Research Progress in Tritium Processing Technologies: A Review
Recent advancements in tritium separation technologies have significantly improved efficiency, particularly through the integration of vapor phase catalytic exchange (VPCE), liquid phase catalytic exchange (LPCE), and combined electrolysis catalytic exchange (CECE) methods. Combining these technique...
Saved in:
Published in | Separations Vol. 12; no. 2; p. 33 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent advancements in tritium separation technologies have significantly improved efficiency, particularly through the integration of vapor phase catalytic exchange (VPCE), liquid phase catalytic exchange (LPCE), and combined electrolysis catalytic exchange (CECE) methods. Combining these techniques overcomes individual limitations, enhancing separation efficiency and reducing energy consumption. The CECE process, which integrates electrolysis with catalytic exchange, offers high separation factors, making it effective for high-concentration tritiated water treatment. Solid polymer electrolyte (SPE) technology has also gained prominence for its higher efficiency, smaller equipment size, and longer lifespan compared to traditional alkaline electrolysis. While electrolysis offers high separation factors, its high energy demand limits its cost-effectiveness for large-scale operations. As a result, electrolysis is often combined with other methods like CECE to optimize both energy consumption and separation efficiency. Future research will focus on improving the energy efficiency of electrolysis for large-scale, low-cost tritiated water treatment. |
---|---|
AbstractList | Recent advancements in tritium separation technologies have significantly improved efficiency, particularly through the integration of vapor phase catalytic exchange (VPCE), liquid phase catalytic exchange (LPCE), and combined electrolysis catalytic exchange (CECE) methods. Combining these techniques overcomes individual limitations, enhancing separation efficiency and reducing energy consumption. The CECE process, which integrates electrolysis with catalytic exchange, offers high separation factors, making it effective for high-concentration tritiated water treatment. Solid polymer electrolyte (SPE) technology has also gained prominence for its higher efficiency, smaller equipment size, and longer lifespan compared to traditional alkaline electrolysis. While electrolysis offers high separation factors, its high energy demand limits its cost-effectiveness for large-scale operations. As a result, electrolysis is often combined with other methods like CECE to optimize both energy consumption and separation efficiency. Future research will focus on improving the energy efficiency of electrolysis for large-scale, low-cost tritiated water treatment. |
Author | Chen, Qi Sun, Yandong Yan, Taihong Zheng, Weifang Zhao, Ziqian Li, Tianchi Liu, Fang |
Author_xml | – sequence: 1 givenname: Ziqian surname: Zhao fullname: Zhao, Ziqian – sequence: 2 givenname: Yandong surname: Sun fullname: Sun, Yandong – sequence: 3 givenname: Qi orcidid: 0000-0002-1367-7497 surname: Chen fullname: Chen, Qi – sequence: 4 givenname: Tianchi orcidid: 0000-0002-4490-2474 surname: Li fullname: Li, Tianchi – sequence: 5 givenname: Fang surname: Liu fullname: Liu, Fang – sequence: 6 givenname: Taihong surname: Yan fullname: Yan, Taihong – sequence: 7 givenname: Weifang surname: Zheng fullname: Zheng, Weifang |
BookMark | eNptkE9LAzEQxYNUsNZ-Ai8LnquTZDfZeBBK8U-hoJR6DtnspE1pNzXZKn57t1bEg6cZHo_fzHvnpNeEBgm5pHDNuYKbhDsTTetDkygDBsD5CekzpuSolFz1_uxnZJjSGgCo5EJQ1id3c0xool1lLzEsI6aU-SZbRN_6_fag2U7yzTJboF01YROWHtNtNs7m-O7x44KcOrNJOPyZA_L6cL-YPI1mz4_TyXg2spyX7YhyBoLVOVbgmKodRcuYKHKJVSmoM1jxOgdHBVJUUjqHzBROdekkVBYEH5DpkVsHs9a76LcmfupgvP4WQlxqE1tvN6hLqmxRC5cbpnLhVJlXKEyhCgfSouAd6-rI2sXwtsfU6nXYx6Z7X3MqKeOQM9W5-NFlY0gpovu9SkEfetf_9M6_AF9keac |
Cites_doi | 10.13182/FST11-A12689 10.1016/j.fusengdes.2020.112018 10.1016/j.colsurfa.2024.134835 10.3390/w16070967 10.13182/FST08-A1846 10.1080/18811248.1984.9731010 10.1016/j.ijhydene.2022.06.052 10.1016/j.heliyon.2024.e33956 10.1016/j.ijhydene.2023.10.282 10.13182/FST03-A370 10.1016/j.fusengdes.2010.03.067 10.1016/j.ijhydene.2023.08.241 10.1016/j.jnucmat.2006.04.003 10.1016/j.seppur.2023.123148 10.1016/j.fusengdes.2015.12.011 10.1016/j.heliyon.2023.e17031 10.1038/ncomms15215 10.2172/1222908 10.1016/j.jpcs.2009.04.010 10.1080/18811248.2006.9711116 10.13182/FST54-462 10.1016/0920-3796(89)90070-7 10.1080/15361055.2017.1291235 10.1016/j.ijhydene.2022.09.287 10.1016/j.micromeso.2022.112387 10.13182/FST11-A12693 10.13182/FST02-A22757 10.1007/s10967-018-6022-y 10.1016/j.mtcomm.2021.102736 10.1080/07366299508918261 10.1016/j.fusengdes.2019.04.055 10.1016/j.fusengdes.2024.114426 10.1080/15361055.2023.2271242 10.1007/s10967-019-06905-y 10.1021/j100850a028 