EEG-Based Evaluation of Aesthetic Experience Using BiLSTM Network
Evaluation of aesthetic design fulfills a pivotal function in product development, which urges for an efficacious objective method to measure customers' experience. The stability and effectiveness of electroencephalography (EEG) make it a suitable tool for aesthetic experience measurement. Neve...
Saved in:
Published in | International journal of human-computer interaction Vol. 40; no. 23; pp. 8166 - 8179 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Norwood
Taylor & Francis
01.12.2024
Lawrence Erlbaum Associates, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Evaluation of aesthetic design fulfills a pivotal function in product development, which urges for an efficacious objective method to measure customers' experience. The stability and effectiveness of electroencephalography (EEG) make it a suitable tool for aesthetic experience measurement. Nevertheless, existing studies have several limitations, especially regarding the stimuli and the algorithm. The potential of an EEG-based deep learning model has not been verified in pinpointing subtle differences in physical product aesthetics. To fill the research gap in this issue, we recorded EEG signals in real-life scenarios when participants were presented with different types of physical smartphones, and asked participants to rate them from four dimensions of aesthetic experience (arousal, valence, likeness, and aesthetic evaluation). Then, the time-frequency data were fed into a spatial feature extraction network and an attention-based bidirectional long short-term memory (BiLSTM) optimized by the cross-entropy loss function. The result showed that at 16s window size, the four outcome models yielded the best joint recognition performance of aesthetic experience with an average accuracy of over 85% (arousal: 88.10%, valence: 87.97%, likeness: 85.99%, and aesthetic evaluation: 87.23%). It provides an objective cross-subject recognition method with multi-faceted evaluation results of aesthetic experience. Additionally, we verified the ability of EEG as a reliable and informative resource in terms of aesthetic experience evaluation, even with subtle differences. More practically, a future direction of incorporating EEG signals into subjective product aesthetics measurement could be given more credit. |
---|---|
AbstractList | Evaluation of aesthetic design fulfills a pivotal function in product development, which urges for an efficacious objective method to measure customers' experience. The stability and effectiveness of electroencephalography (EEG) make it a suitable tool for aesthetic experience measurement. Nevertheless, existing studies have several limitations, especially regarding the stimuli and the algorithm. The potential of an EEG-based deep learning model has not been verified in pinpointing subtle differences in physical product aesthetics. To fill the research gap in this issue, we recorded EEG signals in real-life scenarios when participants were presented with different types of physical smartphones, and asked participants to rate them from four dimensions of aesthetic experience (arousal, valence, likeness, and aesthetic evaluation). Then, the time-frequency data were fed into a spatial feature extraction network and an attention-based bidirectional