Research Progress in Tritium Processing Technologies: A Review

Recent advancements in tritium separation technologies have significantly improved efficiency, particularly through the integration of vapor phase catalytic exchange (VPCE), liquid phase catalytic exchange (LPCE), and combined electrolysis catalytic exchange (CECE) methods. Combining these technique...

Full description

Saved in:
Bibliographic Details
Published inSeparations Vol. 12; no. 2; p. 33
Main Authors Zhao, Ziqian, Sun, Yandong, Chen, Qi, Li, Tianchi, Liu, Fang, Yan, Taihong, Zheng, Weifang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent advancements in tritium separation technologies have significantly improved efficiency, particularly through the integration of vapor phase catalytic exchange (VPCE), liquid phase catalytic exchange (LPCE), and combined electrolysis catalytic exchange (CECE) methods. Combining these techniques overcomes individual limitations, enhancing separation efficiency and reducing energy consumption. The CECE process, which integrates electrolysis with catalytic exchange, offers high separation factors, making it effective for high-concentration tritiated water treatment. Solid polymer electrolyte (SPE) technology has also gained prominence for its higher efficiency, smaller equipment size, and longer lifespan compared to traditional alkaline electrolysis. While electrolysis offers high separation factors, its high energy demand limits its cost-effectiveness for large-scale operations. As a result, electrolysis is often combined with other methods like CECE to optimize both energy consumption and separation efficiency. Future research will focus on improving the energy efficiency of electrolysis for large-scale, low-cost tritiated water treatment.
AbstractList Recent advancements in tritium separation technologies have significantly improved efficiency, particularly through the integration of vapor phase catalytic exchange (VPCE), liquid phase catalytic exchange (LPCE), and combined electrolysis catalytic exchange (CECE) methods. Combining these techniques overcomes individual limitations, enhancing separation efficiency and reducing energy consumption. The CECE process, which integrates electrolysis with catalytic exchange, offers high separation factors, making it effective for high-concentration tritiated water treatment. Solid polymer electrolyte (SPE) technology has also gained prominence for its higher efficiency, smaller equipment size, and longer lifespan compared to traditional alkaline electrolysis. While electrolysis offers high separation factors, its high energy demand limits its cost-effectiveness for large-scale operations. As a result, electrolysis is often combined with other methods like CECE to optimize both energy consumption and separation efficiency. Future research will focus on improving the energy efficiency of electrolysis for large-scale, low-cost tritiated water treatment.
Author Chen, Qi
Sun, Yandong
Yan, Taihong
Zheng, Weifang
Zhao, Ziqian
Li, Tianchi
Liu, Fang
Author_xml – sequence: 1
  givenname: Ziqian
  surname: Zhao
  fullname: Zhao, Ziqian
– sequence: 2
  givenname: Yandong
  surname: Sun
  fullname: Sun, Yandong
– sequence: 3
  givenname: Qi
  orcidid: 0000-0002-1367-7497
  surname: Chen
  fullname: Chen, Qi
– sequence: 4
  givenname: Tianchi
  orcidid: 0000-0002-4490-2474
  surname: Li
  fullname: Li, Tianchi
– sequence: 5
  givenname: Fang
  surname: Liu
  fullname: Liu, Fang
– sequence: 6
  givenname: Taihong
  surname: Yan
  fullname: Yan, Taihong
– sequence: 7
  givenname: Weifang
  surname: Zheng
  fullname: Zheng, Weifang
BookMark eNptkE9LAzEQxYNUsNZ-Ai8LnquTZDfZeBBK8U-hoJR6DtnspE1pNzXZKn57t1bEg6cZHo_fzHvnpNeEBgm5pHDNuYKbhDsTTetDkygDBsD5CekzpuSolFz1_uxnZJjSGgCo5EJQ1id3c0xool1lLzEsI6aU-SZbRN_6_fag2U7yzTJboF01YROWHtNtNs7m-O7x44KcOrNJOPyZA_L6cL-YPI1mz4_TyXg2spyX7YhyBoLVOVbgmKodRcuYKHKJVSmoM1jxOgdHBVJUUjqHzBROdekkVBYEH5DpkVsHs9a76LcmfupgvP4WQlxqE1tvN6hLqmxRC5cbpnLhVJlXKEyhCgfSouAd6-rI2sXwtsfU6nXYx6Z7X3MqKeOQM9W5-NFlY0gpovu9SkEfetf_9M6_AF9keac
Cites_doi 10.13182/FST11-A12689
10.1016/j.fusengdes.2020.112018
10.1016/j.colsurfa.2024.134835
10.3390/w16070967
10.13182/FST08-A1846
10.1080/18811248.1984.9731010
10.1016/j.ijhydene.2022.06.052
10.1016/j.heliyon.2024.e33956
10.1016/j.ijhydene.2023.10.282
10.13182/FST03-A370
10.1016/j.fusengdes.2010.03.067
10.1016/j.ijhydene.2023.08.241
10.1016/j.jnucmat.2006.04.003
10.1016/j.seppur.2023.123148
10.1016/j.fusengdes.2015.12.011
