EEG-Based Evaluation of Aesthetic Experience Using BiLSTM Network

Evaluation of aesthetic design fulfills a pivotal function in product development, which urges for an efficacious objective method to measure customers' experience. The stability and effectiveness of electroencephalography (EEG) make it a suitable tool for aesthetic experience measurement. Neve...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of human-computer interaction Vol. 40; no. 23; pp. 8166 - 8179
Main Authors Wang, Peishan, Feng, Haibei, Du, Xiaobing, Nie, Rui, Lin, Yudi, Ma, Cuixia, Zhang, Liang
Format Journal Article
LanguageEnglish
Published Norwood Taylor & Francis 01.12.2024
Lawrence Erlbaum Associates, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Evaluation of aesthetic design fulfills a pivotal function in product development, which urges for an efficacious objective method to measure customers' experience. The stability and effectiveness of electroencephalography (EEG) make it a suitable tool for aesthetic experience measurement. Nevertheless, existing studies have several limitations, especially regarding the stimuli and the algorithm. The potential of an EEG-based deep learning model has not been verified in pinpointing subtle differences in physical product aesthetics. To fill the research gap in this issue, we recorded EEG signals in real-life scenarios when participants were presented with different types of physical smartphones, and asked participants to rate them from four dimensions of aesthetic experience (arousal, valence, likeness, and aesthetic evaluation). Then, the time-frequency data were fed into a spatial feature extraction network and an attention-based bidirectional long short-term memory (BiLSTM) optimized by the cross-entropy loss function. The result showed that at 16s window size, the four outcome models yielded the best joint recognition performance of aesthetic experience with an average accuracy of over 85% (arousal: 88.10%, valence: 87.97%, likeness: 85.99%, and aesthetic evaluation: 87.23%). It provides an objective cross-subject recognition method with multi-faceted evaluation results of aesthetic experience. Additionally, we verified the ability of EEG as a reliable and informative resource in terms of aesthetic experience evaluation, even with subtle differences. More practically, a future direction of incorporating EEG signals into subjective product aesthetics measurement could be given more credit.
AbstractList Evaluation of aesthetic design fulfills a pivotal function in product development, which urges for an efficacious objective method to measure customers' experience. The stability and effectiveness of electroencephalography (EEG) make it a suitable tool for aesthetic experience measurement. Nevertheless, existing studies have several limitations, especially regarding the stimuli and the algorithm. The potential of an EEG-based deep learning model has not been verified in pinpointing subtle differences in physical product aesthetics. To fill the research gap in this issue, we recorded EEG signals in real-life scenarios when participants were presented with different types of physical smartphones, and asked participants to rate them from four dimensions of aesthetic experience (arousal, valence, likeness, and aesthetic evaluation). Then, the time-frequency data were fed into a spatial feature extraction network and an attention-based bidirectional long short-term memory (BiLSTM) optimized by the cross-entropy loss function. The result showed that at 16s window size, the four outcome models yielded the best joint recognition performance of aesthetic experience with an average accuracy of over 85% (arousal: 88.10%, valence: 87.97%, likeness: 85.99%, and aesthetic evaluation: 87.23%). It provides an objective cross-subject recognition method with multi-faceted evaluation results of aesthetic experience. Additionally, we verified the ability of EEG as a reliable and informative resource in terms of aesthetic experience evaluation, even with subtle differences. More practically, a future direction of incorporating EEG signals into subjective product aesthetics measurement could be given more credit.