long short-term memory (BiLSTM) optimized by the cross-entropy loss function. The result showed that at 16s window size, the four outcome models yielded the best joint recognition performance of aesthetic experience with an average accuracy of over 85% (arousal: 88.10%, valence: 87.97%, likeness: 85.99%, and aesthetic evaluation: 87.23%). It provides an objective cross-subject recognition method with multi-faceted evaluation results of aesthetic experience. Additionally, we verified the ability of EEG as a reliable and informative resource in terms of aesthetic experience evaluation, even with subtle differences. More practically, a future direction of incorporating EEG signals into subjective product aesthetics measurement could be given more credit. |
Author | Zhang, Liang Wang, Peishan Ma, Cuixia Feng, Haibei Nie, Rui Lin, Yudi Du, Xiaobing |
Author_xml | – sequence: 1 givenname: Peishan surname: Wang fullname: Wang, Peishan organization: Department of Psychology, University of Chinese Academy of Sciences – sequence: 2 givenname: Haibei surname: Feng fullname: Feng, Haibei organization: Department of Computer Science and Technology, University of Chinese Academy of Sciences – sequence: 3 givenname: Xiaobing surname: Du fullname: Du, Xiaobing organization: Department of Computer Science and Technology, University of Chinese Academy of Sciences – sequence: 4 givenname: Rui surname: Nie fullname: Nie, Rui organization: Department of Biostatistics, University of Michigan Ann Arbor – sequence: 5 givenname: Yudi surname: Lin fullname: Lin, Yudi organization: Department of Computer Science, University of Southern California – sequence: 6 givenname: Cuixia surname: Ma fullname: Ma, Cuixia organization: International Joint Laboratory of Artificial Intelligence and Emotional Interaction, Beijing Key Laboratory of Human-Computer Interactions – sequence: 7 givenname: Liang surname: Zhang fullname: Zhang, Liang organization: Department of Psychology, University of Chinese Academy of Sciences |
BookMark | eNqFkD1PwzAQhi1UJNrCT0CKxJxydhInEQttFQpSgYF2thznDC5pXJwU6L8noWVhgOlueD_ungHpVbZCQs4pjCgkcEkhDOOAJiMGLBgxFicp40ekT6OA-XGUQq_dW43fiU7IoK5XAMAgCvpknGUzfyJrLLzsXZZb2RhbeVZ7Y6ybF2yM8rLPDTqDlUJvWZvq2ZuY-dPi3nvA5sO611NyrGVZ49lhDsnyJltMb_354-xuOp77KgiSxqdFVEidoNQxAuR5UiDLixCVolyGHIocKWjkTHGaK8a0jGQUSUxlAoXmPBiSi33uxtm3bXudWNmtq9pKEdC2gvMUwlZ1tVcpZ-vaoRbKNN9PNU6aUlAQHTPxw0x0zMSBWeuOfrk3zqyl2_3ru977TKWtW8uWS1mIRu5K67STlTLdkX9GfAGL7YSL |
CitedBy_id | crossref_primary_10_1080_10447318_2024_2364138 crossref_primary_10_3390_e26100853 |
Cites_doi | 10.7591/9781501718168-002 10.1201/9781315557380-15 10.1097/00001756-200404090-00032 10.1146/annurev-psych-120710-100504 10.1007/978-981-13-5977-4_33 10.1016/j.jneumeth.2003.10.009 10.1109/TAFFC.2020.3013711 10.1155/2013/573734 10.14569/IJACSA.2017.081046 10.1080/0144929X.2020.1795259 10.1007/s11571-015-9363-z 10.1016/j.ergon.2019.02.006 10.1109/78.650093 10.4018/978-1-5225-2639-1.ch006 10.1016/0005-7916(94)90063-9 10.1016/j.ijhcs.2003.09.002 10.1155/2021/2070209 10.1016/j.physbeh.2019.04.025 10.1007/978-981-287-426-9_21 10.1007/s11571-022-09821-2 10.1088/1741-2560/14/1/016003 10.1088/1741-2552/aace8c 10.1186/s40708-020-00109-x 10.1080/10447318.2019.1709330 10.3758/cabn.3.4.289 10.1002/hbm.23730 10.1037/rev0000135 10.1111/j.1469-8986.2010.01061.x 10.1109/IJCNN.2018.8489331 10.1109/TNSRE.2022.3230250 10.4324/9780203804100 10.1016/j.im.2006.08.009 10.1016/j.neuropsychologia.2004.03.011 10.1063/1.5005474 10.1109/TNNLS.2022.3147208 10.1007/978-3-642-24797-2_4 10.1371/journal.pone.0021852 10.1109/TAFFC.2020.3025777 10.1108/00220411111124569 10.1371/journal.pone.0115112 10.1111/j.0737-6782.2005.00103.x 10.1068/i0450aap 10.1016/j.neucom.2021.02.048 10.1073/pnas.0401427101 |