10.1016/j.heliyon.2023.e17031
10.1038/ncomms15215
10.2172/1222908
10.1016/j.jpcs.2009.04.010
10.1080/18811248.2006.9711116
10.13182/FST54-462
10.1016/0920-3796(89)90070-7
10.1080/15361055.2017.1291235
10.1016/j.ijhydene.2022.09.287
10.1016/j.micromeso.2022.112387
10.13182/FST11-A12693
10.13182/FST02-A22757
10.1007/s10967-018-6022-y
10.1016/j.mtcomm.2021.102736
10.1080/07366299508918261
10.1016/j.fusengdes.2019.04.055
10.1016/j.fusengdes.2024.114426
10.1080/15361055.2023.2271242
10.1007/s10967-019-06905-y
10.1021/j100850a028
10.1080/18811248.2006.9711172
10.1016/S0920-3796(01)00484-7
10.1007/s10967-014-3553-8
10.13182/FST88-A25186
10.1016/j.fusengdes.2011.04.038
10.1016/j.fusengdes.2021.112627
10.1088/1741-4326/ad1af4
10.1016/S0920-3796(03)00242-4
10.1016/S0016-7037(99)00281-1
10.1039/C5RA06131H
10.1016/j.fusengdes.2013.05.070
10.13182/FST02-A22749
10.2172/6205719
10.1016/j.fusengdes.2021.112736
10.1134/S0040579521010097
10.1139/v62-219
10.1016/j.seppur.2024.127275
10.1080/01496399508010368
10.13182/FST05-A898
10.1016/j.fusengdes.2021.112308
10.1016/j.fusengdes.2019.03.025
10.1016/j.ijhydene.2021.04.199
10.1016/j.fusengdes.2007.04.001
10.1039/D1QM00234A
10.1016/j.electacta.2023.142780
10.1080/18811248.1984.9731124
10.1126/science.aac9726
10.1023/A:1022592601787
10.1080/15361055.2023.2230413
10.1080/15361055.2024.2353967
10.15407/mineraljournal.42.04.023
10.13182/FST14-T50
10.1080/18811248.1998.9733820
10.1016/j.seppur.2023.123634
10.13182/FST07-A1565
10.1007/s10967-015-4010-z
10.1016/j.fusengdes.2019.03.085
10.1016/j.jece.2023.111389
10.1016/S0920-3796(03)00230-8
10.1016/j.fusengdes.2024.114213
10.1016/j.cjche.2019.01.019
10.1080/15361055.2020.1842681
10.13182/FST95-A30475
10.1007/s10967-022-08519-3
10.1021/acsami.2c06394
10.1080/18811248.2004.9726423
10.1016/j.fusengdes.2019.03.052
10.1063/1.5024317
10.13182/FST11-A12691
10.1080/18811248.2004.9715525
10.1039/D2CP01044E
10.1021/ja01607a027
10.13182/FST05-A891
10.1016/j.fusengdes.2017.10.006
10.1016/j.fusengdes.2019.03.053
10.13182/FST02-A22762
10.1016/j.ijhydene.2016.01.106
10.1016/j.fusengdes.2017.04.081
10.1080/18811248.1996.9732041
10.13182/FST02-A22766
ContentType Journal Article
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
L7M
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/separations12020033
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Advanced Technologies Database with Aerospace
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2297-8739
ExternalDocumentID oai_doaj_org_article_819c5d6f4a2946f984be6a595f07ce63
10_3390_separations12020033
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
IAO
ITC
KB.
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PROAC
7SR
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c338t-132062d4eb0f29df1ec226547eb861faeb3d40f16e1e977ffe2a5f939070bc063
IEDL.DBID BENPR
ISSN 2297-8739
IngestDate Wed Aug 27 01:31:49 EDT 2025
Fri Jul 25 11:49:11 EDT 2025
Tue Jul 01 02:16:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-132062d4eb0f29df1ec226547eb861faeb3d40f16e1e977ffe2a5f939070bc063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4490-2474
0000-0002-1367-7497
OpenAccessLink https://www.proquest.com/docview/3171230429?pq-origsite=%requestingapplication%
PQID 3171230429
PQPubID 2032417
ParticipantIDs doaj_primary_oai_doaj_org_article_819c5d6f4a2946f984be6a595f07ce63
proquest_journals_3171230429
crossref_primary_10_3390_separations12020033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Separations
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Bhattacharyya (ref_24) 2016; 41
Cristescu (ref_27) 2007; 82
Michling (ref_109) 2013; 88
Bartolomei (ref_47) 2022; 24
Zhou (ref_91) 2024; 44
Kalyanam (ref_105) 1988; 14
Xue (ref_100) 2022; 47
Poltavsky (ref_52) 2018; 148
Shere (ref_7) 2024; 55
Wang (ref_26) 2020; 160
Miller (ref_83) 2002; 41
Alekseev (ref_84) 2003; 69
Yamamoto (ref_19) 1989; 10
Niculescu (ref_32) 2017; 124
Wen (ref_99) 2003; 23
Sun (ref_55) 2023; 314
Heinze (ref_86) 2001; 58–59
Liu (ref_5) 1997; 19
Kveton (ref_10) 1995; 28
Fukada (ref_21) 2005; 48
Ana (ref_30) 2019; 146
Park (ref_69) 2019; 146
Kobayashi (ref_38) 2003; 44
Thomson (ref_94) 2015; 67
Arita (ref_39) 2002; 41
Zabolockis (ref_92) 2024; 64
Cristescu (ref_29) 2016; 109
Iwai (ref_95) 2010; 85
Luo (ref_1) 1996; 18
Miho (ref_23) 2017; 71
Xue (ref_35) 2022; 14
Wang (ref_53) 2024; 200
Vijulie (ref_73) 2019; 146
Sugiyama (ref_11) 1998; 35
Koyanaka (ref_56) 2019; 322
Glugla (ref_41) 2006; 355
Ogata (ref_97) 2003; 255