Author Zhang, Liang
Wang, Peishan
Ma, Cuixia
Feng, Haibei
Nie, Rui
Lin, Yudi
Du, Xiaobing
Author_xml – sequence: 1
  givenname: Peishan
  surname: Wang
  fullname: Wang, Peishan
  organization: Department of Psychology, University of Chinese Academy of Sciences
– sequence: 2
  givenname: Haibei
  surname: Feng
  fullname: Feng, Haibei
  organization: Department of Computer Science and Technology, University of Chinese Academy of Sciences
– sequence: 3
  givenname: Xiaobing
  surname: Du
  fullname: Du, Xiaobing
  organization: Department of Computer Science and Technology, University of Chinese Academy of Sciences
– sequence: 4
  givenname: Rui
  surname: Nie
  fullname: Nie, Rui
  organization: Department of Biostatistics, University of Michigan Ann Arbor
– sequence: 5
  givenname: Yudi
  surname: Lin
  fullname: Lin, Yudi
  organization: Department of Computer Science, University of Southern California
– sequence: 6
  givenname: Cuixia
  surname: Ma
  fullname: Ma, Cuixia
  organization: International Joint Laboratory of Artificial Intelligence and Emotional Interaction, Beijing Key Laboratory of Human-Computer Interactions
– sequence: 7
  givenname: Liang
  surname: Zhang
  fullname: Zhang, Liang
  organization: Department of Psychology, University of Chinese Academy of Sciences
BookMark eNqFkD1PwzAQhi1UJNrCT0CKxJxydhInEQttFQpSgYF2thznDC5pXJwU6L8noWVhgOlueD_ungHpVbZCQs4pjCgkcEkhDOOAJiMGLBgxFicp40ekT6OA-XGUQq_dW43fiU7IoK5XAMAgCvpknGUzfyJrLLzsXZZb2RhbeVZ7Y6ybF2yM8rLPDTqDlUJvWZvq2ZuY-dPi3nvA5sO611NyrGVZ49lhDsnyJltMb_354-xuOp77KgiSxqdFVEidoNQxAuR5UiDLixCVolyGHIocKWjkTHGaK8a0jGQUSUxlAoXmPBiSi33uxtm3bXudWNmtq9pKEdC2gvMUwlZ1tVcpZ-vaoRbKNN9PNU6aUlAQHTPxw0x0zMSBWeuOfrk3zqyl2_3ru977TKWtW8uWS1mIRu5K67STlTLdkX9GfAGL7YSL
CitedBy_id crossref_primary_10_1080_10447318_2024_2364138
crossref_primary_10_3390_e26100853
Cites_doi 10.7591/9781501718168-002
10.1201/9781315557380-15
10.1097/00001756-200404090-00032
10.1146/annurev-psych-120710-100504
10.1007/978-981-13-5977-4_33
10.1016/j.jneumeth.2003.10.009
10.1109/TAFFC.2020.3013711
10.1155/2013/573734
10.14569/IJACSA.2017.081046
10.1080/0144929X.2020.1795259
10.1007/s11571-015-9363-z
10.1016/j.ergon.2019.02.006
10.1109/78.650093
10.4018/978-1-5225-2639-1.ch006
10.1016/0005-7916(94)90063-9
10.1016/j.ijhcs.2003.09.002
10.1155/2021/2070209
10.1016/j.physbeh.2019.04.025
10.1007/978-981-287-426-9_21
10.1007/s11571-022-09821-2
10.1088/1741-2560/14/1/016003
10.1088/1741-2552/aace8c
10.1186/s40708-020-00109-x
10.1080/10447318.2019.1709330
10.3758/cabn.3.4.289
10.1002/hbm.23730
10.1037/rev0000135
10.1111/j.1469-8986.2010.01061.x
10.1109/IJCNN.2018.8489331
10.1109/TNSRE.2022.3230250
10.4324/9780203804100
10.1016/j.im.2006.08.009
10.1016/j.neuropsychologia.2004.03.011
10.1063/1.5005474
10.1109/TNNLS.2022.3147208
10.1007/978-3-642-24797-2_4
10.1371/journal.pone.0021852
10.1109/TAFFC.2020.3025777
10.1108/00220411111124569
10.1371/journal.pone.0115112
10.1111/j.0737-6782.2005.00103.x
10.1068/i0450aap
10.1016/j.neucom.2021.02.048
10.1073/pnas.0401427101
ContentType Journal Article
Copyright 2023 Taylor & Francis Group, LLC 2023
2023 Taylor & Francis Group, LLC
Copyright_xml – notice: 2023 Taylor & Francis Group, LLC 2023
– notice: 2023 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
E3H
F2A
JQ2
DOI 10.1080/10447318.2023.2278926
DatabaseName CrossRef
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
DatabaseTitle CrossRef
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
DatabaseTitleList
Library and Information Science Abstracts (LISA)
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-7590
1044-7318
EndPage 8179
ExternalDocumentID 10_1080_10447318_2023_2278926
2278926
Genre Research Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: T2192932
– fundername: Scientific Foundation of Chinese Academy of Sciences
  grantid: KGFZD-145-21-09
– fundername: Natural Science Foundation of Beijing
  grantid: 4212029
– fundername: Scientific Foundation of Institute of Psychology, Chinese Academy of Sciences
  grantid: E2CX4535CX
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
53G
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABIVO
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPPZ
ABTAI
ABXUL
ABXYU
ACGFS
ACGOD
ACHQT
ACTIO
ADCVX
ADGTB
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBR
EBS
EBU
EST
ESX
E~A
E~B
F5P
FEDTE
FPAXQ
GTTXZ
H13
HF~
HVGLF
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
PZZ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
.4S
07I
4B5
AAGDL
AAHIA
AAYXX
ACTTO
ACUHS
ADMLS
ADUMR
ADXEU
ADYSH
AEHZU
AEMOZ
AEZBV
AFBWG
AFION
AFRVT
AGBLW
AGVKY
AGWUF
AHQJS
AIYEW
AKHJE
AKMBP
ALRRR
ALXIB
AMPGV
ARCSS
B0M
BGSSV
BWMZZ
C0-
C5H
CAG
CITATION
COF
CYRSC
DAOYK
DEXXA
EAS
ECS
EDO
EJD
EMK
EPL
EPS
FETWF
I-F
IFELN
K1G
L8C
NUSFT
NX~
OPCYK
ROL
TAJZE
TAP
TH9
TUS
UB6
UQL
E3H
F2A
JQ2
TASJS
ID FETCH-LOGICAL-c338t-1d5daf8eaf7e00bb8de2bd4ecc16a460dbe10fe62c61bc22fa5a55ae9a80df663
ISSN 1044-7318
IngestDate Fri Jul 25 23:32:58 EDT 2025
Tue Jul 01 02:35:22 EDT 2025
Thu Apr 24 23:04:31 EDT 2025
Wed Dec 25 09:04:52 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-1d5daf8eaf7e00bb8de2bd4ecc16a460dbe10fe62c61bc22fa5a55ae9a80df663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3133866904
PQPubID 32556
PageCount 14
ParticipantIDs informaworld_taylorfrancis_310_1080_10447318_2023_2278926
crossref_citationtrail_10_1080_10447318_2023_2278926
proquest_journals_3133866904
crossref_primary_10_1080_10447318_2023_2278926
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Norwood
PublicationPlace_xml – name: Norwood
PublicationTitle International journal of human-computer interaction
PublicationYear 2024
Publisher Taylor & Francis
Lawrence Erlbaum Associates, Inc
Publisher_xml – name: Taylor & Francis
– name: Lawrence Erlbaum Associates, Inc
References e_1_3_2_27_1
e_1_3_2_28_1
e_1_3_2_29_1
Desmet P. (e_1_3_2_13_1) 2007; 1
e_1_3_2_42_1
e_1_3_2_20_1
e_1_3_2_41_1
e_1_3_2_21_1
e_1_3_2_44_1
e_1_3_2_22_1
e_1_3_2_43_1
e_1_3_2_23_1
e_1_3_2_46_1
e_1_3_2_24_1
e_1_3_2_45_1
e_1_3_2_25_1
e_1_3_2_26_1
e_1_3_2_47_1
e_1_3_2_40_1
e_1_3_2_16_1
e_1_3_2_39_1
e_1_3_2_9_1
e_1_3_2_17_1
e_1_3_2_38_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_31_1