10.1080/18811248.2006.9711172 10.1016/S0920-3796(01)00484-7 10.1007/s10967-014-3553-8 10.13182/FST88-A25186 10.1016/j.fusengdes.2011.04.038 10.1016/j.fusengdes.2021.112627 10.1088/1741-4326/ad1af4 10.1016/S0920-3796(03)00242-4 10.1016/S0016-7037(99)00281-1 10.1039/C5RA06131H 10.1016/j.fusengdes.2013.05.070 10.13182/FST02-A22749 10.2172/6205719 10.1016/j.fusengdes.2021.112736 10.1134/S0040579521010097 10.1139/v62-219 10.1016/j.seppur.2024.127275 10.1080/01496399508010368 10.13182/FST05-A898 10.1016/j.fusengdes.2021.112308 10.1016/j.fusengdes.2019.03.025 10.1016/j.ijhydene.2021.04.199 10.1016/j.fusengdes.2007.04.001 10.1039/D1QM00234A 10.1016/j.electacta.2023.142780 10.1080/18811248.1984.9731124 10.1126/science.aac9726 10.1023/A:1022592601787 10.1080/15361055.2023.2230413 10.1080/15361055.2024.2353967 10.15407/mineraljournal.42.04.023 10.13182/FST14-T50 10.1080/18811248.1998.9733820 10.1016/j.seppur.2023.123634 10.13182/FST07-A1565 10.1007/s10967-015-4010-z 10.1016/j.fusengdes.2019.03.085 10.1016/j.jece.2023.111389 10.1016/S0920-3796(03)00230-8 10.1016/j.fusengdes.2024.114213 10.1016/j.cjche.2019.01.019 10.1080/15361055.2020.1842681 10.13182/FST95-A30475 10.1007/s10967-022-08519-3 10.1021/acsami.2c06394 10.1080/18811248.2004.9726423 10.1016/j.fusengdes.2019.03.052 10.1063/1.5024317 10.13182/FST11-A12691 10.1080/18811248.2004.9715525 10.1039/D2CP01044E 10.1021/ja01607a027 10.13182/FST05-A891 10.1016/j.fusengdes.2017.10.006 10.1016/j.fusengdes.2019.03.053 10.13182/FST02-A22762 10.1016/j.ijhydene.2016.01.106 10.1016/j.fusengdes.2017.04.081 10.1080/18811248.1996.9732041 10.13182/FST02-A22766 |
ContentType | Journal Article |
Copyright | 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. L7M PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/separations12020033 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Advanced Technologies Database with Aerospace Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2297-8739 |
ExternalDocumentID | oai_doaj_org_article_819c5d6f4a2946f984be6a595f07ce63 10_3390_separations12020033 |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION D1I GROUPED_DOAJ HCIFZ IAO ITC KB. MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PROAC 7SR 7U5 8BQ 8FD ABUWG AZQEC DWQXO JG9 L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c338t-132062d4eb0f29df1ec226547eb861faeb3d40f16e1e977ffe2a5f939070bc063 |
IEDL.DBID | BENPR |
ISSN | 2297-8739 |
IngestDate | Wed Aug 27 01:31:49 EDT 2025 Fri Jul 25 11:49:11 EDT 2025 Tue Jul 01 02:16:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c338t-132062d4eb0f29df1ec226547eb861faeb3d40f16e1e977ffe2a5f939070bc063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4490-2474 0000-0002-1367-7497 |
OpenAccessLink | https://www.proquest.com/docview/3171230429?pq-origsite=%requestingapplication% |
PQID | 3171230429 |
PQPubID | 2032417 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_819c5d6f4a2946f984be6a595f07ce63 proquest_journals_3171230429 crossref_primary_10_3390_separations12020033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Separations |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Bhattacharyya (ref_24) 2016; 41 Cristescu (ref_27) 2007; 82 Michling (ref_109) 2013; 88 Bartolomei (ref_47) 2022; 24 Zhou (ref_91) 2024; 44 Kalyanam (ref_105) 1988; 14 Xue (ref_100) 2022; 47 Poltavsky (ref_52) 2018; 148 Shere (ref_7) 2024; 55 Wang (ref_26) 2020; 160 Miller (ref_83) 2002; 41 Alekseev (ref_84) 2003; 69 Yamamoto (ref_19) 1989; 10 Niculescu (ref_32) 2017; 124 Wen (ref_99) 2003; 23 Sun (ref_55) 2023; 314 Heinze (ref_86) 2001; 58–59 Liu (ref_5) 1997; 19 Kveton (ref_10) 1995; 28 Fukada (ref_21) 2005; 48 Ana (ref_30) 2019; 146 Park (ref_69) 2019; 146 Kobayashi (ref_38) 2003; 44 Thomson (ref_94) 2015; 67 Arita (ref_39) 2002; 41 Zabolockis (ref_92) 2024; 64 Cristescu (ref_29) 2016; 109 Iwai (ref_95) 2010; 85 Luo (ref_1) 1996; 18 Miho (ref_23) 2017; 71 Xue (ref_35) 2022; 14 Wang (ref_53) 2024; 200 Vijulie (ref_73) 2019; 146 Sugiyama (ref_11) 1998; 35 Koyanaka (ref_56) 2019; 322 Glugla (ref_41) 2006; 355 Ogata (ref_97) 2003; 255 Lu (ref_45) 2011; 86 Wu (ref_37) 2021; 34 Wu (ref_85) 2021; 50 Jurkin (ref_89) 2011; 60 Roy (ref_107) 1962; 40 Yeon (ref_67) 2022; 331 Matsumoto (ref_72) 2024; 10 Fukada (ref_20) 2004; 41 Varlam (ref_103) 2024; 80 Ando (ref_102) 2023; 9 Urm (ref_34) 2022; 55 Shimizu (ref_40) 2002; 47 Luo (ref_42) 2002; 41 Kakiuchi (ref_8) 2000; 64 So (ref_58) 2024; 50 Taguchi (ref_65) 2011; 60 Whitehorne (ref_93) 2021; 77 Zhao (ref_101) 2023; 464 Heinze (ref_87) 2003; 69 Hammond (ref_6) 1955; 77 Sun (ref_54) 2024; 344 Yamanishi (ref_14) 1984; 21 Stefan (ref_79) 2019; 146 Cristescu (ref_28) 2007; 52 Ionita (ref_75) 2005; 48 Park (ref_25) 2021; 46 Gligan (ref_16) 1997; 48 Lazar (ref_17) 2019; 146 Sircar (ref_60) 2021; 166 Iwai (ref_61) 2008; 54 Heinze (ref_88) 2002; 41 Hu (ref_50) 2016; 351 Edao (ref_68) 2024; 202 Yamanishi (ref_13) 1984; 21 Fu (ref_70) 2023; 348 Sakharovski (ref_80) 2015; 304 Hou (ref_3) 2018; 17 Li (ref_81) 2019; 27 Fan (ref_77) 2024; 700 Fukada (ref_22) 2006; 43 Wei (ref_98) 2021; 29 Xia (ref_31) 2006; 29 Uchiyama (ref_4) 1995; 13 Zhang (ref_2) 1990; 24 Strigle (ref_12) 1979; 75 Magomedbekov (ref_15) 2021; 55 Bornea (ref_18) 2008; 54 Li (ref_48) 2023; 11 Borisevich (ref_63) 2017; 125 Urm (ref_33) 2021; 172 Lim (ref_59) 2021; 5 Iwai (ref_9) 1996; 33 Iwai (ref_62) 2009; 70 Lu (ref_74) 2023; 48 ref_106 Pushkarov (ref_96) 2020; 42 Sohn (ref_82) 2006; 43 Li (ref_76) 2015; 5 ref_46 Koyanaka (ref_57) 2018; 318 ref_43 Ionita (ref_78) 2015; 305 Shi (ref_36) 2024; 46 Iwai (ref_71) 2005; 42 Zeng (ref_104) 2023; 310 Zhang (ref_51) 2017; 8 Isobe (ref_90) 2011; 60 ref_49 Tulenko (ref_64) 2003; 89 Hook (ref_110) 1968; 72 Vergari (ref_66) 2021; 168 Chmielewski (ref_108) 1995; 30 Bulubasa (ref_44) 2024; 80 |
References_xml | – volume: 60 start-page: 1387 year: 2011 ident: ref_90 article-title: Development of high efficiency electrode for highly tritiated water processing publication-title: Fusion Sci. Technol. doi: 10.13182/FST11-A12689 – volume: 75 start-page: 86 year: 1979 ident: ref_12 article-title: Packed distillation column design publication-title: Chem. Eng. Progr. – volume: 160 start-page: 112018 year: 2020 ident: ref_26 article-title: Dynamic behavior and control strategy of cryogenic distillation column for hydrogen isotope separation in CFETR publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2020.112018 – volume: 700 start-page: 134835 year: 2024 ident: ref_77 article-title: Synthesis and properties of fluorosilane treated nano-Al2O3 hybrid modified styrene-divinylbenzene copolymers publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2024.134835 – ident: ref_49 doi: 10.3390/w16070967 – volume: 54 start-page: 426 year: 2008 ident: ref_18 article-title: Investigation related to hydrogen isotopes separation by cryogenic distillation publication-title: Fusion Sci. Technol. doi: 10.13182/FST08-A1846 – volume: 46 start-page: 85 year: 2024 ident: ref_36 article-title: Review of water hydrogen isotope separation technology publication-title: J. Nucl. Radiochem. – volume: 21 start-page: 61 year: 1984 ident: ref_13 article-title: Preliminary experimental study for cryogenic distillation column with small inner diameter, (I) publication-title: J. Nucl. Sci. Technol. doi: 10.1080/18811248.1984.9731010 – volume: 47 start-page: 26842 year: 2022 ident: ref_100 article-title: Gold as an efficient hydrogen isotope separation catalyst in proton exchange membrane water electrolysis publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.06.052 – volume: 10 start-page: e33956 year: 2024 ident: ref_72 article-title: Removal of tritiated water molecules by isotope exchange reaction between H2O vapor and tritium water publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e33956 – volume: 55 start-page: 319 year: 2024 ident: ref_7 article-title: The next generation of low tritium hydrogen isotope separation technologies for future fusion power plants publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2023.10.282 – volume: 44 start-page: 415 year: 2003 ident: ref_38 article-title: H2-HT Separation using “cryogenic-wall” Thermal diffusion column with heated-tube publication-title: Fusion Sci. Technol. doi: 10.13182/FST03-A370 – volume: 55 start-page: 168 year: 2022 ident: ref_34 article-title: Dynamic optimization study for cryogenic distillation in hydrogen isotope separation system publication-title: IFAC-Pap. – volume: 85 start-page: 1421 year: 2010 ident: ref_95 article-title: Recent R&D results on polymeric materials for a SPE-type high-level tritiated water electrolyzer system publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2010.03.067 – volume: 47 start-page: 89 year: 2002 ident: ref_40 article-title: Numerical study on extraction of tritium generated in HMR by way of system composed of EXEL-process and thermal diffusion column cascade publication-title: Nukleonika – volume: 50 start-page: 539 year: 2024 ident: ref_58 article-title: A mini-review of the current progress and future challenges of zeolites for hydrogen isotopes separation through a quantum effect publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2023.08.241 – volume: 355 start-page: 47 year: 2006 ident: ref_41 article-title: Hydrogen isotope separation by permeation through palladium membranes publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2006.04.003 – volume: 310 start-page: 123148 year: 2023 ident: ref_104 article-title: Large-current density and high-durability proton exchange membrane water electrolysis for practical hydrogen isotope separation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2023.123148 – volume: 109 start-page: 1404 year: 2016 