Bayesian and non-Bayesian inference for a general family of distributions based on simple step-stress life test using TRV model under type II censoring

In this article, we consider the parametric inference, using Type II censored data, based on the tampered random variable (TRV) model for simple step-stress life testing (SSLT). We have taken the members of the Lehmann family of distributions as the baseline lifetimes of the experimental units under...

Full description

Saved in:
Bibliographic Details
Published inSequential analysis Vol. 42; no. 4; pp. 349 - 370
Main Authors Dutta, Subhankar, Sultana, Farha, Kayal, Suchandan
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 02.10.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0747-4946
1532-4176
DOI10.1080/07474946.2023.2224401

Cover

Loading…
Abstract In this article, we consider the parametric inference, using Type II censored data, based on the tampered random variable (TRV) model for simple step-stress life testing (SSLT). We have taken the members of the Lehmann family of distributions as the baseline lifetimes of the experimental units under normal stress conditions. Based on Type II censored data and a simple SSLT framework, we obtain the maximum likelihood estimator (MLE) and the Bayes estimators of the model parameters. Further, we obtain asymptotic confidence intervals of the unknown model parameters using the observed Fisher information matrix. Moreover, bootstrap confidence intervals were constructed. The Bayes estimators are computed using the Markov chain Monte Carlo (MCMC) method under the squared error loss function and the LINEX loss function. We also construct the highest posterior density (HPD) credible intervals of the unknown model parameters. Extensive simulation studies are performed to investigate the finite sample properties of the proposed estimators. Finally, the proposed methods are illustrated with the analysis of a real data set.
AbstractList In this article, we consider the parametric inference, using Type II censored data, based on the tampered random variable (TRV) model for simple step-stress life testing (SSLT). We have taken the members of the Lehmann family of distributions as the baseline lifetimes of the experimental units under normal stress conditions. Based on Type II censored data and a simple SSLT framework, we obtain the maximum likelihood estimator (MLE) and the Bayes estimators of the model parameters. Further, we obtain asymptotic confidence intervals of the unknown model parameters using the observed Fisher information matrix. Moreover, bootstrap confidence intervals were constructed. The Bayes estimators are computed using the Markov chain Monte Carlo (MCMC) method under the squared error loss function and the LINEX loss function. We also construct the highest posterior density (HPD) credible intervals of the unknown model parameters. Extensive simulation studies are performed to investigate the finite sample properties of the proposed estimators. Finally, the proposed methods are illustrated with the analysis of a real data set.
Author Sultana, Farha
Dutta, Subhankar
Kayal, Suchandan
Author_xml – sequence: 1
  givenname: Subhankar
  orcidid: 0000-0002-7808-4377
  surname: Dutta
  fullname: Dutta, Subhankar
  organization: Department of Mathematics, National Institute of Technology Rourkela, Rourkela, India
– sequence: 2
  givenname: Farha
  surname: Sultana
  fullname: Sultana, Farha
  organization: Department of Science and Mathematics, Indian Institute of Information Technology, Guwahati, India
– sequence: 3
  givenname: Suchandan
  orcidid: 0000-0002-0654-0767
  surname: Kayal
  fullname: Kayal, Suchandan
  organization: Department of Mathematics, National Institute of Technology Rourkela, Rourkela, India
BookMark eNqFkU2LFDEQhoOs4OzoTxAKPPeYj-7ODF7UZXUHFgRZvYbqpLJk6U7GpBvpX-LftZtZPexBT4Hied8K9Vyyi5giMfZa8J3ge_6W61rXh7rdSS7VTkpZ11w8YxvRKFnVQrcXbLMy1Qq9YJelPHAu9oLrDfv1EWcqASNgdLAUV38HIXrKFC2BTxkQ7ilSxh48DqGfIXlwoYw5dNMYUizQYSEHKUIJw6knKCOdqgWgUqAPnmCkMsJUQryHu6_fYUiOepiiowzjfCI4HsFSLCkvxEv23GNf6NXju2XfPl3fXd1Ut18-H68-3FZWqf1YScFdx3UjlbfoSNS25R7bRiIn7dRBo9JdTbxpiKzXB9fpfe075T1KbFqrtuzNufeU049p-aB5SFOOy0ojD1xoqeRSvmXNmbI5lZLJm1MOA-bZCG5WB-aPA7M6MI8Olty7JzkbRlzPNWYM_X_T78_pxUTKA_5MuXdmxLlP2WeMNhSj_l3xG-m_pGE
CitedBy_id crossref_primary_10_3390_sym16091251
crossref_primary_10_1016_j_aej_2025_01_050
crossref_primary_10_1016_j_aej_2024_04_042
crossref_primary_10_1016_j_heliyon_2024_e38293
crossref_primary_10_1088_1402_4896_adae3d
Cites_doi 10.1080/03610928908829990
10.1007/s40745-020-00270-4
10.1155/2022/3491732
10.1080/03610918.2011.615434
10.1081/STA-120003134
10.1016/S0169-7161(03)23018-2
10.2307/1390921
10.1111/j.0006-341X.2004.00230.x
10.13052/jrss0974-8024.14211
10.1016/j.cam.2013.10.014
10.1007/978-3-030-62900-7_16
10.1214/aos/1176350933
10.1080/03610920802272414
10.1109/TR.1980.5220742
10.32604/cmes.2022.017532
10.1137/1.9781611970319
10.1111/1467-842X.00072
10.1109/24.159807
10.1080/03610928308831174
10.1080/07474946.2021.1847940
10.1002/nav.3800260204
10.1007/s00362-014-0639-x
10.1016/j.csda.2008.11.006
10.1007/s13226-014-0101-8
10.1007/s40995-022-01394-3
10.1016/j.jspi.2003.10.003
10.1016/j.csda.2017.08.001
10.1080/07474946.2015.1030983
10.17654/FJTSMar2015_111_124
10.1080/03610929808832134
ContentType Journal Article
Copyright 2023 Taylor & Francis Group, LLC 2023
2023 Taylor & Francis Group, LLC
Copyright_xml – notice: 2023 Taylor & Francis Group, LLC 2023
– notice: 2023 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/07474946.2023.2224401
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-4176
EndPage 370
ExternalDocumentID 10_1080_07474946_2023_2224401
2224401
Genre Research Article
GrantInformation_xml – fundername: Council of Scientific and Industrial Research (C.S.I.R.,
  grantid: 09/983(0038)/2019-EMR-I
GroupedDBID .7F
.QJ
07G
0BK
0R~
123
1TA
30N
4.4
5VS
AAENE
AAIKQ
AAJMT
AAKBW
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACAGQ
ACGEE
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AEOZL
AEPSL
AEUMN
AEYOC
AFFNX
AFKVX
AGCQS
AGDLA
AGLEN
AGMYJ
AGROQ
AHMOU
AIJEM
AJWEG
AKBVH
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMEWO
AMXXU
AQRUH
AVBZW
AWYRJ
BCCOT
BLEHA
BPLKW
C06
CAG
CCCUG
CE4
COF
CRFIH
CS3
DGEBU
DKSSO
DMQIW
DWIFK
EBS
EJD
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
IVXBP
J.P
KYCEM
LJTGL
M4Z
NA5
NUSFT
NY~
O9-
P2P
PQQKQ
QCRFL
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TAQ
TBQAZ
TEJ
TFL
TFMCV
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
UB9
UT5
UU3
UU8
V3K
V4Q
XOL
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c338t-210db07523fcade14c60fa652a0e7d397a37b4e055eecf79db784fb3ffa2a56c3
ISSN 0747-4946
IngestDate Wed Aug 13 05:58:02 EDT 2025
Tue Jul 01 03:56:58 EDT 2025
Thu Apr 24 23:00:39 EDT 2025
Wed Dec 25 09:03:15 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-210db07523fcade14c60fa652a0e7d397a37b4e055eecf79db784fb3ffa2a56c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7808-4377
0000-0002-0654-0767
PQID 2901723252
PQPubID 216170
PageCount 22
ParticipantIDs proquest_journals_2901723252
informaworld_taylorfrancis_310_1080_07474946_2023_2224401
crossref_citationtrail_10_1080_07474946_2023_2224401
crossref_primary_10_1080_07474946_2023_2224401
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-02
PublicationDateYYYYMMDD 2023-10-02
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-02
  day: 02
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Sequential analysis
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_4_4_1
e_1_3_4_3_1
e_1_3_4_2_1
e_1_3_4_9_1
e_1_3_4_8_1
e_1_3_4_7_1
e_1_3_4_20_1
e_1_3_4_6_1
e_1_3_4_5_1
e_1_3_4_23_1
e_1_3_4_24_1
e_1_3_4_21_1
e_1_3_4_22_1
e_1_3_4_27_1
e_1_3_4_28_1
e_1_3_4_25_1
e_1_3_4_26_1
e_1_3_4_29_1
e_1_3_4_31_1
e_1_3_4_30_1
e_1_3_4_12_1
e_1_3_4_13_1
e_1_3_4_10_1
e_1_3_4_11_1
e_1_3_4_32_1
e_1_3_4_16_1
e_1_3_4_17_1
e_1_3_4_14_1
e_1_3_4_15_1
e_1_3_4_18_1
e_1_3_4_19_1
References_xml – ident: e_1_3_4_6_1
  doi: 10.1080/03610928908829990
– ident: e_1_3_4_11_1
  doi: 10.1007/s40745-020-00270-4
– ident: e_1_3_4_24_1
  doi: 10.1155/2022/3491732
– ident: e_1_3_4_32_1
  doi: 10.1080/03610918.2011.615434
– ident: e_1_3_4_2_1
  doi: 10.1081/STA-120003134
– ident: e_1_3_4_25_1
  doi: 10.1016/S0169-7161(03)23018-2
– ident: e_1_3_4_7_1
  doi: 10.2307/1390921
– ident: e_1_3_4_13_1
  doi: 10.1111/j.0006-341X.2004.00230.x
– ident: e_1_3_4_23_1
  doi: 10.13052/jrss0974-8024.14211
– ident: e_1_3_4_19_1
  doi: 10.1016/j.cam.2013.10.014
– ident: e_1_3_4_28_1
  doi: 10.1007/978-3-030-62900-7_16
– ident: e_1_3_4_17_1
  doi: 10.1214/aos/1176350933
– ident: e_1_3_4_30_1
  doi: 10.1080/03610920802272414
– ident: e_1_3_4_27_1
  doi: 10.1109/TR.1980.5220742
– ident: e_1_3_4_22_1
  doi: 10.32604/cmes.2022.017532
– ident: e_1_3_4_10_1
  doi: 10.1137/1.9781611970319
– ident: e_1_3_4_15_1
  doi: 10.1111/1467-842X.00072
– ident: e_1_3_4_5_1
  doi: 10.1109/24.159807
– ident: e_1_3_4_26_1
  doi: 10.1080/03610928308831174
– ident: e_1_3_4_16_1
  doi: 10.1080/07474946.2021.1847940
– ident: e_1_3_4_12_1
– ident: e_1_3_4_8_1
  doi: 10.1002/nav.3800260204
– ident: e_1_3_4_21_1
  doi: 10.1007/s00362-014-0639-x
– ident: e_1_3_4_3_1
  doi: 10.1016/j.csda.2008.11.006
– ident: e_1_3_4_18_1
  doi: 10.1007/s13226-014-0101-8
– ident: e_1_3_4_9_1
  doi: 10.1007/s40995-022-01394-3
– ident: e_1_3_4_31_1
  doi: 10.1016/j.jspi.2003.10.003
– ident: e_1_3_4_29_1
  doi: 10.1016/j.csda.2017.08.001
– ident: e_1_3_4_20_1
  doi: 10.1080/07474946.2015.1030983
– ident: e_1_3_4_4_1
  doi: 10.17654/FJTSMar2015_111_124
– ident: e_1_3_4_14_1
  doi: 10.1080/03610929808832134
SSID ssj0018107
Score 2.312669
Snippet In this article, we consider the parametric inference, using Type II censored data, based on the tampered random variable (TRV) model for simple step-stress...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 349
SubjectTerms Bayes estimate
Bayesian analysis
Confidence intervals
Fisher information
HPD credible interval
Lehmann family of distributions
Markov chains
Mathematical models
maximum likelihood estimate
Maximum likelihood estimators
MCMC method