Lu (ref_45) 2011; 86
Wu (ref_37) 2021; 34
Wu (ref_85) 2021; 50
Jurkin (ref_89) 2011; 60
Roy (ref_107) 1962; 40
Yeon (ref_67) 2022; 331
Matsumoto (ref_72) 2024; 10
Fukada (ref_20) 2004; 41
Varlam (ref_103) 2024; 80
Ando (ref_102) 2023; 9
Urm (ref_34) 2022; 55
Shimizu (ref_40) 2002; 47
Luo (ref_42) 2002; 41
Kakiuchi (ref_8) 2000; 64
So (ref_58) 2024; 50
Taguchi (ref_65) 2011; 60
Whitehorne (ref_93) 2021; 77
Zhao (ref_101) 2023; 464
Heinze (ref_87) 2003; 69
Hammond (ref_6) 1955; 77
Sun (ref_54) 2024; 344
Yamanishi (ref_14) 1984; 21
Stefan (ref_79) 2019; 146
Cristescu (ref_28) 2007; 52
Ionita (ref_75) 2005; 48
Park (ref_25) 2021; 46
Gligan (ref_16) 1997; 48
Lazar (ref_17) 2019; 146
Sircar (ref_60) 2021; 166
Iwai (ref_61) 2008; 54
Heinze (ref_88) 2002; 41
Hu (ref_50) 2016; 351
Edao (ref_68) 2024; 202
Yamanishi (ref_13) 1984; 21
Fu (ref_70) 2023; 348
Sakharovski (ref_80) 2015; 304
Hou (ref_3) 2018; 17
Li (ref_81) 2019; 27
Fan (ref_77) 2024; 700
Fukada (ref_22) 2006; 43
Wei (ref_98) 2021; 29
Xia (ref_31) 2006; 29
Uchiyama (ref_4) 1995; 13
Zhang (ref_2) 1990; 24
Strigle (ref_12) 1979; 75
Magomedbekov (ref_15) 2021; 55
Bornea (ref_18) 2008; 54
Li (ref_48) 2023; 11
Borisevich (ref_63) 2017; 125
Urm (ref_33) 2021; 172
Lim (ref_59) 2021; 5
Iwai (ref_9) 1996; 33
Iwai (ref_62) 2009; 70
Lu (ref_74) 2023; 48
ref_106
Pushkarov (ref_96) 2020; 42
Sohn (ref_82) 2006; 43
Li (ref_76) 2015; 5
ref_46
Koyanaka (ref_57) 2018; 318
ref_43
Ionita (ref_78) 2015; 305
Shi (ref_36) 2024; 46
Iwai (ref_71) 2005; 42
Zeng (ref_104) 2023; 310
Zhang (ref_51) 2017; 8
Isobe (ref_90) 2011; 60
ref_49
Tulenko (ref_64) 2003; 89
Hook (ref_110) 1968; 72
Vergari (ref_66) 2021; 168
Chmielewski (ref_108) 1995; 30
Bulubasa (ref_44) 2024; 80
References_xml – volume: 60
  start-page: 1387
  year: 2011
  ident: ref_90
  article-title: Development of high efficiency electrode for highly tritiated water processing
  publication-title: Fusion Sci. Technol.
  doi: 10.13182/FST11-A12689
– volume: 75
  start-page: 86
  year: 1979
  ident: ref_12
  article-title: Packed distillation column design
  publication-title: Chem. Eng. Progr.
– volume: 160
  start-page: 112018
  year: 2020
  ident: ref_26
  article-title: Dynamic behavior and control strategy of cryogenic distillation column for hydrogen isotope separation in CFETR
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2020.112018
– volume: 700
  start-page: 134835
  year: 2024
  ident: ref_77
  article-title: Synthesis and properties of fluorosilane treated nano-Al2O3 hybrid modified styrene-divinylbenzene copolymers
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2024.134835
– ident: ref_49
  doi: 10.3390/w16070967
– volume: 54
  start-page: 426
  year: 2008
  ident: ref_18
  article-title: Investigation related to hydrogen isotopes separation by cryogenic distillation
  publication-title: Fusion Sci. Technol.
  doi: 10.13182/FST08-A1846
– volume: 46
  start-page: 85
  year: 2024
  ident: ref_36
  article-title: Review of water hydrogen isotope separation technology
  publication-title: J. Nucl. Radiochem.
– volume: 21
  start-page: 61
  year: 1984
  ident: ref_13
  article-title: Preliminary experimental study for cryogenic distillation column with small inner diameter, (I)
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/18811248.1984.9731010
– volume: 47
  start-page: 26842
  year: 2022
  ident: ref_100
  article-title: Gold as an efficient hydrogen isotope separation catalyst in proton exchange membrane water electrolysis
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.06.052
– volume: 10
  start-page: e33956
  year: 2024
  ident: ref_72
  article-title: Removal of tritiated water molecules by isotope exchange reaction between H2O vapor and tritium water
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e33956
– volume: 55
  start-page: 319
  year: 2024
  ident: ref_7
  article-title: The next generation of low tritium hydrogen isotope separation technologies for future fusion power plants
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.10.282
– volume: 44
  start-page: 415
  year: 2003
  ident: ref_38
  article-title: H2-HT Separation using “cryogenic-wall” Thermal diffusion column with heated-tube
  publication-title: Fusion Sci. Technol.
  doi: 10.13182/FST03-A370
– volume: 55
  start-page: 168
  year: 2022
  ident: ref_34
  article-title: Dynamic optimization study for cryogenic distillation in hydrogen isotope separation system
  publication-title: IFAC-Pap.
– volume: 85
  start-page: 1421
  year: 2010
  ident: ref_95
  article-title: Recent R&D results on polymeric materials for a SPE-type high-level tritiated water electrolyzer system
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2010.03.067
– volume: 47
  start-page: 89
  year: 2002
  ident: ref_40
  article-title: Numerical study on extraction of tritium generated in HMR by way of system composed of EXEL-process and thermal diffusion column cascade
  publication-title: Nukleonika
– volume: 50
  start-page: 539
  year: 2024
  ident: ref_58
  article-title: A mini-review of the current progress and future challenges of zeolites for hydrogen isotopes separation through a quantum effect
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.08.241
– volume: 355
  start-page: 47
  year: 2006
  ident: ref_41
  article-title: Hydrogen isotope separation by permeation through palladium membranes
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2006.04.003
– volume: 310
  start-page: 123148
  year: 2023
  ident: ref_104
  article-title: Large-current density and high-durability proton exchange membrane water electrolysis for practical hydrogen isotope separation
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2023.123148
– volume: 109
  start-page: 1404
  year: 2016
  ident: ref_29
  article-title: Enhanced configuration of a water detritiation system; impact on ITER Isotope Separation System based cryogenic distillation
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2015.12.011
– volume: 9
  start-page: e17031
  year: 2023
  ident: ref_102
  article-title: Effects of additives and electrolytic treatment to remove tritium from contaminated water
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e17031
– volume: 19
  start-page: 17
  year: 1997
  ident: ref_5
  article-title: The extraction mechanism of tritium in 30% TBP-kerosene-HNO3 system
  publication-title: J. Nucl. Radiochem.
– volume: 8
  start-page: 15215
  year: 2017
  ident: ref_51
  article-title: Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15215
– ident: ref_46
  doi: 10.2172/1222908
– volume: 70
  start-page: 881
  year: 2009
  ident: ref_62
  article-title: Influence of framework silica-to-alumina ratio on the water adsorption and desorption characteristics of MHI-CaX/CaY zeolite
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2009.04.010
– volume: 43
  start-page: 423
  year: 2006
  ident: ref_22
  article-title: Transient behavior of enrichment of tritium water in adsorption-distillation column
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/18811248.2006.9711116
– volume: 54
  start-page: 462
  year: 2008
  ident: ref_61
  article-title: Effect of cation on HTO/H2O separation and dehydration characteristics of Y-type zeolite adsorbent
  publication-title: Fusion Sci. Technol.
  doi: 10.13182/FST54-462
– volume: 10
  start-page: 315
  year: 1989
  ident: ref_19
  article-title: H2O-HTO isotope separation by distillation of water—A dynamics of HETP of SUS Dixon ring in a small packed column
  publication-title: Fusion Eng. Des.
  doi: 10.1016/0920-3796(89)90070-7
– volume: 17
  start-page: 47
  year: 2018
  ident: ref_3
  article-title: Management of tritium in spent fuel reprocessing plant of power reactor
  publication-title: Ind. Sci. Trib.
– volume: 71
  start-page: 326
  year: 2017
  ident: ref_23
  article-title: Tritium water distillation assisted with adsorption and isotopic exchange
  publication-title: Fusion Sci. Technol.
  doi: 10.1080/15361055.2017.1291235
– volume: 48
  start-page: 1979
  year: 2023
  ident: ref_74
  article-title: Superhydrophobic Pt@SBA-15 catalyst for tritium separation in liquid phase catalytic exchange
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.09.287
– volume: 348
  start-page: 112387
  year: 2023
  ident: ref_70
  article-title: Superhydrophilic metal-organic frameworks film modified surface for tritium removal from tritiated heavy water
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2022.112387
– volume: 60
  start-page: 1403
  year: 2011
  ident: ref_89
  article-title: Development and performance of a multibipolar HTO electrolysis system
  publication-title: Fusion Sci. Technol.
  doi: 10.13182/FST11-A12693
– volume: 18
  start-page: 13
  year: 1996
  ident: ref_1
  article-title: Study on the behaviour of tritium in Purex process
  publication-title: J. Nucl. Radiochem.
– volume: 41
  start-page: 1116
  year: 2002
  ident: ref_39
  article-title: Experimental study for parameters affecting separation factor of cryogenic wall thermal diffusion column
  publication-title: Fusion Sci. Technol.
  doi: 10.13182/FST02-A22757
– volume: 318
  start-page: 175
  year: 2018
  ident: ref_57
  article-title: Tritium separation from parts-per-trillion-level water by a membrane with protonated manganese dioxide
  publication-title: J. Radioanal. Nucl. Chem.
  doi: 10.1007/s10967-018-6022-y
– volume: 29
  start-page: 102736
  year: 2021
  ident: ref_98
  article-title: Theoretical analysis of two-dimensional crystals on separation of hydrogen isotopes in solid polymer electrolyte (SPE) electrolysis
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2021.102736
– volume: 13
  start-page: 59
  year: 1995
  ident: ref_4
  article-title: Behavior of tritium in the Purex process
  publication-title: Solvent Extr. Ion Exch.
  doi: 10.1080/07366299508918261
– volume: 89
  start-page: 253
  year: 2003
  ident: ref_64
  article-title: Screening experiments for removal of low-level Tritiated water (HTO)
  publication-title: Trans. Am. Nucl. Soc.
– volume: 146
  start-page: 2613
  year: 2019
  ident: ref_79
  article-title: Computer based architecture to control water detritiation process
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2019.04.055
– volume: 202
  start-page: 114426
  year: 2024
  ident: ref_68
  article-title: Selective adsorption properties of layered titanate for tritiated water
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2024.114426
– volume: 24
  start-page: 87
  year: 1990
  ident: ref_2
  article-title: 3H behaviour and control in reprocessing of spent fuel from LWR
  publication-title: Atom. Energy Sci. Technol.
– volume: 80
  start-page: 411
  year: 2024
  ident: ref_44
  article-title: Investigations on 3he: Hydrogen isotope separation employing palladium/silver membranes
  publication-title: Fusion Sci. Technol.
  doi: 10.1080/15361055.2023.2271242
– volume: 322
  start-page: 1889
  year: 2019
  ident: ref_56
  article-title: Tritium separation from heavy water using a membrane containing deuterated manganese dioxide
  publication-title: J. Radioanal. Nucl. Chem.
  doi: 10.1007/s10967-019-06905-y
– volume: 72
  start-page: 1234
  year: 1968
  ident: ref_110
  article-title: Vapor pressures of the isotopic waters and ices
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100850a028
– volume: 43
  start-page: 874
  year: 2006
  ident: ref_82
  article-title: Deactivation of hydrophobic Pt/SDBC catalyst in the WTRF LPCE column for tritium separation
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/18811248.2006.9711172
– volume: 58–59
  start-page: 429
  year: 2001
  ident: ref_86
  article-title: Bipolar electrolysis for tritium recovery from weakly active tritiated water
  publication-title: Fusion Eng. Des.
  doi: 10.1016/S0920-3796(01)00484-7
– volume: 304
  start-page: 357
  year: 2015
  ident: ref_80
  article-title: A new way for improving efficiency of CECE-process based hydrogen isotope separation plant
  publication-title: J. Radioanal. Nucl. Chem.
  doi: 10.1007/s10967-014-3553-8
– volume: 14
  start-page: 524
  year: 1988
  ident: ref_105
  article-title: A Comparison of Process Characteristics for the Recovery of Tritium from Heavy Water and Light Water Systems
  publication-title: Fusion Technol.
  doi: 10.13182/FST88-A25186
– volume: 86
  start-page: 2220
  year: 2011
  ident: ref_45
  article-title: Tritium aging effects on hydrogen permeation through Pd8.5Y0.19Ru alloy membrane
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2011.04.038
– volume: 168
  start-page: 112627
  year: 2021
  ident: ref_66
  article-title: The impact of neutron irradiation, graphite oxidation and fluorination on tritium uptake into and desorption from graphite in molten salt environments
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2021.112627
– volume: 64
  start-page: 026022
  year: 2024
  ident: ref_92
  article-title: Graphene-based electrochemical system for tritium enrichment
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ad1af4
– volume: 69
  start-page: 67
  year: 2003
  ident: ref_87
  article-title: French experience in tritiated water management
  publication-title: Fusion Eng. Des.
  doi: 10.1016/S0920-3796(03)00242-4
– volume: 64
  start-page: 1485
  year: 2000
  ident: ref_8
  article-title: Distribution of isotopic water molecules, H2O, HDO, and D2O, in vapor and liquid phases in pure water and aqueous solution systems
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(99)00281-1
– volume: 5
  start-page: 45420
  year: 2015
  ident: ref_76
  article-title: Effects of residual double bonds on the catalytic activity and stability of Pt/SDB hydrophobic catalysts
  publication-title: RSC Adv.
  doi: 10.1039/C5RA06131H
– volume: 50
  start-page: 1144
  year: 2021
  ident: ref_85
  article-title: Study on the deep purification of tritiated light water based on combined electrolysis and catalytic exchange
  publication-title: Contemp. Chem. Ind.
– volume: 88
  start-page: 2361
  year: 2013
  ident: ref_109
  article-title: Water detritiation processing of JET purified waste water using the TRENTA facility at Tritium Laboratory Karlsruhe
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2013.05.070
– volume: 41
  start-page: 1077
  year: 2002
  ident: ref_83
  article-title: Design and operational experience with a pilot-scale CECE detritiation process
  publication-title: Fusion Sci. Technol.
  doi: 10.13182/FST02-A22749
– ident: ref_106
  doi: 10.2172/6205719
– volume: 172
  start-page: 112736
  year: 2021
  ident: ref_33
  article-title: Design study of a cryogenic distillation column for hydrogen isotope separation system
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2021.112736
– volume: 55
  start-page: 1
  year: 2021
  ident: ref_15
  article-title: Water distillation as a method for separation of hydrogen and oxygen isotopes: State of the art and prospects
  publication-title: Theor. Found. Chem. Eng.
  doi: 10.1134/S0040579521010097
– volume: 40
  start-page: 1452
  year: 1962
  ident: ref_107
  article-title: Influence of temperature on the electrolytic separation factor of hydrogen isotopes
  publication-title: Can. J. Chem.
  doi: 10.1139/v62-219
– volume: 344
  start-page: 127275
  year: 2024
  ident: ref_54
  article-title: Separation of hydrogen isotopic water by multi-walled carbon nanotube (MWCNT) membrane and graphene oxide (GO)-MWCNT composite membranes
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2024.127275
– volume: 30
  start-page: 1653
  year: 1995
  ident: ref_108
  article-title: Membrane distillation employed for separation of water isotopic compounds
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496399508010368
– volume: 48
  start-page: 140
  year: 2005
  ident: ref_21
  article-title: Tritium isotope separation using adsorption-distillation column
  publication-title: Fusion Sci. Technol.
  doi: 10.13182/FST05-A898
– volume: 29
  start-page: 221
  year: 2006
  ident: ref_31
  article-title: Influencing factors of hydrogen isotopes separation by cryogenic distillation
  publication-title: Nucl. Tech.