ident: ref_29 article-title: Enhanced configuration of a water detritiation system; impact on ITER Isotope Separation System based cryogenic distillation publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2015.12.011 – volume: 9 start-page: e17031 year: 2023 ident: ref_102 article-title: Effects of additives and electrolytic treatment to remove tritium from contaminated water publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e17031 – volume: 19 start-page: 17 year: 1997 ident: ref_5 article-title: The extraction mechanism of tritium in 30% TBP-kerosene-HNO3 system publication-title: J. Nucl. Radiochem. – volume: 8 start-page: 15215 year: 2017 ident: ref_51 article-title: Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping publication-title: Nat. Commun. doi: 10.1038/ncomms15215 – ident: ref_46 doi: 10.2172/1222908 – volume: 70 start-page: 881 year: 2009 ident: ref_62 article-title: Influence of framework silica-to-alumina ratio on the water adsorption and desorption characteristics of MHI-CaX/CaY zeolite publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2009.04.010 – volume: 43 start-page: 423 year: 2006 ident: ref_22 article-title: Transient behavior of enrichment of tritium water in adsorption-distillation column publication-title: J. Nucl. Sci. Technol. doi: 10.1080/18811248.2006.9711116 – volume: 54 start-page: 462 year: 2008 ident: ref_61 article-title: Effect of cation on HTO/H2O separation and dehydration characteristics of Y-type zeolite adsorbent publication-title: Fusion Sci. Technol. doi: 10.13182/FST54-462 – volume: 10 start-page: 315 year: 1989 ident: ref_19 article-title: H2O-HTO isotope separation by distillation of water—A dynamics of HETP of SUS Dixon ring in a small packed column publication-title: Fusion Eng. Des. doi: 10.1016/0920-3796(89)90070-7 – volume: 17 start-page: 47 year: 2018 ident: ref_3 article-title: Management of tritium in spent fuel reprocessing plant of power reactor publication-title: Ind. Sci. Trib. – volume: 71 start-page: 326 year: 2017 ident: ref_23 article-title: Tritium water distillation assisted with adsorption and isotopic exchange publication-title: Fusion Sci. Technol. doi: 10.1080/15361055.2017.1291235 – volume: 48 start-page: 1979 year: 2023 ident: ref_74 article-title: Superhydrophobic Pt@SBA-15 catalyst for tritium separation in liquid phase catalytic exchange publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.09.287 – volume: 348 start-page: 112387 year: 2023 ident: ref_70 article-title: Superhydrophilic metal-organic frameworks film modified surface for tritium removal from tritiated heavy water publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2022.112387 – volume: 60 start-page: 1403 year: 2011 ident: ref_89 article-title: Development and performance of a multibipolar HTO electrolysis system publication-title: Fusion Sci. Technol. doi: 10.13182/FST11-A12693 – volume: 18 start-page: 13 year: 1996 ident: ref_1 article-title: Study on the behaviour of tritium in Purex process publication-title: J. Nucl. Radiochem. – volume: 41 start-page: 1116 year: 2002 ident: ref_39 article-title: Experimental study for parameters affecting separation factor of cryogenic wall thermal diffusion column publication-title: Fusion Sci. Technol. doi: 10.13182/FST02-A22757 – volume: 318 start-page: 175 year: 2018 ident: ref_57 article-title: Tritium separation from parts-per-trillion-level water by a membrane with protonated manganese dioxide publication-title: J. Radioanal. Nucl. Chem. doi: 10.1007/s10967-018-6022-y – volume: 29 start-page: 102736 year: 2021 ident: ref_98 article-title: Theoretical analysis of two-dimensional crystals on separation of hydrogen isotopes in solid polymer electrolyte (SPE) electrolysis publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2021.102736 – volume: 13 start-page: 59 year: 1995 ident: ref_4 article-title: Behavior of tritium in the Purex process publication-title: Solvent Extr. Ion Exch. doi: 10.1080/07366299508918261 – volume: 89 start-page: 253 year: 2003 ident: ref_64 article-title: Screening experiments for removal of low-level Tritiated water (HTO) publication-title: Trans. Am. Nucl. Soc. – volume: 146 start-page: 2613 year: 2019 ident: ref_79 article-title: Computer based architecture to control water detritiation process publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2019.04.055 – volume: 202 start-page: 114426 year: 2024 ident: ref_68 article-title: Selective adsorption properties of layered titanate for tritiated water publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2024.114426 – volume: 24 start-page: 87 year: 1990 ident: ref_2 article-title: 3H behaviour and control in reprocessing of spent fuel from LWR publication-title: Atom. Energy Sci. Technol. – volume: 80 start-page: 411 year: 2024 ident: ref_44 article-title: Investigations