ContentType | Journal Article |
Copyright | 2023 Taylor & Francis Group, LLC 2023 2023 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2023 Taylor & Francis Group, LLC 2023 – notice: 2023 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION E3H F2A JQ2 |
DOI | 10.1080/10447318.2023.2278926 |
DatabaseName | CrossRef Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection |
DatabaseTitle | CrossRef Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection |
DatabaseTitleList | Library and Information Science Abstracts (LISA) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1532-7590 1044-7318 |
EndPage | 8179 |
ExternalDocumentID | 10_1080_10447318_2023_2278926 2278926 |
Genre | Research Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: T2192932 – fundername: Scientific Foundation of Chinese Academy of Sciences grantid: KGFZD-145-21-09 – fundername: Natural Science Foundation of Beijing grantid: 4212029 – fundername: Scientific Foundation of Institute of Psychology, Chinese Academy of Sciences grantid: E2CX4535CX |
GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 53G 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABIVO ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPPZ ABTAI ABXUL ABXYU ACGFS ACGOD ACHQT ACTIO ADCVX ADGTB AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBR EBS EBU EST ESX E~A E~B F5P FEDTE FPAXQ GTTXZ H13 HF~ HVGLF HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P PQQKQ PZZ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~S~ .4S 07I 4B5 AAGDL AAHIA AAYXX ACTTO ACUHS ADMLS ADUMR ADXEU ADYSH AEHZU AEMOZ AEZBV AFBWG AFION AFRVT AGBLW AGVKY AGWUF AHQJS AIYEW AKHJE AKMBP ALRRR ALXIB AMPGV ARCSS B0M BGSSV BWMZZ C0- C5H CAG CITATION COF CYRSC DAOYK DEXXA EAS ECS EDO EJD EMK EPL EPS FETWF I-F IFELN K1G L8C NUSFT NX~ OPCYK ROL TAJZE TAP TH9 TUS UB6 UQL E3H F2A JQ2 TASJS |
ID | FETCH-LOGICAL-c338t-1d5daf8eaf7e00bb8de2bd4ecc16a460dbe10fe62c61bc22fa5a55ae9a80df663 |
ISSN | 1044-7318 |
IngestDate | Fri Jul 25 23:32:58 EDT 2025 Tue Jul 01 02:35:22 EDT 2025 Thu Apr 24 23:04:31 EDT 2025 Wed Dec 25 09:04:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-1d5daf8eaf7e00bb8de2bd4ecc16a460dbe10fe62c61bc22fa5a55ae9a80df663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3133866904 |
PQPubID | 32556 |
PageCount | 14 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_10447318_2023_2278926 crossref_citationtrail_10_1080_10447318_2023_2278926 proquest_journals_3133866904 crossref_primary_10_1080_10447318_2023_2278926 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Norwood |
PublicationPlace_xml | – name: Norwood |
PublicationTitle | International journal of human-computer interaction |
PublicationYear | 2024 |
Publisher | Taylor & Francis Lawrence Erlbaum Associates, Inc |
Publisher_xml | – name: Taylor & Francis – name: Lawrence Erlbaum Associates, Inc |
References | e_1_3_2_27_1 e_1_3_2_28_1 e_1_3_2_29_1 Desmet P. (e_1_3_2_13_1) 2007; 1 e_1_3_2_42_1 e_1_3_2_20_1 e_1_3_2_41_1 e_1_3_2_21_1 e_1_3_2_44_1 e_1_3_2_22_1 e_1_3_2_43_1 e_1_3_2_23_1 e_1_3_2_46_1 e_1_3_2_24_1 e_1_3_2_45_1 e_1_3_2_25_1 e_1_3_2_26_1 e_1_3_2_47_1 e_1_3_2_40_1 e_1_3_2_16_1 e_1_3_2_39_1 e_1_3_2_9_1 e_1_3_2_17_1 e_1_3_2_38_1 e_1_3_2_8_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_31_1 e_1_3_2_30_1 e_1_3_2_10_1 e_1_3_2_33_1 e_1_3_2_11_1 e_1_3_2_32_1 e_1_3_2_6_1 e_1_3_2_12_1 e_1_3_2_35_1 e_1_3_2_5_1 e_1_3_2_34_1 e_1_3_2_4_1 e_1_3_2_14_1 e_1_3_2_37_1 e_1_3_2_3_1 e_1_3_2_15_1 e_1_3_2_36_1 |
References_xml | – ident: e_1_3_2_41_1 doi: 10.7591/9781501718168-002 – ident: e_1_3_2_37_1 doi: 10.1201/9781315557380-15 – ident: e_1_3_2_46_1 doi: 10.1097/00001756-200404090-00032 – ident: e_1_3_2_34_1 doi: 10.1146/annurev-psych-120710-100504 – ident: e_1_3_2_17_1 – ident: e_1_3_2_33_1 doi: 10.1007/978-981-13-5977-4_33 – ident: e_1_3_2_12_1 doi: 10.1016/j.jneumeth.2003.10.009 – ident: e_1_3_2_15_1 doi: 10.1109/TAFFC.2020.3013711 – ident: e_1_3_2_23_1 doi: 10.1155/2013/573734 – ident: e_1_3_2_2_1 doi: 10.14569/IJACSA.2017.081046 – ident: e_1_3_2_35_1 doi: 10.1080/0144929X.2020.1795259 – ident: e_1_3_2_8_1 doi: 10.1007/s11571-015-9363-z – ident: e_1_3_2_20_1 doi: 10.1016/j.ergon.2019.02.006 – ident: e_1_3_2_40_1 doi: 10.1109/78.650093 – ident: e_1_3_2_24_1 doi: 10.4018/978-1-5225-2639-1.ch006 – ident: e_1_3_2_4_1 doi: 10.1016/0005-7916(94)90063-9 – ident: e_1_3_2_25_1 doi: 10.1016/j.ijhcs.2003.09.002 – ident: e_1_3_2_38_1 doi: 10.1155/2021/2070209 – ident: e_1_3_2_16_1 doi: 10.1016/j.physbeh.2019.04.025 – ident: e_1_3_2_32_1 doi: 10.1007/978-981-287-426-9_21 – ident: e_1_3_2_27_1 doi: 10.1007/s11571-022-09821-2 – ident: e_1_3_2_43_1 doi: 10.1088/1741-2560/14/1/016003 – ident: e_1_3_2_26_1 doi: 10.1088/1741-2552/aace8c – ident: e_1_3_2_36_1 doi: 10.1186/s40708-020-00109-x – ident: e_1_3_2_14_1 doi: 10.1080/10447318.2019.1709330 – ident: e_1_3_2_22_1 doi: 10.3758/cabn.3.4.289 – ident: e_1_3_2_39_1 doi: 10.1002/hbm.23730 – ident: e_1_3_2_30_1 doi: 10.1037/rev0000135 – ident: e_1_3_2_31_1 doi: 10.1111/j.1469-8986.2010.01061.x – ident: e_1_3_2_47_1 doi: 10.1109/IJCNN.2018.8489331 – ident: e_1_3_2_42_1 doi: 10.1109/TNSRE.2022.3230250 – ident: e_1_3_2_3_1 doi: 10.4324/9780203804100 – ident: e_1_3_2_11_1 doi: 10.1016/j.im.2006.08.009 – ident: e_1_3_2_6_1 doi: 10.1016/j.neuropsychologia.2004.03.011 – ident: e_1_3_2_45_1 doi: 10.1063/1.5005474 – volume: 1 start-page: 27 issue: 1 year: 2007 ident: e_1_3_2_13_1 article-title: Framework of product experience publication-title: International Journal of Design, – ident: e_1_3_2_10_1 doi: 10.1109/TNNLS.2022.3147208 – ident: e_1_3_2_19_1 doi: 10.1007/978-3-642-24797-2_4 – ident: e_1_3_2_21_1 doi: 10.1371/journal.pone.0021852 – ident: e_1_3_2_44_1 doi: 10.1109/TAFFC.2020.3025777 – ident: e_1_3_2_18_1 doi: 10.1108/00220411111124569 – ident: e_1_3_2_7_1 doi: 10.1371/journal.pone.0115112 – ident: e_1_3_2_9_1 doi: 10.1111/j.0737-6782.2005.00103.x – ident: e_1_3_2_29_1 doi: 10.1068/i0450aap – ident: e_1_3_2_28_1 doi: 10.1016/j.neucom.2021.02.048 – ident: e_1_3_2_5_1 doi: 10.1073/pnas.0401427101 |
SSID | ssj0002053 |
Score | 2.3907154 |
Snippet | Evaluation of aesthetic design fulfills a pivotal function in product development, which urges for an efficacious objective method to measure customers'... Evaluation of aesthetic design fulfills a pivotal function in product development, which urges for an efficacious objective method to measure customers’... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8166 |
