstrate the advantages of the proposed approach vs. several existing active methods. As an illustration, a dataset from NHANES 2005-2006 is analysed. |
---|---|
AbstractList | In this paper, we develop a model averaging estimation procedure for multiple quantile regression where missingness occurs to the covariates. Our concern is on the improvement of prediction accuracy for multiple quantiles of response conditional on observed covariates. A set of candidate models is constructed according to missingness data patterns. In this model set, one model is based on the subjects with complete-case data, and the remaining models are based on the subsets of covariates with observed data. The weights for our model averaging are determined by a leave-one-out cross-validation criterion that is minimized over the complete case datasets. Under certain regularity conditions, we establish the asymptotic optimality for the selected weights in the sense of minimizing the out-of-sample combined quantile prediction error. Simulation studies are presented to demonstrate the advantages of the proposed approach vs. several existing active methods. As an illustration, a dataset from NHANES 2005-2006 is analysed. |
Author | Ding, Xianwen Xie, Jinhan Yan, Xiaodong |
Author_xml | – sequence: 1 givenname: Xianwen surname: Ding fullname: Ding, Xianwen organization: Jiangsu University of Technology – sequence: 2 givenname: Jinhan surname: Xie fullname: Xie, Jinhan email: jinhanxie@163.com organization: Yunnan University – sequence: 3 givenname: Xiaodong surname: Yan fullname: Yan, Xiaodong email: yanxiaodong@sdu.edu.cn organization: Shandong University |
BookMark | eNqFkN9LwzAQx4NMcE7_BKHgc-elabIWX5ThL5gIos8hTdOZ0SZbkm7svzdl88UHfbrj-H7uuM85GhlrFEJXGKYYCrgBKPOSUTrNIMNTXJQwI-QEjTFlJKWYkREaD5l0CJ2hc-9XAIAxzcbo_dXWqk3EVjmx1GaZNNYlXd8GvW5VsumFCTo2Ti2d8l5bk-x0-Eqk3QqnRVA-6XScR1CExAlT2-4CnTai9eryWCfo8_HhY_6cLt6eXub3i1QSUoQ0Y7Kk0FSsklhJLFiWF0IpwoDSQqlqRpuS1lAVDSGQA2QS6roRdVEwkIrmZIKuD3vXzm565QNf2d6ZeJJnNI9KZrNsSN0eUtJZ751quNRBhPhJcEK3HAMfJPIfiXyQyI8SI01_0WunO-H2_3J3B06bKLQTO-vamgexb61roiapPSd_r_gGAU2Lmw |
CitedBy_id | crossref_primary_10_1080_07474938_2023_2280825 crossref_primary_10_1177_09544119231206456 crossref_primary_10_1007_s42952_024_00259_2 crossref_primary_10_1080_24754269_2022_2105486 crossref_primary_10_2139_ssrn_4102491 crossref_primary_10_1080_00949655_2024_2442766 |
Cites_doi | 10.1016/j.jspi.2018.09.003 10.1111/j.1468-0262.2007.00785.x 10.1002/9781119013563 10.1007/978-1-4757-2545-2 10.1016/j.jeconom.2014.11.005 10.1111/j.1467-985X.2005.00366.x 10.1017/S0266466609990235 10.1016/j.csda.2019.106824 10.1016/j.jeconom.2011.02.005 10.1214/07-AOS507 10.1016/j.csda.2009.07.023 10.1214/aos/1028144858 10.1080/01621459.2013.838168 10.1109/TIT.2006.878172 10.1016/j.jeconom.2014.07.002 10.1093/biomet/68.1.45 10.1080/00949655.2017.1359268 10.1093/biomet/63.3.581 10.1080/07350015.2017.1383263 10.1198/jasa.2011.tm09478 10.1201/b13981 10.1214/17-AOS1538 10.1016/j.econlet.2013.09.008 10.2307/1913643 |
ContentType | Journal Article |
Copyright | 2021 Informa UK Limited, trading as Taylor & Francis Group 2021 2021 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group 2021 – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1080/00949655.2021.1890733 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1563-5163 |
