Bayesian and non-Bayesian inference for a general family of distributions based on simple step-stress life test using TRV model under type II censoring
In this article, we consider the parametric inference, using Type II censored data, based on the tampered random variable (TRV) model for simple step-stress life testing (SSLT). We have taken the members of the Lehmann family of distributions as the baseline lifetimes of the experimental units under...
Saved in:
Published in | Sequential analysis Vol. 42; no. 4; pp. 349 - 370 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
02.10.2023
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0747-4946 1532-4176 |
DOI | 10.1080/07474946.2023.2224401 |
Cover
Loading…
Abstract | In this article, we consider the parametric inference, using Type II censored data, based on the tampered random variable (TRV) model for simple step-stress life testing (SSLT). We have taken the members of the Lehmann family of distributions as the baseline lifetimes of the experimental units under normal stress conditions. Based on Type II censored data and a simple SSLT framework, we obtain the maximum likelihood estimator (MLE) and the Bayes estimators of the model parameters. Further, we obtain asymptotic confidence intervals of the unknown model parameters using the observed Fisher information matrix. Moreover, bootstrap confidence intervals were constructed. The Bayes estimators are computed using the Markov chain Monte Carlo (MCMC) method under the squared error loss function and the LINEX loss function. We also construct the highest posterior density (HPD) credible intervals of the unknown model parameters. Extensive simulation studies are performed to investigate the finite sample properties of the proposed estimators. Finally, the proposed methods are illustrated with the analysis of a real data set. |
---|---|
AbstractList | In this article, we consider the parametric inference, using Type II censored data, based on the tampered random variable (TRV) model for simple step-stress life testing (SSLT). We have taken the members of the Lehmann family of distributions as the baseline lifetimes of the experimental units under normal stress conditions. Based on Type II censored data and a simple SSLT framework, we obtain the maximum likelihood estimator (MLE) and the Bayes estimators of the model parameters. Further, we obtain asymptotic confidence intervals of the unknown model parameters using the observed Fisher information matrix. Moreover, bootstrap confidence intervals were constructed. The Bayes estimators are computed using the Markov chain Monte Carlo (MCMC) method under the squared error loss function and the LINEX loss function. We also construct the highest posterior density (HPD) credible intervals of the unknown model parameters. Extensive simulation studies are performed to investigate the finite sample properties of the proposed estimators. Finally, the proposed methods are illustrated with the analysis of a real data set. |
Author | Sultana, Farha Dutta, Subhankar Kayal, Suchandan |
Author_xml | – sequence: 1 givenname: Subhankar orcidid: 0000-0002-7808-4377 surname: Dutta fullname: Dutta, Subhankar organization: Department of Mathematics, National Institute of Technology Rourkela, Rourkela, India – sequence: 2 givenname: Farha surname: Sultana fullname: Sultana, Farha organization: Department of Science and Mathematics, Indian Institute of Information Technology, Guwahati, India – sequence: 3 givenname: Suchandan orcidid: 0000-0002-0654-0767 surname: Kayal fullname: Kayal, Suchandan organization: Department of Mathematics, National Institute of Technology Rourkela, Rourkela, India |
BookMark | eNqFkU2LFDEQhoOs4OzoTxAKPPeYj-7ODF7UZXUHFgRZvYbqpLJk6U7GpBvpX-LftZtZPexBT4Hied8K9Vyyi5giMfZa8J3ge_6W61rXh7rdSS7VTkpZ11w8YxvRKFnVQrcXbLMy1Qq9YJelPHAu9oLrDfv1EWcqASNgdLAUV38HIXrKFC2BTxkQ7ilSxh48DqGfIXlwoYw5dNMYUizQYSEHKUIJw6knKCOdqgWgUqAPnmCkMsJUQryHu6_fYUiOepiiowzjfCI4HsFSLCkvxEv23GNf6NXju2XfPl3fXd1Ut18-H68-3FZWqf1YScFdx3UjlbfoSNS25R7bRiIn7dRBo9JdTbxpiKzXB9fpfe075T1KbFqrtuzNufeU049p-aB5SFOOy0ojD1xoqeRSvmXNmbI5lZLJm1MOA-bZCG5WB-aPA7M6MI8Olty7JzkbRlzPNWYM_X_T78_pxUTKA_5MuXdmxLlP2WeMNhSj_l3xG-m_pGE |
CitedBy_id | crossref_primary_10_3390_sym16091251 crossref_primary_10_1016_j_aej_2025_01_050 crossref_primary_10_1016_j_aej_2024_04_042 crossref_primary_10_1016_j_heliyon_2024_e38293 crossref_primary_10_1088_1402_4896_adae3d |
Cites_doi | 10.1080/03610928908829990 10.1007/s40745-020-00270-4 10.1155/2022/3491732 10.1080/03610918.2011.615434 10.1081/STA-120003134 10.1016/S0169-7161(03)23018-2 10.2307/1390921 10.1111/j.0006-341X.2004.00230.x 10.13052/jrss0974-8024.14211 10.1016/j.cam.2013.10.014 10.1007/978-3-030-62900-7_16 10.1214/aos/1176350933 10.1080/03610920802272414 10.1109/TR.1980.5220742 10.32604/cmes.2022.017532 10.1137/1.9781611970319 10.1111/1467-842X.00072 10.1109/24.159807 10.1080/03610928308831174 10.1080/07474946.2021.1847940 10.1002/nav.3800260204 10.1007/s00362-014-0639-x 10.1016/j.csda.2008.11.006 10.1007/s13226-014-0101-8 10.1007/s40995-022-01394-3 10.1016/j.jspi.2003.10.003 10.1016/j.csda.2017.08.001 10.1080/07474946.2015.1030983 10.17654/FJTSMar2015_111_124 10.1080/03610929808832134 |
ContentType | Journal Article |
Copyright | 2023 Taylor & Francis Group, LLC 2023 2023 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2023 Taylor & Francis Group, LLC 2023 – notice: 2023 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1080/07474946.2023.2224401 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1532-4176 |
EndPage | 370 |
ExternalDocumentID | 10_1080_07474946_2023_2224401 2224401 |
Genre | Research Article |
GrantInformation_xml | – fundername: Council of Scientific and Industrial Research (C.S.I.R., grantid: 09/983(0038)/2019-EMR-I |
GroupedDBID | .7F .QJ 07G 0BK 0R~ 123 1TA 30N 4.4 5VS AAENE AAIKQ AAJMT AAKBW AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACAGQ ACGEE ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AEOZL AEPSL AEUMN AEYOC AFFNX AFKVX AGCQS AGDLA AGLEN AGMYJ AGROQ AHMOU AIJEM AJWEG AKBVH AKOOK ALCKM ALMA_UNASSIGNED_HOLDINGS ALQZU AMEWO AMXXU AQRUH AVBZW AWYRJ BCCOT BLEHA BPLKW C06 CAG CCCUG CE4 COF CRFIH CS3 DGEBU DKSSO DMQIW DWIFK EBS EJD E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ IVXBP J.P KYCEM LJTGL M4Z NA5 NUSFT NY~ O9- P2P PQQKQ QCRFL RIG RNANH ROSJB RTWRZ S-T SNACF TAQ TBQAZ TEJ TFL TFMCV TFT TFW TN5 TOXWX TTHFI TUROJ TWF UB9 UT5 UU3 UU8 V3K V4Q XOL ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7SC 8FD JQ2 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c338t-210db07523fcade14c60fa652a0e7d397a37b4e055eecf79db784fb3ffa2a56c3 |
ISSN | 0747-4946 |
IngestDate | Wed Aug 13 05:58:02 EDT 2025 Tue Jul 01 03:56:58 EDT 2025 Thu Apr 24 23:00:39 EDT 2025 Wed Dec 25 09:03:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-210db07523fcade14c60fa652a0e7d397a37b4e055eecf79db784fb3ffa2a56c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7808-4377 0000-0002-0654-0767 |
PQID | 2901723252 |
PQPubID | 216170 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2901723252 informaworld_taylorfrancis_310_1080_07474946_2023_2224401 crossref_citationtrail_10_1080_07474946_2023_2224401 crossref_primary_10_1080_07474946_2023_2224401 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-02 |
PublicationDateYYYYMMDD | 2023-10-02 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Sequential analysis |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | e_1_3_4_4_1 e_1_3_4_3_1 e_1_3_4_2_1 e_1_3_4_9_1 e_1_3_4_8_1 e_1_3_4_7_1 e_1_3_4_20_1 e_1_3_4_6_1 e_1_3_4_5_1 e_1_3_4_23_1 e_1_3_4_24_1 e_1_3_4_21_1 e_1_3_4_22_1 e_1_3_4_27_1 e_1_3_4_28_1 e_1_3_4_25_1 e_1_3_4_26_1 e_1_3_4_29_1 e_1_3_4_31_1 e_1_3_4_30_1 e_1_3_4_12_1 e_1_3_4_13_1 e_1_3_4_10_1 e_1_3_4_11_1 e_1_3_4_32_1 e_1_3_4_16_1 e_1_3_4_17_1 e_1_3_4_14_1 e_1_3_4_15_1 e_1_3_4_18_1 e_1_3_4_19_1 |
References_xml | – ident: e_1_3_4_6_1 doi: 10.1080/03610928908829990 – ident: e_1_3_4_11_1 doi: 10.1007/s40745-020-00270-4 – ident: e_1_3_4_24_1 doi: 10.1155/2022/3491732 – ident: e_1_3_4_32_1 doi: 10.1080/03610918.2011.615434 – ident: e_1_3_4_2_1 doi: 10.1081/STA-120003134 – ident: e_1_3_4_25_1 doi: 10.1016/S0169-7161(03)23018-2 – ident: e_1_3_4_7_1 doi: 10.2307/1390921 – ident: e_1_3_4_13_1 doi: 10.1111/j.0006-341X.2004.00230.x – ident: e_1_3_4_23_1 doi: 10.13052/jrss0974-8024.14211 – ident: e_1_3_4_19_1 doi: 10.1016/j.cam.2013.10.014 – ident: e_1_3_4_28_1 doi: 10.1007/978-3-030-62900-7_16 – ident: e_1_3_4_17_1 doi: 10.1214/aos/1176350933 – ident: e_1_3_4_30_1 doi: 10.1080/03610920802272414 – ident: e_1_3_4_27_1 doi: 10.1109/TR.1980.5220742 – ident: e_1_3_4_22_1 doi: 10.32604/cmes.2022.017532 – ident: e_1_3_4_10_1 doi: 10.1137/1.9781611970319 – ident: e_1_3_4_15_1 doi: 10.1111/1467-842X.00072 – ident: e_1_3_4_5_1 doi: 10.1109/24.159807 – ident: e_1_3_4_26_1 doi: 10.1080/03610928308831174 – ident: e_1_3_4_16_1 doi: 10.1080/07474946.2021.1847940 – ident: e_1_3_4_12_1 – ident: e_1_3_4_8_1 doi: 10.1002/nav.3800260204 – ident: e_1_3_4_21_1 doi: 10.1007/s00362-014-0639-x – ident: e_1_3_4_3_1 doi: 10.1016/j.csda.2008.11.006 – ident: e_1_3_4_18_1 doi: 10.1007/s13226-014-0101-8 – ident: e_1_3_4_9_1 doi: 10.1007/s40995-022-01394-3 – ident: e_1_3_4_31_1 doi: 10.1016/j.jspi.2003.10.003 – ident: e_1_3_4_29_1 doi: 10.1016/j.csda.2017.08.001 – ident: e_1_3_4_20_1 doi: 10.1080/07474946.2015.1030983 – ident: e_1_3_4_4_1 doi: 10.17654/FJTSMar2015_111_124 – ident: e_1_3_4_14_1 doi: 10.1080/03610929808832134 |
SSID | ssj0018107 |
Score | 2.312669 |
Snippet | In this article, we consider the parametric inference, using Type II censored data, based on the tampered random variable (TRV) model for simple step-stress... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 349 |
SubjectTerms | Bayes estimate Bayesian analysis Confidence intervals Fisher information HPD credible interval Lehmann family of distributions Markov chains Mathematical models maximum likelihood estimate Maximum likelihood estimators MCMC method Model testing Normal stress Parameters Parametric statistics Random variables simple step-stress life test Statistical inference TRV model |
Title | Bayesian and non-Bayesian inference for a general family of distributions based on simple step-stress life test using TRV model under type II censoring |
URI | https://www.tandfonline.com/doi/abs/10.1080/07474946.2023.2224401 https://www.proquest.com/docview/2901723252 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCucAB8RSFgubALXK0a3tfR0BUDag90BT1tvLu2mpElFbJ5lD-CL-Ff8eM7d1uaEUpl1XkyF5v5ovnm9l5MPYONVRms6rgphEJRxVgeGWl4LJBPDWRyqKC8p0Pj9KDE_X5NDkdjX4NopY2bTWpf9yYV_I_UsUxlCtlyd5Bsv2iOICfUb54RQnj9Z9k_EFfGpcESd5vtON5PzDv8vh8lCQ1SibnU-fPQIbYUMXc0OxqPSZl1tCLg_WcygWPUfYXPOSRLObWjJGRtuONcyzMvn7zDXRcD92V9-JOp-MaLWIXzjckvMcuVLudu5IEvv7JFXduPXXFw-tML7_rPk74eLNAzuq-29ers15zfNGXrj8BzqCE5SYgOzgthA9_G_ox0YrhqgjeR9OdvYKr2LeD6Q5nJQYgVIOTVvpKp0FpS9995Jo-CAGUeDe62YS2MkFGpFTwoGzV3_5DL_bRinFXRjUsU9IyZVjmHrsv0EKh5hkyOupfYOWxz9TvnrNLHqOy7jftZosWbRXNvUYSHPOZPWaPgskC7z3-nrCRWT5lDw_7er_rZ-xnBzxAqcAQidAjEfBmoCEgETwS4dzCFhLBIRHOl-CRCAMkAiERCIngkAiIRHBIBIdEICTCdAo9Ep-zk_1Ps48HPLT84LWUectFHDUVslghLaWHxKpOI6vTROjIZA1yZy2zSpkoSYypbVY0VZYrW0lrtdBJWssXbAcf0rxkkImkVqbOVB4rhXZFFekoLWxsRJojjda7THW_eFmHevjUlmVR_lXeu2zST7vwBWFum1AMxVm2zhNnfducUt4yd6-TfRnOnXVJkQ8ZGkKJeHXXvbxmD67-jXtsp11tzBsk1W311sH3N3RLxlg |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOQAH3oiWAnPg6iXrR7w5FkS1C909oC3qzbIdu1q12q266aH9I_27nYmTVQtCPfSaaJzYmXgenu8bxr6ghTLJ-IrHWmiOJiByn6TgskZ9qgtliorwztNZOT5UP4_00S0sDJVVUgydMlFEu1fTz03J6L4k7iuRvqtKUYWBkAO0cEoRhOuxrkpDXQxkMducJIyGGTKNIpxkehTP_4a5Y5_usJf-s1u3Jmj_BQv9y-fKk5PBReMH4eovXseHze4le955qLCXVeoVexSXr9mz6Ybedf2GXX9zl5HQl4BPgeVqyTcXFj2AEHBK4OA401pDTqTAKkFNVL1dl601kBWtYbWE9YJ4igGV7oxnAAucLlIEdIUboOr8Y5j__gNt5x4g5Ns5UPoYJhMIGIq3dYRv2eH-j_n3Me86PPCAoXHDMd6sPTotQiZCAwxVKIvkSi1cEU2NrpKTxqtYaB1jSKaqvRmp5GVKTjhdBvmObeEk43sGRuigYjBqhCEiupG-cEVZpWEU5Qi9JrfNVP9dbejoz6kLx6kd9iyp3bpbWnfbrfs2G2zEzjL_x30C1W2lsU2beEm5S4qV98ju9hpmu61kbemg26Dfq8XOA4b-zJ6M59MDezCZ_frAntKttiRR7LKt5vwifkTXqvGf2n_nBmOTFW8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUqkKpy6CcIWtrOgauXrOPEm2OhXbFtWVUVVL1Z_kQr0O6KhAP8kf5dZuJkBa0qDlwTTRI7E8-M894bxvYwQqmobMWDFwXHEBC4jbnguUd_8plUWUV85-NpeXQqv_4uejRh3cEqqYaOSSiiXavp41762CPi9knzXVaSAAYiH2CAk5IYXOsliYcTiyObrn4kjIaJMY0mnGx6Es__LnMvPN0TL_1nsW4j0PgFs_2zJ-DJ-eCqsQN385es46MG95I97_JT-JQc6hV7Euav2cbxSty1fsP-HJjrQNxLwJvAfDHnqwOznj4IOCIwcJZErSFto8Aigieh3q7HVg0UQz0s5lDPSKUY0OWWPNFX4GIWA2Ai3ABh88_g5OcvaPv2APHeLoE2j2EyAYeFeIsi3GSn4y8nh0e86-_AHRbGDcdq01tMWUQeiQswlK7MoikLYbKgPCZKJldWhqwoQnBRVd6qkYw2j9EIU5Qu32JrOMiwzUCJwsnglBxhgYhJpM1MVlZxGEQ5wpzJ7DDZv1btOvFz6sFxoYe9Rmo375rmXXfzvsMGK7NlUv94yKC66zO6abddYuqRovMHbHd7B9PdQlJr-s2tMOstxNtHXPoje_rj81h_n0y_vWPP6EyLRxS7bK25vArvMa9q7If2y7kF3wUUEw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+and+non-Bayesian+inference+for+a+general+family+of+distributions+based+on+simple+step-stress+life+test+using+TRV+model+under+type+II+censoring&rft.jtitle=Sequential+analysis&rft.au=Dutta%2C+Subhankar&rft.au=Sultana%2C+Farha&rft.au=Kayal%2C+Suchandan&rft.date=2023-10-02&rft.issn=0747-4946&rft.eissn=1532-4176&rft.volume=42&rft.issue=4&rft.spage=349&rft.epage=370&rft_id=info:doi/10.1080%2F07474946.2023.2224401&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_07474946_2023_2224401 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-4946&client=summon |