Mapping cotton fields using data mining and MODIS time-series

Cotton is the most important fibre culture in the world. In Brazil, cotton cultivation is concentrated in the Cerrado biome, the Brazilian savanna, and is one of the most important commodities in the country. As an annual crop, the updating frequency of the spatial distribution data of cotton fields...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of remote sensing Vol. 41; no. 7; pp. 2457 - 2476
Main Authors Werner, J. P. S., Oliveira, S. R. De M., Esquerdo, J. C. D. M.
Format Journal Article
LanguageEnglish
Published London Taylor & Francis 02.04.2020
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cotton is the most important fibre culture in the world. In Brazil, cotton cultivation is concentrated in the Cerrado biome, the Brazilian savanna, and is one of the most important commodities in the country. As an annual crop, the updating frequency of the spatial distribution data of cotton fields is extremely important for crop monitoring systems. In order to provide fast and accurate information for crop monitoring, time series of remote- sensing data has been used in the development of several applications in agriculture, since the high temporal resolution of some orbital sensor allows monitoring targets with high spectral-temporal variations in the land surface. However, there are still some challenges to systematize the processing of such a large amount of data available by long time series of remote-sensing imagery. Thus, this study contributes to the construction of models to identify and separate specific crop types with similar spectral behaviour to other crops practised in the same period. The objective of this study was to develop a systematic methodology based on data mining of time series of vegetation indices (VI) to map cotton fields at the regional scale. Field reference data and time series of NDVI and EVI images, obtained from MODIS sensor products during four cropping seasons (from 2012-2013 to 2015-2016), were used to construct mapping models based on decision tree algorithms. Phenological metrics were calculated from the VI time series and used to build classification rules for mapping cotton fields. Our results demonstrate that the proposed method to map cotton fields achieve high accuracy when field data and visual interpretation of NDVI temporal profiles were used for validation (accuracy higher than 95% and 93%, respectively). Comparisons with the official statistics indicated an optimal fit, with linear correlation (r) and coefficient of determination (R 2 ) above 0.93. Therefore, the proposed method was efficient to distinguish cotton fields from other crop types with similar spectral behaviour. In addition, this method can also be applied to other cotton-producing regions and other production seasons, by reusing the models generated through machine learning approaches.
AbstractList Cotton is the most important fibre culture in the world. In Brazil, cotton cultivation is concentrated in the Cerrado biome, the Brazilian savanna, and is one of the most important commodities in the country. As an annual crop, the updating frequency of the spatial distribution data of cotton fields is extremely important for crop monitoring systems. In order to provide fast and accurate information for crop monitoring, time series of remote- sensing data has been used in the development of several applications in agriculture, since the high temporal resolution of some orbital sensor allows monitoring targets with high spectral-temporal variations in the land surface. However, there are still some challenges to systematize the processing of such a large amount of data available by long time series of remote-sensing imagery. Thus, this study contributes to the construction of models to identify and separate specific crop types with similar spectral behaviour to other crops practised in the same period. The objective of this study was to develop a systematic methodology based on data mining of time series of vegetation indices (VI) to map cotton fields at the regional scale. Field reference data and time series of NDVI and EVI images, obtained from MODIS sensor products during four cropping seasons (from 2012–2013 to 2015–2016), were used to construct mapping models based on decision tree algorithms. Phenological metrics were calculated from the VI time series and used to build classification rules for mapping cotton fields. Our results demonstrate that the proposed method to map cotton fields achieve high accuracy when field data and visual interpretation of NDVI temporal profiles were used for validation (accuracy higher than 95% and 93%, respectively). Comparisons with the official statistics indicated an optimal fit, with linear correlation (r) and coefficient of determination (R2) above 0.93. Therefore, the proposed method was efficient to distinguish cotton fields from other crop types with similar spectral behaviour. In addition, this method can also be applied to other cotton-producing regions and other production seasons, by reusing the models generated through machine learning approaches.