EndPage | 2275 |
ExternalDocumentID | 10_1080_00949655_2021_1890733 1890733 |
Genre | Research Article |
GroupedDBID | .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACTIO ADCVX ADGTB ADXPE ADYSH AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMPGV AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z MS~ NA5 NY~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 YQT ZGOLN ZL0 ~S~ AAGDL AAHIA AAYXX CITATION TASJS 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c338t-26c950fb6bc1ec1a6248aee360558eeb75f95d0b8f3304002c0ddfad8860ce543 |
ISSN | 0094-9655 |
IngestDate | Fri Jul 25 08:27:03 EDT 2025 Thu Apr 24 23:13:12 EDT 2025 Sun Aug 03 02:37:23 EDT 2025 Tue May 20 10:45:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-26c950fb6bc1ec1a6248aee360558eeb75f95d0b8f3304002c0ddfad8860ce543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2549497724 |
PQPubID | 53118 |
PageCount | 27 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_00949655_2021_1890733 crossref_citationtrail_10_1080_00949655_2021_1890733 crossref_primary_10_1080_00949655_2021_1890733 proquest_journals_2549497724 |
PublicationCentury | 2000 |
PublicationDate | 2021-07-24 |
PublicationDateYYYYMMDD | 2021-07-24 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Journal of statistical computation and simulation |
PublicationYear | 2021 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0010 CIT0012 CIT0014 Wang K (CIT0011) 2016; 26 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0020 CIT0001 CIT0023 CIT0022 Xie J (CIT0021) CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0006 CIT0009 CIT0008 |
References_xml | – ident: CIT0012 doi: 10.1016/j.jspi.2018.09.003 – ident: CIT0003 doi: 10.1111/j.1468-0262.2007.00785.x – ident: CIT0013 – ident: CIT0014 doi: 10.1002/9781119013563 – ident: CIT0027 doi: 10.1007/978-1-4757-2545-2 – ident: CIT0009 doi: 10.1016/j.jeconom.2014.11.005 – ident: CIT0001 doi: 10.1111/j.1467-985X.2005.00366.x – ident: CIT0004 doi: 10.1017/S0266466609990235 – volume: 26 start-page: 295 year: 2016 ident: CIT0011 publication-title: Statist Sinica – ident: CIT0024 doi: 10.1016/j.csda.2019.106824 – ident: CIT0017 doi: 10.1016/j.jeconom.2011.02.005 – ident: CIT0010 doi: 10.1214/07-AOS507 – ident: CIT0016 doi: 10.1016/j.csda.2009.07.023 – ident: CIT0025 doi: 10.1214/aos/1028144858 – ident: CIT0022 doi: 10.1080/01621459.2013.838168 – ident: CIT0002 doi: 10.1109/TIT.2006.878172 – ident: CIT0006 doi: 10.1016/j.jeconom.2014.07.002 – ident: CIT0026 doi: 10.1093/biomet/68.1.45 – ident: CIT0007 doi: 10.1080/00949655.2017.1359268 – ident: CIT0019 doi: 10.1093/biomet/63.3.581 – ident: CIT0020 doi: 10.1080/07350015.2017.1383263 – ident: CIT0005 doi: 10.1198/jasa.2011.tm09478 – ident: CIT0015 doi: 10.1201/b13981 – ident: CIT0021 publication-title: Statist Sinica – ident: CIT0023 doi: 10.1214/17-AOS1538 – ident: CIT0018 doi: 10.1016/j.econlet.2013.09.008 – ident: CIT0008 doi: 10.2307/1913643 |
SSID | ssj0001152 |
Score | 2.2785013 |
Snippet | In this paper, we develop a model averaging estimation procedure for multiple quantile regression where missingness occurs to the covariates. Our concern is on... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2249 |
SubjectTerms | 62-07 Datasets Error analysis missing at random model averaging Multiple quantile regression prediction error Quantiles |
Title | Model averaging for multiple quantile regression with covariates missing at random |
URI | https://www.tandfonline.com/doi/abs/10.1080/00949655.2021.1890733 https://www.proquest.com/docview/2549497724 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKdhkHfhQQg4F84Falih3bdY4TbKqmbUiQisAlih0HJo0AawoSR_5ynmM76dSKAZeoSurGzfflPfv5-X0IvRCC6phpEdW1KiOmBIskk2UEUwNazkRcV8bGO87OxXzBTnKej0a_1rKWVq2a6p9b95X8D6pwDnC1u2T_Adn-R-EEfAZ84QgIw_GvMLZCZpeTEvrttIZsymCfIfhtBQ8N3vnJlfnokl2bkGj-HSbIdow5AZC7WEHZTsBnVa6LW8aqdttRV9G5qyZidSAcb7qo-8VnLwHWD4q9TkoO1PsxbDXL3VLIyUXzaaDkexeAha_C_Nh7UR-EoMRGN-kQhMw29EDWkpI6u5uyKBWuIO_UeFMrkogTb968LXbKXYFzZN2yUlfa1HtpSp3gyoYHCCmTqS2Ez6e2s1MiU6tNObi8sMx__ro4XpyeFtlRnt1Cu3Q2s0v9u4fzVx_e9f6cON2m_j-EfWC2Qvu221wb4Vyrf7vh77tBTHYP3fGI4kNHpftoZJoxuhuUPbA39GN0-6yv5rsco723Af7lA_SmIx3uSYfhxjiQDgfS4YF02JIOD6TDnnS4bLEj3UO0OD7KXs4jL8wR6SSRbUSFTnlcK6E0MZqUgsLrbUwCU2MujVEzXqe8ipWsbbQMfK6Oq6ouKylFrA1nySO003xpzGOETUxkxTQntaGsKitluCRcWROSJjIh-4iFh1loX7XeiqdcFqQvbuswKCwGhcdgH037Zl9d2ZabGqTrSBVtx-jakblIbmh7EGAtvHVYFjbwwmByRdmTP19-ivaGN-oA7bRXK_MMBrqteu6Z-BuLHaZr |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB219FA4QFlaAYXWh16zxFnbOEeEihbK7gGBxM2Kv3roslsgy4Ffz0ycrPgQ4sA5Giu2x-N5o_F7AL-UKlwunMpitFUmrBKZFrrKEBoU1b7Kow9U7xiN1fBCnFzKy0dvYaitkjB0TEQRTaymw03F6K4lbo_a4UolJcK7gve5Lkl58CN8kpi7k5cP8vEiGvOkukMmGdl0r3heG-bJ_fSEvfRFtG6uoKM1cN3Pp86Tf_15bfvu_hmv4_tm9wVW2wyVHSSXWocPYdqDtU79gbXBoAcrowXj620PlilrTaTPG3BGCmsTVuExaUSQGE6Pda2L7HqOu4nBiN2Ev6kLd8qoHMzc7A6ROyW_DL2Pihisqhlepn529RUujn6fHw6zVrwhc4h666xQrpR5tMo6HhyvVIEuEMIA4ZPUIdh9GUvpc6sjVVQwLrvc-1h5rVXughSDb7A0nU3DJrCQc-2FkzyGQvjK2yA1l5bcrESAzbdAdFtmXMtsTgIbE8MXBKhpSQ0tqWmXdAv6C7P_idrjLYPysT-YuqmpxCSAYgZv2O50zmPaKHFrCJwLTMALsf2OoX_C5-H56NScHo__fIdl-kTF50LswFJ9Mw-7mDXV9kdzLB4A3SEIfw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEB0VkCp6KJBSlTale-Dq1OvsLutj1RJRWiJUgdTbyvvFAZqkidNDf31nvHYERYhDztZY9np2dt7o-T2AI6UKlwunshhtlQmrRKaFrjKEBkV1rPLoA807zsfq9Eqc_ZQdm3DR0ioJQ8ckFNHUatrcMx87RtxHYsOVSkpEdwUfcF2S8eAGbClsT4jVN8zHq2LMk-kOhWQU0_3E89ht7h1P98RLHxTr5gQa7YDtnj0RT24Gy9oO3N__ZB3XerldeNn2p-xTSqg9eBYmPdjpvB9YWwp68OJ8pfe66ME29axJ8vkV_CB_tVtW4SZpLJAYvh3riIvs9xK_JZYiNg_XiYM7YTQMZm76B3E7tb4Mc49GGKyqGR6lfvprH65GJ5efT7PWuiFziHnrrFCulHm0yjoeHK9UgQkQwhDBk9Qh2GMZS-lzqyPNU7Aqu9z7WHmtVe6CFMPXsDmZTsIbYCHn2gsneQyF8JW3QWouLSVZifCaH4Dovphxra452WvcGr6SP01LamhJTbukBzBYhc2SsMdTAeXddDB1M1GJyf7EDJ-I7Xe5Y9oasTAEzQW234V4u8atP8Dziy8j8_3r-Ns72KYrNHkuRB826_kyvMeWqbaHzab4B4nWByM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+averaging+for+multiple+quantile+regression+with+covariates+missing+at+random&rft.jtitle=Journal+of+statistical+computation+and+simulation&rft.au=Ding%2C+Xianwen&rft.au=Xie%2C+Jinhan&rft.au=Yan%2C+Xiaodong&rft.date=2021-07-24&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0094-9655&rft.eissn=1563-5163&rft.volume=91&rft.issue=11&rft.spage=2249&rft.epage=2275&rft_id=info:doi/10.1080%2F00949655.2021.1890733&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-9655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-9655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-9655&client=summon |