e_1_3_2_30_1
e_1_3_2_10_1
e_1_3_2_33_1
e_1_3_2_11_1
e_1_3_2_32_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_5_1
e_1_3_2_34_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_37_1
e_1_3_2_3_1
e_1_3_2_15_1
e_1_3_2_36_1
References_xml – ident: e_1_3_2_41_1
  doi: 10.7591/9781501718168-002
– ident: e_1_3_2_37_1
  doi: 10.1201/9781315557380-15
– ident: e_1_3_2_46_1
  doi: 10.1097/00001756-200404090-00032
– ident: e_1_3_2_34_1
  doi: 10.1146/annurev-psych-120710-100504
– ident: e_1_3_2_17_1
– ident: e_1_3_2_33_1
  doi: 10.1007/978-981-13-5977-4_33
– ident: e_1_3_2_12_1
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: e_1_3_2_15_1
  doi: 10.1109/TAFFC.2020.3013711
– ident: e_1_3_2_23_1
  doi: 10.1155/2013/573734
– ident: e_1_3_2_2_1
  doi: 10.14569/IJACSA.2017.081046
– ident: e_1_3_2_35_1
  doi: 10.1080/0144929X.2020.1795259
– ident: e_1_3_2_8_1
  doi: 10.1007/s11571-015-9363-z
– ident: e_1_3_2_20_1
  doi: 10.1016/j.ergon.2019.02.006
– ident: e_1_3_2_40_1
  doi: 10.1109/78.650093
– ident: e_1_3_2_24_1
  doi: 10.4018/978-1-5225-2639-1.ch006
– ident: e_1_3_2_4_1
  doi: 10.1016/0005-7916(94)90063-9
– ident: e_1_3_2_25_1
  doi: 10.1016/j.ijhcs.2003.09.002
– ident: e_1_3_2_38_1
  doi: 10.1155/2021/2070209
– ident: e_1_3_2_16_1
  doi: 10.1016/j.physbeh.2019.04.025
– ident: e_1_3_2_32_1
  doi: 10.1007/978-981-287-426-9_21
– ident: e_1_3_2_27_1
  doi: 10.1007/s11571-022-09821-2
– ident: e_1_3_2_43_1
  doi: 10.1088/1741-2560/14/1/016003
– ident: e_1_3_2_26_1
  doi: 10.1088/1741-2552/aace8c
– ident: e_1_3_2_36_1
  doi: 10.1186/s40708-020-00109-x
– ident: e_1_3_2_14_1
  doi: 10.1080/10447318.2019.1709330
– ident: e_1_3_2_22_1
  doi: 10.3758/cabn.3.4.289
– ident: e_1_3_2_39_1
  doi: 10.1002/hbm.23730
– ident: e_1_3_2_30_1
  doi: 10.1037/rev0000135
– ident: e_1_3_2_31_1
  doi: 10.1111/j.1469-8986.2010.01061.x
– ident: e_1_3_2_47_1
  doi: 10.1109/IJCNN.2018.8489331
– ident: e_1_3_2_42_1
  doi: 10.1109/TNSRE.2022.3230250
– ident: e_1_3_2_3_1
  doi: 10.4324/9780203804100
– ident: e_1_3_2_11_1
  doi: 10.1016/j.im.2006.08.009
– ident: e_1_3_2_6_1
  doi: 10.1016/j.neuropsychologia.2004.03.011
– ident: e_1_3_2_45_1
  doi: 10.1063/1.5005474
– volume: 1
  start-page: 27
  issue: 1
  year: 2007
  ident: e_1_3_2_13_1
  article-title: Framework of product experience
  publication-title: International Journal of Design,
– ident: e_1_3_2_10_1
  doi: 10.1109/TNNLS.2022.3147208
– ident: e_1_3_2_19_1
  doi: 10.1007/978-3-642-24797-2_4
– ident: e_1_3_2_21_1
  doi: 10.1371/journal.pone.0021852
– ident: e_1_3_2_44_1
  doi: 10.1109/TAFFC.2020.3025777
– ident: e_1_3_2_18_1
  doi: 10.1108/00220411111124569
– ident: e_1_3_2_7_1
  doi: 10.1371/journal.pone.0115112
– ident: e_1_3_2_9_1
  doi: 10.1111/j.0737-6782.2005.00103.x
– ident: e_1_3_2_29_1
  doi: 10.1068/i0450aap
– ident: e_1_3_2_28_1
  doi: 10.1016/j.neucom.2021.02.048
– ident: e_1_3_2_5_1
  doi: 10.1073/pnas.0401427101
SSID ssj0002053
Score 2.3907154
Snippet Evaluation of aesthetic design fulfills a pivotal function in product development, which urges for an efficacious objective method to measure customers'...