– volume: 166
  start-page: 112308
  year: 2021
  ident: ref_60
  article-title: Study and characterization of potential adsorbent materials for the design of the hydrogen isotopes extraction and analysis system
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2021.112308
– volume: 44
  start-page: 177
  year: 2024
  ident: ref_91
  article-title: Preparation of two-dimensional material composite proton exchange membrane and its performance in protium-tritium separation
  publication-title: Mod. Chem. Ind.
– volume: 34
  start-page: 89
  year: 2021
  ident: ref_37
  article-title: Tritium removal from tritiated heavy water
  publication-title: J. Isot.
– volume: 48
  start-page: 335
  year: 1997
  ident: ref_16
  article-title: Experimental installation for oxygen isotope separation by nitrogen oxide distillation at low temperature; Instalatie experimentala pentru separarea izotopilor oxigenului prin distilarea oxidului de azot la temperaturi joase
  publication-title: Rev. Chim.
– volume: 146
  start-page: 1725
  year: 2019
  ident: ref_73
  article-title: Method of determination and optimization of the control parameters for an LPCE process
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2019.03.025
– volume: 46
  start-page: 24135
  year: 2021
  ident: ref_25
  article-title: Dynamic optimization of cryogenic distillation operation for hydrogen isotope separation in fusion power plant
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.04.199
– volume: 82
  start-page: 2126
  year: 2007
  ident: ref_27
  article-title: Commissioning of water detritiation and cryogenic distillation systems at TLK in view of ITER design
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2007.04.001
– volume: 5
  start-page: 4022
  year: 2021
  ident: ref_59
  article-title: Hydrogen separation and purification with MOF-based materials
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D1QM00234A
– volume: 464
  start-page: 142780
  year: 2023
  ident: ref_101
  article-title: Molybdenum disulfide nanosheets rich in edge sites for efficient hydrogen isotope separation by water electrolysis
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2023.142780
– volume: 21
  start-page: 853
  year: 1984
  ident: ref_14
  article-title: Preliminary experimental study for cryogenic distillation column with small inner diameter, (II)
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/18811248.1984.9731124
– volume: 351
  start-page: 68
  year: 2016
  ident: ref_50
  article-title: Sieving hydrogen isotopes through two-dimensional crystals
  publication-title: Science
  doi: 10.1126/science.aac9726
– volume: 255
  start-page: 539
  year: 2003
  ident: ref_97
  article-title: Tritium separation from heavy water by electrolysis with solid polymer electrolyte
  publication-title: J. Radioanal. Nucl. Chem.
  doi: 10.1023/A:1022592601787
– volume: 80
  start-page: 391
  year: 2024
  ident: ref_103
  article-title: Tritium behavior in water and gas produced by a fully tritium-compatible Electrolyzer
  publication-title: Fusion Sci. Technol.
  doi: 10.1080/15361055.2023.2230413
– ident: ref_43
  doi: 10.1080/15361055.2024.2353967
– volume: 42
  start-page: 23
  year: 2020
  ident: ref_96
  article-title: Membrane properties of montmorillonite, saponite and clinoptilolite during electroosmotic fractionation of hydrogen isotopes
  publication-title: Mineral. J.
  doi: 10.15407/mineraljournal.42.04.023
– volume: 67
  start-page: 443
  year: 2015
  ident: ref_94
  article-title: Characterization of commercial proton exchange membrane materials after exposure to beta and gamma radiation
  publication-title: Fusion Sci. Technol.
  doi: 10.13182/FST14-T50
– volume: 35
  start-page: 60
  year: 1998
  ident: ref_11
  article-title: Simultaneous solution of concentration profiles in vapor-liquid phases of wetted-wall distillation column for H2O-HTO isotope separation
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/18811248.1998.9733820
– volume: 314
  start-page: 123634
  year: 2023
  ident: ref_55
  article-title: Hydrogen isotopic water separation in membrane distillation through BN, MoS2 and their heterostructure membranes
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2023.123634
– volume: 52
  start-page: 667
  year: 2007
  ident: ref_28
  article-title: Integrated tests of water detritiation and cryogenic distillation in view of iter design
  publication-title: Fusion Sci. Technol.
  doi: 10.13182/FST07-A1565
– volume: 305
  start-page: 117
  year: 2015
  ident: ref_78
  article-title: An assessment on hydrogen isotopes separation by liquid phase catalytic exchange process
  publication-title: J. Radioanal. Nucl. Chem.
  doi: 10.1007/s10967-015-4010-z
– volume: 146
  start-page: 1998
  year: 2019
  ident: ref_17
  article-title: Cryogenic distillation experimental stands for hydrogen isotopes separation
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2019.03.085
– volume: 11
  start-page: 111389
  year: 2023
  ident: ref_48
  article-title: Graphene oxide composited with different size of organic molecules for hydrogen isotopic water separation in membrane distillation
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2023.111389
– volume: 69
  start-page: 33
  year: 2003
  ident: ref_84
  article-title: Heavy water detritiation by combined electrolysis catalytic exchange at the experimental industrial plant
  publication-title: Fusion Eng. Des.
  doi: 10.1016/S0920-3796(03)00230-8
– volume: 200
  start-page: 114213
  year: 2024
  ident: ref_53
  article-title: Radiation resistance of graphene in tritiated water
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2024.114213
– volume: 27
  start-page: 1837
  year: 2019
  ident: ref_81
  article-title: Separation process study of liquid phase catalytic exchange reaction based on the Pt/C/PTFE catalysts
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2019.01.019
– volume: 77
  start-page: 26
  year: 2021
  ident: ref_93
  article-title: Study of Electrolyzer materials at high tritium concentrations
  publication-title: Fusion Sci. Technol.
  doi: 10.1080/15361055.2020.1842681
– volume: 28
  start-page: 636
  year: 1995
  ident: ref_10
  article-title: Design of the water detritiation and isotope separation systems for ITER
  publication-title: Fusion Technol.
  doi: 10.13182/FST95-A30475
– volume: 331
  start-page: 4569
  year: 2022
  ident: ref_67
  article-title: Effects of temperature and hydrogen peroxide on the selective adsorption of HTO on activated carbon in tritiated water
  publication-title: J. Radioanal. Nucl. Chem.
  doi: 10.1007/s10967-022-08519-3
– volume: 14
  start-page: 32360
  year: 2022
  ident: ref_35
  article-title: High hydrogen isotope separation efficiency: Graphene or catalyst?
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c06394
– volume: 42
  start-page: 566
  year: 2005
  ident: ref_71
  article-title: Application of pressure swing adsorption to water detritiation process
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/18811248.2004.9726423
– volume: 146
  start-page: 1863
  year: 2019
  ident: ref_69
  article-title: Hydrogen adsorption performance for large-scale cryogenic molecular sieve bed
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2019.03.052
– volume: 148
  start-page: 204707
  year: 2018
  ident: ref_52
  article-title: Quantum Tunneling of Thermal Protons Through Pristine Graphene
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5024317
– volume: 60
  start-page: 1395
  year: 2011
  ident: ref_65
  article-title: Tritium removal from tritiated water using mesoporous silica
  publication-title: Fusion Sci. Technol.
  doi: 10.13182/FST11-A12691
– volume: 41
  start-page: 619
  year: 2004
  ident: ref_20
  article-title: Tritium isotope separation by water distillation column packed with silica-gel beads
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/18811248.2004.9715525
– volume: 24
  start-page: 15840
  year: 2022
  ident: ref_47
  article-title: Molecular hydrogen isotope separation by a graphdiyne membrane: A quantum-mechanical study
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D2CP01044E
– volume: 77
  start-page: 334
  year: 1955
  ident: ref_6
  article-title: A correlation of reaction rates
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01607a027
– volume: 48
  start-page: 112
  year: 2005
  ident: ref_75
  article-title: Endurance test for SCK-CEN catalytic mixed packing, proposed for water detritiation system at JET
  publication-title: Fusion Sci. Technol.
  doi: 10.13182/FST05-A891
– volume: 125
  start-page: 134
  year: 2017
  ident: ref_63
  article-title: Comparison of MFI-ZSM5 and NaA zeolite-type tubular membranes for the separation of water vapour from helium for tritium processes in future fusion reactors
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2017.10.006
– volume: 146
  start-page: 1868
  year: 2019
  ident: ref_30
  article-title: Thermal analysis of a cryogenic distillation column for hydrogen isotopes separation
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2019.03.053
– volume: 23
  start-page: 583
  year: 2003
  ident: ref_99
  article-title: The development and application of solid polymer electrolysis enrichment device of tritium in water
  publication-title: Nucl. Electron. Detect. Technol.
– volume: 41
  start-page: 1142
  year: 2002
  ident: ref_42
  article-title: Hydrogen isotope separation factors on palladium alloy membranes
  publication-title: Fusion Sci. Technol.
  doi: 10.13182/FST02-A22762
– volume: 41
  start-page: 5003
  year: 2016
  ident: ref_24
  article-title: Simulation studies of the characteristics of a cryogenic distillation column for hydrogen isotope separation
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.01.106
– volume: 124
  start-page: 752
  year: 2017
  ident: ref_32
  article-title: Dynamic simulation of a multicomponent distillation column for DT separation
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2017.04.081
– volume: 33
  start-page: 981
  year: 1996
  ident: ref_9
  article-title: Design study of feasible water detritiation systems for fusion reactor of ITER scale
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/18811248.1996.9732041
– volume: 41
  start-page: 1160
  year: 2002
  ident: ref_88
  article-title: Isotopic enrichment of tritiated water by a bipolar electrolysis process
  publication-title: Fusion Sci. Technol.
  doi: 10.13182/FST02-A22766
SSID ssj0001736612
Score 2.302061
SecondaryResourceType review_article
Snippet Recent advancements in tritium separation technologies have significantly improved efficiency, particularly through the integration of vapor phase catalytic...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 33
SubjectTerms Adsorbents
Adsorption
Carcinogens
catalytic exchange
Cost effectiveness
deuterium-tritium water treatment
Efficiency
Electrolysis
Energy consumption
Exchanging
Gas flow
Hydrogen
Industrial plant emissions
Isotopes
Liquid phases
Nuclear accidents & safety
Nuclear power plants
Radiation
Radioisotopes
Separation
Tritium
tritium separation
Vapor phases
Water
Water treatment
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6yi17EnzidkoNHy9IsSVsPwhyOISgeNtitpMl74MEpbvv_fUnbMVHw4rUU2r6X5vu-l8f3GLuurKVVNMBEacgTVYBLLMF-YtG5XPrM6XjQ_vRsJjP1ONfzrVFfoSestgeuA9cnxHLaG1RWFspgkasKjNWFRpE5MNHnkzBvS0zF6ko2IOCRtc3QgHR9fwm1lzblMiXBH2aYfYOi6Nj_Y0OOKDM-YPsNPeTD-rUO2Q4sjtjuqJ3Kdszu2lY5_hI6q2if4q8LPg3WROs33rT9ExzxTc2cpPAtH_L6EOCEzcYP09EkaWYgJI7EY5gUL4WRXkElUBYeU3BEmLTKoMpNipa0sFcCUwMpEJVDBGk1FvTFmagc8Y9T1lm8L-CMcSk8-so6ialVSErLYSatQS-0AO98l9204Sg_aquLkiRCiF75S_S67D6EbHNr8KmOFyh7ZZO98q_sdVmvDXjZ_DzLkihNGmrVsjj_j2dcsD0ZhvbGVuse66w-13BJTGJVXcVF8wVQ6Mhz
  priority: 102
  providerName: Directory of Open Access Journals
Title Research Progress in Tritium Processing Technologies: A Review
URI https://www.proquest.com/docview/3171230429
https://doaj.org/article/819c5d6f4a2946f984be6a595f07ce63
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gO8AF8RSPMeXAkWptlqQtB9AGGxMS04SYtFuVJjHiwAZ7_H-cNt2EQFzbqlId1_ZnW99HyFWuFHpRGwIubBLw1OpAYdoPFGidMBNrUQzan4dyMOZPEzHxDbeFX6usYmIRqM1Mux55C_Nc5BqYLL37_AqcapSbrnoJjW1SxxCcIPiqd3vD0cumyxK3MQGxkm6ojfi-tbAlpzaeaYTA32mZ_UhJBXP_r8BcZJv-PtnzZSLtlOd6QLbs9JDs3FfqbEfktlqZoyO3YYXxir5P6aujKFp9UL_-j2mJrnvnCIlvaIeWw4BjMu73Xu8HgddCCDSCSKcYz0LJDLd5CCw1EFmNhZPgsc0TGYFCTGx4CJG0kcWSDsAyJSDFL47DXGMdckJq09nUnhLKQgMmV5pBpDgg4tIQMyXBhCK0Rpszcl2ZI_ssKS8yhArOetkf1jsjXWey9aOOr7q4MJu_Zd79M6w7tDASuGIpl5AmPLdSiVRAGGsr8SWNyuCZ_4kW2ebIz_-_fUF2mZPlLZapG6S2nK_sJdYKy7xJtpP-Y5PUO92Hbr_p3aNZIO9vn7vEoQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V5VAuFeUhWlrwAW5EdRzbSZBatF1YtvQhDrvS3oxjexCHZttuK9Q_xW9knEcrBOK21zjyYfzZ33zj8QzAm8paQlGGiVShSGQZXGKJ9hOLzhXC5041F-2nZ3oyk1_mar4Gv_q3MDGtsj8Tm4PaL1yMke8Rz6UxgCnKDxeXSewaFW9X-xYaLSyOw-1PkmzL_aOPtL5vhRh_mo4mSddVIHEkx2LvdcG18DJUHEXpMQ2OXBAl81AVOkVL6tJLjqkOaSDnCDEIq7DMSEXyyhGj07wP4KHMsjLuqGL8-T6mk2dEd6ItbkTjfG8Z2grehKBU8JgIlv1BgE2fgL9ooOG28WPY6JxSNmxRtAlroX4C66O-F9xTOOgT9NjXmM9FpyP7UbNpLIh0c866xwZEguwuUk8C_D0bsvbq4RnMVmKj5zCoF3V4AUxwj76yTmBqJZK-c5gLq9FzxYN3fgve9eYwF22BDUPCJFrP_MN6W3AYTXb3a6yO3XxYXH033WYz5OU45TVKK0qpsSxkFbRVpUKeu6Bpkp3e4KbbsktzD7Dt_w-_hvXJ9PTEnBydHb-ERyI2BG7SuHdgcH11E3bJS7muXjXQYPBt1Vj8DX51_PI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRWq5IGhBLI_iA70RrePYzgYJEK8VlLJaIZC4Bcf2IA7sAgtC_DV-HeM8QFUrblyT2IfJZ3_zjcczAGuFMYSiBCOpfDeSmbeRIdqPDFrbFS61qjxoP-nrw3P5-0JdTMBLcxcmpFU2e2K5UbuRDTHyDvFcHAKYIutgnRYx2O9t395FoYNUOGlt2mlUEDn2z08k38abR_v0r38J0Ts42zuM6g4DkSVpFvqwC66Fk77gKDKHsbfkjiiZ-qKrYzSkNJ3kGGsfe3KUEL0wCrOEFCUvLLE7zfsFJlNSRbwFk7sH_cHpe4QnTYj8RFXqKKExnbGv6nkTnmLBQ1pY8hcdll0D_iGFkul6MzBdu6hsp8LULEz44Xf4ttd0hvsBW026HhuE7C7aK9n1kJ2F8kiPN6y-ekCUyN7i9iTHN9gOqw4i5uD8U6w0D63haOgXgAnu0BXGCoyNRFJ7FlNhNDquuHfWtWG9MUd-W5XbyEmmBOvl_7FeG3aDyd4-DbWyywej-6u8Xno5-TxWOY3SiExqzLqy8NqoTCFPrdc0yXJj8LxewOP8HW6LH79eha-Ew_zPUf94CaZE6A5c5nQvQ-vh_tGvkMvyUPysscHg8rPh-Aol1gKT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+Progress+in+Tritium+Processing+Technologies%3A+A+Review&rft.jtitle=Separations&rft.au=Zhao%2C+Ziqian&rft.au=Sun%2C+Yandong&rft.au=Chen%2C+Qi&rft.au=Li%2C+Tianchi&rft.date=2025-02-01&rft.issn=2297-8739&rft.eissn=2297-8739&rft.volume=12&rft.issue=2&rft.spage=33&rft_id=info:doi/10.3390%2Fseparations12020033&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_separations12020033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2297-8739&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2297-8739&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2297-8739&client=summon