Cotton is the most important fibre culture in the world. In Brazil, cotton cultivation is concentrated in the Cerrado biome, the Brazilian savanna, and is one of the most important commodities in the country. As an annual crop, the updating frequency of the spatial distribution data of cotton fields is extremely important for crop monitoring systems. In order to provide fast and accurate information for crop monitoring, time series of remote- sensing data has been used in the development of several applications in agriculture, since the high temporal resolution of some orbital sensor allows monitoring targets with high spectral-temporal variations in the land surface. However, there are still some challenges to systematize the processing of such a large amount of data available by long time series of remote-sensing imagery. Thus, this study contributes to the construction of models to identify and separate specific crop types with similar spectral behaviour to other crops practised in the same period. The objective of this study was to develop a systematic methodology based on data mining of time series of vegetation indices (VI) to map cotton fields at the regional scale. Field reference data and time series of NDVI and EVI images, obtained from MODIS sensor products during four cropping seasons (from 2012-2013 to 2015-2016), were used to construct mapping models based on decision tree algorithms. Phenological metrics were calculated from the VI time series and used to build classification rules for mapping cotton fields. Our results demonstrate that the proposed method to map cotton fields achieve high accuracy when field data and visual interpretation of NDVI temporal profiles were used for validation (accuracy higher than 95% and 93%, respectively). Comparisons with the official statistics indicated an optimal fit, with linear correlation (r) and coefficient of determination (R 2 ) above 0.93. Therefore, the proposed method was efficient to distinguish cotton fields from other crop types with similar spectral behaviour. In addition, this method can also be applied to other cotton-producing regions and other production seasons, by reusing the models generated through machine learning approaches.
Author Werner, J. P. S.
Oliveira, S. R. De M.
Esquerdo, J. C. D. M.
Author_xml – sequence: 1
  givenname: J. P. S.
  orcidid: 0000-0001-5219-3551
  surname: Werner
  fullname: Werner, J. P. S.
  email: wernerjoaopaulo@gmail.com
  organization: School of Agricultural Engineering, University of Campinas
– sequence: 2
  givenname: S. R. De M.
  orcidid: 0000-0003-4879-7015
  surname: Oliveira
  fullname: Oliveira, S. R. De M.
  organization: Embrapa Agricultural Informatics, Brazilian Agricultural Research Corporation - Embrapa
– sequence: 3
  givenname: J. C. D. M.
  orcidid: 0000-0001-7190-2931
  surname: Esquerdo
  fullname: Esquerdo, J. C. D. M.
  organization: Embrapa Agricultural Informatics, Brazilian Agricultural Research Corporation - Embrapa
BookMark eNp9kE1LAzEQhoNUsFV_grDgeesk6Sabg6DUr0JLD-o5pPmQlN2kJluk_95dWq-eZhie9x14JmgUYrAI3WCYYqjhDvCMYszwlAAWU8wEBU7O0BhTxspKAB6h8cCUA3SBJjlvAYDxio_R_Urtdj58FTp2XQyF87Yxudjn4WZUp4rWh2FXwRSr9dPiveh8a8tsk7f5Cp071WR7fZqX6PPl-WP-Vi7Xr4v547LUlNZd_9cCCFzpCoxlHBuqwBKuqeaidrCx3BrCZ0wQzThTxAnY8MrMasWUw7Chl-j22LtL8Xtvcye3cZ9C_1ISSiosaga0p6ojpVPMOVknd8m3Kh0kBjmYkn-m5GBKnkz1uYdjzgcXU6t-YmqM7NShicklFbTPkv5f8Qs6v29C
CitedBy_id crossref_primary_10_1007_s10661_023_11004_3
crossref_primary_10_1080_01431161_2021_1939908
crossref_primary_10_36548_jscp_2021_4_006
crossref_primary_10_1016_j_rse_2023_113861
crossref_primary_10_3390_rs16020235
crossref_primary_10_3390_rs13234819
crossref_primary_10_1016_j_jag_2021_102312
Cites_doi 10.1002/joc.2419
10.1080/01431161.2010.527397
10.3390/rs9060600
10.1609/aimag.v17i3.1230
10.1177/001316446002000104
10.1016/j.rse.2012.11.009
10.1109/TGRS.2002.802519
10.1016/j.asr.2004.03.012
10.1016/j.rse.2011.10.011
10.1016/B978-0-08-050058-4.50007-3
10.1080/01431161.2016.1148285
10.5327/Z1982-8470201400031902
10.1021/ac60214a047
10.1016/j.rse.2012.04.011
10.1016/0034-4257(94)90018-3
10.1016/j.rse.2007.07.019
10.1016/j.jag.2012.09.009
10.1080/22797254.2018.1455540
10.3390/rs6043387
10.1590/1809-4430
10.2134/agronj2007.0170
10.1016/S0034-4257(97)00049-7
10.1145/507338.507355
10.1016/j.isprsjprs.2016.05.014
10.1016/0034-4257(79)90013-0
10.1016/j.rse.2007.05.017
10.1016/j.isprsjprs.2018.08.007
10.14358/PERS.72.11.1225
10.1080/1747423X.2012.667448
10.1016/S0034-4257(02)00135-9
10.1080/01431161.2010.531783
10.1016/j.jag.2018.03.005
10.1080/01431161.2015.1026956
ContentType Journal Article
Copyright 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
2019 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
– notice: 2019 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1080/01431161.2019.1693072
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Agriculture
EISSN 1366-5901
EndPage 2476
ExternalDocumentID 10_1080_01431161_2019_1693072
1693072
Genre Articles
GrantInformation_xml – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  grantid: 130878/2017-0
  funderid: 10.13039/501100003593
GroupedDBID -~X
.7F
.DC
.QJ
0BK
29J
30N
4.4
5GY
5VS
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBKH
ABCCY
ABFIM
ABHAV
ABJVF
ABLIJ
ABLJU
ABPEM
ABPTK
ABQHQ
ABXUL
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEXLP
AEYOC
AFKVX
AFOLD
AFWLO
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
FUNRP
FVPDL
H13
HF~
IPNFZ
J.P
KYCEM
LJTGL
M4Z
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TEN
TFL
TFT
TFW
TN5
TNC
TQWBC
TTHFI
TWF
UPT
UT5
UU3
V1K
ZGOLN
~02
~S~
0R~
AAHBH
AAYXX
ABJNI
ABPAQ
ABRLO
ABXYU
AHDZW
CITATION
TBQAZ
TDBHL
TUROJ
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-c338t-11e00915c50de671d3a0e27c3c798f0be7ed274692c676a2f90b75d48a6af10b3
ISSN 0143-1161
IngestDate Thu Oct 10 17:24:06 EDT 2024
Fri Aug 23 02:07:02 EDT 2024
Tue Jun 13 19:17:13 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-11e00915c50de671d3a0e27c3c798f0be7ed274692c676a2f90b75d48a6af10b3
ORCID 0000-0001-5219-3551
0000-0001-7190-2931
0000-0003-4879-7015
PQID 2325198603
PQPubID 2045515
PageCount 20
ParticipantIDs informaworld_taylorfrancis_310_1080_01431161_2019_1693072
proquest_journals_2325198603
crossref_primary_10_1080_01431161_2019_1693072
PublicationCentury 2000
PublicationDate 2020-04-02
PublicationDateYYYYMMDD 2020-04-02
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International journal of remote sensing
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
Witten I. H. (CIT0048) 2011
CIT0032
CIT0031
CIT0034
CIT0033
Congalton R. G. (CIT0016) 1993; 59
CIT0036
CIT0035
CIT0037
CIT0039
CIT0041
CIT0040
Arvor D. (CIT0002) 2012; 32
CIT0043
CIT0042
CIT0001
CIT0045
CIT0044
Han J. (CIT0025) 2011
CIT0003
CIT0047
CIT0046
CIT0005
CIT0049
CIT0004
CIT0007
CIT0006
CIT0009
CIT0008
CIT0050
CIT0051
CIT0010
CIT0012
CIT0011
Holben B. N. (CIT0026) 1980; 46
CIT0014
CIT0013
CIT0015
CIT0018
CIT0017
CIT0019
Rouse J. W. (CIT0038) 1973; 1
CIT0021
CIT0023
CIT0022
Fietz C. R. (CIT0020) 2009
CIT0024
CIT0027
CIT0029
CIT0028
References_xml – ident: CIT0015
– ident: CIT0046
  doi: 10.1002/joc.2419
– ident: CIT0051
  doi: 10.1080/01431161.2010.527397
– ident: CIT0007
  doi: 10.3390/rs9060600
– volume-title: Análise Da Época De Semeadura Do Algodoeiro Em Mato Grosso Com Base Na Precipitação Provável
  year: 2009
  ident: CIT0020
  contributor:
    fullname: Fietz C. R.
– ident: CIT0019
  doi: 10.1609/aimag.v17i3.1230
– ident: CIT0014
  doi: 10.1177/001316446002000104
– ident: CIT0009
  doi: 10.1016/j.rse.2012.11.009
– volume: 59
  start-page: 641
  issue: 5
  year: 1993
  ident: CIT0016
  publication-title: Photogrammetric Engineering and Remote Sensing
  contributor:
    fullname: Congalton R. G.
– ident: CIT0029
  doi: 10.1109/TGRS.2002.802519
– ident: CIT0040
  doi: 10.1016/j.asr.2004.03.012
– ident: CIT0033
  doi: 10.1016/j.rse.2011.10.011
– ident: CIT0036
  doi: 10.1016/B978-0-08-050058-4.50007-3
– ident: CIT0030
  doi: 10.1109/TGRS.2002.802519
– ident: CIT0024
  doi: 10.1080/01431161.2016.1148285
– volume: 32
  start-page: 702
  issue: 2
  year: 2012
  ident: CIT0002
  publication-title: AppliedGeography
  contributor:
    fullname: Arvor D.
– ident: CIT0010
  doi: 10.5327/Z1982-8470201400031902
– ident: CIT0008
– ident: CIT0039
  doi: 10.1021/ac60214a047
– ident: CIT0043
  doi: 10.1016/j.rse.2012.04.011
– ident: CIT0027
  doi: 10.1016/0034-4257(94)90018-3
– ident: CIT0045
  doi: 10.1016/j.rse.2007.07.019
– ident: CIT0032
– ident: CIT0005
– ident: CIT0035
  doi: 10.1016/j.jag.2012.09.009
– volume-title: Data Mining: Practical Machine Learning Tools and Techniques
  year: 2011
  ident: CIT0048
  contributor:
    fullname: Witten I. H.
– ident: CIT0023
  doi: 10.1080/22797254.2018.1455540
– ident: CIT0031
  doi: 10.3390/rs6043387
– ident: CIT0017
– volume: 46
  start-page: 651
  issue: 5
  year: 1980
  ident: CIT0026
  publication-title: Photogrammetric Engineering and Remote Sensing
  contributor:
    fullname: Holben B. N.
– ident: CIT0013
– ident: CIT0006
  doi: 10.1590/1809-4430
– ident: CIT0011
  doi: 10.2134/agronj2007.0170
– ident: CIT0021
  doi: 10.1016/S0034-4257(97)00049-7
– volume: 1
  start-page: 309
  volume-title: Earth Resources Technology Satellite-1 Symposium, 3
  year: 1973
  ident: CIT0038
  contributor:
    fullname: Rouse J. W.
– ident: CIT0047
  doi: 10.1145/507338.507355
– ident: CIT0004
– ident: CIT0050
  doi: 10.1016/j.isprsjprs.2016.05.014
– ident: CIT0042
  doi: 10.1016/0034-4257(79)90013-0
– ident: CIT0018
– ident: CIT0022
  doi: 10.1016/j.rse.2007.05.017
– ident: CIT0034
  doi: 10.1016/j.isprsjprs.2018.08.007
– volume-title: Data Mining: Concepts and Techniques
  year: 2011
  ident: CIT0025
  contributor:
    fullname: Han J.
– ident: CIT0044
  doi: 10.14358/PERS.72.11.1225
– ident: CIT0037
  doi: 10.1080/1747423X.2012.667448
– ident: CIT0049
  doi: 10.1016/S0034-4257(02)00135-9
– ident: CIT0001
  doi: 10.1080/01431161.2010.531783
– ident: CIT0003
– ident: CIT0012
  doi: 10.1016/j.jag.2018.03.005
– ident: CIT0028
– ident: CIT0041
  doi: 10.1080/01431161.2015.1026956
SSID ssj0006757
Score 2.389684
Snippet Cotton is the most important fibre culture in the world. In Brazil, cotton cultivation is concentrated in the Cerrado biome, the Brazilian savanna, and is one...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 2457
SubjectTerms Accuracy
Agriculture
Algorithms
Commodities
Cotton
Crops
Cultivation
Data
Data analysis
Data mining
Decision trees
Entrepreneurs
Fields
Imagery
Learning behaviour
Machine learning
Mapping
Mathematical analysis
MODIS
Monitoring systems
Profiles
Remote monitoring
Remote sensing
Sensors
Spatial data
Spatial distribution
Spectra
Statistical methods
Temporal resolution
Temporal variations
Time series
Visual fields
Title Mapping cotton fields using data mining and MODIS time-series
URI https://www.tandfonline.com/doi/abs/10.1080/01431161.2019.1693072
https://www.proquest.com/docview/2325198603
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QEuiKcoFOQDt8iWEzt2cqzawlKpgGgrKi6R7TgSSGxXu-mFG_-c8SO7WVoB5RKtYsVxPJ9nPN6ZbxB6bWxedHUliJSaE9EyRrTklnRMS-3q1ioT2D7fy9m5OL4oLyaTn-Pskt5Q--PGvJL_kSrcA7n6LNlbSHbdKdyA3yBfuIKE4fpPMj7Ri0VMmu09O0aIRltlV8H996Gf2fdQ_iEGU3w4fHcaSskTP7YUOvhtE8i-ORccsUksHYjSZSsf5p5sXPgbZ5nyZI5p9pFmp3RzVgva82uoXQR3s08UFFp2sm4-WoEZWraX6dEDaKZDczp6KFiIWNk-jeQkzyObOnVRg3IpiU9oHavYyG2VoKTG-lJEeupkewsRi8Fc0-spEBLe51_nI_Jq6mlkWKz7s82j_Zt9W0cd5gMdauqm8d00qZs7aKcAXVVN0c7-7PDL57U5B48q5tynbx3SwDxB-03j2drgbNHfXjP3YQ9z9gDdT84H3o9Ieogmbv4I3X3rEm35YzQgCkdE4YgoHBCFPaJwRBQGROGAKDxC1BN0_ubo7GBGUoENYjmvevgcB1vsvLQla51Uecs1c4Wy3Kq66phxyrWFErIurFRSw6JmRpWtqGAddzkz_Cmazi_n7hnCjvEOfA_jBDOi1JV2peVd6fLWVJ0ryl1Eh1lpFpFHpfmjPHZRPZ67pg8HWF2sNtPwvzy7N0x0k5bMqgHXAbyVSjL-_LZjeYHubeC_h6b98sq9hL1ob14ltPwCmN57Wg
link.rule.ids 315,783,787,27938,27939,60220,61009
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELVQGcrCN6JQwANrghMnTjIwIKBqoS0DrdTNsh27SIgU0XSAX48vH6iAEEN_gC37zj6_s969Q-hcKs83SRw4jAnqBCkhjmBUOYYIJnSSqkgWap9D1h0Hd5NwslQLA7RKyKFNKRRRxGq43PAZXVPiLkCTzrNQBZhZiQtyIiSyYXidQdkolHGQ4Vc0toC4LJkGKU47pq7i-Wuab-_TN_XSX9G6eII6W0jViy-ZJ8_uIpeu-vih67ja7rbRZoVQ8VV5pHbQms52UbNqlv70vocuBwJEHaYYZB1mGS5IcHMMDPopBsYpfim6TmC7BDx4uOk9Yuhg78Bh1_N9NO7cjq67TtWFwVE2fc2t0bTFYV6oQpJqFnkpFUT7kaIqSmJDpI50alNblviKRUxYzxMZhWkQW2cbj0h6gBrZLNOHCGtCjQWoUgdEBqGIhQ4VNaH2Uhkb7Yct5Na256-l2Ab3ag3TyiocrMIrq7RQsuwhnhe_HKZsScLpP2PbtTt5dW_n3OJLC2ljRujRClOfoWZ3NOjzfm94f4w2fEjRgezjt1Ejf1voE4tjcnlaHNRPAaDjCA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SQb34FqtVc_C6a3azm-wePIi1tGqroAVvIc8KYlvc7UF_vck-xCrioT8gIZmZTL4JX74B4FTIIDRpEnmEcOxFCiGPEyw9gzjhOlWSikLtc0C6w-j6Ka7ZhFlFq3Q1tCmFIopc7Q73VJmaEXfmJOkCi1QcMSv1nZoIojYLL1skgFxgYzT4SsYWD5c_pp0Spx1Tf-L5a5q562lOvPRXsi5uoM4GEPXaS-LJiz_LhS8_fsg6LrS5TbBe4VN4UQbUFljS422wWrVKf37fAed97iQdRtCJOkzGsKDAZdDx50fQ8U3ha9FzAtoVwP5du_cAXf96z4W6znbBsHP1eNn1qh4MnrTFa25tpq1Rg1jGSGlCA4U50iGVWNI0MUhoqpUtbEkaSkIJt35HgsYqSqyrTYAE3gON8WSs9wHUCBsLT4WOkIhinnAdS2xiHSiRGB3GTeDXpmfTUmqDBbWCaWUV5qzCKqs0QfrdQSwv3jhM2ZCE4X_GtmpvsurUZsyiSwtoE4LwwQJTn4CV-3aH3fYGN4dgLXT1uWP6hC3QyN9m-siCmFwcF2H6CXGZ4b4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+cotton+fields+using+data+mining+and+MODIS+time-series&rft.jtitle=International+journal+of+remote+sensing&rft.au=Werner%2C+J.+P.+S.&rft.au=Oliveira%2C+S.+R.+De+M.&rft.au=Esquerdo%2C+J.+C.+D.+M.&rft.date=2020-04-02&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=41&rft.issue=7&rft.spage=2457&rft.epage=2476&rft_id=info:doi/10.1080%2F01431161.2019.1693072&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01431161_2019_1693072
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon