Sequentially estimating the required optimal observed number of tagged items with bounded risk in the recapture phase under inverse binomial sampling

Estimation of a closed population size (N) under inverse binomial sampling consists of four basic steps: First, one captures t items, then tag these t items, followed by releasing the t tagged items back to the population. Then, one draws items from the population one by one until s tagged items are...

Full description

Saved in:
Bibliographic Details
Published inSequential analysis Vol. 37; no. 3; pp. 412 - 429
Main Authors Mukhopadhyay, Nitis, Bhattacharjee, Debanjan
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 03.07.2018
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Estimation of a closed population size (N) under inverse binomial sampling consists of four basic steps: First, one captures t items, then tag these t items, followed by releasing the t tagged items back to the population. Then, one draws items from the population one by one until s tagged items are recaptured where s is fixed in advance. In the recapturing stage (fourth step), items are normally drawn with replacement. But, without replacement, sampling will not be impacted much if N is large. Under squared error loss (SEL) as well as weighted SEL, we propose sequential methodologies to come up with bounded risk point estimators of an optimal choice of s, leading to an appropriate sequential estimator of N: The sequential estimation methodologies are supplemented with appropriate first-order asymptotic properties, followed by extensive data analyses.
AbstractList Estimation of a closed population size (N) under inverse binomial sampling consists of four basic steps: First, one captures t items, then tag these t items, followed by releasing the t tagged items back to the population. Then, one draws items from the population one by one until s tagged items are recaptured where s is fixed in advance. In the recapturing stage (fourth step), items are normally drawn with replacement. But, without replacement, sampling will not be impacted much if N is large. Under squared error loss (SEL) as well as weighted SEL, we propose sequential methodologies to come up with bounded risk point estimators of an optimal choice of s, leading to an appropriate sequential estimator of N: The sequential estimation methodologies are supplemented with appropriate first-order asymptotic properties, followed by extensive data analyses.
Author Mukhopadhyay, Nitis
Bhattacharjee, Debanjan
Author_xml – sequence: 1
  givenname: Nitis
  surname: Mukhopadhyay
  fullname: Mukhopadhyay, Nitis
  email: nitis.mukhopadhyay@uconn.edu
  organization: Department of Statistics, University of Connecticut
– sequence: 2
  givenname: Debanjan
  surname: Bhattacharjee
  fullname: Bhattacharjee, Debanjan
  organization: Department of Mathematics, Utah Valley University
BookMark eNqFUU1v1DAUtFCR2Jb-BCRLnLPEX-tEXEAVX1IlDrRny0med10SOzw7rfaH8H_raJcLBzhZnjcz72nmklyEGICQN6zesrqp39VaatnK3ZbXrNkyJZtGsRdkw5TglWR6d0E2K6daSa_IZUoPdWGyWm_I7x_wa4GQvR3HI4WU_WSzD3uaD0CxzDzCQOO84iONXQJ8LEBYpg6QRkez3e8L4DNMiT75fKBdXMJQIPTpJ_Xh7NTbOS8IdD7YBHRlYBk-ApZf50OcygU02Wkey_bX5KWzY4Lr83tF7j9_urv5Wt1-__Lt5uNt1QvR5Ip1oq-hkYNw0rUcdDuA3GnbWc4GZQflgLdKaLFzWukerAUJrnXW9cAHxcQVeXvynTGWGFI2D3HBUFYazhrNuOBaFpY6sXqMKSE4M2OJA4-G1WZtwPxpwKwNmHMDRff-L13vc0k3hozWj_9VfzipfXARJ_sUcRxMtscxokMbep-M-LfFM-nlpi4
CitedBy_id crossref_primary_10_1007_s40314_023_02320_y
crossref_primary_10_1080_07474946_2021_2010407
crossref_primary_10_1016_j_cam_2021_113718
crossref_primary_10_1080_07474946_2021_1912522
crossref_primary_10_37394_23206_2020_19_59
