Semiparametric regression of panel count data with informative terminal event

We study a semiparametric model for robust analysis of panel count data with an informative terminal event. To explore the explicit effect of the terminal event on recurrent events of interest, we propose a conditional mean model for a reversed counting process anchoring at the terminal event. Treat...

Full description

Saved in:
Bibliographic Details
Published inBernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability Vol. 29; no. 4; p. 2828
Main Authors Hu, Xiangbin, Liu, L I, Zhang, Ying, Zhao, Xingqiu
Format Journal Article
LanguageEnglish
Published England 01.11.2023
Subjects
Online AccessGet more information

Cover

Loading…
Abstract We study a semiparametric model for robust analysis of panel count data with an informative terminal event. To explore the explicit effect of the terminal event on recurrent events of interest, we propose a conditional mean model for a reversed counting process anchoring at the terminal event. Treating the distribution function of the terminal event as a nuisance functional parameter, we develop a predicted least squares-based two-stage estimation procedure with the spline-based sieve estimation technique, and derive the convergence rate of the proposed estimator. Furthermore, overcoming the difficulties caused by the convergence rate slower than , we establish the asymptotic normality for the estimator of the finite-dimensional parameter and a functional of the estimator of the infinite-dimensional parameter. The proposed method is evaluated through extensive simulation studies and illustrated with an application to the Longitudinal Healthy Longevity Survey study on elder people in China.
AbstractList We study a semiparametric model for robust analysis of panel count data with an informative terminal event. To explore the explicit effect of the terminal event on recurrent events of interest, we propose a conditional mean model for a reversed counting process anchoring at the terminal event. Treating the distribution function of the terminal event as a nuisance functional parameter, we develop a predicted least squares-based two-stage estimation procedure with the spline-based sieve estimation technique, and derive the convergence rate of the proposed estimator. Furthermore, overcoming the difficulties caused by the convergence rate slower than , we establish the asymptotic normality for the estimator of the finite-dimensional parameter and a functional of the estimator of the infinite-dimensional parameter. The proposed method is evaluated through extensive simulation studies and illustrated with an application to the Longitudinal Healthy Longevity Survey study on elder people in China.
Author Zhao, Xingqiu
Zhang, Ying
Liu, L I
Hu, Xiangbin
Author_xml – sequence: 1
  givenname: Xiangbin
  surname: Hu
  fullname: Hu, Xiangbin
  organization: Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China
– sequence: 2
  givenname: L I
  surname: Liu
  fullname: Liu, L I
  organization: School of Mathematics and Statistics, Wuhan University, Wuhan, China
– sequence: 3
  givenname: Ying
  surname: Zhang
  fullname: Zhang, Ying
  organization: Department of Biostatistics, University of Nebraska Medical Center, Omaha, USA
– sequence: 4
  givenname: Xingqiu
  surname: Zhao
  fullname: Zhao, Xingqiu
  organization: Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40303898$$D View this record in MEDLINE/PubMed