SubjectTerms | Aesthetic design aesthetic experience Aesthetics Algorithms Arousal deep learning EEG Electroencephalography Entropy (Information theory) Machine learning physical product evaluation Product development |
Title | EEG-Based Evaluation of Aesthetic Experience Using BiLSTM Network |
URI | https://www.tandfonline.com/doi/abs/10.1080/10447318.2023.2278926 https://www.proquest.com/docview/3133866904 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcuHCG1EoyAdulRfHcbzJsUULK0QrBFtpb5GfEKnaoip74U_0L3f8yGPpilIu0crSOFnPeDyZzHwfQu9kRZmTuiS2nGnCFatIyQ0nmprK6ZlhJsAXn5yKxRn_vCpWk8nVqGpp06qp_r2zr-R_tApjoFffJXsHzfaTwgD8Bv3CFTQM13_S8Xz-iRzDMWQO5z1odwgtwdX_9N2JIyTjw1gccNx8-b488X2-viJrHJpu5wZHiBKBxo_oRP8QACYuYzvEkI2PHuOr9VzO_TCsVRheyEbZZgiZ_diqkb7z7MfwXSRkVr9tmnEegvFRTUd0nZRzMsuTN7WdO4X4vYiEoJ2_jfBMya5YPvKe_hvm-CTOIs_MDS8fyyL9Df39pp4BfhpaetkOVO0_Tru-BjFL4KjdNLWfpk7T3EP3Gbx3eEqMnJ72RzujRezYSH-1awkr6fudT7MV7GxB4d44-kM8s3yMHqYXEXwUreoJmtj1U_SoI_nAyec_Q0e9keHByPCFw72R4cHIcDAyHI0MJyN7js4-zpcfFiTxbhCd52VLMlMY6Uor3cxSqlRpLFOGw2bPhOSCGmUz6qxgWmRKM9jrhSwKaStZUuMghH2B9tYXa_sSYa2sEE4YkHZcWlaCBHWZ87VK1Fi6j3i3QLVOoPSeG-W8_qt69tG0F_sVUVluE6jGq1-3IR3mIndNnd8ie9Cpqk6bz4vAUglRUf7qrs_yGj0Y9s8B2msvN_YNRLatehus7RqaKZjX |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDLBQnqJQwAOrI8c4TjK2KKVAm4VW6hb5KRCoRShd-PXYeZQWhDp0ymB9lnM-nx_67jsAbniMieEyQjoKJaKCxCiiiiKJVWxkqIgq5IuHKeuP6eMkmCzlwjhapbtDm1IooojVbnG7x-iaEme_lIbWGT1X-9srkjkJ2wY7QcxCV8XgFqeLaExwUJLsKUUOU2fx_NfNyv60ol76J1oXW1CvCWQ9-JJ58ubNc-HJr1-6jpv93QHYr06osFO61CHY0tMj0KyrP8AqGByDTpLco67dBBVMFpLhcGZgxw79xeVGwh8dZVhQE2D3dfA8GsK05J6fgHEvGd31UVWQAUl7k82RrwLFTaS5CTXGQkRKE6Go9QKfccqwEtrHRjMimS8ksU4Q8CDgOuYRVsaebU5BYzqb6jMApdCMGaYs2lCuSWQR2PjGkViw0rgFaD0NmazUyl3RjPfMr0RNazNlzkxZZaYW8Bawj1KuYx0gXp7jLC_eSUxZ1CS7XYNt1w6RVSvfQaypGIsxPd-g62uw2x8NB9ngIX26AHu2iZYcmjZo5J9zfWlPQrm4Klz9G4RF-iw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagSIiF8hSFAh5YHTnGcZKxhZYCbYREK7FFfgoEaitIF349dh6FglCHThmiz3LO5zs7-u47AC54jInhMkI6CiWigsQooooiiVVsZKiIyuWLBwnrjejdU1CxCT9KWqW7Q5tCKCKP1W5zT5WpGHH2SWlofdFzrb-9vJaTsHWwwZx4uKviwMk8GBMcFBx7SpHDVEU8_w2zkJ4WxEv_BOs8A3XrQFRzL4gnr94sE578_CXruNLH7YDt8nwKW4VD7YI1Pd4D9ar3AyxDwT5odTo3qG1ToIKduWA4nBjYsjN_dpWR8FtFGebEBNh-6T8OBzApmOcHYNTtDK96qGzHgKS9x2bIV4HiJtLchBpjISKliVDU-oDPOGVYCe1joxmRzBeSWBcIeBBwHfMIK2NPNoegNp6M9RGAUmjGDFMWbSjXJLIIbHzjKCxYadwAtFqFVJZa5a5lxlvql5KmlZlSZ6a0NFMDeHPYtBDrWAaIfy5xmuV_SUzR0iS9XIJtVv6QlvveQaypGIsxPV5h6HOw-XDdTfu3yf0J2LJvaEGgaYJa9j7Tp_YYlImz3NG_AGqC-NA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG-Based+Evaluation+of+Aesthetic+Experience+Using+BiLSTM+Network&rft.jtitle=International+journal+of+human-computer+interaction&rft.au=Wang%2C+Peishan&rft.au=Feng%2C+Haibei&rft.au=Du%2C+Xiaobing&rft.au=Nie%2C+Rui&rft.date=2024-12-01&rft.issn=1044-7318&rft.eissn=1532-7590&rft.volume=40&rft.issue=23&rft.spage=8166&rft.epage=8179&rft_id=info:doi/10.1080%2F10447318.2023.2278926&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10447318_2023_2278926 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1044-7318&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1044-7318&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1044-7318&client=summon |