on 3he: Hydrogen isotope separation employing palladium/silver membranes publication-title: Fusion Sci. Technol. doi: 10.1080/15361055.2023.2271242 – volume: 322 start-page: 1889 year: 2019 ident: ref_56 article-title: Tritium separation from heavy water using a membrane containing deuterated manganese dioxide publication-title: J. Radioanal. Nucl. Chem. doi: 10.1007/s10967-019-06905-y – volume: 72 start-page: 1234 year: 1968 ident: ref_110 article-title: Vapor pressures of the isotopic waters and ices publication-title: J. Phys. Chem. doi: 10.1021/j100850a028 – volume: 43 start-page: 874 year: 2006 ident: ref_82 article-title: Deactivation of hydrophobic Pt/SDBC catalyst in the WTRF LPCE column for tritium separation publication-title: J. Nucl. Sci. Technol. doi: 10.1080/18811248.2006.9711172 – volume: 58–59 start-page: 429 year: 2001 ident: ref_86 article-title: Bipolar electrolysis for tritium recovery from weakly active tritiated water publication-title: Fusion Eng. Des. doi: 10.1016/S0920-3796(01)00484-7 – volume: 304 start-page: 357 year: 2015 ident: ref_80 article-title: A new way for improving efficiency of CECE-process based hydrogen isotope separation plant publication-title: J. Radioanal. Nucl. Chem. doi: 10.1007/s10967-014-3553-8 – volume: 14 start-page: 524 year: 1988 ident: ref_105 article-title: A Comparison of Process Characteristics for the Recovery of Tritium from Heavy Water and Light Water Systems publication-title: Fusion Technol. doi: 10.13182/FST88-A25186 – volume: 86 start-page: 2220 year: 2011 ident: ref_45 article-title: Tritium aging effects on hydrogen permeation through Pd8.5Y0.19Ru alloy membrane publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2011.04.038 – volume: 168 start-page: 112627 year: 2021 ident: ref_66 article-title: The impact of neutron irradiation, graphite oxidation and fluorination on tritium uptake into and desorption from graphite in molten salt environments publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2021.112627 – volume: 64 start-page: 026022 year: 2024 ident: ref_92 article-title: Graphene-based electrochemical system for tritium enrichment publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ad1af4 – volume: 69 start-page: 67 year: 2003 ident: ref_87 article-title: French experience in tritiated water management publication-title: Fusion Eng. Des. doi: 10.1016/S0920-3796(03)00242-4 – volume: 64 start-page: 1485 year: 2000 ident: ref_8 article-title: Distribution of isotopic water molecules, H2O, HDO, and D2O, in vapor and liquid phases in pure water and aqueous solution systems publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(99)00281-1 – volume: 5 start-page: 45420 year: 2015 ident: ref_76 article-title: Effects of residual double bonds on the catalytic activity and stability of Pt/SDB hydrophobic catalysts publication-title: RSC Adv. doi: 10.1039/C5RA06131H – volume: 50 start-page: 1144 year: 2021 ident: ref_85 article-title: Study on the deep purification of tritiated light water based on combined electrolysis and catalytic exchange publication-title: Contemp. Chem. Ind. – volume: 88 start-page: 2361 year: 2013 ident: ref_109 article-title: Water detritiation processing of JET purified waste water using the TRENTA facility at Tritium Laboratory Karlsruhe publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2013.05.070 – volume: 41 start-page: 1077 year: 2002 ident: ref_83 article-title: Design and operational experience with a pilot-scale CECE detritiation process publication-title: Fusion Sci. Technol. doi: 10.13182/FST02-A22749 – ident: ref_106 doi: 10.2172/6205719 – volume: 172 start-page: 112736 year: 2021 ident: ref_33 article-title: Design study of a cryogenic distillation column for hydrogen isotope separation system publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2021.112736 – volume: 55 start-page: 1 year: 2021 ident: ref_15 article-title: Water distillation as a method for separation of hydrogen and oxygen isotopes: State of the art and prospects publication-title: Theor. Found. Chem. Eng. doi: 10.1134/S0040579521010097 – volume: 40 start-page: 1452 year: 1962 ident: ref_107 article-title: Influence of temperature on the electrolytic separation factor of hydrogen isotopes publication-title: Can. J. Chem. doi: 10.1139/v62-219 – volume: 344 start-page: 127275 year: 2024 ident: ref_54 article-title: Separation of hydrogen isotopic water by multi-walled carbon nanotube (MWCNT) membrane and graphene oxide (GO)-MWCNT composite membranes publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2024.127275 – volume: 30 start-page: 1653 year: 1995 ident: ref_108 article-title: Membrane distillation employed for separation of water isotopic compounds publication-title: Sep. Sci. Technol. doi: 10.1080/01496399508010368 – volume: 48 start-page: 140 year: 2005 ident: ref_21 