Bayesian analysis of optional unrelated question randomized response models

The randomized response technique (RRT) is an effective method designed to obtain the sensitive information from respondents while assuring the privacy. Narjis and Shabbir [Narjis, G., and J. Shabbir. 2018. Estimation of population proportion and sensitivity level using optional unrelated question r...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Theory and methods Vol. 50; no. 18; pp. 4203 - 4215
Main Authors Narjis, Ghulam, Shabbir, Javid
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 20.08.2021
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0361-0926
1532-415X
DOI10.1080/03610926.2020.1713367

Cover

Loading…
Abstract The randomized response technique (RRT) is an effective method designed to obtain the sensitive information from respondents while assuring the privacy. Narjis and Shabbir [Narjis, G., and J. Shabbir. 2018. Estimation of population proportion and sensitivity level using optional unrelated question randomized response techniques. Communications in Statistics - Simulation and Computation 0 (0):1-15] proposed three binary optional unrelated question RRT models for estimating the proportion of population that possess a sensitive characteristic and the sensitivity level of the question. In this study, we have developed the Bayes estimators of two parameters for optional unrelated question RRT model along with their corresponding minimal Bayes posterior expected losses (BPEL) under squared error loss function (SELF) using beta prior. Relative losses, mean squared error (MSE) and absolute bias are also examined to compare the performances of the Bayes estimates with those of the classical estimates obtained by Narjis and Shabbir ( 2018 ). A real survey data are provided for practical utilizations.
AbstractList The randomized response technique (RRT) is an effective method designed to obtain the sensitive information from respondents while assuring the privacy. Narjis and Shabbir [Narjis, G., and J. Shabbir. 2018. Estimation of population proportion and sensitivity level using optional unrelated question randomized response techniques. Communications in Statistics – Simulation and Computation 0 (0):1–15] proposed three binary optional unrelated question RRT models for estimating the proportion of population that possess a sensitive characteristic and the sensitivity level of the question. In this study, we have developed the Bayes estimators of two parameters for optional unrelated question RRT model along with their corresponding minimal Bayes posterior expected losses (BPEL) under squared error loss function (SELF) using beta prior. Relative losses, mean squared error (MSE) and absolute bias are also examined to compare the performances of the Bayes estimates with those of the classical estimates obtained by Narjis and Shabbir (2018). A real survey data are provided for practical utilizations.
The randomized response technique (RRT) is an effective method designed to obtain the sensitive information from respondents while assuring the privacy. Narjis and Shabbir [Narjis, G., and J. Shabbir. 2018. Estimation of population proportion and sensitivity level using optional unrelated question randomized response techniques. Communications in Statistics - Simulation and Computation 0 (0):1-15] proposed three binary optional unrelated question RRT models for estimating the proportion of population that possess a sensitive characteristic and the sensitivity level of the question. In this study, we have developed the Bayes estimators of two parameters for optional unrelated question RRT model along with their corresponding minimal Bayes posterior expected losses (BPEL) under squared error loss function (SELF) using beta prior. Relative losses, mean squared error (MSE) and absolute bias are also examined to compare the performances of the Bayes estimates with those of the classical estimates obtained by Narjis and Shabbir ( 2018 ). A real survey data are provided for practical utilizations.