crossref_primary_10_1007_s13253_024_00649_3
Cites_doi 10.1137/1.9781611970302
10.1214/aoms/1177700053
10.1215/S0012-7094-39-00501-6
10.1214/aoms/1177698695
10.1080/00029890.1938.11990818
10.1080/03610927908827789
10.1002/9780470466957
10.1214/aoms/1177729082
10.1214/aos/1176343953
10.1002/9781118165928
10.1214/aoms/1177700156
10.1017/S0305004100076386
ContentType Journal Article
Copyright 2018 Taylor & Francis Group, LLC 2018
2018 Taylor & Francis Group, LLC
Copyright_xml – notice: 2018 Taylor & Francis Group, LLC 2018
– notice: 2018 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/07474946.2018.1548851
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-4176
EndPage 429
ExternalDocumentID 10_1080_07474946_2018_1548851
1548851
Genre Article
GroupedDBID .7F
.QJ
0BK
0R~
123
30N
4.4
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
EJD
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c338t-1b3c0e84d3f4f92e79de467aba21d5ad5fe2953736f757ceaae4ef9fafce2d513
ISSN 0747-4946
IngestDate Wed Aug 13 09:32:24 EDT 2025
Tue Jul 01 03:56:57 EDT 2025
Thu Apr 24 23:07:40 EDT 2025
Wed Dec 25 09:08:44 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-1b3c0e84d3f4f92e79de467aba21d5ad5fe2953736f757ceaae4ef9fafce2d513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2187123274
PQPubID 216170
PageCount 18
ParticipantIDs crossref_primary_10_1080_07474946_2018_1548851
informaworld_taylorfrancis_310_1080_07474946_2018_1548851
crossref_citationtrail_10_1080_07474946_2018_1548851
proquest_journals_2187123274
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-03
PublicationDateYYYYMMDD 2018-07-03
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-03
  day: 03
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Sequential analysis
PublicationYear 2018
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Sen P. K. (CIT0018) 1981; 43
Ghosh M. (CIT0006) 1976; 38
CIT0010
CIT0021
Ghosh M. (CIT0008) 1981; 43
CIT0020
CIT0001
CIT0022
Scheaffer R. L. (CIT0015) 2012
Robbins H (CIT0014) 1959
Sen P. K (CIT0017) 1981
CIT0003
CIT0002
CIT0016
CIT0004
Peterson C. G. J (CIT0013) 1896; 6
CIT0007
Mukhopadhyay N. (CIT0011) 2009
Mukhopadhyay N. (CIT0012) 1994
CIT0009
CIT0019
References_xml – ident: CIT0021
  doi: 10.1137/1.9781611970302
– ident: CIT0003
  doi: 10.1214/aoms/1177700053
– volume-title: Sequential Methods and Their Applications
  year: 2009
  ident: CIT0011
– ident: CIT0019
  doi: 10.1215/S0012-7094-39-00501-6
– volume: 43
  start-page: 331
  year: 1981
  ident: CIT0018
  publication-title: Sankhya, Series A
– ident: CIT0004
  doi: 10.1214/aoms/1177698695
– ident: CIT0016
  doi: 10.1080/00029890.1938.11990818
– ident: CIT0007
  doi: 10.1080/03610927908827789
– ident: CIT0022
  doi: 10.1002/9780470466957
– start-page: 235
  volume-title: Probability and Statistics
  year: 1959
  ident: CIT0014
– ident: CIT0010
  doi: 10.1214/aoms/1177729082
– volume: 6
  start-page: 1
  year: 1896
  ident: CIT0013
  publication-title: Report of Danish Biological Station
– volume-title: Elementary Survey Sampling, seventh edition
  year: 2012
  ident: CIT0015
– ident: CIT0020
  doi: 10.1214/aos/1176343953
– volume: 43
  start-page: 220
  year: 1981
  ident: CIT0008
  publication-title: Shankhya, Series A
– volume-title: Sequential Nonparametrics
  year: 1981
  ident: CIT0017
– ident: CIT0009
  doi: 10.1002/9781118165928
– ident: CIT0002
  doi: 10.1214/aoms/1177700156
– volume-title: Multistage Selection and Ranking Procedures
  year: 1994
  ident: CIT0012
– ident: CIT0001
  doi: 10.1017/S0305004100076386
– volume: 38
  start-page: 203
  year: 1976
  ident: CIT0006
  publication-title: Shankhya, Series B
