Mapping cotton fields using data mining and MODIS time-series
Cotton is the most important fibre culture in the world. In Brazil, cotton cultivation is concentrated in the Cerrado biome, the Brazilian savanna, and is one of the most important commodities in the country. As an annual crop, the updating frequency of the spatial distribution data of cotton fields...
Saved in:
Published in | International journal of remote sensing Vol. 41; no. 7; pp. 2457 - 2476 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Taylor & Francis
02.04.2020
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cotton is the most important fibre culture in the world. In Brazil, cotton cultivation is concentrated in the Cerrado biome, the Brazilian savanna, and is one of the most important commodities in the country. As an annual crop, the updating frequency of the spatial distribution data of cotton fields is extremely important for crop monitoring systems. In order to provide fast and accurate information for crop monitoring, time series of remote- sensing data has been used in the development of several applications in agriculture, since the high temporal resolution of some orbital sensor allows monitoring targets with high spectral-temporal variations in the land surface. However, there are still some challenges to systematize the processing of such a large amount of data available by long time series of remote-sensing imagery. Thus, this study contributes to the construction of models to identify and separate specific crop types with similar spectral behaviour to other crops practised in the same period. The objective of this study was to develop a systematic methodology based on data mining of time series of vegetation indices (VI) to map cotton fields at the regional scale. Field reference data and time series of NDVI and EVI images, obtained from MODIS sensor products during four cropping seasons (from 2012-2013 to 2015-2016), were used to construct mapping models based on decision tree algorithms. Phenological metrics were calculated from the VI time series and used to build classification rules for mapping cotton fields. Our results demonstrate that the proposed method to map cotton fields achieve high accuracy when field data and visual interpretation of NDVI temporal profiles were used for validation (accuracy higher than 95% and 93%, respectively). Comparisons with the official statistics indicated an optimal fit, with linear correlation (r) and coefficient of determination (R
2
) above 0.93. Therefore, the proposed method was efficient to distinguish cotton fields from other crop types with similar spectral behaviour. In addition, this method can also be applied to other cotton-producing regions and other production seasons, by reusing the models generated through machine learning approaches. |
---|---|
AbstractList | Cotton is the most important fibre culture in the world. In Brazil, cotton cultivation is concentrated in the Cerrado biome, the Brazilian savanna, and is one of the most important commodities in the country. As an annual crop, the updating frequency of the spatial distribution data of cotton fields is extremely important for crop monitoring systems. In order to provide fast and accurate information for crop monitoring, time series of remote- sensing data has been used in the development of several applications in agriculture, since the high temporal resolution of some orbital sensor allows monitoring targets with high spectral-temporal variations in the land surface. However, there are still some challenges to systematize the processing of such a large amount of data available by long time series of remote-sensing imagery. Thus, this study contributes to the construction