Evaluation of aesthetic design fulfills a pivotal function in product development, which urges for an efficacious objective method to measure customers’...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8166
SubjectTerms Aesthetic design
aesthetic experience
Aesthetics
Algorithms
Arousal
deep learning
EEG
Electroencephalography
Entropy (Information theory)
Machine learning
physical product evaluation
Product development
Title EEG-Based Evaluation of Aesthetic Experience Using BiLSTM Network
URI https://www.tandfonline.com/doi/abs/10.1080/10447318.2023.2278926
https://www.proquest.com/docview/3133866904
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcuHCG1EoyAdulRfHcbzJsUULK0QrBFtpb5GfEKnaoip74U_0L3f8yGPpilIu0crSOFnPeDyZzHwfQu9kRZmTuiS2nGnCFatIyQ0nmprK6ZlhJsAXn5yKxRn_vCpWk8nVqGpp06qp_r2zr-R_tApjoFffJXsHzfaTwgD8Bv3CFTQM13_S8Xz-iRzDMWQO5z1odwgtwdX_9N2JIyTjw1gccNx8-b488X2-viJrHJpu5wZHiBKBxo_oRP8QACYuYzvEkI2PHuOr9VzO_TCsVRheyEbZZgiZ_diqkb7z7MfwXSRkVr9tmnEegvFRTUd0nZRzMsuTN7WdO4X4vYiEoJ2_jfBMya5YPvKe_hvm-CTOIs_MDS8fyyL9Df39pp4BfhpaetkOVO0_Tru-BjFL4KjdNLWfpk7T3EP3Gbx3eEqMnJ72RzujRezYSH-1awkr6fudT7MV7GxB4d44-kM8s3yMHqYXEXwUreoJmtj1U_SoI_nAyec_Q0e9keHByPCFw72R4cHIcDAyHI0MJyN7js4-zpcfFiTxbhCd52VLMlMY6Uor3cxSqlRpLFOGw2bPhOSCGmUz6qxgWmRKM9jrhSwKaStZUuMghH2B9tYXa_sSYa2sEE4YkHZcWlaCBHWZ87VK1Fi6j3i3QLVOoPSeG-W8_qt69tG0F_sVUVluE6jGq1-3IR3mIndNnd8ie9Cpqk6bz4vAUglRUf7qrs_yGj0Y9s8B2msvN_YNRLatehus7RqaKZjX
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDLBQnqJQwAOrI8c4TjK2KKVAm4VW6hb5KRCoRShd-PXYeZQWhDp0ymB9lnM-nx_67jsAbniMieEyQjoKJaKCxCiiiiKJVWxkqIgq5IuHKeuP6eMkmCzlwjhapbtDm1IooojVbnG7x-iaEme_lIbWGT1X-9srkjkJ2wY7QcxCV8XgFqeLaExwUJLsKUUOU2fx_NfNyv60ol76J1oXW1CvCWQ9-JJ58ubNc-HJr1-6jpv93QHYr06osFO61CHY0tMj0KyrP8AqGByDTpLco67dBBVMFpLhcGZgxw79xeVGwh8dZVhQE2D3dfA8GsK05J6fgHEvGd31UVWQAUl7k82RrwLFTaS5CTXGQkRKE6Go9QKfccqwEtrHRjMimS8ksU4Q8CDgOuYRVsaebU5BYzqb6jMApdCMGaYs2lCuSWQR2PjGkViw0rgFaD0NmazUyl3RjPfMr0RNazNlzkxZZaYW8Bawj1KuYx0gXp7jLC_eSUxZ1CS7XYNt1w6RVSvfQaypGIsxPd-g62uw2x8NB9ngIX26AHu2iZYcmjZo5J9zfWlPQrm4Klz9G4RF-iw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagSIiF8hSFAh5YHTnGcZKxhZYCbYREK7FFfgoEaitIF349dh6FglCHThmiz3LO5zs7-u47AC54jInhMkI6CiWigsQooooiiVVsZKiIyuWLBwnrjejdU1CxCT9KWqW7Q5tCKCKP1W5zT5WpGHH2SWlofdFzrb-9vJaTsHWwwZx4uKviwMk8GBMcFBx7SpHDVEU8_w2zkJ4WxEv_BOs8A3XrQFRzL4gnr94sE578_CXruNLH7YDt8nwKW4VD7YI1Pd4D9ar3AyxDwT5odTo3qG1ToIKduWA4nBjYsjN_dpWR8FtFGebEBNh-6T8OBzApmOcHYNTtDK96qGzHgKS9x2bIV4HiJtLchBpjISKliVDU-oDPOGVYCe1joxmRzBeSWBcIeBBwHfMIK2NPNoegNp6M9RGAUmjGDFMWbSjXJLIIbHzjKCxYadwAtFqFVJZa5a5lxlvql5KmlZlSZ6a0NFMDeHPYtBDrWAaIfy5xmuV_SUzR0iS9XIJtVv6QlvveQaypGIsxPV5h6HOw-XDdTfu3yf0J2LJvaEGgaYJa9j7Tp_YYlImz3NG_AGqC-NA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG-Based+Evaluation+of+Aesthetic+Experience+Using+BiLSTM+Network&rft.jtitle=International+journal+of+human-computer+interaction&rft.au=Wang%2C+Peishan&rft.au=Feng%2C+Haibei&rft.au=Du%2C+Xiaobing&rft.au=Nie%2C+Rui&rft.date=2024-12-01&rft.issn=1044-7318&rft.eissn=1532-7590&rft.volume=40&rft.issue=23&rft.spage=8166&rft.epage=8179&rft_id=info:doi/10.1080%2F10447318.2023.2278926&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10447318_2023_2278926
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1044-7318&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1044-7318&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1044-7318&client=summon