Bayesian analysis of optional unrelated question randomized response models
The randomized response technique (RRT) is an effective method designed to obtain the sensitive information from respondents while assuring the privacy. Narjis and Shabbir [Narjis, G., and J. Shabbir. 2018. Estimation of population proportion and sensitivity level using optional unrelated question r...
Saved in:
Published in | Communications in statistics. Theory and methods Vol. 50; no. 18; pp. 4203 - 4215 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
20.08.2021
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0361-0926 1532-415X |
DOI | 10.1080/03610926.2020.1713367 |
Cover
Loading…
Abstract | The randomized response technique (RRT) is an effective method designed to obtain the sensitive information from respondents while assuring the privacy. Narjis and Shabbir [Narjis, G., and J. Shabbir. 2018. Estimation of population proportion and sensitivity level using optional unrelated question randomized response techniques. Communications in Statistics - Simulation and Computation 0 (0):1-15] proposed three binary optional unrelated question RRT models for estimating the proportion of population that possess a sensitive characteristic
and the sensitivity level
of the question. In this study, we have developed the Bayes estimators of two parameters
for optional unrelated question RRT model along with their corresponding minimal Bayes posterior expected losses (BPEL) under squared error loss function (SELF) using beta prior. Relative losses, mean squared error (MSE) and absolute bias are also examined to compare the performances of the Bayes estimates with those of the classical estimates obtained by Narjis and Shabbir (
2018
). A real survey data are provided for practical utilizations. |
---|---|
AbstractList | The randomized response technique (RRT) is an effective method designed to obtain the sensitive information from respondents while assuring the privacy. Narjis and Shabbir [Narjis, G., and J. Shabbir. 2018. Estimation of population proportion and sensitivity level using optional unrelated question randomized response techniques. Communications in Statistics – Simulation and Computation 0 (0):1–15] proposed three binary optional unrelated question RRT models for estimating the proportion of population that possess a sensitive characteristic and the sensitivity level of the question. In this study, we have developed the Bayes estimators of two parameters for optional unrelated question RRT model along with their corresponding minimal Bayes posterior expected losses (BPEL) under squared error loss function (SELF) using beta prior. Relative losses, mean squared error (MSE) and absolute bias are also examined to compare the performances of the Bayes estimates with those of the classical estimates obtained by Narjis and Shabbir (2018). A real survey data are provided for practical utilizations. The randomized response technique (RRT) is an effective method designed to obtain the sensitive information from respondents while assuring the privacy. Narjis and Shabbir [Narjis, G., and J. Shabbir. 2018. Estimation of population proportion and sensitivity level using optional unrelated question randomized response techniques. Communications in Statistics - Simulation and Computation 0 (0):1-15] proposed three binary optional unrelated question RRT models for estimating the proportion of population that possess a sensitive characteristic and the sensitivity level of the question. In this study, we have developed the Bayes estimators of two parameters for optional unrelated question RRT model along with their corresponding minimal Bayes posterior expected losses (BPEL) under squared error loss function (SELF) using beta prior. Relative losses, mean squared error (MSE) and absolute bias are also examined to compare the performances of the Bayes estimates with those of the classical estimates obtained by Narjis and Shabbir ( 2018 ). A real survey data are provided for practical utilizations. |
Author | Shabbir, Javid Narjis, Ghulam |
Author_xml | – sequence: 1 givenname: Ghulam surname: Narjis fullname: Narjis, Ghulam organization: Department of Statistics, Quaid-i-Azam University – sequence: 2 givenname: Javid orcidid: 0000-0002-0035-7072 surname: Shabbir fullname: Shabbir, Javid organization: Department of Statistics, Quaid-i-Azam University |
BookMark | eNqFkE1LAzEURYNUsK3-BGHA9dR8mMkMbtTiFxbcdOEuvJkkkDJNxmSKjL_ejK0bF7oKuZz7eO_M0MR5pxE6J3hBcIkvMSsIrmixoJimSBDGCnGEpoQzml8R_jZB05HJR-gEzWLcYEy4KNkUvdzBoKMFl4GDdog2Zt5kvuutT_9s54Juodcqe9_pOIZZAKf81n6mLOjYeRd1tvVKt_EUHRtooz47vHO0frhfL5_y1evj8_J2lTeMlX1OGVVclYzWJTcV04SXgnAuhFGK0rrhtaibUhsMtagwB-CMCUqgqg1JOJuji_3YLvjvreTG70LaNkrKi3Q8F1wkiu-pJvgYgzayC3YLYZAEy1Gb_NEmR23yoC31rn_1GtvDeHkfwLb_tm_2beuMD1v48KFVsoeh9cEkc42Nkv094gurfohq |
CitedBy_id | crossref_primary_10_1080_03610918_2020_1788587 crossref_primary_10_1016_j_sciaf_2023_e01584 crossref_primary_10_1155_2022_6083646 crossref_primary_10_3390_math11071718 |
Cites_doi | 10.1080/01621459.1969.10500991 10.1080/03610918.2018.1538453 10.1080/03610926.2017.1367812 10.2307/270874 10.1080/01621459.1987.10478469 10.1080/01621459.1979.10481639 10.1080/03610910600716548 10.1007/s00184-009-0242-7 10.1037/0033-2909.87.1.209 10.1016/S0167-9473(96)00075-8 10.1080/03610918.2010.532897 10.1080/01621459.1965.10480775 10.2140/involve.2016.9.195 |
ContentType | Journal Article |
Copyright | 2020 Taylor & Francis Group, LLC 2020 2020 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2020 Taylor & Francis Group, LLC 2020 – notice: 2020 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1080/03610926.2020.1713367 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1532-415X |
EndPage | 4215 |
ExternalDocumentID | 10_1080_03610926_2020_1713367 1713367 |
Genre | Research Article |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G KYCEM LJTGL M4Z NA5 NY~ O9- QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF TWZ UPT UT5 UU3 WH7 ZGOLN ZL0 ~02 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c338t-232d5d832b85f93e158715577fdd22bc5b7bc8ef0ab7905aa533721a9bf193e3 |
ISSN | 0361-0926 |
IngestDate | Wed Aug 13 10:06:22 EDT 2025 Tue Jul 01 00:46:48 EDT 2025 Thu Apr 24 22:55:50 EDT 2025 Wed Dec 25 09:06:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-232d5d832b85f93e158715577fdd22bc5b7bc8ef0ab7905aa533721a9bf193e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0035-7072 |
PQID | 2561335757 |
PQPubID | 186202 |
PageCount | 13 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_03610926_2020_1713367 proquest_journals_2561335757 crossref_primary_10_1080_03610926_2020_1713367 crossref_citationtrail_10_1080_03610926_2020_1713367 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-20 |
PublicationDateYYYYMMDD | 2021-08-20 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Communications in statistics. Theory and methods |
PublicationYear | 2021 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | Hussain Z. (CIT0007) 2009; 25 CIT0010 CIT0012 CIT0011 Unnikrishnan N. K. (CIT0016) 1999; 61 Chhabra A. (CIT0005) 2016; 2 CIT0003 CIT0014 CIT0002 CIT0013 Chaubey Y. P. (CIT0004) 1969; 11 CIT0015 CIT0018 CIT0006 CIT0017 CIT0009 Adepetun A. O. (CIT0001) 2017; 2 CIT0008 |
References_xml | – volume: 11 start-page: 379 issue: 4 year: 1969 ident: CIT0004 publication-title: Journal of Official Statistics – ident: CIT0006 doi: 10.1080/01621459.1969.10500991 – volume: 2 start-page: 48 issue: 1 year: 2017 ident: CIT0001 publication-title: Malaysian Journal of Applied Sciences – volume: 2 start-page: 1 year: 2016 ident: CIT0005 publication-title: Carolina Journal of Mathematics and Statistics – ident: CIT0011 doi: 10.1080/03610918.2018.1538453 – ident: CIT0009 doi: 10.1080/03610926.2017.1367812 – volume: 61 start-page: 422 issue: 3 year: 1999 ident: CIT0016 publication-title: Sankhyā: The Indian Journal of Statistics, Series B (1960-2002) – ident: CIT0015 doi: 10.2307/270874 – ident: CIT0012 doi: 10.1080/01621459.1987.10478469 – ident: CIT0018 doi: 10.1080/01621459.1979.10481639 – ident: CIT0002 doi: 10.1080/03610910600716548 – volume: 25 start-page: 27 issue: 1 year: 2009 ident: CIT0007 publication-title: Pakistan Journal of Statistics – ident: CIT0003 doi: 10.1007/s00184-009-0242-7 – ident: CIT0013 doi: 10.1037/0033-2909.87.1.209 – ident: CIT0010 doi: 10.1016/S0167-9473(96)00075-8 – ident: CIT0008 doi: 10.1080/03610918.2010.532897 – ident: CIT0017 doi: 10.1080/01621459.1965.10480775 – ident: CIT0014 doi: 10.2140/involve.2016.9.195 |