article-title: Tritium isotope separation using adsorption-distillation column publication-title: Fusion Sci. Technol. doi: 10.13182/FST05-A898 – volume: 29 start-page: 221 year: 2006 ident: ref_31 article-title: Influencing factors of hydrogen isotopes separation by cryogenic distillation publication-title: Nucl. Tech. – volume: 166 start-page: 112308 year: 2021 ident: ref_60 article-title: Study and characterization of potential adsorbent materials for the design of the hydrogen isotopes extraction and analysis system publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2021.112308 – volume: 44 start-page: 177 year: 2024 ident: ref_91 article-title: Preparation of two-dimensional material composite proton exchange membrane and its performance in protium-tritium separation publication-title: Mod. Chem. Ind. – volume: 34 start-page: 89 year: 2021 ident: ref_37 article-title: Tritium removal from tritiated heavy water publication-title: J. Isot. – volume: 48 start-page: 335 year: 1997 ident: ref_16 article-title: Experimental installation for oxygen isotope separation by nitrogen oxide distillation at low temperature; Instalatie experimentala pentru separarea izotopilor oxigenului prin distilarea oxidului de azot la temperaturi joase publication-title: Rev. Chim. – volume: 146 start-page: 1725 year: 2019 ident: ref_73 article-title: Method of determination and optimization of the control parameters for an LPCE process publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2019.03.025 – volume: 46 start-page: 24135 year: 2021 ident: ref_25 article-title: Dynamic optimization of cryogenic distillation operation for hydrogen isotope separation in fusion power plant publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.04.199 – volume: 82 start-page: 2126 year: 2007 ident: ref_27 article-title: Commissioning of water detritiation and cryogenic distillation systems at TLK in view of ITER design publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2007.04.001 – volume: 5 start-page: 4022 year: 2021 ident: ref_59 article-title: Hydrogen separation and purification with MOF-based materials publication-title: Mater. Chem. Front. doi: 10.1039/D1QM00234A – volume: 464 start-page: 142780 year: 2023 ident: ref_101 article-title: Molybdenum disulfide nanosheets rich in edge sites for efficient hydrogen isotope separation by water electrolysis publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2023.142780 – volume: 21 start-page: 853 year: 1984 ident: ref_14 article-title: Preliminary experimental study for cryogenic distillation column with small inner diameter, (II) publication-title: J. Nucl. Sci. Technol. doi: 10.1080/18811248.1984.9731124 – volume: 351 start-page: 68 year: 2016 ident: ref_50 article-title: Sieving hydrogen isotopes through two-dimensional crystals publication-title: Science doi: 10.1126/science.aac9726 – volume: 255 start-page: 539 year: 2003 ident: ref_97 article-title: Tritium separation from heavy water by electrolysis with solid polymer electrolyte publication-title: J. Radioanal. Nucl. Chem. doi: 10.1023/A:1022592601787 – volume: 80 start-page: 391 year: 2024 ident: ref_103 article-title: Tritium behavior in water and gas produced by a fully tritium-compatible Electrolyzer publication-title: Fusion Sci. Technol. doi: 10.1080/15361055.2023.2230413 – ident: ref_43 doi: 10.1080/15361055.2024.2353967 – volume: 42 start-page: 23 year: 2020 ident: ref_96 article-title: Membrane properties of montmorillonite, saponite and clinoptilolite during electroosmotic fractionation of hydrogen isotopes publication-title: Mineral. J. doi: 10.15407/mineraljournal.42.04.023 – volume: 67 start-page: 443 year: 2015 ident: ref_94 article-title: Characterization of commercial proton exchange membrane materials after exposure to beta and gamma radiation publication-title: Fusion Sci. Technol. doi: 10.13182/FST14-T50 – volume: 35 start-page: 60 year: 1998 ident: ref_11 article-title: Simultaneous solution of concentration profiles in vapor-liquid phases of wetted-wall distillation column for H2O-HTO isotope separation publication-title: J. Nucl. Sci. Technol. doi: 10.1080/18811248.1998.9733820 – volume: 314 start-page: 123634 year: 2023 ident: ref_55 article-title: Hydrogen isotopic water separation in membrane distillation through BN, MoS2 and their heterostructure membranes publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2023.123634 – volume: 52 start-page: 667 year: 2007 ident: ref_28 article-title: Integrated tests of water detritiation and cryogenic distillation in view of iter design publication-title: Fusion Sci. Technol. doi: 10.13182/FST07-A1565 – volume: 305 start-page: 117 year: 2015 ident: ref_78 article-title: An assessment on hydrogen isotopes separation by liquid phase catalytic exchange process publication-title: J. Radioanal. Nucl. Chem. doi: 10.1007/s10967-015-4010-z – volume: 146 start-page: 1998 year: 2019 ident: ref_17 article-title: Cryogenic distillation experimental stands for hydrogen isotopes separation publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2019.03.085 – volume: 11 start-page: 111389 year: 2023 ident: ref_48 article-title: Graphene oxide composited with different size of organic molecules for hydrogen isotopic water separation in membrane distillation publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2023.111389 – volume: 69 start-page: 33 year: 2003 ident: ref_84 article-title: Heavy water detritiation by combined electrolysis catalytic exchange at the experimental industrial plant publication-title: Fusion Eng. Des. doi: 10.1016/S0920-3796(03)00230-8 – volume: 200 start-page: 114213 year: 2024 ident: ref_53 article-title: Radiation resistance of graphene in tritiated water publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2024.114213 – volume: 27 start-page: 1837 year: 2019 ident: ref_81 article-title: Separation process study of liquid phase catalytic exchange reaction based on the Pt/C/PTFE catalysts publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2019.01.019 – volume: 77 start-page: 26 year: 2021 ident: ref_93 article-title: Study of Electrolyzer materials at high tritium concentrations publication-title: Fusion Sci. Technol. doi: 10.1080/15361055.2020.1842681 – volume: 28 start-page: 636 year: 1995 ident: ref_10 article-title: Design of the water detritiation and isotope separation systems for ITER publication-title: Fusion Technol. doi: 10.13182/FST95-A30475 – volume: 331 start-page: 4569 year: 2022 ident: ref_67 article-title: Effects of temperature and hydrogen peroxide on the selective adsorption of HTO on activated carbon in tritiated water publication-title: J. Radioanal. Nucl. Chem. doi: 10.1007/s10967-022-08519-3 – volume: 14 start-page: 32360 year: 2022 ident: ref_35 article-title: High hydrogen isotope separation efficiency: Graphene or catalyst? publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c06394 – volume: 42 start-page: 566 year: 2005 ident: ref_71 article-title: Application of pressure swing adsorption to water detritiation process publication-title: J. Nucl. Sci. Technol. doi: 10.1080/18811248.2004.9726423 – volume: 146 start-page: 1863 year: 2019 ident: ref_69 article-title: Hydrogen adsorption performance for large-scale cryogenic molecular sieve bed publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2019.03.052 – volume: 148 start-page: 204707 year: 2018 ident: ref_52 article-title: Quantum Tunneling of Thermal Protons Through Pristine Graphene publication-title: J. Chem. Phys. doi: 10.1063/1.5024317 – volume: 60 start-page: 1395 year: 2011 ident: ref_65 article-title: Tritium removal from tritiated water using mesoporous silica publication-title: Fusion Sci. Technol. doi: 10.13182/FST11-A12691 – volume: 41 start-page: 619 year: 2004 ident: ref_20 article-title: Tritium isotope separation by water distillation column packed with silica-gel beads publication-title: J. Nucl. Sci. Technol. doi: 10.1080/18811248.2004.9715525 – volume: 24 start-page: 15840 year: 2022 ident: ref_47 article-title: Molecular hydrogen isotope separation by a graphdiyne membrane: A quantum-mechanical study publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D2CP01044E – volume: 77 start-page: 334 year: 1955 ident: ref_6 article-title: A correlation of reaction rates publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01607a027 – volume: 48 start-page: 112 year: 2005 ident: ref_75 article-title: Endurance test for SCK-CEN catalytic mixed packing, proposed for water detritiation system at JET publication-title: Fusion Sci. Technol. doi: 10.13182/FST05-A891 – volume: 125 start-page: 134 year: 2017 ident: ref_63 article-title: Comparison of MFI-ZSM5 and NaA zeolite-type tubular membranes for the separation of water vapour from helium for tritium processes in future fusion reactors publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2017.10.006 – volume: 146 start-page: 1868 year: 2019 ident: ref_30 article-title: Thermal analysis of a cryogenic distillation column for hydrogen isotopes separation publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2019.03.053 – volume: 23 start-page: 583 year: 2003 ident: ref_99 article-title: The development and application of solid polymer electrolysis enrichment device of tritium in water publication-title: Nucl. Electron. Detect. Technol. – volume: 41 start-page: 1142 year: 2002 ident: ref_42 article-title: Hydrogen isotope separation factors on palladium alloy membranes publication-title: Fusion Sci. Technol. doi: 10.13182/FST02-A22762 – volume: 41 start-page: 5003 year: 2016 ident: ref_24 article-title: Simulation studies of the characteristics of a cryogenic distillation column for hydrogen isotope separation publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.01.106 – volume: 124 start-page: 752 year: 2017 ident: ref_32 article-title: Dynamic simulation of a multicomponent distillation column for DT separation publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2017.04.081 – volume: 33 start-page: 981 year: 1996 ident: ref_9 article-title: Design study of feasible water detritiation systems for fusion reactor of ITER scale publication-title: J. Nucl. Sci. Technol. doi: 10.1080/18811248.1996.9732041 – volume: 41 start-page: 1160 year: 2002 ident: ref_88 article-title: Isotopic enrichment of tritiated water by a bipolar electrolysis process publication-title: Fusion Sci. Technol. doi: 10.13182/FST02-A22766 |
SSID | ssj0001736612 |
Score | 2.302061 |
SecondaryResourceType | review_article |
Snippet | Recent advancements in tritium separation technologies have significantly improved efficiency, particularly through the integration of vapor phase catalytic... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 33 |
SubjectTerms | Adsorbents Adsorption Carcinogens catalytic exchange Cost effectiveness deuterium-tritium water treatment Efficiency Electrolysis Energy consumption Exchanging Gas flow Hydrogen Industrial plant emissions Isotopes Liquid phases Nuclear accidents & safety Nuclear power plants Radiation Radioisotopes Separation Tritium tritium separation Vapor phases Water Water treatment |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6yi17EnzidkoNHy9IsSVsPwhyOISgeNtitpMl74MEpbvv_fUnbMVHw4rUU2r6X5vu-l8f3GLuurKVVNMBEacgTVYBLLMF-YtG5XPrM6XjQ_vRsJjP1ONfzrVFfoSestgeuA9cnxHLaG1RWFspgkasKjNWFRpE5MNHnkzBvS0zF6ko2IOCRtc3QgHR9fwm1lzblMiXBH2aYfYOi6Nj_Y0OOKDM-YPsNPeTD-rUO2Q4sjtjuqJ3Kdszu2lY5_hI6q2if4q8LPg3WROs33rT9ExzxTc2cpPAtH_L6EOCEzcYP09EkaWYgJI7EY5gUL4WRXkElUBYeU3BEmLTKoMpNipa0sFcCUwMpEJVDBGk1FvTFmagc8Y9T1lm8L-CMcSk8-so6ialVSErLYSatQS-0AO98l9204Sg_aquLkiRCiF75S_S67D6EbHNr8KmOFyh7ZZO98q_sdVmvDXjZ_DzLkihNGmrVsjj_j2dcsD0ZhvbGVuse66w-13BJTGJVXcVF8wVQ6Mhz priority: 102 providerName: Directory of Open Access Journals |
Title | Research Progress in Tritium Processing Technologies: A Review |
URI | https://www.proquest.com/docview/3171230429 https://doaj.org/article/819c5d6f4a2946f984be6a595f07ce63 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gO8AF8RSPMeXAkWptlqQtB9AGGxMS04SYtFuVJjHiwAZ7_H-cNt2EQFzbqlId1_ZnW99HyFWuFHpRGwIubBLw1OpAYdoPFGidMBNrUQzan4dyMOZPEzHxDbeFX6usYmIRqM1Mux55C_Nc5BqYLL37_AqcapSbrnoJjW1SxxCcIPiqd3vD0cumyxK3MQGxkm6ojfi-tbAlpzaeaYTA32mZ_UhJBXP_r8BcZJv-PtnzZSLtlOd6QLbs9JDs3FfqbEfktlqZoyO3YYXxir5P6aujKFp9UL_-j2mJrnvnCIlvaIeWw4BjMu73Xu8HgddCCDSCSKcYz0LJDLd5CCw1EFmNhZPgsc0TGYFCTGx4CJG0kcWSDsAyJSDFL47DXGMdckJq09nUnhLKQgMmV5pBpDgg4tIQMyXBhCK0Rpszcl2ZI_ssKS8yhArOetkf1jsjXWey9aOOr7q4MJu_Zd79M6w7tDASuGIpl5AmPLdSiVRAGGsr8SWNyuCZ_4kW2ebIz_-_fUF2mZPlLZapG6S2nK_sJdYKy7xJtpP-Y5PUO92Hbr_p3aNZIO9vn7vEoQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V5VAuFeUhWlrwAW5EdRzbSZBatF1YtvQhDrvS3oxjexCHZttuK9Q_xW9knEcrBOK21zjyYfzZ33zj8QzAm8paQlGGiVShSGQZXGKJ9hOLzhXC5041F-2nZ3oyk1_mar4Gv_q3MDGtsj8Tm4PaL1yMke8Rz6UxgCnKDxeXSewaFW9X-xYaLSyOw-1PkmzL_aOPtL5vhRh_mo4mSddVIHEkx2LvdcG18DJUHEXpMQ2OXBAl81AVOkVL6tJLjqkOaSDnCDEIq7DMSEXyyhGj07wP4KHMsjLuqGL8-T6mk2dEd6ItbkTjfG8Z2grehKBU8JgIlv1BgE2fgL9ooOG28WPY6JxSNmxRtAlroX4C66O-F9xTOOgT9NjXmM9FpyP7UbNpLIh0c866xwZEguwuUk8C_D0bsvbq4RnMVmKj5zCoF3V4AUxwj76yTmBqJZK-c5gLq9FzxYN3fgve9eYwF22BDUPCJFrP_MN6W3AYTXb3a6yO3XxYXH033WYz5OU45TVKK0qpsSxkFbRVpUKeu6Bpkp3e4KbbsktzD7Dt_w-_hvXJ9PTEnBydHb-ERyI2BG7SuHdgcH11E3bJS7muXjXQYPBt1Vj8DX51_PI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRWq5IGhBLI_iA70RrePYzgYJEK8VlLJaIZC4Bcf2IA7sAgtC_DV-HeM8QFUrblyT2IfJZ3_zjcczAGuFMYSiBCOpfDeSmbeRIdqPDFrbFS61qjxoP-nrw3P5-0JdTMBLcxcmpFU2e2K5UbuRDTHyDvFcHAKYIutgnRYx2O9t395FoYNUOGlt2mlUEDn2z08k38abR_v0r38J0Ts42zuM6g4DkSVpFvqwC66Fk77gKDKHsbfkjiiZ-qKrYzSkNJ3kGGsfe3KUEL0wCrOEFCUvLLE7zfsFJlNSRbwFk7sH_cHpe4QnTYj8RFXqKKExnbGv6nkTnmLBQ1pY8hcdll0D_iGFkul6MzBdu6hsp8LULEz44Xf4ttd0hvsBW026HhuE7C7aK9n1kJ2F8kiPN6y-ekCUyN7i9iTHN9gOqw4i5uD8U6w0D63haOgXgAnu0BXGCoyNRFJ7FlNhNDquuHfWtWG9MUd-W5XbyEmmBOvl_7FeG3aDyd4-DbWyywej-6u8Xno5-TxWOY3SiExqzLqy8NqoTCFPrdc0yXJj8LxewOP8HW6LH79eha-Ew_zPUf94CaZE6A5c5nQvQ-vh_tGvkMvyUPysscHg8rPh-Aol1gKT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+Progress+in+Tritium+Processing+Technologies%3A+A+Review&rft.jtitle=Separations&rft.au=Zhao%2C+Ziqian&rft.au=Sun%2C+Yandong&rft.au=Chen%2C+Qi&rft.au=Li%2C+Tianchi&rft.date=2025-02-01&rft.issn=2297-8739&rft.eissn=2297-8739&rft.volume=12&rft.issue=2&rft.spage=33&rft_id=info:doi/10.3390%2Fseparations12020033&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_separations12020033 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2297-8739&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2297-8739&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2297-8739&client=summon |