BookMark eNo1j8tKxDAUQLMYcR668QMkP1BNcps0LmVQRxhxoa6H2-RGM7RpSTMj_r2CujpwFgfOks3SkIixCymuQGpxrVTV0l5qo2dsIUGLqlFGz9lymvZCyNoYccrmtQAB9sYu2NML9XHEjD2VHB3P9J5pmuKQ-BD4iIk67oZDKtxjQf4ZywePKQy5xxKPxAvlPibsOB0plTN2ErCb6PyPK_Z2f_e63lTb54fH9e22cgC2VNJroBoa7RtrnSehfowJTvgQHAIarZWHBtEEap1ygawUVnsFpjaglVqxy9_ueGh78rsxxx7z1-7_S30DfnZQCg
ContentType Journal Article
DBID NPM
DOI 10.3150/22-bej1565
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Statistics
Mathematics
ExternalDocumentID 40303898
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: U54 GM115458
GroupedDBID 23N
2AX
2WC
5GY
6J9
AAFWJ
AAWIL
ABAWQ
ABBHK
ABFAN
ABQDR
ABXSQ
ABYWD
ACDIW
ACHJO
ACMTB
ACTMH
ADNWM
ADODI
ADULT
AELLO
AENEX
AETVE
AEUPB
AFFOW
AFVYC
AGLNM
AIHAF
AKBRZ
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AS~
CAG
COF
CS3
DQDLB
DSRWC
DU5
E3Z
EBS
ECEWR
EJD
F5P
FEDTE
GIFXF
GR0
HDK
HGD
HQ6
HVGLF
IPSME
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
NPM
OK1
PUASD
RBU
RNS
RPE
SA0
TN5
WS9
ID FETCH-LOGICAL-c338t-1d53e4375d788cde021d56fc0dffca3a6552d37aa6febc2cfe81085d236463522
ISSN 1350-7265
IngestDate Sat May 03 02:04:21 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Asymptotic normality
empirical process
predicted least squares
counting process
terminal event
panel count data
two-stage estimation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-1d53e4375d788cde021d56fc0dffca3a6552d37aa6febc2cfe81085d236463522
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/12040413
PMID 40303898
ParticipantIDs pubmed_primary_40303898
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability
PublicationTitleAlternate Bernoulli (Andover)
PublicationYear 2023
SSID ssj0014660
Score 2.346128
Snippet We study a semiparametric model for robust analysis of panel count data with an informative terminal event. To explore the explicit effect of the terminal...
SourceID pubmed
SourceType Index Database
StartPage 2828
Title Semiparametric regression of panel count data with informative terminal event
URI https://www.ncbi.nlm.nih.gov/pubmed/40303898
Volume 29
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYWkND2gMqrhRbkAzdkyMZxEo6oAiHURUgFaTmhxI9Vqm6W0t1D-Uv8SWZsZx1WRVAuUWQnUeL5PJkZz3wmZC_lUSmNyBn8PBRLjInYEfhCTCnBYyl5Fkmsd-5fpGfXyflADDqdx1bW0nRSHsiHf9aVvEeq0AZyxSrZ_5Ds7KHQAOcgXziChOH4Jhn_0KMKubtHuC0WUjEPXVarNQFhmmvk_pjWk33MA3UhV0-UahOGfCLMr33L4vRseVff12NcJnqRZsLmFcyuaud-9mdEsEg0giv9gQr68h7Uh03H_RvwhFIeAEqHZRXygyrb_D0EdWeR7ZvmZ-sax-72evi7mrZDGDH3tXxB63IRsSx2m0Y0atkHQqp2zMHp2NyVk88rfw62Lda3xKzUP8EtFe2LYLTuRhYGCag1sNLy13vniLibrgWyAC4J7rGKgSG_YJWkviDdf4ljwsVXOgwv1CXLzUPmvBhrzVx9JCveDaHHDlOrpKPrNfIhiO7PGukG2a2T_nOo0QA1OjbUQo1aqFGEGkWo0RbUaAM1aqG2Qa5PT66-nTG_EweTnOcT1oOZqxOeCZXluVQaDEMlUiMjZYwseJEKESueFUVqdCljaXSOVS0KdydI0cTfJIv1uNafCTUCbFrZK2Qc95LiKCt4LhIkZUzA1I5KsUU-uYG5vXN0K7fNkG2_2POFdAOsvpIlA_Nb74CxOCl3rZieADVRbGk
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semiparametric+regression+of+panel+count+data+with+informative+terminal+event&rft.jtitle=Bernoulli+%3A+official+journal+of+the+Bernoulli+Society+for+Mathematical+Statistics+and+Probability&rft.au=Hu%2C+Xiangbin&rft.au=Liu%2C+L+I&rft.au=Zhang%2C+Ying&rft.au=Zhao%2C+Xingqiu&rft.date=2023-11-01&rft.issn=1350-7265&rft.volume=29&rft.issue=4&rft.spage=2828&rft_id=info:doi/10.3150%2F22-bej1565&rft_id=info%3Apmid%2F40303898&rft_id=info%3Apmid%2F40303898&rft.externalDocID=40303898
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-7265&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-7265&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-7265&client=summon