Author Shabbir, Javid
Narjis, Ghulam
Author_xml – sequence: 1
  givenname: Ghulam
  surname: Narjis
  fullname: Narjis, Ghulam
  organization: Department of Statistics, Quaid-i-Azam University
– sequence: 2
  givenname: Javid
  orcidid: 0000-0002-0035-7072
  surname: Shabbir
  fullname: Shabbir, Javid
  organization: Department of Statistics, Quaid-i-Azam University
BookMark eNqFkE1LAzEURYNUsK3-BGHA9dR8mMkMbtTiFxbcdOEuvJkkkDJNxmSKjL_ejK0bF7oKuZz7eO_M0MR5pxE6J3hBcIkvMSsIrmixoJimSBDGCnGEpoQzml8R_jZB05HJR-gEzWLcYEy4KNkUvdzBoKMFl4GDdog2Zt5kvuutT_9s54Juodcqe9_pOIZZAKf81n6mLOjYeRd1tvVKt_EUHRtooz47vHO0frhfL5_y1evj8_J2lTeMlX1OGVVclYzWJTcV04SXgnAuhFGK0rrhtaibUhsMtagwB-CMCUqgqg1JOJuji_3YLvjvreTG70LaNkrKi3Q8F1wkiu-pJvgYgzayC3YLYZAEy1Gb_NEmR23yoC31rn_1GtvDeHkfwLb_tm_2beuMD1v48KFVsoeh9cEkc42Nkv094gurfohq
CitedBy_id crossref_primary_10_1080_03610918_2020_1788587
crossref_primary_10_1016_j_sciaf_2023_e01584
crossref_primary_10_1155_2022_6083646
crossref_primary_10_3390_math11071718
Cites_doi 10.1080/01621459.1969.10500991
10.1080/03610918.2018.1538453
10.1080/03610926.2017.1367812
10.2307/270874
10.1080/01621459.1987.10478469
10.1080/01621459.1979.10481639
10.1080/03610910600716548
10.1007/s00184-009-0242-7
10.1037/0033-2909.87.1.209
10.1016/S0167-9473(96)00075-8
10.1080/03610918.2010.532897
10.1080/01621459.1965.10480775
10.2140/involve.2016.9.195
ContentType Journal Article
Copyright 2020 Taylor & Francis Group, LLC 2020
2020 Taylor & Francis Group, LLC
Copyright_xml – notice: 2020 Taylor & Francis Group, LLC 2020
– notice: 2020 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03610926.2020.1713367
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1532-415X
EndPage 4215
ExternalDocumentID 10_1080_03610926_2020_1713367
1713367
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
TWZ
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~02
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c338t-232d5d832b85f93e158715577fdd22bc5b7bc8ef0ab7905aa533721a9bf193e3
ISSN 0361-0926
IngestDate Wed Aug 13 10:06:22 EDT 2025
Tue Jul 01 00:46:48 EDT 2025
Thu Apr 24 22:55:50 EDT 2025
Wed Dec 25 09:06:26 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-232d5d832b85f93e158715577fdd22bc5b7bc8ef0ab7905aa533721a9bf193e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0035-7072
PQID 2561335757
PQPubID 186202
PageCount 13
ParticipantIDs informaworld_taylorfrancis_310_1080_03610926_2020_1713367
proquest_journals_2561335757
crossref_primary_10_1080_03610926_2020_1713367
crossref_citationtrail_10_1080_03610926_2020_1713367
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-20
PublicationDateYYYYMMDD 2021-08-20
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-20
  day: 20
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in statistics. Theory and methods
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Hussain Z. (CIT0007) 2009; 25
CIT0010
CIT0012
CIT0011
Unnikrishnan N. K. (CIT0016) 1999; 61
Chhabra A. (CIT0005) 2016; 2
CIT0003
CIT0014
CIT0002
CIT0013
Chaubey Y. P. (CIT0004) 1969; 11
CIT0015
CIT0018
CIT0006
CIT0017
CIT0009
Adepetun A. O. (CIT0001) 2017; 2
CIT0008
References_xml – volume: 11
  start-page: 379
  issue: 4
  year: 1969
  ident: CIT0004
  publication-title: Journal of Official Statistics
– ident: CIT0006
  doi: 10.1080/01621459.1969.10500991
– volume: 2
  start-page: 48
  issue: 1
  year: 2017
  ident: CIT0001
  publication-title: Malaysian Journal of Applied Sciences
– volume: 2
  start-page: 1
  year: 2016
  ident: CIT0005
  publication-title: Carolina Journal of Mathematics and Statistics
– ident: CIT0011
  doi: 10.1080/03610918.2018.1538453
– ident: CIT0009
  doi: 10.1080/03610926.2017.1367812
– volume: 61
  start-page: 422
  issue: 3
  year: 1999
  ident: CIT0016
  publication-title: Sankhyā: The Indian Journal of Statistics, Series B (1960-2002)
– ident: CIT0015
  doi: 10.2307/270874
– ident: CIT0012
  doi: 10.1080/01621459.1987.10478469
– ident: CIT0018
  doi: 10.1080/01621459.1979.10481639
– ident: CIT0002
  doi: 10.1080/03610910600716548
– volume: 25
  start-page: 27
  issue: 1
  year: 2009
  ident: CIT0007
  publication-title: Pakistan Journal of Statistics
– ident: CIT0003
  doi: 10.1007/s00184-009-0242-7
– ident: CIT0013
  doi: 10.1037/0033-2909.87.1.209
– ident: CIT0010
  doi: 10.1016/S0167-9473(96)00075-8
– ident: CIT0008
  doi: 10.1080/03610918.2010.532897
– ident: CIT0017
  doi: 10.1080/01621459.1965.10480775
– ident: CIT0014
  doi: 10.2140/involve.2016.9.195
SSID ssj0015783
Score 2.28953
Snippet The randomized response technique (RRT) is an effective method designed to obtain the sensitive information from respondents while assuring the privacy. Narjis...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4203
SubjectTerms Bayesian analysis
Beta prior
Estimates
mean squared error
optional unrelated question
Parameter estimation
Population statistics
posterior distribution
Questions
Randomized response
Sensitivity
Title Bayesian analysis of optional unrelated question randomized response models
URI https://www.tandfonline.com/doi/abs/10.1080/03610926.2020.1713367
https://www.proquest.com/docview/2561335757
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYLnBArGKXD1xTJXbWIyAWgeiFIvUW2YktQNCiNj3A1zNeSSkS2yWq3DqpPM_jGcfvDUJHvKCsFoQHKZVVEPOUwpyLo6BKa0kyCYmzVHznm256eRdf9ZP-J3ZJwzvV25e8kr9YFdrArool-wvL-ptCA3wG-8IVLAzXH9n4hL0KTYJkLWmR4Yvd3psMNFEFIkrt-5WdYWGqh88Pb0JxVvThWGFq4YzbQeoUaUSfl1W0I6Po3LFsfv3SwZSf9lF5l40ejWTBxf3kiT373Zt7xvnDyBzKdUfo7U4D0VunJPTY6M0U_Wj5KprCzwtiVa2dLyUBxAf9trM1KrMOVHnLdcYkpK1lOCaG5jnj4u2ZSKp04ok6ZEKgUaXapqzHJ_Vs-808WiSQR6gSFzTs-tdM4K5M_Wz77x3FS4mvf_WAqeBlStp2ZinX8UlvFa3YxAIfG5SsoTkxWEfLN16Vd7yOlm69GTfQtQMPduDBQ4kdeLAHD3bgwR_gwQ482IBnE_XOz3qnl4GtrBFUlOZNAGF0ndTgzHmeyIKKKIG8OUmyTNY1IbxKeMarXMiQcSXgxhgkBRmJWMElBPyCbqGFwXAgthGWoUoIRJgXiVIegvAXQvo8F7TK44hHZAfFbsTKyqrOq-InT2XkxGntQJdqoEs70Duo47u9GNmV7zoUbXOUjQarNDgt6Td9953tSju7xyVRmTWFZCbb_cet99DSx0zaRwvNaCIOIIpt-KFG4judMJXo
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsQwEB1xFEDBjbhxQZslseMcJSDQcuxWi0RnxY4tIWAXsdkCvp6ZOFlxCFHQWrIV2-Pxe87MG4BjnYuitFwHiXAmiHUi8MzFUWCS0vHUIXF2lO_c6yfdu_j6Xt5_yoWhsEri0M4LRdS-mg43PUa3IXEn6HWjMOcUYcCxiXhWks7CvMyTlKoYiLA__ZOAFulLJCdIm7FPm8Xz2zBf7qcv6qU_vHV9BV2ugGk_3keePHYmle6Y92-6jv-b3SosNwiVnXqTWoMZO1yHpd5U3nW8DosEUb3C8wbcnBVvllIxWdEInLCRY6MX_8jIJsM6XcaWrJ4TNjK8HsvR88M7tr36EF3L6oo8400YXF4MzrtBU6IhMMhtqwDxWClL9Ao6ky4XNpJIwKRMU1eWnGsjdapNZl1YaFICKwpEl8g5i1w7RI5WbMHccDS028BcSMjShlkuScIGcRRiwyyzwmRxpCO-A3G7L8o08uVUReNJRa3KabNuitZNNeu2A51ptxev3_FXh_zzpquqfjhxvsqJEn_03W8tRDWuYKw4UTSBqDjd_cfQR7DQHfRu1e1V_2YPFjlF1oTk4_Zhrnqd2AOERpU-rG3_AxbJ_dE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkVA5sBQQSwEfuKYkzn5kq1grDkXiZsWxLSGgrdr0AF_PTJxULEIcerVkK7bH4_ecmTcAxzL1M6W5dCLf5E4gIx_PXOA5eaQMjw0SZ0P5zve96OoxuHkK62jCSRVWSRzaWKGI0lfT4R4pU0fEnaDT9dyUU4ABxyaiWVG8CEsRiYdTFofbm_1IQIO0FZIjZM3Yp07i-WuYb9fTN_HSX866vIG6ayDrb7eBJy-daSE7-ccPWce5JrcOqxU-ZafWoDZgQQ9asHI_E3edtKBJANXqO2_C7Vn2rikRk2WVvAkbGjYc2SdGNh2UyTJasXJK2MjwclTDt-cPbBvbAF3Nyno8ky3ody_751dOVaDByZHZFg6iMRUq9AkyCU3qay9E-hWGcWyU4lzmoYxlnmjjZpJ0wLIMsSUyziyVBnGj9rehMRgO9A4w4xKu1G6ShiRggygKkWGSaD9PAk96fBeCeltEXomXUw2NV-HVGqfVuglaN1Gt2y50Zt1GVr3jvw7p1z0XRflsYmyNE-H_07ddG4ioHMFEcCJoPmLieG-OoY9g-eGiK-6ue7f70OQUVuOSg2tDoxhP9QHiokIelpb_CehY_HU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+analysis+of+optional+unrelated+question+randomized+response+models&rft.jtitle=Communications+in+statistics.+Theory+and+methods&rft.au=Narjis%2C+Ghulam&rft.au=Shabbir%2C+Javid&rft.date=2021-08-20&rft.pub=Taylor+%26+Francis&rft.issn=0361-0926&rft.eissn=1532-415X&rft.volume=50&rft.issue=18&rft.spage=4203&rft.epage=4215&rft_id=info:doi/10.1080%2F03610926.2020.1713367&rft.externalDocID=1713367
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0926&client=summon