Model testing
Normal stress
Parameters
Parametric statistics
Random variables
simple step-stress life test
Statistical inference
TRV model
Title Bayesian and non-Bayesian inference for a general family of distributions based on simple step-stress life test using TRV model under type II censoring
URI https://www.tandfonline.com/doi/abs/10.1080/07474946.2023.2224401
https://www.proquest.com/docview/2901723252
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCucAB8RSFgubALXK0a3tfR0BUDag90BT1tvLu2mpElFbJ5lD-CL-Ff8eM7d1uaEUpl1XkyF5v5ovnm9l5MPYONVRms6rgphEJRxVgeGWl4LJBPDWRyqKC8p0Pj9KDE_X5NDkdjX4NopY2bTWpf9yYV_I_UsUxlCtlyd5Bsv2iOICfUb54RQnj9Z9k_EFfGpcESd5vtON5PzDv8vh8lCQ1SibnU-fPQIbYUMXc0OxqPSZl1tCLg_WcygWPUfYXPOSRLObWjJGRtuONcyzMvn7zDXRcD92V9-JOp-MaLWIXzjckvMcuVLudu5IEvv7JFXduPXXFw-tML7_rPk74eLNAzuq-29ers15zfNGXrj8BzqCE5SYgOzgthA9_G_ox0YrhqgjeR9OdvYKr2LeD6Q5nJQYgVIOTVvpKp0FpS9995Jo-CAGUeDe62YS2MkFGpFTwoGzV3_5DL_bRinFXRjUsU9IyZVjmHrsv0EKh5hkyOupfYOWxz9TvnrNLHqOy7jftZosWbRXNvUYSHPOZPWaPgskC7z3-nrCRWT5lDw_7er_rZ-xnBzxAqcAQidAjEfBmoCEgETwS4dzCFhLBIRHOl-CRCAMkAiERCIngkAiIRHBIBIdEICTCdAo9Ep-zk_1Ps48HPLT84LWUectFHDUVslghLaWHxKpOI6vTROjIZA1yZy2zSpkoSYypbVY0VZYrW0lrtdBJWssXbAcf0rxkkImkVqbOVB4rhXZFFekoLWxsRJojjda7THW_eFmHevjUlmVR_lXeu2zST7vwBWFum1AMxVm2zhNnfducUt4yd6-TfRnOnXVJkQ8ZGkKJeHXXvbxmD67-jXtsp11tzBsk1W311sH3N3RLxlg
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOQAH3oiWAnPg6iXrR7w5FkS1C909oC3qzbIdu1q12q266aH9I_27nYmTVQtCPfSaaJzYmXgenu8bxr6ghTLJ-IrHWmiOJiByn6TgskZ9qgtliorwztNZOT5UP4_00S0sDJVVUgydMlFEu1fTz03J6L4k7iuRvqtKUYWBkAO0cEoRhOuxrkpDXQxkMducJIyGGTKNIpxkehTP_4a5Y5_usJf-s1u3Jmj_BQv9y-fKk5PBReMH4eovXseHze4le955qLCXVeoVexSXr9mz6Ybedf2GXX9zl5HQl4BPgeVqyTcXFj2AEHBK4OA401pDTqTAKkFNVL1dl601kBWtYbWE9YJ4igGV7oxnAAucLlIEdIUboOr8Y5j__gNt5x4g5Ns5UPoYJhMIGIq3dYRv2eH-j_n3Me86PPCAoXHDMd6sPTotQiZCAwxVKIvkSi1cEU2NrpKTxqtYaB1jSKaqvRmp5GVKTjhdBvmObeEk43sGRuigYjBqhCEiupG-cEVZpWEU5Qi9JrfNVP9dbejoz6kLx6kd9iyp3bpbWnfbrfs2G2zEzjL_x30C1W2lsU2beEm5S4qV98ju9hpmu61kbemg26Dfq8XOA4b-zJ6M59MDezCZ_frAntKttiRR7LKt5vwifkTXqvGf2n_nBmOTFW8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUqkKpy6CcIWtrOgauXrOPEm2OhXbFtWVUVVL1Z_kQr0O6KhAP8kf5dZuJkBa0qDlwTTRI7E8-M894bxvYwQqmobMWDFwXHEBC4jbnguUd_8plUWUV85-NpeXQqv_4uejRh3cEqqYaOSSiiXavp41762CPi9knzXVaSAAYiH2CAk5IYXOsliYcTiyObrn4kjIaJMY0mnGx6Es__LnMvPN0TL_1nsW4j0PgFs_2zJ-DJ-eCqsQN385es46MG95I97_JT-JQc6hV7Euav2cbxSty1fsP-HJjrQNxLwJvAfDHnqwOznj4IOCIwcJZErSFto8Aigieh3q7HVg0UQz0s5lDPSKUY0OWWPNFX4GIWA2Ai3ABh88_g5OcvaPv2APHeLoE2j2EyAYeFeIsi3GSn4y8nh0e86-_AHRbGDcdq01tMWUQeiQswlK7MoikLYbKgPCZKJldWhqwoQnBRVd6qkYw2j9EIU5Qu32JrOMiwzUCJwsnglBxhgYhJpM1MVlZxGEQ5wpzJ7DDZv1btOvFz6sFxoYe9Rmo375rmXXfzvsMGK7NlUv94yKC66zO6abddYuqRovMHbHd7B9PdQlJr-s2tMOstxNtHXPoje_rj81h_n0y_vWPP6EyLRxS7bK25vArvMa9q7If2y7kF3wUUEw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+and+non-Bayesian+inference+for+a+general+family+of+distributions+based+on+simple+step-stress+life+test+using+TRV+model+under+type+II+censoring&rft.jtitle=Sequential+analysis&rft.au=Dutta%2C+Subhankar&rft.au=Sultana%2C+Farha&rft.au=Kayal%2C+Suchandan&rft.date=2023-10-02&rft.issn=0747-4946&rft.eissn=1532-4176&rft.volume=42&rft.issue=4&rft.spage=349&rft.epage=370&rft_id=info:doi/10.1080%2F07474946.2023.2224401&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_07474946_2023_2224401
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-4946&client=summon