of models to identify and separate specific crop types with similar spectral behaviour to other crops practised in the same period. The objective of this study was to develop a systematic methodology based on data mining of time series of vegetation indices (VI) to map cotton fields at the regional scale. Field reference data and time series of NDVI and EVI images, obtained from MODIS sensor products during four cropping seasons (from 2012–2013 to 2015–2016), were used to construct mapping models based on decision tree algorithms. Phenological metrics were calculated from the VI time series and used to build classification rules for mapping cotton fields. Our results demonstrate that the proposed method to map cotton fields achieve high accuracy when field data and visual interpretation of NDVI temporal profiles were used for validation (accuracy higher than 95% and 93%, respectively). Comparisons with the official statistics indicated an optimal fit, with linear correlation (r) and coefficient of determination (R2) above 0.93. Therefore, the proposed method was efficient to distinguish cotton fields from other crop types with similar spectral behaviour. In addition, this method can also be applied to other cotton-producing regions and other production seasons, by reusing the models generated through machine learning approaches. Cotton is the most important fibre culture in the world. In Brazil, cotton cultivation is concentrated in the Cerrado biome, the Brazilian savanna, and is one of the most important commodities in the country. As an annual crop, the updating frequency of the spatial distribution data of cotton fields is extremely important for crop monitoring systems. In order to provide fast and accurate information for crop monitoring, time series of remote- sensing data has been used in the development of several applications in agriculture, since the high temporal resolution of some orbital sensor allows monitoring targets with high spectral-temporal variations in the land surface. However, there are still some challenges to systematize the processing of such a large amount of data available by long time series of remote-sensing imagery. Thus, this study contributes to the construction of models to identify and separate specific crop types with similar spectral behaviour to other crops practised in the same period. The objective of this study was to develop a systematic methodology based on data mining of time series of vegetation indices (VI) to map cotton fields at the regional scale. Field reference data and time series of NDVI and EVI images, obtained from MODIS sensor products during four cropping seasons (from 2012-2013 to 2015-2016), were used to construct mapping models based on decision tree algorithms. Phenological metrics were calculated from the VI time series and used to build classification rules for mapping cotton fields. Our results demonstrate that the proposed method to map cotton fields achieve high accuracy when field data and visual interpretation of NDVI temporal profiles were used for validation (accuracy higher than 95% and 93%, respectively). Comparisons with the official statistics indicated an optimal fit, with linear correlation (r) and coefficient of determination (R 2 ) above 0.93. Therefore, the proposed method was efficient to distinguish cotton fields from other crop types with similar spectral behaviour. In addition, this method can also be applied to other cotton-producing regions and other production seasons, by reusing the models generated through machine learning approaches. |
Author | Werner, J. P. S. Oliveira, S. R. De M. Esquerdo, J. C. D. M. |
