Volumetric imaging of trabecular meshwork dynamic motion using 600 kHz swept source optical coherence tomography
The motion of the trabecular meshwork (TM) facilitates the aqueous drainage from the anterior chamber to the venous system, thereby maintaining normal intraocular pressure. As such, characterizing the TM motion is valuable for assessing the functionality of the aqueous outflow system, as demonstrate...
Saved in:
Published in | Biomedical optics express Vol. 16; no. 1; pp. 267 - 281 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Optica Publishing Group
01.01.2025
|
Online Access | Get full text |
ISSN | 2156-7085 2156-7085 |
DOI | 10.1364/BOE.544521 |
Cover
Abstract | The motion of the trabecular meshwork (TM) facilitates the aqueous drainage from the anterior chamber to the venous system, thereby maintaining normal intraocular pressure. As such, characterizing the TM motion is valuable for assessing the functionality of the aqueous outflow system, as demonstrated by previous phase-sensitive optical coherence tomography (OCT) studies. Current methods typically acquire motion from a single cross-sectional plane along the circumference of the anterior chamber. While effective, the lateral scan pattern only intersects one spatial location on the TM at a time, significantly limiting examination throughput. In this study, we introduce the first volumetric imaging approach for assessing TM motion. Rather than monitoring a single cross-sectional plane, our method employs repeated volumetric scans, allowing for simultaneous observation of a continuous TM band spanning two millimeters. We also show that the field of view could be further expanded by stitching multiple scans. To ensure robust data processing, we developed a customized volume registration algorithm to correct motion artifacts and an automated segmentation algorithm to identify the TM boundary based on the correlation of OCT phase dynamics with heartbeats. Imaging results from a healthy subject confirmed the feasibility of our approach, revealing considerable variation in TM motions at different spatial locations through the stitching process. This proposed methodology offers unprecedented capabilities and examination throughput in the biomechanical imaging of the TM, providing significant scientific insights and diagnostic value for identifying abnormalities in aqueous outflow. |
---|---|
AbstractList | The motion of the trabecular meshwork (TM) facilitates the aqueous drainage from the anterior chamber to the venous system, thereby maintaining normal intraocular pressure. As such, characterizing the TM motion is valuable for assessing the functionality of the aqueous outflow system, as demonstrated by previous phase-sensitive optical coherence tomography (OCT) studies. Current methods typically acquire motion from a single cross-sectional plane along the circumference of the anterior chamber. While effective, the lateral scan pattern only intersects one spatial location on the TM at a time, significantly limiting examination throughput. In this study, we introduce the first volumetric imaging approach for assessing TM motion. Rather than monitoring a single cross-sectional plane, our method employs repeated volumetric scans, allowing for simultaneous observation of a continuous TM band spanning two millimeters. We also show that the field of view could be further expanded by stitching multiple scans. To ensure robust data processing, we developed a customized volume registration algorithm to correct motion artifacts and an automated segmentation algorithm to identify the TM boundary based on the correlation of OCT phase dynamics with heartbeats. Imaging results from a healthy subject confirmed the feasibility of our approach, revealing considerable variation in TM motions at different spatial locations through the stitching process. This proposed methodology offers unprecedented capabilities and examination throughput in the biomechanical imaging of the TM, providing significant scientific insights and diagnostic value for identifying abnormalities in aqueous outflow.The motion of the trabecular meshwork (TM) facilitates the aqueous drainage from the anterior chamber to the venous system, thereby maintaining normal intraocular pressure. As such, characterizing the TM motion is valuable for assessing the functionality of the aqueous outflow system, as demonstrated by previous phase-sensitive optical coherence tomography (OCT) studies. Current methods typically acquire motion from a single cross-sectional plane along the circumference of the anterior chamber. While effective, the lateral scan pattern only intersects one spatial location on the TM at a time, significantly limiting examination throughput. In this study, we introduce the first volumetric imaging approach for assessing TM motion. Rather than monitoring a single cross-sectional plane, our method employs repeated volumetric scans, allowing for simultaneous observation of a continuous TM band spanning two millimeters. We also show that the field of view could be further expanded by stitching multiple scans. To ensure robust data processing, we developed a customized volume registration algorithm to correct motion artifacts and an automated segmentation algorithm to identify the TM boundary based on the correlation of OCT phase dynamics with heartbeats. Imaging results from a healthy subject confirmed the feasibility of our approach, revealing considerable variation in TM motions at different spatial locations through the stitching process. This proposed methodology offers unprecedented capabilities and examination throughput in the biomechanical imaging of the TM, providing significant scientific insights and diagnostic value for identifying abnormalities in aqueous outflow. The motion of the trabecular meshwork (TM) facilitates the aqueous drainage from the anterior chamber to the venous system, thereby maintaining normal intraocular pressure. As such, characterizing the TM motion is valuable for assessing the functionality of the aqueous outflow system, as demonstrated by previous phase-sensitive optical coherence tomography (OCT) studies. Current methods typically acquire motion from a single cross-sectional plane along the circumference of the anterior chamber. While effective, the lateral scan pattern only intersects one spatial location on the TM at a time, significantly limiting examination throughput. In this study, we introduce the first volumetric imaging approach for assessing TM motion. Rather than monitoring a single cross-sectional plane, our method employs repeated volumetric scans, allowing for simultaneous observation of a continuous TM band spanning two millimeters. We also show that the field of view could be further expanded by stitching multiple scans. To ensure robust data processing, we developed a customized volume registration algorithm to correct motion artifacts and an automated segmentation algorithm to identify the TM boundary based on the correlation of OCT phase dynamics with heartbeats. Imaging results from a healthy subject confirmed the feasibility of our approach, revealing considerable variation in TM motions at different spatial locations through the stitching process. This proposed methodology offers unprecedented capabilities and examination throughput in the biomechanical imaging of the TM, providing significant scientific insights and diagnostic value for identifying abnormalities in aqueous outflow. |
Author | Liu, Jian Gong, Zhaoyu Shi, Yaping Zhang, Yi Wang, Ruikang K. Johnstone, Murray A. |
Author_xml | – sequence: 1 givenname: Zhaoyu orcidid: 0000-0002-5294-0382 surname: Gong fullname: Gong, Zhaoyu – sequence: 2 givenname: Yaping surname: Shi fullname: Shi, Yaping – sequence: 3 givenname: Jian surname: Liu fullname: Liu, Jian – sequence: 4 givenname: Yi orcidid: 0009-0005-4678-7181 surname: Zhang fullname: Zhang, Yi – sequence: 5 givenname: Murray A. surname: Johnstone fullname: Johnstone, Murray A. – sequence: 6 givenname: Ruikang K. orcidid: 0000-0001-5169-8822 surname: Wang fullname: Wang, Ruikang K. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39816136$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkU1PxCAQhonR-LkXf4DhaExWoVBKT0Y360dishf1Siid7tZtoULrZv31slk1OhcGeHiHmfcI7VpnAaFTSi4pE_zqdja9TDlPE7qDDhOainFGZLr7Jz9AoxDeSAzOM8LkPjpguaQiPj9E3atrhhZ6Xxtct3pe2zl2Fe69LsAMjfa4hbBYOb_E5drqNmKt62tn8RA2rCAELx8-cVhB1-PgBm8Au66vjW6wcQvwYONJ71o397pbrE_QXqWbAKPv9Ri93E2fJw_jp9n94-TmaWwYk_04iV_MQUjOBBUmSznRWVrl2oDOeZmVGUtoUXIet6IgFdFVKjiRCZQFk7Iy7Bhdb3W7oWihNGBjT43qfOzSr5XTtfp_Y-uFmrsPRWmW5Ekuo8L5t4J37wOEXrV1MNA02oIbgmJxwGkiCckjeva32G-VnzlH4GILGO9C8FD9IpSojY8q-qi2PrIv98-RQQ |
Cites_doi | 10.1002/(SICI)1097-0029(19960301)33:4<336::AID-JEMT4>3.0.CO;2-N 10.1167/iovs.61.14.21 10.1117/1.3369811 10.1117/1.3486543 10.1364/BOE.533399 10.1016/j.preteyeres.2020.100917 10.1364/BOE.2.000996 10.3390/app12010011 10.1063/1.2724920 10.1073/pnas.1606428113 10.1016/j.exer.2014.07.014 10.1364/BOE.465317 10.1117/1.JBO.26.1.016001 10.1167/iovs.17-23579 10.3390/jcm11102696 10.1063/1.2357854 10.1111/aos.15027 10.1097/01.ijg.0000131757.63542.24 10.1364/BOE.399034 10.1016/j.preteyeres.2016.12.004 10.1364/OE.410374 10.1097/ICU.0b013e32834ff1e7 10.3389/fmed.2022.815866 10.1167/iovs.10-6342 10.1117/1.JBO.17.7.076026 10.1109/TBME.2011.2152839 10.1016/j.survophthal.2009.05.001 10.1364/BOE.538481 10.1167/iovs.17-22175 10.1117/1.JBO.19.9.090502 10.1172/JCI77507 10.1016/j.exer.2016.06.007 10.1364/BOE.4.002051 10.1016/j.jcjo.2016.07.013 10.3978/j.issn.2223-4292.2014.11.15 10.3390/photonics9080593 10.1364/BOE.528287 10.1088/0031-9155/51/12/015 10.1371/journal.pone.0162048 |
ContentType | Journal Article |
Copyright | 2024 Optica Publishing Group. 2024 Optica Publishing Group 2024 Optica Publishing Group |
Copyright_xml | – notice: 2024 Optica Publishing Group. – notice: 2024 Optica Publishing Group 2024 Optica Publishing Group |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1364/BOE.544521 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 2156-7085 |
EndPage | 281 |
ExternalDocumentID | PMC11729298 39816136 10_1364_BOE_544521 |
Genre | Journal Article |
GrantInformation_xml | – fundername: George and Martina Kren Research Fund in Bioengineering – fundername: Research to Prevent Blindness |
GroupedDBID | 4.4 53G 8SL AAFWJ AAWJZ AAYXX ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS AOIJS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION DIK DSZJF E3Z EBS GROUPED_DOAJ GX1 HYE KQ8 LPK M~E O5R O5S OFLFD OK1 OPJBK ROL ROS RPM TR6 NPM ROP 7X8 5PM |
ID | FETCH-LOGICAL-c338t-23989e6843616c7540a75f9acea94d7d7321bd44ea96b0f0af564082edb388fc3 |
ISSN | 2156-7085 |
IngestDate | Thu Aug 21 18:28:32 EDT 2025 Fri Jul 11 14:59:05 EDT 2025 Thu Jan 30 12:29:47 EST 2025 Tue Jul 01 01:36:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024 Optica Publishing Group. https://doi.org/10.1364/OA_License_v2#VOR-OA 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-23989e6843616c7540a75f9acea94d7d7321bd44ea96b0f0af564082edb388fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contribute equally to this paper |
ORCID | 0000-0002-5294-0382 0009-0005-4678-7181 0000-0001-5169-8822 |
OpenAccessLink | http://dx.doi.org/10.1364/BOE.544521 |
PMID | 39816136 |
PQID | 3156528009 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11729298 proquest_miscellaneous_3156528009 pubmed_primary_39816136 crossref_primary_10_1364_BOE_544521 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biomedical optics express |
PublicationTitleAlternate | Biomed Opt Express |
PublicationYear | 2025 |
Publisher | Optica Publishing Group |
Publisher_xml | – name: Optica Publishing Group |
References | Li (boe-16-1-267-R17) 2022; 9 Johnstone (boe-16-1-267-R2) 2004; 13 Liu (boe-16-1-267-R22) 2024; 15 Saheb (boe-16-1-267-R40) 2012; 23 Wang (boe-16-1-267-R8) 2007; 90 Hariri (boe-16-1-267-R11) 2014; 55 Wang (boe-16-1-267-R9) 2010; 15 Kamshilin (boe-16-1-267-R32) 2011; 2 Sun (boe-16-1-267-R15) 2014; 5 Xin (boe-16-1-267-R12) 2022; 12 Johnstone (boe-16-1-267-R4) 2021; 83 Du (boe-16-1-267-R19) 2022; 11 Pandiyan (boe-16-1-267-R33) 2020; 11 Sultan (boe-16-1-267-R39) 2009; 54 Carreon (boe-16-1-267-R3) 2017; 57 Conlon (boe-16-1-267-R41) 2017; 52 Hillmann (boe-16-1-267-R26) 2016; 113 Gong (boe-16-1-267-R29) 2024; 15 An (boe-16-1-267-R30) 2010; 15 Wang (boe-16-1-267-R25) 2006; 51 Wang (boe-16-1-267-R24) 2006; 89 Xin (boe-16-1-267-R35) 2016; 11 Xin (boe-16-1-267-R36) 2017; 158 Wang (boe-16-1-267-R7) 2017; 58 Vranka (boe-16-1-267-R6) 2015; 133 Lewczuk (boe-16-1-267-R34) 2022; 100 Kurokawa (boe-16-1-267-R28) 2021; 26 gao (boe-16-1-267-R18) 2020; 61 Carmichael-Martins (boe-16-1-267-R20) 2022; 13 Last (boe-16-1-267-R5) 2011; 52 Xin (boe-16-1-267-R16) 2018; 59 Li (boe-16-1-267-R27) 2020; 28 Li (boe-16-1-267-R10) 2012; 17 Shi (boe-16-1-267-R21) 2024; 15 Yousefi (boe-16-1-267-R31) 2011; 58 Hogan (boe-16-1-267-R23) 1971 Gong (boe-16-1-267-R1) 1996; 33 Li (boe-16-1-267-R14) 2014; 19 Johnstone (boe-16-1-267-R37) 2022; 9 Li (boe-16-1-267-R13) 2013; 4 Karpinich (boe-16-1-267-R38) 2014; 124 |
References_xml | – volume: 33 start-page: 336 year: 1996 ident: boe-16-1-267-R1 publication-title: Microsc. Res. Tech. doi: 10.1002/(SICI)1097-0029(19960301)33:4<336::AID-JEMT4>3.0.CO;2-N – volume: 61 start-page: 21 year: 2020 ident: boe-16-1-267-R18 publication-title: Invest. Ophthalmol. Visual Sci. doi: 10.1167/iovs.61.14.21 – volume: 15 start-page: 026011 year: 2010 ident: boe-16-1-267-R30 publication-title: J. Biomed. Opt. doi: 10.1117/1.3369811 – volume: 15 start-page: 056005 year: 2010 ident: boe-16-1-267-R9 publication-title: J. Biomed. Opt. doi: 10.1117/1.3486543 – volume: 15 start-page: 4891 year: 2024 ident: boe-16-1-267-R22 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.533399 – volume: 83 start-page: 100917 year: 2021 ident: boe-16-1-267-R4 publication-title: Prog. Retinal Eye Res. doi: 10.1016/j.preteyeres.2020.100917 – volume: 2 start-page: 996 year: 2011 ident: boe-16-1-267-R32 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.2.000996 – volume: 12 start-page: 11 year: 2022 ident: boe-16-1-267-R12 publication-title: Appl. Sci. doi: 10.3390/app12010011 – volume: 90 start-page: 164105 year: 2007 ident: boe-16-1-267-R8 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2724920 – volume: 113 start-page: 13138 year: 2016 ident: boe-16-1-267-R26 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1606428113 – volume: 133 start-page: 112 year: 2015 ident: boe-16-1-267-R6 publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2014.07.014 – volume: 13 start-page: 4652 year: 2022 ident: boe-16-1-267-R20 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.465317 – volume: 26 start-page: 016001 year: 2021 ident: boe-16-1-267-R28 publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.26.1.016001 – volume: 59 start-page: 3675 year: 2018 ident: boe-16-1-267-R16 publication-title: Invest. Ophthalmol. Visual Sci. doi: 10.1167/iovs.17-23579 – volume: 11 start-page: 2696 year: 2022 ident: boe-16-1-267-R19 publication-title: J. Clin. Med. doi: 10.3390/jcm11102696 – volume: 89 start-page: 144103 year: 2006 ident: boe-16-1-267-R24 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2357854 – volume: 100 start-page: e881 year: 2022 ident: boe-16-1-267-R34 publication-title: Acta Ophthalmol. doi: 10.1111/aos.15027 – volume: 13 start-page: 421 year: 2004 ident: boe-16-1-267-R2 publication-title: J. Glaucoma. doi: 10.1097/01.ijg.0000131757.63542.24 – year: 1971 ident: boe-16-1-267-R23 – volume: 11 start-page: 5274 year: 2020 ident: boe-16-1-267-R33 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.399034 – volume: 57 start-page: 108 year: 2017 ident: boe-16-1-267-R3 publication-title: Prog. Retinal Eye Res. doi: 10.1016/j.preteyeres.2016.12.004 – volume: 28 start-page: 38390 year: 2020 ident: boe-16-1-267-R27 publication-title: Opt. Express doi: 10.1364/OE.410374 – volume: 55 start-page: 4240 year: 2014 ident: boe-16-1-267-R11 publication-title: Invest. Ophthalmol. Visual Sci. – volume: 23 start-page: 96 year: 2012 ident: boe-16-1-267-R40 publication-title: Curr. Opin. Ophthalmol. doi: 10.1097/ICU.0b013e32834ff1e7 – volume: 9 start-page: 815866 year: 2022 ident: boe-16-1-267-R37 publication-title: Front. Med. doi: 10.3389/fmed.2022.815866 – volume: 52 start-page: 2147 year: 2011 ident: boe-16-1-267-R5 publication-title: Invest. Ophthalmol. Visual Sci. doi: 10.1167/iovs.10-6342 – volume: 17 start-page: 076026 year: 2012 ident: boe-16-1-267-R10 publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.17.7.076026 – volume: 58 start-page: 2316 year: 2011 ident: boe-16-1-267-R31 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2152839 – volume: 54 start-page: 643 year: 2009 ident: boe-16-1-267-R39 publication-title: Surv. Ophthalmol. doi: 10.1016/j.survophthal.2009.05.001 – volume: 15 start-page: 6036 year: 2024 ident: boe-16-1-267-R29 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.538481 – volume: 58 start-page: 4809 year: 2017 ident: boe-16-1-267-R7 publication-title: Invest. Ophthalmol. Visual Sci. doi: 10.1167/iovs.17-22175 – volume: 19 start-page: 090502 year: 2014 ident: boe-16-1-267-R14 publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.19.9.090502 – volume: 124 start-page: 3701 year: 2014 ident: boe-16-1-267-R38 publication-title: J. Clin. Invest. doi: 10.1172/JCI77507 – volume: 158 start-page: 171 year: 2017 ident: boe-16-1-267-R36 publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2016.06.007 – volume: 4 start-page: 2051 year: 2013 ident: boe-16-1-267-R13 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.4.002051 – volume: 52 start-page: 114 year: 2017 ident: boe-16-1-267-R41 publication-title: Can. J. Ophthalmol. doi: 10.1016/j.jcjo.2016.07.013 – volume: 5 start-page: 171 year: 2014 ident: boe-16-1-267-R15 publication-title: Quantitative Imaging in Medicine and Surgery doi: 10.3978/j.issn.2223-4292.2014.11.15 – volume: 9 start-page: 593 year: 2022 ident: boe-16-1-267-R17 publication-title: Photonics doi: 10.3390/photonics9080593 – volume: 15 start-page: 4365 year: 2024 ident: boe-16-1-267-R21 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.528287 – volume: 51 start-page: 3231 year: 2006 ident: boe-16-1-267-R25 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/51/12/015 – volume: 11 start-page: e0162048 year: 2016 ident: boe-16-1-267-R35 publication-title: PLoS One doi: 10.1371/journal.pone.0162048 |
SSID | ssj0000447038 |
Score | 2.395969 |
Snippet | The motion of the trabecular meshwork (TM) facilitates the aqueous drainage from the anterior chamber to the venous system, thereby maintaining normal... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 267 |
Title | Volumetric imaging of trabecular meshwork dynamic motion using 600 kHz swept source optical coherence tomography |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39816136 https://www.proquest.com/docview/3156528009 https://pubmed.ncbi.nlm.nih.gov/PMC11729298 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKkBAcEIyvDpiM4BalJLXjOEeEBhXS4LKhjktkO45aTW0qmhy2v37PH_nousPgErVu7KZ5v748Pz__fgh9yjiRVFMVxoksQoiIVShjIUJeikyW4CplZDYKn_5ks3P6Y57MR6OrQdVSU8uJur5zX8n_WBXawK5ml-w_WLYbFBrgNdgXjmBhON7Lxr-tazEc-8Fy5eWGSqP6IJ3kbbDS24WpvAoKJzwfONGeoLEZAohCgsvZdWDIS-vApfGDalN70pCFZ6Ctq9WQ17pdAbb79u2ptsvWiAV09RyWcd-5kT8LUV01XSbHiggHF2LTPjNNNdCysWgaQLVLZF8sh4mJaTJITFj_BcEEC9PIKfJM9B1trQNme0Dz3tQpdex5ecKoqV3_dTIxVEJuh_UulfatR1xXeGjX7xjNoW_u-j5AD6dpalf4v8_jLj0XUQq-0OoZtpfsyW2h--f-q3fDmb05yu1S20HscvYMPfWTDvzFIeg5Gun1IXoyoKI8RI9OfZHFC7TpYYU9rHBV4h5WuIUV9rDCDlbYwgoDrDDACltYYQcr7GGFO1jhHlYv0fm3k7Ovs9ALc4SKEF6HhjMy04xTwmKmUgj6RZqUmVBaZLRIi5RMY1lQCm-ZjMpIlAkzwua6kITzUpFX6GBdrfUbhKdKRkxxoUmWUMVTHildwI3lkkD_rByjj-39zTeOfyXfN-IYfWhvfQ7u0ax5ibWumm1OwHowGswkxui1M0U3DvwKmO8QNkZ8x0jdCYZ6ffeT9XJhKdhjiPthYsGP7nV5b9Hj_g_yDh3Ufxv9HmLZWh7bHNCxxd4NkImkiw |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Volumetric+imaging+of+trabecular+meshwork+dynamic+motion+using+600+kHz+swept+source+optical+coherence+tomography&rft.jtitle=Biomedical+optics+express&rft.au=Gong%2C+Zhaoyu&rft.au=Shi%2C+Yaping&rft.au=Liu%2C+Jian&rft.au=Zhang%2C+Yi&rft.date=2025-01-01&rft.issn=2156-7085&rft.eissn=2156-7085&rft.volume=16&rft.issue=1&rft.spage=267&rft_id=info:doi/10.1364%2FBOE.544521&rft.externalDBID=n%2Fa&rft.externalDocID=10_1364_BOE_544521 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2156-7085&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2156-7085&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2156-7085&client=summon |