SSID | ssj0015783 |
Score | 2.28953 |
Snippet | The randomized response technique (RRT) is an effective method designed to obtain the sensitive information from respondents while assuring the privacy. Narjis... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4203 |
SubjectTerms | Bayesian analysis Beta prior Estimates mean squared error optional unrelated question Parameter estimation Population statistics posterior distribution Questions Randomized response Sensitivity |
Title | Bayesian analysis of optional unrelated question randomized response models |
URI | https://www.tandfonline.com/doi/abs/10.1080/03610926.2020.1713367 https://www.proquest.com/docview/2561335757 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYLnBArGKXD1xTJXbWIyAWgeiFIvUW2YktQNCiNj3A1zNeSSkS2yWq3DqpPM_jGcfvDUJHvKCsFoQHKZVVEPOUwpyLo6BKa0kyCYmzVHznm256eRdf9ZP-J3ZJwzvV25e8kr9YFdrArool-wvL-ptCA3wG-8IVLAzXH9n4hL0KTYJkLWmR4Yvd3psMNFEFIkrt-5WdYWGqh88Pb0JxVvThWGFq4YzbQeoUaUSfl1W0I6Po3LFsfv3SwZSf9lF5l40ejWTBxf3kiT373Zt7xvnDyBzKdUfo7U4D0VunJPTY6M0U_Wj5KprCzwtiVa2dLyUBxAf9trM1KrMOVHnLdcYkpK1lOCaG5jnj4u2ZSKp04ok6ZEKgUaXapqzHJ_Vs-808WiSQR6gSFzTs-tdM4K5M_Wz77x3FS4mvf_WAqeBlStp2ZinX8UlvFa3YxAIfG5SsoTkxWEfLN16Vd7yOlm69GTfQtQMPduDBQ4kdeLAHD3bgwR_gwQ482IBnE_XOz3qnl4GtrBFUlOZNAGF0ndTgzHmeyIKKKIG8OUmyTNY1IbxKeMarXMiQcSXgxhgkBRmJWMElBPyCbqGFwXAgthGWoUoIRJgXiVIegvAXQvo8F7TK44hHZAfFbsTKyqrOq-InT2XkxGntQJdqoEs70Duo47u9GNmV7zoUbXOUjQarNDgt6Td9953tSju7xyVRmTWFZCbb_cet99DSx0zaRwvNaCIOIIpt-KFG4judMJXo |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsQwEB1xFEDBjbhxQZslseMcJSDQcuxWi0RnxY4tIWAXsdkCvp6ZOFlxCFHQWrIV2-Pxe87MG4BjnYuitFwHiXAmiHUi8MzFUWCS0vHUIXF2lO_c6yfdu_j6Xt5_yoWhsEri0M4LRdS-mg43PUa3IXEn6HWjMOcUYcCxiXhWks7CvMyTlKoYiLA__ZOAFulLJCdIm7FPm8Xz2zBf7qcv6qU_vHV9BV2ugGk_3keePHYmle6Y92-6jv-b3SosNwiVnXqTWoMZO1yHpd5U3nW8DosEUb3C8wbcnBVvllIxWdEInLCRY6MX_8jIJsM6XcaWrJ4TNjK8HsvR88M7tr36EF3L6oo8400YXF4MzrtBU6IhMMhtqwDxWClL9Ao6ky4XNpJIwKRMU1eWnGsjdapNZl1YaFICKwpEl8g5i1w7RI5WbMHccDS028BcSMjShlkuScIGcRRiwyyzwmRxpCO-A3G7L8o08uVUReNJRa3KabNuitZNNeu2A51ptxev3_FXh_zzpquqfjhxvsqJEn_03W8tRDWuYKw4UTSBqDjd_cfQR7DQHfRu1e1V_2YPFjlF1oTk4_Zhrnqd2AOERpU-rG3_AxbJ_dE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkVA5sBQQSwEfuKYkzn5kq1grDkXiZsWxLSGgrdr0AF_PTJxULEIcerVkK7bH4_ecmTcAxzL1M6W5dCLf5E4gIx_PXOA5eaQMjw0SZ0P5zve96OoxuHkK62jCSRVWSRzaWKGI0lfT4R4pU0fEnaDT9dyUU4ABxyaiWVG8CEsRiYdTFofbm_1IQIO0FZIjZM3Yp07i-WuYb9fTN_HSX866vIG6ayDrb7eBJy-daSE7-ccPWce5JrcOqxU-ZafWoDZgQQ9asHI_E3edtKBJANXqO2_C7Vn2rikRk2WVvAkbGjYc2SdGNh2UyTJasXJK2MjwclTDt-cPbBvbAF3Nyno8ky3ody_751dOVaDByZHZFg6iMRUq9AkyCU3qay9E-hWGcWyU4lzmoYxlnmjjZpJ0wLIMsSUyziyVBnGj9rehMRgO9A4w4xKu1G6ShiRggygKkWGSaD9PAk96fBeCeltEXomXUw2NV-HVGqfVuglaN1Gt2y50Zt1GVr3jvw7p1z0XRflsYmyNE-H_07ddG4ioHMFEcCJoPmLieG-OoY9g-eGiK-6ue7f70OQUVuOSg2tDoxhP9QHiokIelpb_CehY_HU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+analysis+of+optional+unrelated+question+randomized+response+models&rft.jtitle=Communications+in+statistics.+Theory+and+methods&rft.au=Narjis%2C+Ghulam&rft.au=Shabbir%2C+Javid&rft.date=2021-08-20&rft.pub=Taylor+%26+Francis&rft.issn=0361-0926&rft.eissn=1532-415X&rft.volume=50&rft.issue=18&rft.spage=4203&rft.epage=4215&rft_id=info:doi/10.1080%2F03610926.2020.1713367&rft.externalDocID=1713367 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0926&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0926&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0926&client=summon |