Model averaging for multiple quantile regression with covariates missing at random

In this paper, we develop a model averaging estimation procedure for multiple quantile regression where missingness occurs to the covariates. Our concern is on the improvement of prediction accuracy for multiple quantiles of response conditional on observed covariates. A set of candidate models is c...

Full description

Saved in:
Bibliographic Details
Published inJournal of statistical computation and simulation Vol. 91; no. 11; pp. 2249 - 2275
Main Authors Ding, Xianwen, Xie, Jinhan, Yan, Xiaodong
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 24.07.2021
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0094-9655
1563-5163
DOI10.1080/00949655.2021.1890733

Cover

Abstract In this paper, we develop a model averaging estimation procedure for multiple quantile regression where missingness occurs to the covariates. Our concern is on the improvement of prediction accuracy for multiple quantiles of response conditional on observed covariates. A set of candidate models is constructed according to missingness data patterns. In this model set, one model is based on the subjects with complete-case data, and the remaining models are based on the subsets of covariates with observed data. The weights for our model averaging are determined by a leave-one-out cross-validation criterion that is minimized over the complete case datasets. Under certain regularity conditions, we establish the asymptotic optimality for the selected weights in the sense of minimizing the out-of-sample combined quantile prediction error. Simulation studies are presented to demonstrate the advantages of the proposed approach vs. several existing active methods. As an illustration, a dataset from NHANES 2005-2006 is analysed.
AbstractList In this paper, we develop a model averaging estimation procedure for multiple quantile regression where missingness occurs to the covariates. Our concern is on the improvement of prediction accuracy for multiple quantiles of response conditional on observed covariates. A set of candidate models is constructed according to missingness data patterns. In this model set, one model is based on the subjects with complete-case data, and the remaining models are based on the subsets of covariates with observed data. The weights for our model averaging are determined by a leave-one-out cross-validation criterion that is minimized over the complete case datasets. Under certain regularity conditions, we establish the asymptotic optimality for the selected weights in the sense of minimizing the out-of-sample combined quantile prediction error. Simulation studies are presented to demonstrate the advantages of the proposed approach vs. several existing active methods. As an illustration, a dataset from NHANES 2005-2006 is analysed.
Author Ding, Xianwen
Xie, Jinhan
Yan, Xiaodong
Author_xml – sequence: 1
  givenname: Xianwen
  surname: Ding
  fullname: Ding, Xianwen
  organization: Jiangsu University of Technology
– sequence: 2
  givenname: Jinhan
  surname: Xie
  fullname: Xie, Jinhan
  email: jinhanxie@163.com
  organization: Yunnan University
– sequence: 3
  givenname: Xiaodong
  surname: Yan
  fullname: Yan, Xiaodong
  email: yanxiaodong@sdu.edu.cn
  organization: Shandong University
BookMark eNqFkN9LwzAQx4NMcE7_BKHgc-elabIWX5ThL5gIos8hTdOZ0SZbkm7svzdl88UHfbrj-H7uuM85GhlrFEJXGKYYCrgBKPOSUTrNIMNTXJQwI-QEjTFlJKWYkREaD5l0CJ2hc-9XAIAxzcbo_dXWqk3EVjmx1GaZNNYlXd8GvW5VsumFCTo2Ti2d8l5bk-x0-Eqk3QqnRVA-6XScR1CExAlT2-4CnTai9eryWCfo8_HhY_6cLt6eXub3i1QSUoQ0Y7Kk0FSsklhJLFiWF0IpwoDSQqlqRpuS1lAVDSGQA2QS6roRdVEwkIrmZIKuD3vXzm565QNf2d6ZeJJnNI9KZrNsSN0eUtJZ751quNRBhPhJcEK3HAMfJPIfiXyQyI8SI01_0WunO-H2_3J3B06bKLQTO-vamgexb61roiapPSd_r_gGAU2Lmw
CitedBy_id crossref_primary_10_1080_07474938_2023_2280825
crossref_primary_10_1177_09544119231206456
crossref_primary_10_1007_s42952_024_00259_2
crossref_primary_10_1080_24754269_2022_2105486
crossref_primary_10_2139_ssrn_4102491
crossref_primary_10_1080_00949655_2024_2442766
Cites_doi 10.1016/j.jspi.2018.09.003
10.1111/j.1468-0262.2007.00785.x
10.1002/9781119013563
10.1007/978-1-4757-2545-2
10.1016/j.jeconom.2014.11.005
10.1111/j.1467-985X.2005.00366.x
10.1017/S0266466609990235
10.1016/j.csda.2019.106824
10.1016/j.jeconom.2011.02.005
10.1214/07-AOS507
10.1016/j.csda.2009.07.023
10.1214/aos/1028144858
10.1080/01621459.2013.838168
10.1109/TIT.2006.878172
10.1016/j.jeconom.2014.07.002
10.1093/biomet/68.1.45
10.1080/00949655.2017.1359268
10.1093/biomet/63.3.581
10.1080/07350015.2017.1383263
10.1198/jasa.2011.tm09478
10.1201/b13981
10.1214/17-AOS1538
10.1016/j.econlet.2013.09.008
10.2307/1913643
ContentType Journal Article
Copyright 2021 Informa UK Limited, trading as Taylor & Francis Group 2021
2021 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group 2021
– notice: 2021 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/00949655.2021.1890733
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1563-5163
EndPage 2275
ExternalDocumentID 10_1080_00949655_2021_1890733
1890733
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACTIO
ADCVX
ADGTB
ADXPE
ADYSH
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMPGV
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
YQT
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
CITATION
TASJS
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-26c950fb6bc1ec1a6248aee360558eeb75f95d0b8f3304002c0ddfad8860ce543
ISSN 0094-9655
IngestDate Fri Jul 25 08:27:03 EDT 2025
Thu Apr 24 23:13:12 EDT 2025
Sun Aug 03 02:37:23 EDT 2025
Tue May 20 10:45:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-26c950fb6bc1ec1a6248aee360558eeb75f95d0b8f3304002c0ddfad8860ce543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2549497724
PQPubID 53118
PageCount 27
ParticipantIDs informaworld_taylorfrancis_310_1080_00949655_2021_1890733
crossref_citationtrail_10_1080_00949655_2021_1890733
crossref_primary_10_1080_00949655_2021_1890733
proquest_journals_2549497724
PublicationCentury 2000
PublicationDate 2021-07-24
PublicationDateYYYYMMDD 2021-07-24
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-24
  day: 24
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of statistical computation and simulation
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0010
CIT0012
CIT0014
Wang K (CIT0011) 2016; 26
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0020
CIT0001
CIT0023
CIT0022
Xie J (CIT0021)
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0006
CIT0009
CIT0008
References_xml – ident: CIT0012
  doi: 10.1016/j.jspi.2018.09.003
– ident: CIT0003
  doi: 10.1111/j.1468-0262.2007.00785.x
– ident: CIT0013
– ident: CIT0014
  doi: 10.1002/9781119013563
– ident: CIT0027
  doi: 10.1007/978-1-4757-2545-2
– ident: CIT0009
  doi: 10.1016/j.jeconom.2014.11.005
– ident: CIT0001
  doi: 10.1111/j.1467-985X.2005.00366.x
– ident: CIT0004
  doi: 10.1017/S0266466609990235
– volume: 26
  start-page: 295
  year: 2016
  ident: CIT0011
  publication-title: Statist Sinica
– ident: CIT0024
  doi: 10.1016/j.csda.2019.106824
– ident: CIT0017
  doi: 10.1016/j.jeconom.2011.02.005
– ident: CIT0010
  doi: 10.1214/07-AOS507
– ident: CIT0016
  doi: 10.1016/j.csda.2009.07.023
– ident: CIT0025
  doi: 10.1214/aos/1028144858
– ident: CIT0022
  doi: 10.1080/01621459.2013.838168
– ident: CIT0002
  doi: 10.1109/TIT.2006.878172
– ident: CIT0006
  doi: 10.1016/j.jeconom.2014.07.002
– ident: CIT0026
  doi: 10.1093/biomet/68.1.45
– ident: CIT0007
  doi: 10.1080/00949655.2017.1359268
– ident: CIT0019
  doi: 10.1093/biomet/63.3.581
– ident: CIT0020
  doi: 10.1080/07350015.2017.1383263
– ident: CIT0005
  doi: 10.1198/jasa.2011.tm09478
– ident: CIT0015
  doi: 10.1201/b13981
– ident: CIT0021
  publication-title: Statist Sinica
– ident: CIT0023
  doi: 10.1214/17-AOS1538
– ident: CIT0018
  doi: 10.1016/j.econlet.2013.09.008
– ident: CIT0008
  doi: 10.2307/1913643
SSID ssj0001152
Score 2.2785013
Snippet In this paper, we develop a model averaging estimation procedure for multiple quantile regression where missingness occurs to the covariates. Our concern is on...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2249
SubjectTerms 62-07
Datasets
Error analysis
missing at random
model averaging
Multiple quantile regression
prediction error
Quantiles
Title Model averaging for multiple quantile regression with covariates missing at random
URI https://www.tandfonline.com/doi/abs/10.1080/00949655.2021.1890733
https://www.proquest.com/docview/2549497724
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKdhkHfhQQg4F84Falih3bdY4TbKqmbUiQisAlih0HJo0AawoSR_5ynmM76dSKAZeoSurGzfflPfv5-X0IvRCC6phpEdW1KiOmBIskk2UEUwNazkRcV8bGO87OxXzBTnKej0a_1rKWVq2a6p9b95X8D6pwDnC1u2T_Adn-R-EEfAZ84QgIw_GvMLZCZpeTEvrttIZsymCfIfhtBQ8N3vnJlfnokl2bkGj-HSbIdow5AZC7WEHZTsBnVa6LW8aqdttRV9G5qyZidSAcb7qo-8VnLwHWD4q9TkoO1PsxbDXL3VLIyUXzaaDkexeAha_C_Nh7UR-EoMRGN-kQhMw29EDWkpI6u5uyKBWuIO_UeFMrkogTb968LXbKXYFzZN2yUlfa1HtpSp3gyoYHCCmTqS2Ez6e2s1MiU6tNObi8sMx__ro4XpyeFtlRnt1Cu3Q2s0v9u4fzVx_e9f6cON2m_j-EfWC2Qvu221wb4Vyrf7vh77tBTHYP3fGI4kNHpftoZJoxuhuUPbA39GN0-6yv5rsco723Af7lA_SmIx3uSYfhxjiQDgfS4YF02JIOD6TDnnS4bLEj3UO0OD7KXs4jL8wR6SSRbUSFTnlcK6E0MZqUgsLrbUwCU2MujVEzXqe8ipWsbbQMfK6Oq6ouKylFrA1nySO003xpzGOETUxkxTQntaGsKitluCRcWROSJjIh-4iFh1loX7XeiqdcFqQvbuswKCwGhcdgH037Zl9d2ZabGqTrSBVtx-jakblIbmh7EGAtvHVYFjbwwmByRdmTP19-ivaGN-oA7bRXK_MMBrqteu6Z-BuLHaZr
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB219FA4QFlaAYXWh16zxFnbOEeEihbK7gGBxM2Kv3roslsgy4Ffz0ycrPgQ4sA5Giu2x-N5o_F7AL-UKlwunMpitFUmrBKZFrrKEBoU1b7Kow9U7xiN1fBCnFzKy0dvYaitkjB0TEQRTaymw03F6K4lbo_a4UolJcK7gve5Lkl58CN8kpi7k5cP8vEiGvOkukMmGdl0r3heG-bJ_fSEvfRFtG6uoKM1cN3Pp86Tf_15bfvu_hmv4_tm9wVW2wyVHSSXWocPYdqDtU79gbXBoAcrowXj620PlilrTaTPG3BGCmsTVuExaUSQGE6Pda2L7HqOu4nBiN2Ev6kLd8qoHMzc7A6ROyW_DL2Pihisqhlepn529RUujn6fHw6zVrwhc4h666xQrpR5tMo6HhyvVIEuEMIA4ZPUIdh9GUvpc6sjVVQwLrvc-1h5rVXughSDb7A0nU3DJrCQc-2FkzyGQvjK2yA1l5bcrESAzbdAdFtmXMtsTgIbE8MXBKhpSQ0tqWmXdAv6C7P_idrjLYPysT-YuqmpxCSAYgZv2O50zmPaKHFrCJwLTMALsf2OoX_C5-H56NScHo__fIdl-kTF50LswFJ9Mw-7mDXV9kdzLB4A3SEIfw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEB0VkCp6KJBSlTale-Dq1OvsLutj1RJRWiJUgdTbyvvFAZqkidNDf31nvHYERYhDztZY9np2dt7o-T2AI6UKlwunshhtlQmrRKaFrjKEBkV1rPLoA807zsfq9Eqc_ZQdm3DR0ioJQ8ckFNHUatrcMx87RtxHYsOVSkpEdwUfcF2S8eAGbClsT4jVN8zHq2LMk-kOhWQU0_3E89ht7h1P98RLHxTr5gQa7YDtnj0RT24Gy9oO3N__ZB3XerldeNn2p-xTSqg9eBYmPdjpvB9YWwp68OJ8pfe66ME29axJ8vkV_CB_tVtW4SZpLJAYvh3riIvs9xK_JZYiNg_XiYM7YTQMZm76B3E7tb4Mc49GGKyqGR6lfvprH65GJ5efT7PWuiFziHnrrFCulHm0yjoeHK9UgQkQwhDBk9Qh2GMZS-lzqyPNU7Aqu9z7WHmtVe6CFMPXsDmZTsIbYCHn2gsneQyF8JW3QWouLSVZifCaH4Dovphxra452WvcGr6SP01LamhJTbukBzBYhc2SsMdTAeXddDB1M1GJyf7EDJ-I7Xe5Y9oasTAEzQW234V4u8atP8Dziy8j8_3r-Ns72KYrNHkuRB826_kyvMeWqbaHzab4B4nWByM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+averaging+for+multiple+quantile+regression+with+covariates+missing+at+random&rft.jtitle=Journal+of+statistical+computation+and+simulation&rft.au=Ding%2C+Xianwen&rft.au=Xie%2C+Jinhan&rft.au=Yan%2C+Xiaodong&rft.date=2021-07-24&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0094-9655&rft.eissn=1563-5163&rft.volume=91&rft.issue=11&rft.spage=2249&rft.epage=2275&rft_id=info:doi/10.1080%2F00949655.2021.1890733&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-9655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-9655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-9655&client=summon