SSID ssj0018107
Score 2.1071727
Snippet Estimation of a closed population size (N) under inverse binomial sampling consists of four basic steps: First, one captures t items, then tag these t items,...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 412
SubjectTerms Asymptotic methods
Asymptotic properties
Asymptotics
bounded risk
capture
first-order properties
recapture
release
risk
Sampling
sequential methodology
squared error loss
tagging
weighted squared error loss
Title Sequentially estimating the required optimal observed number of tagged items with bounded risk in the recapture phase under inverse binomial sampling
URI https://www.tandfonline.com/doi/abs/10.1080/07474946.2018.1548851
https://www.proquest.com/docview/2187123274
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2FcoED4lO0FLQHbpGr2Luu7SNCrSrUhgOJlJu1a882hNSJGvdQ_gUH_i8z67GTkIoCFyty4rWVeZ6Z3X3zRoj3tkggjuIisClAoCNnAwwLWZDEzqgyxYCRUqHwxfD4bKw_TeJJr_djg7V0U9uj4vuddSX_Y1U8h3alKtl_sGw3KJ7Az2hfPKKF8fhXNv7iedD4js7nt32Sy6D0k8ufroE4vphOLpZ0HlNOSwuwfrefmoB4coC5vATaO4ArrnKz1GUJmHHOFEj0iWbpNxqWU4x5vnMukdiJ0AF9nFkvrnzViSFyOgfC2e8P2DesfrK28LcpTtjL6a1p3DyJK3WLA1NT14YqwmYNUQjdoqlmjGRepAhTT2hVHaxGO_1CNkhLK6-anQQ648VIaF1xFOiw6Q7T-upGIIYxqTYcr27I2DsBgRmUOD4NT1S-lBbT0pRlbrcEuIef89Px-Xk-OpmMHoiHEc48qCmGGgy7jak0bCrw2wdui8JIrv2um2ylO1tiuDvB32c0o6fiCU9F5IcGV89ED6rn4vFFp-O7eiF-biJMrhEm8TeyRZhkhMkWYbJBmFw42SBMeoRJQphkhElCmPxa8UiMMOkRJj3CJCNMtgiTLcJeivHpyejjWcCNPIJCqbQOQquKAaS6VE67LIIkKwEDtLEmCsvYlLGDKItVoo5dEicFGAMaXOaMKyAq41C9EnvVooLXQkYW8_tBAU5DqaGwFigk6VSrgVZgkn2h2_87L1jlnpqtzPOwFcNlM-VkppzNtC-OusuWjczLfRdkm8bMa49w14A7V_dce9haPmdvssrRKSY0vUn0wZ-_fiMerd-wQ7FXX9_AW0yMa_vOQ_UXyJa9kQ
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYQPbQ99F0BheJDr5tm13bsPVYIlBaSCyBxs2zvOK0Iu1GyHMr_4P8ys48IqCoOXG2P5fXaM_b4m28Y--aDBpWpkHgDkMgs-gTNQp5oFZ0oDBoMQ4HCk-lofC5_XaiLe7EwBKukO3RsiSIaXU2bm5zRPSTuO5G-y1wSwiA15BsxhqKoX6h8pCmLgRhO1y8JJm1DplEkIZk-iud_3TywTw_YS__R1o0JOnrLQj_4FnlyObiu_SDcPOJ1fN7XvWNvuhMq_9EuqfdsA8oP7PVkTe-6-shuTxsANiqH-fwvJ54OqilnHNvwJRC4GApeLah8zitPnl8saLOP8Cry2s1mWNCkgePkCuae0jthEUHd-Z-y6ym4Bb1w8MVvNLacWiyxkpAkwPFKX13hCPjKESq-nH1i50eHZwfjpMvvkAS8GNdJ6kUYgpGFiDLmGei8ANTbzrssLZQrVIQsV0KLUdRKB3AOJMQ8uhggK1QqPrPNsiphi_HM47FvGCBKKCQE74E0lTRSDKUAp7eZ7P-qDR35OeXgmNu050jtZt3SrNtu1rfZYC22aNk_nhLI7y8ZWzdul9jmSLHiCdndfn3ZTpGsLO4VTadeLXee0fU-ezk-m5zYk5_T4y_sFVU1kGOxyzbr5TXs4cGq9l-bnXMHXicZBQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkRAcWp6iD8AHrlk2sb12joiyKo-ukKASN8uP8RaxJNFueoD_wf_tTB4rCkI99Gp7LMexZ-zxN98w9tIHDapQIfMGIJNF8hmahTLTKjkRDRoMQ4HCp4vZyZl8_1WNaMLNAKukO3TqiSI6XU2bu4lpRMS9Is53WUoCGOSGXCPGUBD17RmRh1MUx3SxfUgweR8xjSIZyYxBPP_r5op5ukJe-o-y7izQfI_5cew98OT75KL1k_DrL1rHG33cfbY7nE_5635BPWC3oHrI7p1uyV03j9jvzx38GlXDavWTE0sH1VRLjm34GghaDJHXDZWveO3J74sFfe4RXifeuuUSC7okcJwcwdxTcicsIqA7_1YNPQXX0PsGb87R1HJqscZKwpEAxwt9_QNHwDeOMPHV8jE7m7_98uYkG7I7ZAGvxW2WexGmYGQUSaayAF1GQK3tvCvyqFxUCYpSCS1mSSsdwDmQkMrkUoAiqlw8YTtVXcFTxguPh75pgCQhSgjeA-kpaaSYSgFO7zM5_lQbBupzysCxsvnIkDrMuqVZt8Os77PJVqzpuT-uEyj_XDG27Zwuqc-QYsU1skfj8rKDGtlY3CmazrxaHtyg6xfszqfjuf34bvHhkN2lmg5vLI7YTru-gGd4qmr9827fXALWrhep
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequentially+estimating+the+required+optimal+observed+number+of+tagged+items+with+bounded+risk+in+the+recapture+phase+under+inverse+binomial+sampling&rft.jtitle=Sequential+analysis&rft.au=Mukhopadhyay%2C+Nitis&rft.au=Bhattacharjee%2C+Debanjan&rft.date=2018-07-03&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0747-4946&rft.eissn=1532-4176&rft.volume=37&rft.issue=3&rft.spage=412&rft_id=info:doi/10.1080%2F07474946.2018.1548851&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-4946&client=summon