Author_xml | – sequence: 1 givenname: J. P. S. orcidid: 0000-0001-5219-3551 surname: Werner fullname: Werner, J. P. S. email: wernerjoaopaulo@gmail.com organization: School of Agricultural Engineering, University of Campinas – sequence: 2 givenname: S. R. De M. orcidid: 0000-0003-4879-7015 surname: Oliveira fullname: Oliveira, S. R. De M. organization: Embrapa Agricultural Informatics, Brazilian Agricultural Research Corporation - Embrapa – sequence: 3 givenname: J. C. D. M. orcidid: 0000-0001-7190-2931 surname: Esquerdo fullname: Esquerdo, J. C. D. M. organization: Embrapa Agricultural Informatics, Brazilian Agricultural Research Corporation - Embrapa |
BookMark | eNp9kE1LAzEQhoNUsFV_grDgeesk6Sabg6DUr0JLD-o5pPmQlN2kJluk_95dWq-eZhie9x14JmgUYrAI3WCYYqjhDvCMYszwlAAWU8wEBU7O0BhTxspKAB6h8cCUA3SBJjlvAYDxio_R_Urtdj58FTp2XQyF87Yxudjn4WZUp4rWh2FXwRSr9dPiveh8a8tsk7f5Cp071WR7fZqX6PPl-WP-Vi7Xr4v547LUlNZd_9cCCFzpCoxlHBuqwBKuqeaidrCx3BrCZ0wQzThTxAnY8MrMasWUw7Chl-j22LtL8Xtvcye3cZ9C_1ISSiosaga0p6ojpVPMOVknd8m3Kh0kBjmYkn-m5GBKnkz1uYdjzgcXU6t-YmqM7NShicklFbTPkv5f8Qs6v29C |
CitedBy_id | crossref_primary_10_1007_s10661_023_11004_3 crossref_primary_10_1080_01431161_2021_1939908 crossref_primary_10_36548_jscp_2021_4_006 crossref_primary_10_1016_j_rse_2023_113861 crossref_primary_10_3390_rs16020235 crossref_primary_10_3390_rs13234819 crossref_primary_10_1016_j_jag_2021_102312 |
Cites_doi | 10.1002/joc.2419 10.1080/01431161.2010.527397 10.3390/rs9060600 10.1609/aimag.v17i3.1230 10.1177/001316446002000104 10.1016/j.rse.2012.11.009 10.1109/TGRS.2002.802519 10.1016/j.asr.2004.03.012 10.1016/j.rse.2011.10.011 10.1016/B978-0-08-050058-4.50007-3 10.1080/01431161.2016.1148285 10.5327/Z1982-8470201400031902 10.1021/ac60214a047 10.1016/j.rse.2012.04.011 10.1016/0034-4257(94)90018-3 10.1016/j.rse.2007.07.019 10.1016/j.jag.2012.09.009 10.1080/22797254.2018.1455540 10.3390/rs6043387 10.1590/1809-4430 10.2134/agronj2007.0170 10.1016/S0034-4257(97)00049-7 10.1145/507338.507355 10.1016/j.isprsjprs.2016.05.014 10.1016/0034-4257(79)90013-0 10.1016/j.rse.2007.05.017 10.1016/j.isprsjprs.2018.08.007 10.14358/PERS.72.11.1225 10.1080/1747423X.2012.667448 10.1016/S0034-4257(02)00135-9 10.1080/01431161.2010.531783 10.1016/j.jag.2018.03.005 10.1080/01431161.2015.1026956 |
ContentType | Journal Article |
Copyright | 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 2019 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
DOI | 10.1080/01431161.2019.1693072 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Agriculture |
EISSN | 1366-5901 |
EndPage | 2476 |
ExternalDocumentID | 10_1080_01431161_2019_1693072 1693072 |
Genre | Articles |
GrantInformation_xml | – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico grantid: 130878/2017-0 funderid: 10.13039/501100003593 |
GroupedDBID | -~X .7F .DC .QJ 0BK 29J 30N 4.4 5GY 5VS AAAVI AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABBKH ABCCY ABFIM ABHAV ABJVF ABLIJ ABLJU ABPEM ABPTK ABQHQ ABXUL ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEGYZ AEISY AENEX AEOZL AEPSL AEXLP AEYOC AFKVX AFOLD AFWLO AGDLA AGMYJ AHDLD AIJEM AIRXU AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B F5P FUNRP FVPDL H13 HF~ IPNFZ J.P KYCEM LJTGL M4Z P2P RIG RNANH ROSJB RTWRZ S-T SNACF TEN TFL TFT TFW TN5 TNC TQWBC TTHFI TWF UPT UT5 UU3 V1K ZGOLN ~02 ~S~ 0R~ AAHBH AAYXX ABJNI ABPAQ ABRLO ABXYU AHDZW CITATION TBQAZ TDBHL TUROJ 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
ID | FETCH-LOGICAL-c338t-11e00915c50de671d3a0e27c3c798f0be7ed274692c676a2f90b75d48a6af10b3 |
ISSN | 0143-1161 |
IngestDate | Thu Oct 10 17:24:06 EDT 2024 Fri Aug 23 02:07:02 EDT 2024 Tue Jun 13 19:17:13 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-11e00915c50de671d3a0e27c3c798f0be7ed274692c676a2f90b75d48a6af10b3 |
ORCID | 0000-0001-5219-3551 0000-0001-7190-2931 0000-0003-4879-7015 |
PQID | 2325198603 |
PQPubID | 2045515 |
PageCount | 20 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_01431161_2019_1693072 proquest_journals_2325198603 crossref_primary_10_1080_01431161_2019_1693072 |
PublicationCentury | 2000 |
PublicationDate | 2020-04-02 |
PublicationDateYYYYMMDD | 2020-04-02 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | International journal of remote sensing |
PublicationYear | 2020 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0030 Witten I. H. (CIT0048) 2011 CIT0032 CIT0031 CIT0034 CIT0033 Congalton R. G. (CIT0016) 1993; 59 CIT0036 CIT0035 CIT0037 CIT0039 CIT0041 CIT0040 Arvor D. (CIT0002) 2012; 32 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 Han J. (CIT0025) 2011 CIT0003 CIT0047 CIT0046 CIT0005 CIT0049 CIT0004 CIT0007 CIT0006 CIT0009 CIT0008 CIT0050 CIT0051 CIT0010 CIT0012 CIT0011 Holben B. N. (CIT0026) 1980; 46 CIT0014 CIT0013 CIT0015 CIT0018 CIT0017 CIT0019 Rouse J. W. (CIT0038) 1973; 1 CIT0021 CIT0023 CIT0022 Fietz C. R. (CIT0020) 2009 CIT0024 CIT0027 CIT0029 CIT0028 |
References_xml | – ident: CIT0015 – ident: CIT0046 doi: 10.1002/joc.2419 – ident: CIT0051 doi: 10.1080/01431161.2010.527397 – ident: CIT0007 doi: 10.3390/rs9060600 – volume-title: Análise Da Época De Semeadura Do Algodoeiro Em Mato Grosso Com Base Na Precipitação Provável year: 2009 ident: CIT0020 contributor: fullname: Fietz C. R. – ident: CIT0019 doi: 10.1609/aimag.v17i3.1230 – ident: CIT0014 doi: 10.1177/001316446002000104 – ident: CIT0009 doi: 10.1016/j.rse.2012.11.009 – volume: 59 start-page: 641 issue: 5 year: 1993 ident: CIT0016 publication-title: Photogrammetric Engineering and Remote Sensing contributor: fullname: Congalton R. G. – ident: CIT0029 doi: 10.1109/TGRS.2002.802519 – ident: CIT0040 doi: 10.1016/j.asr.2004.03.012 – ident: CIT0033 doi: 10.1016/j.rse.2011.10.011 – ident: CIT0036 doi: 10.1016/B978-0-08-050058-4.50007-3 – ident: CIT0030 doi: 10.1109/TGRS.2002.802519 – ident: CIT0024 doi: 10.1080/01431161.2016.1148285 – volume: 32 start-page: 702 issue: 2 year: 2012 ident: CIT0002 publication-title: AppliedGeography contributor: fullname: Arvor D. – ident: CIT0010 doi: 10.5327/Z1982-8470201400031902 – ident: CIT0008 – ident: CIT0039 doi: 10.1021/ac60214a047 – ident: CIT0043 doi: 10.1016/j.rse.2012.04.011 – ident: CIT0027 doi: 10.1016/0034-4257(94)90018-3 – ident: CIT0045 doi: 10.1016/j.rse.2007.07.019 – ident: CIT0032 – ident: CIT0005 – ident: CIT0035 doi: 10.1016/j.jag.2012.09.009 – volume-title: Data Mining: Practical Machine Learning Tools and Techniques year: 2011 ident: CIT0048 contributor: fullname: Witten I. H. – ident: CIT0023 doi: 10.1080/22797254.2018.1455540 – ident: CIT0031 doi: 10.3390/rs6043387 – ident: CIT0017 – volume: 46 start-page: 651 issue: 5 year: 1980 ident: CIT0026 publication-title: Photogrammetric Engineering and Remote Sensing contributor: fullname: Holben B. N. – ident: CIT0013 – ident: CIT0006 doi: 10.1590/1809-4430 – ident: CIT0011 doi: 10.2134/agronj2007.0170 – ident: CIT0021 doi: 10.1016/S0034-4257(97)00049-7 – volume: 1 start-page: 309 volume-title: Earth Resources Technology Satellite-1 Symposium, 3 year: 1973 ident: CIT0038 contributor: fullname: Rouse J. W. – ident: CIT0047 doi: 10.1145/507338.507355 – ident: CIT0004 – ident: CIT0050 doi: 10.1016/j.isprsjprs.2016.05.014 – ident: CIT0042 doi: 10.1016/0034-4257(79)90013-0 – ident: CIT0018 – ident: CIT0022 doi: 10.1016/j.rse.2007.05.017 – ident: CIT0034 doi: 10.1016/j.isprsjprs.2018.08.007 – volume-title: Data Mining: Concepts and Techniques year: 2011 ident: CIT0025 contributor: fullname: Han J. – ident: CIT0044 doi: 10.14358/PERS.72.11.1225 – ident: CIT0037 doi: 10.1080/1747423X.2012.667448 – ident: CIT0049 doi: 10.1016/S0034-4257(02)00135-9 – ident: CIT0001 doi: 10.1080/01431161.2010.531783 – ident: CIT0003 – ident: CIT0012 doi: 10.1016/j.jag.2018.03.005 – ident: CIT0028 – ident: CIT0041 doi: 10.1080/01431161.2015.1026956 |
SSID | ssj0006757 |
Score | 2.389684 |
Snippet | Cotton is the most important fibre culture in the world. In Brazil, cotton cultivation is concentrated in the Cerrado biome, the Brazilian savanna, and is one... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 2457 |
SubjectTerms | Accuracy Agriculture Algorithms Commodities Cotton Crops Cultivation Data Data analysis Data mining Decision trees Entrepreneurs Fields Imagery Learning behaviour Machine learning Mapping Mathematical analysis MODIS Monitoring systems Profiles Remote monitoring Remote sensing Sensors Spatial data Spatial distribution Spectra Statistical methods Temporal resolution Temporal variations Time series Visual fields |
Title | Mapping cotton fields using data mining and MODIS time-series |
URI | https://www.tandfonline.com/doi/abs/10.1080/01431161.2019.1693072 https://www.proquest.com/docview/2325198603 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QEuiKcoFOQDt8iWEzt2cqzawlKpgGgrKi6R7TgSSGxXu-mFG_-c8SO7WVoB5RKtYsVxPJ9nPN6ZbxB6bWxedHUliJSaE9EyRrTklnRMS-3q1ioT2D7fy9m5OL4oLyaTn-Pskt5Q--PGvJL_kSrcA7n6LNlbSHbdKdyA3yBfuIKE4fpPMj7Ri0VMmu09O0aIRltlV8H996Gf2fdQ_iEGU3w4fHcaSskTP7YUOvhtE8i-ORccsUksHYjSZSsf5p5sXPgbZ5nyZI5p9pFmp3RzVgva82uoXQR3s08UFFp2sm4-WoEZWraX6dEDaKZDczp6KFiIWNk-jeQkzyObOnVRg3IpiU9oHavYyG2VoKTG-lJEeupkewsRi8Fc0-spEBLe51_nI_Jq6mlkWKz7s82j_Zt9W0cd5gMdauqm8d00qZs7aKcAXVVN0c7-7PDL57U5B48q5tynbx3SwDxB-03j2drgbNHfXjP3YQ9z9gDdT84H3o9Ieogmbv4I3X3rEm35YzQgCkdE4YgoHBCFPaJwRBQGROGAKDxC1BN0_ubo7GBGUoENYjmvevgcB1vsvLQla51Uecs1c4Wy3Kq66phxyrWFErIurFRSw6JmRpWtqGAddzkz_Cmazi_n7hnCjvEOfA_jBDOi1JV2peVd6fLWVJ0ryl1Eh1lpFpFHpfmjPHZRPZ67pg8HWF2sNtPwvzy7N0x0k5bMqgHXAbyVSjL-_LZjeYHubeC_h6b98sq9hL1ob14ltPwCmN57Wg |
link.rule.ids | 315,783,787,27938,27939,60220,61009 |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELVQGcrCN6JQwANrghMnTjIwIKBqoS0DrdTNsh27SIgU0XSAX48vH6iAEEN_gC37zj6_s969Q-hcKs83SRw4jAnqBCkhjmBUOYYIJnSSqkgWap9D1h0Hd5NwslQLA7RKyKFNKRRRxGq43PAZXVPiLkCTzrNQBZhZiQtyIiSyYXidQdkolHGQ4Vc0toC4LJkGKU47pq7i-Wuab-_TN_XSX9G6eII6W0jViy-ZJ8_uIpeu-vih67ja7rbRZoVQ8VV5pHbQms52UbNqlv70vocuBwJEHaYYZB1mGS5IcHMMDPopBsYpfim6TmC7BDx4uOk9Yuhg78Bh1_N9NO7cjq67TtWFwVE2fc2t0bTFYV6oQpJqFnkpFUT7kaIqSmJDpI50alNblviKRUxYzxMZhWkQW2cbj0h6gBrZLNOHCGtCjQWoUgdEBqGIhQ4VNaH2Uhkb7Yct5Na256-l2Ab3ag3TyiocrMIrq7RQsuwhnhe_HKZsScLpP2PbtTt5dW_n3OJLC2ljRujRClOfoWZ3NOjzfm94f4w2fEjRgezjt1Ejf1voE4tjcnlaHNRPAaDjCA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SQb34FqtVc_C6a3azm-wePIi1tGqroAVvIc8KYlvc7UF_vck-xCrioT8gIZmZTL4JX74B4FTIIDRpEnmEcOxFCiGPEyw9gzjhOlWSikLtc0C6w-j6Ka7ZhFlFq3Q1tCmFIopc7Q73VJmaEXfmJOkCi1QcMSv1nZoIojYLL1skgFxgYzT4SsYWD5c_pp0Spx1Tf-L5a5q562lOvPRXsi5uoM4GEPXaS-LJiz_LhS8_fsg6LrS5TbBe4VN4UQbUFljS422wWrVKf37fAed97iQdRtCJOkzGsKDAZdDx50fQ8U3ha9FzAtoVwP5du_cAXf96z4W6znbBsHP1eNn1qh4MnrTFa25tpq1Rg1jGSGlCA4U50iGVWNI0MUhoqpUtbEkaSkIJt35HgsYqSqyrTYAE3gON8WSs9wHUCBsLT4WOkIhinnAdS2xiHSiRGB3GTeDXpmfTUmqDBbWCaWUV5qzCKqs0QfrdQSwv3jhM2ZCE4X_GtmpvsurUZsyiSwtoE4LwwQJTn4CV-3aH3fYGN4dgLXT1uWP6hC3QyN9m-siCmFwcF2H6CXGZ4b4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+cotton+fields+using+data+mining+and+MODIS+time-series&rft.jtitle=International+journal+of+remote+sensing&rft.au=Werner%2C+J.+P.+S.&rft.au=Oliveira%2C+S.+R.+De+M.&rft.au=Esquerdo%2C+J.+C.+D.+M.&rft.date=2020-04-02&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=41&rft.issue=7&rft.spage=2457&rft.epage=2476&rft_id=info:doi/10.1080%2F01431161.2019.1693072&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01431161_2019_1693072 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon |