Receptor-mediated regulation of plasminogen activator function: plasminogen activation by two directly membrane-anchored forms of urokinase

The generation of the broad specificity serine protease plasmin in the pericellular environment is regulated by binding of the urokinase‐type plasminogen activator (uPA) to its specific glycosylphosphatidylinositol (GPI)‐anchored cell‐surface receptor, uPAR. This interaction potentiates the reciproc...

Full description

Saved in:
Bibliographic Details
Published inJournal of peptide science Vol. 6; no. 9; pp. 432 - 439
Main Authors Vines, David J., Lee, Sung W., Dichek, David A., Ellis, Vincent
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.09.2000
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The generation of the broad specificity serine protease plasmin in the pericellular environment is regulated by binding of the urokinase‐type plasminogen activator (uPA) to its specific glycosylphosphatidylinositol (GPI)‐anchored cell‐surface receptor, uPAR. This interaction potentiates the reciprocal activation of the cell‐associated zymogens pro‐uPA and plasminogen. To further study the role of uPAR in this mechanism, we have expressed two directly membrane‐anchored chimeric forms of uPA, one anchored by a C‐terminal GPI‐moiety (GPI‐uPA), the other with a C‐terminal transmembrane peptide (TM‐uPA). These were expressed in the monocyte‐like cell lines U937 and THP‐1, which are excellent models for kinetic and mechanistic studies of cell‐surface plasminogen activation. In both cell‐lines, GPI‐uPA activated cell‐associated plasminogen with characteristics both qualitatively and quantitatively indistinguishable from those of uPAR‐bound uPA. By contrast, TM‐uPA activated cell‐associated plasminogen less efficiently. This was due to effects on the Km for plasminogen activation (which was increased up to five‐fold) and the efficiency of pro‐uPA activation (which was decreased approximately four‐fold). These observations suggest that uPAR serves two essential roles in mediating efficient cell‐surface plasminogen activation. In addition to confining uPA to the cell‐surface, the GPI‐anchor plays an important role by increasing accessibility to substrate plasminogen and, thus, enhancing catalysis. However, the data also demonstrate that, in the presence of an alternative mechanism for uPA localization, uPAR is dispensable and, therefore, unlikely to participate in any additional interactions that may be necessary for the efficiency of this proteolytic system. In these experiments zymogen pro‐uPA was unexpectedly found to be constitutively activated when expressed in THP‐1 cells, suggesting the presence of an alternative plasmin‐independent proteolytic activation mechanism in these cells. Copyright © 2000 European Peptide Society and John Wiley & Sons, Ltd.
AbstractList The generation of the broad specificity serine protease plasmin in the pericellular environment is regulated by binding of the urokinase-type plasminogen activator (uPA) to its specific glycosylphosphatidylinositol (GPI)-anchored cell-surface receptor, uPAR. This interaction potentiates the reciprocal activation of the cell-associated zymogens pro-uPA and plasminogen. To further study the role of uPAR in this mechanism, we have expressed two directly membrane-anchored chimeric forms of uPA, one anchored by a C-terminal GPI-moiety (GPI-uPA), the other with a C-terminal transmembrane peptide (TM-uPA). These were expressed in the monocyte-like cell lines U937 and THP-1, which are excellent models for kinetic and mechanistic studies of cell-surface plasminogen activation. In both cell-lines, GPI-uPA activated cell-associated plasminogen with characteristics both qualitatively and quantitatively indistinguishable from those of uPAR-bound uPA. By contrast, TM-uPA activated cell-associated plasminogen less efficiently. This was due to effects on the K, for plasminogen activation (which was increased up to five-fold) and the efficiency of pro-uPA activation (which was decreased approximately four-fold). These observations suggest that uPAR serves two essential roles in mediating efficient cell-surface plasminogen activation. In addition to confining uPA to the cell-surface, the GPI-anchor plays an important role by increasing accessibility to substrate plasminogen and, thus, enhancing catalysis. However, the data also demonstrate that, in the presence of an alternative mechanism for uPA localization, uPAR is dispensable and, therefore, unlikely to participate in any additional interactions that may be necessary for the efficiency of this proteolytic system. In these experiments zymogen pro-uPA was unexpectedly found to be constitutively activated when expressed in THP-1 cells, suggesting the presence of an alternative plasmin-independent proteolytic activation mechanism in these cells.
The generation of the broad specificity serine protease plasmin in the pericellular environment is regulated by binding of the urokinase‐type plasminogen activator (uPA) to its specific glycosylphosphatidylinositol (GPI)‐anchored cell‐surface receptor, uPAR. This interaction potentiates the reciprocal activation of the cell‐associated zymogens pro‐uPA and plasminogen. To further study the role of uPAR in this mechanism, we have expressed two directly membrane‐anchored chimeric forms of uPA, one anchored by a C‐terminal GPI‐moiety (GPI‐uPA), the other with a C‐terminal transmembrane peptide (TM‐uPA). These were expressed in the monocyte‐like cell lines U937 and THP‐1, which are excellent models for kinetic and mechanistic studies of cell‐surface plasminogen activation. In both cell‐lines, GPI‐uPA activated cell‐associated plasminogen with characteristics both qualitatively and quantitatively indistinguishable from those of uPAR‐bound uPA. By contrast, TM‐uPA activated cell‐associated plasminogen less efficiently. This was due to effects on the Km for plasminogen activation (which was increased up to five‐fold) and the efficiency of pro‐uPA activation (which was decreased approximately four‐fold). These observations suggest that uPAR serves two essential roles in mediating efficient cell‐surface plasminogen activation. In addition to confining uPA to the cell‐surface, the GPI‐anchor plays an important role by increasing accessibility to substrate plasminogen and, thus, enhancing catalysis. However, the data also demonstrate that, in the presence of an alternative mechanism for uPA localization, uPAR is dispensable and, therefore, unlikely to participate in any additional interactions that may be necessary for the efficiency of this proteolytic system. In these experiments zymogen pro‐uPA was unexpectedly found to be constitutively activated when expressed in THP‐1 cells, suggesting the presence of an alternative plasmin‐independent proteolytic activation mechanism in these cells. Copyright © 2000 European Peptide Society and John Wiley & Sons, Ltd.
The generation of the broad specificity serine protease plasmin in the pericellular environment is regulated by binding of the urokinase-type plasminogen activator (uPA) to its specific glycosylphosphatidylinositol (GPI)-anchored cell-surface receptor, uPAR. This interaction potentiates the reciprocal activation of the cell-associated zymogens pro-uPA and plasminogen. To further study the role of uPAR in this mechanism, we have expressed two directly membrane-anchored chimeric forms of uPA, one anchored by a C-terminal GPI-moiety (GPI-uPA), the other with a C-terminal transmembrane peptide (TM-uPA). These were expressed in the monocyte-like cell lines U937 and THP-1, which are excellent models for kinetic and mechanistic studies of cell-surface plasminogen activation. In both cell-lines, GPI-uPA activated cell-associated plasminogen with characteristics both qualitatively and quantitatively indistinguishable from those of uPAR-bound uPA. By contrast, TM-uPA activated cell-associated plasminogen less efficiently. This was due to effects on the Km for plasminogen activation (which was increased up to five-fold) and the efficiency of pro-uPA activation (which was decreased approximately four-fold). These observations suggest that uPAR serves two essential roles in mediating efficient cell-surface plasminogen activation. In addition to confining uPA to the cell-surface, the GPI-anchor plays an important role by increasing accessibility to substrate plasminogen and, thus, enhancing catalysis. However, the data also demonstrate that, in the presence of an alternative mechanism for uPA localization, uPAR is dispensable and, therefore, unlikely to participate in any additional interactions that may be necessary for the efficiency of this proteolytic system. In these experiments zymogen pro-uPA was unexpectedly found to be constitutively activated when expressed in THP-1 cells, suggesting the presence of an alternative plasmin-independent proteolytic activation mechanism in these cells.
Author Dichek, David A.
Vines, David J.
Ellis, Vincent
Lee, Sung W.
Author_xml – sequence: 1
  givenname: David J.
  surname: Vines
  fullname: Vines, David J.
  organization: Thrombosis Research Institute, Manresa Road, London, UK
– sequence: 2
  givenname: Sung W.
  surname: Lee
  fullname: Lee, Sung W.
  organization: Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, USA
– sequence: 3
  givenname: David A.
  surname: Dichek
  fullname: Dichek, David A.
  organization: Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, USA
– sequence: 4
  givenname: Vincent
  surname: Ellis
  fullname: Ellis, Vincent
  email: vellis@tri-london.ac.uk
  organization: Thrombosis Research Institute, Manresa Road, London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11016879$$D View this record in MEDLINE/PubMed
BookMark eNqNkctu1DAUhiNURC_wCigrBIsMviSOPSCkanqhojBMKYLdkeOclLRJPNhJyzwDL42jjMqmEnhjy_7P91v69qOdznYYRTklM0oIe02JUgnlMn_JSFjqlZirtyln8_nh2VHy-cuC5eodn5HZYvmGJatH0d79xM54zrOECZrvRvveX48AlYkn0S6lhAqZq73o9wUaXPfWJS2Wte6xjB1eDY3ua9vFtorXjfZt3dkr7GJt-vpWh3BcDZ0ZE_OH3sfJYhP3dzYua4embzZxi23hdIeJ7swP60JNZV3rx4bB2Zu60x6fRo8r3Xh8tt0Poq8nx5eL98n58vRscXieGM6lSrJKERRGVbosSKoolUpQWhVSCkzTMjVKScykKk0hhcCSSKpZhVWKGQunjB9ELybu2tmfA_oe2tobbJrwPzt4yBknVFLxzyCjNE2J4CG4nILGWe8dVrB2davdBiiBUSSMWmDUApNIEKAgiAQIImESCRwILJbAYBWIz7fVQxHM_OVtzYXAxRS4qxvc_H_fg3XbmwBNJmjte_x1D9XuBkTO8wy-fTqFjx_E5dH3FYMT_gceBMq0
Cites_doi 10.1038/337579a0
10.1016/S0021-9258(18)34566-6
10.1016/0014-5793(94)00674-1
10.1038/308037a0
10.1016/S0021-9258(18)42376-9
10.1016/S0021-9258(18)98963-5
10.1016/S0021-9258(18)53468-2
10.1016/S0021-9258(17)37173-9
10.1038/42408
10.1016/S0021-9258(18)94159-1
10.1016/0092-8674(86)90782-8
10.1042/bj2960505
10.1182/blood.V90.6.2312
10.1021/bi00268a014
10.1074/jbc.271.25.14779
10.1021/bi972787k
10.1021/bi00052a038
10.1016/S0021-9258(17)41961-2
10.1021/bi981714d
10.1016/S0021-9258(18)51580-5
10.1083/jcb.115.1.75
10.1084/jem.174.1.35
10.1083/jcb.129.2.335
10.1016/S1050-1738(97)00084-4
10.1083/jcb.124.1.205
10.1074/jbc.271.45.28168
10.1016/S0021-9258(18)48128-8
10.1016/0014-5793(91)81042-7
10.1083/jcb.112.3.377
10.1074/jbc.271.37.22885
10.1083/jcb.103.6.2411
10.1021/bi00148a019
ContentType Journal Article
Copyright Copyright © European Peptide Society and John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © European Peptide Society and John Wiley & Sons, Ltd.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
7X8
DOI 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
EISSN 1099-1387
EndPage 439
ExternalDocumentID 10_1002_1099_1387_200009_6_9_432__AID_PSC279_3_0_CO_2_Q
11016879
PSC279
ark_67375_WNG_MK6TDXQ2_F
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GrantInformation_xml – fundername: British Heart Foundation
  funderid: PG/97173; PG/98053
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
UB1
V2E
V8K
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c3389-5f90e6c9fadb0491189611fb886e44d4c998e589dcb866ed081a2fef4e521a253
IEDL.DBID DR2
ISSN 1075-2617
IngestDate Thu Aug 15 23:24:23 EDT 2024
Sat Aug 17 03:43:02 EDT 2024
Fri Aug 23 02:12:04 EDT 2024
Sat Sep 28 07:36:25 EDT 2024
Sat Aug 24 00:53:30 EDT 2024
Wed Oct 30 09:47:59 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3389-5f90e6c9fadb0491189611fb886e44d4c998e589dcb866ed081a2fef4e521a253
Notes British Heart Foundation - No. PG/97173; No. PG/98053
ark:/67375/WNG-MK6TDXQ2-F
ArticleID:PSC279
istex:AB1983DCAB8C56D81108DA694456EB14CB890F64
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 11016879
PQID 21144063
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_72301816
proquest_miscellaneous_21144063
crossref_primary_10_1002_1099_1387_200009_6_9_432__AID_PSC279_3_0_CO_2_Q
pubmed_primary_11016879
wiley_primary_10_1002_1099_1387_200009_6_9_432_AID_PSC279_3_0_CO_2_Q_PSC279
istex_primary_ark_67375_WNG_MK6TDXQ2_F
PublicationCentury 2000
PublicationDate September 2000
PublicationDateYYYYMMDD 2000-09-01
PublicationDate_xml – month: 09
  year: 2000
  text: September 2000
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
PublicationTitle Journal of peptide science
PublicationTitleAlternate J. Peptide Sci
PublicationYear 2000
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Plow EF, Freaney DE, Plescia J, Miles LA. The plasminogen system and cell surfaces: evidence for plasminogen and urokinase receptors on the same cell type. J. Cell Biol. 1986; 103: 2411-2420.
Stoppelli MP, Tacchetti C, Cubellis MV, Corti A, Hearing VJ, Cassani G, Appella E, Blasi F. Autocrine saturation of pro-urokinase receptors on human A431 cells. Cell 1986; 45: 675-684.
Zhang F, Crise B, Su B, Hou Y, Rose JK, Bothwell A, Jacobson K. Lateral diffusion of membrane-spanning and glycosylphosphatidylinositol-linked proteins: toward establishing rules governing the lateral mobility of membrane proteins. J. Cell Biol. 1991; 115: 75-84.
Stahl A, Mueller BM. The urokinase-type plasminogen activator receptor, a GPI-linked protein, is localized in caveolae. J. Cell Biol. 1995; 129: 335-344.
Nowak UK, Li X, Teuten AJ, Smith RAG, Dobson CM. NMR studies of the dynamics of the multidomain protein urokinase-type plasminogen activator. Biochemistry 1993; 32: 298-309.
Ellis V, Whawell SA, Werner F, Deadman JJ. Assembly of urokinase receptor-mediated plasminogen activation complexes involves direct, non-active-site interactions between urokinase and plasminogen. Biochemistry 1999; 38: 651-659.
Ellis V, Whawell SA. Vascular smooth muscle cells potentiate plasmin generation by both urokinase and tissue plasminogen activator dependent mechanisms: Evidence for a specific tPA receptor on these cells. Blood 1997; 90: 2312-2322.
Ellis V, Scully MF, Kakkar VV. Plasminogen activation by single-chain urokinase in functional isolation. A kinetic study. J. Biol. Chem. 1987; 262: 14 998-15 003.
Ellis V, Scully MF, Kakkar VV. Plasminogen activation initiated by single-chain urokinase-type plasminogen activator. Potentiation by U937 monocytes. J. Biol. Chem. 1989; 264: 2185-2188.
Ploug M, Ellis V. Structure-function relationships in the receptor for urokinase-type plasminogen activator. Comparison to other members of the Ly-6 family and snake venom α-neurotoxins. [Review] FEBS Letters. 1994; 349: 163-168.
Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387: 569-572.
Lublin DM, Coyne KE. Phospholipid-anchored and transmembrane versions of either decay-accelerating factor or membrane cofactor protein show equal efficiency in protection from complement-mediated cell damage. J. Exp. Med. 1991; 174: 35-44.
Nielsen LS, Hansen JG, Skriver L, Wilson EL, Kaltoft K, Zeuthen J, Danø K. Purification of zymogen to plasminogen activator from human glioblastoma cells by affinity chromatography with monoclonal antibody. Biochemistry 1982; 21: 6410-6415.
Lee SW, Ellis V, Dichek DA. Characterization of plasminogen activation by glycosylphosphatidylinositol-anchored urokinase. J. Biol. Chem. 1994; 269: 2411-2418.
Ellis V. Cellular receptors for plasminogen activators-Recent advances. Trends Cardiovasc. Med. 1997; 7: 227-234.
Ellis V. Functional analysis of the cellular receptor for urokinase in plasminogen activation. J. Biol. Chem. 1996; 271: 14 779-14 784.
Wun TC, Ossowski L, Reich E. A proenzyme form of human urokinase. J. Biol. Chem. 1982; 257: 7262-7268.
Rønne E, Behrendt N, Ellis V, Ploug M, Danø K, Høyer-Hansen G. Cell-induced potentiation of the plasminogen activation system is abolished by a monoclonal antibody that recognizes the NH2-terminal domain of the urokinase receptor. FEBS Lett. 1991; 288: 233-236.
Oswald RE, Bogusky MJ, Bamberger M, Smith RAG, Dobson CM. Dynamics of the multidomain fibrinolytic protein urokinase from two-dimensional NMR. Nature 1989; 337: 579-582.
Li H, Kuo A, Kochan J, Strickland D, Kariko K, Barnathan ES, Cines DB. Endocytosis of urokinase-plasminogen activator inhibitor type 1 complexes bound to a chimeric transmembrane urokinase receptor. J. Biol. Chem. 1994; 269: 8153-8158.
Mostov KE, Friedlander M, Blobel G. The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin-like domains. Nature 1984; 308: 37-43.
Ploug M, Ostergaard S, Hansen LB, Holm A, Dano K. Photoaffinity labeling of the human receptor for urokinase-type plasminogen activator using a decapeptide antagonist. Evidence for a composite ligand-binding site and a short interdomain separation. Biochemistry 1998; 37: 3612-3622.
McCallum CD, Hapak RC, Neuenschwander PF, Morrissey JH, Johnson AE. The location of the active site of blood coagulation factor VIIa above the membrane surface and its reorientation upon association with tissue factor. A fluorescence energy transfer study. J. Biol. Chem. 1996; 271: 28 168-28 175.
Behrendt N, Rønne E, Danø K. Domain interplay in the urokinase receptor. Requirement for the third domain in high affinity ligand binding and demonstration of ligand contact sites in distinct receptor domains. J. Biol. Chem. 1996; 271: 22 885-22 894.
Ellis V, Danø K. Potentiation of plasminogen activation by an anti-urokinase monoclonal antibody due to ternary complex formation. A mechanistic model for receptor-mediated plasminogen activation. J. Biol. Chem. 1993; 268: 4806-4813.
Stephens RW, Bokman AM, Myohanen HT, Reisberg T, Tapiovaara H, Pedersen N, Grøndahl-Hansen J, Llinas M, Vaheri A. Heparin binding to the urokinase kringle domain. Biochemistry 1992; 31: 7572-7579.
Lu RL, Esmon NL, Esmon CT, Johnson AE. The active site of the thrombin-thrombomodulin complex. A fluorescence energy transfer measurement of its distance above the membrane surface. J. Biol. Chem. 1989; 264: 12 956-12 962.
Ellis V, Danø K. Specific inhibition of the activity of the urokinase receptor-mediated cell-surface plasminogen activation system by suramin. Biochem. J. 1993; 296: 505-510.
Lee SW, Kahn ML, Dichek DA. Expression of an anchored urokinase in the apical endothelial cell membrane. Preservation of enzymatic activity and enhancement of cell surface plasminogen activation. J. Biol. Chem. 1992; 267: 13 020-13 027.
Barth A, Muller-Taubenberger A, Taranto P, Gerisch G. Replacement of the phospholipid-anchor in the contact site A glycoprotein of D. discoideum by a transmembrane region does not impede cell adhesion but reduces residence time on the cell surface. J. Cell Biol. 1994; 124: 205-215.
Su B, Waneck GL, Flavell RA, Bothwell AL. The glycosyl phosphatidylinositol anchor is critical for Ly-6A/E-mediated T cell activation. J. Cell Biol. 1991; 112: 377-384.
Ellis V, Behrendt N, Danø K. Plasminogen activation by receptor-bound urokinase. A kinetic study with both cell-associated and isolated receptor. J. Biol. Chem. 1991; 266: 12 752-12 758.
1987; 262
1991; 174
1989; 337
1991; 112
1992; 267
1984; 308
1993; 268
1992; 31
1991; 115
1997; 7
1998; 37
1997; 90
1994; 124
1986; 103
1991; 266
1991; 288
1994; 269
1986; 45
1993; 32
1999; 38
1982; 21
1989; 264
1997; 387
1996; 271
1995; 129
1982; 257
1994; 349
1993; 296
Barth (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB31) 1994; 124
Lee (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB15) 1992; 267
Wun (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB1) 1982; 257
Ellis (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB14) 1999; 38
Behrendt (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB21) 1996; 271
Ellis (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB3) 1987; 262
Ploug (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB5) 1994; 349
Li (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB32) 1994; 269
Ellis (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB13) 1993; 296
Mostov (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB18) 1984; 308
Ellis (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB4) 1997; 7
Ellis (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB12) 1993; 268
Ploug (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB20) 1998; 37
Simons (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB26) 1997; 387
Stahl (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB27) 1995; 129
Stoppelli (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB19) 1986; 45
Plow (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB8) 1986; 103
Ellis (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB9) 1996; 271
Ellis (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB6) 1989; 264
Ellis (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB28) 1997; 90
Lu (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB23) 1989; 264
Nowak (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB11) 1993; 32
Stephens (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB22) 1992; 31
Nielsen (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB2) 1982; 21
Zhang (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB25) 1991; 115
Lublin (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB29) 1991; 174
Oswald (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB10) 1989; 337
Su (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB30) 1991; 112
Ellis (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB7) 1991; 266
Rønne (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB17) 1991; 288
McCallum (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB24) 1996; 271
Lee (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB16) 1994; 269
References_xml – volume: 387
  start-page: 569
  year: 1997
  end-page: 572
  article-title: Functional rafts in cell membranes
  publication-title: Nature
– volume: 267
  start-page: 13 020
  year: 1992
  end-page: 13 027
  article-title: Expression of an anchored urokinase in the apical endothelial cell membrane. Preservation of enzymatic activity and enhancement of cell surface plasminogen activation
  publication-title: J. Biol. Chem.
– volume: 266
  start-page: 12 752
  year: 1991
  end-page: 12 758
  article-title: Plasminogen activation by receptor‐bound urokinase. A kinetic study with both cell‐associated and isolated receptor
  publication-title: J. Biol. Chem.
– volume: 257
  start-page: 7262
  year: 1982
  end-page: 7268
  article-title: A proenzyme form of human urokinase
  publication-title: J. Biol. Chem.
– volume: 124
  start-page: 205
  year: 1994
  end-page: 215
  article-title: Replacement of the phospholipid‐anchor in the contact site A glycoprotein of by a transmembrane region does not impede cell adhesion but reduces residence time on the cell surface
  publication-title: J. Cell Biol.
– volume: 337
  start-page: 579
  year: 1989
  end-page: 582
  article-title: Dynamics of the multidomain fibrinolytic protein urokinase from two‐dimensional NMR
  publication-title: Nature
– volume: 296
  start-page: 505
  year: 1993
  end-page: 510
  article-title: Specific inhibition of the activity of the urokinase receptor‐mediated cell‐surface plasminogen activation system by suramin
  publication-title: Biochem. J.
– volume: 268
  start-page: 4806
  year: 1993
  end-page: 4813
  article-title: Potentiation of plasminogen activation by an anti‐urokinase monoclonal antibody due to ternary complex formation. A mechanistic model for receptor‐mediated plasminogen activation
  publication-title: J. Biol. Chem.
– volume: 31
  start-page: 7572
  year: 1992
  end-page: 7579
  article-title: Heparin binding to the urokinase kringle domain
  publication-title: Biochemistry
– volume: 271
  start-page: 22 885
  year: 1996
  end-page: 22 894
  article-title: Domain interplay in the urokinase receptor. Requirement for the third domain in high affinity ligand binding and demonstration of ligand contact sites in distinct receptor domains
  publication-title: J. Biol. Chem.
– volume: 264
  start-page: 12 956
  year: 1989
  end-page: 12 962
  article-title: The active site of the thrombin–thrombomodulin complex. A fluorescence energy transfer measurement of its distance above the membrane surface
  publication-title: J. Biol. Chem.
– volume: 308
  start-page: 37
  year: 1984
  end-page: 43
  article-title: The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin‐like domains
  publication-title: Nature
– volume: 262
  start-page: 14 998
  year: 1987
  end-page: 15 003
  article-title: Plasminogen activation by single‐chain urokinase in functional isolation. A kinetic study
  publication-title: J. Biol. Chem.
– volume: 288
  start-page: 233
  year: 1991
  end-page: 236
  article-title: Cell‐induced potentiation of the plasminogen activation system is abolished by a monoclonal antibody that recognizes the NH ‐terminal domain of the urokinase receptor
  publication-title: FEBS Lett.
– volume: 21
  start-page: 6410
  year: 1982
  end-page: 6415
  article-title: Purification of zymogen to plasminogen activator from human glioblastoma cells by affinity chromatography with monoclonal antibody
  publication-title: Biochemistry
– volume: 37
  start-page: 3612
  year: 1998
  end-page: 3622
  article-title: Photoaffinity labeling of the human receptor for urokinase‐type plasminogen activator using a decapeptide antagonist. Evidence for a composite ligand‐binding site and a short interdomain separation
  publication-title: Biochemistry
– volume: 90
  start-page: 2312
  year: 1997
  end-page: 2322
  article-title: Vascular smooth muscle cells potentiate plasmin generation by both urokinase and tissue plasminogen activator dependent mechanisms: Evidence for a specific tPA receptor on these cells
  publication-title: Blood
– volume: 174
  start-page: 35
  year: 1991
  end-page: 44
  article-title: Phospholipid‐anchored and transmembrane versions of either decay‐accelerating factor or membrane cofactor protein show equal efficiency in protection from complement‐mediated cell damage
  publication-title: J. Exp. Med.
– volume: 269
  start-page: 2411
  year: 1994
  end-page: 2418
  article-title: Characterization of plasminogen activation by glycosylphosphatidylinositol‐anchored urokinase
  publication-title: J. Biol. Chem.
– volume: 271
  start-page: 28 168
  year: 1996
  end-page: 28 175
  article-title: The location of the active site of blood coagulation factor VIIa above the membrane surface and its reorientation upon association with tissue factor. A fluorescence energy transfer study
  publication-title: J. Biol. Chem.
– volume: 45
  start-page: 675
  year: 1986
  end-page: 684
  article-title: Autocrine saturation of pro‐urokinase receptors on human A431 cells
  publication-title: Cell
– volume: 115
  start-page: 75
  year: 1991
  end-page: 84
  article-title: Lateral diffusion of membrane‐spanning and glycosylphosphatidylinositol‐linked proteins: toward establishing rules governing the lateral mobility of membrane proteins
  publication-title: J. Cell Biol.
– volume: 269
  start-page: 8153
  year: 1994
  end-page: 8158
  article-title: Endocytosis of urokinase‐plasminogen activator inhibitor type 1 complexes bound to a chimeric transmembrane urokinase receptor
  publication-title: J. Biol. Chem.
– volume: 103
  start-page: 2411
  year: 1986
  end-page: 2420
  article-title: The plasminogen system and cell surfaces: evidence for plasminogen and urokinase receptors on the same cell type
  publication-title: J. Cell Biol.
– volume: 112
  start-page: 377
  year: 1991
  end-page: 384
  article-title: The glycosyl phosphatidylinositol anchor is critical for Ly‐6A/E‐mediated T cell activation
  publication-title: J. Cell Biol.
– volume: 271
  start-page: 14 779
  year: 1996
  end-page: 14 784
  article-title: Functional analysis of the cellular receptor for urokinase in plasminogen activation
  publication-title: J. Biol. Chem.
– volume: 349
  start-page: 163
  year: 1994
  end-page: 168
  article-title: Structure–function relationships in the receptor for urokinase‐type plasminogen activator. Comparison to other members of the Ly‐6 family and snake venom α‐neurotoxins. [Review]
  publication-title: FEBS Letters.
– volume: 38
  start-page: 651
  year: 1999
  end-page: 659
  article-title: Assembly of urokinase receptor‐mediated plasminogen activation complexes involves direct, non‐active‐site interactions between urokinase and plasminogen
  publication-title: Biochemistry
– volume: 7
  start-page: 227
  year: 1997
  end-page: 234
  article-title: Cellular receptors for plasminogen activators‐Recent advances
  publication-title: Trends Cardiovasc. Med.
– volume: 32
  start-page: 298
  year: 1993
  end-page: 309
  article-title: NMR studies of the dynamics of the multidomain protein urokinase‐type plasminogen activator
  publication-title: Biochemistry
– volume: 129
  start-page: 335
  year: 1995
  end-page: 344
  article-title: The urokinase‐type plasminogen activator receptor, a GPI‐linked protein, is localized in caveolae
  publication-title: J. Cell Biol.
– volume: 264
  start-page: 2185
  year: 1989
  end-page: 2188
  article-title: Plasminogen activation initiated by single‐chain urokinase‐type plasminogen activator. Potentiation by U937 monocytes
  publication-title: J. Biol. Chem.
– volume: 337
  start-page: 579
  year: 1989
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB10
  publication-title: Nature
  doi: 10.1038/337579a0
  contributor:
    fullname: Oswald
– volume: 257
  start-page: 7262
  year: 1982
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB1
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)34566-6
  contributor:
    fullname: Wun
– volume: 349
  start-page: 163
  year: 1994
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB5
  publication-title: FEBS Letters.
  doi: 10.1016/0014-5793(94)00674-1
  contributor:
    fullname: Ploug
– volume: 308
  start-page: 37
  year: 1984
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB18
  publication-title: Nature
  doi: 10.1038/308037a0
  contributor:
    fullname: Mostov
– volume: 267
  start-page: 13?020
  year: 1992
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB15
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)42376-9
  contributor:
    fullname: Lee
– volume: 266
  start-page: 12?752
  year: 1991
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB7
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)98963-5
  contributor:
    fullname: Ellis
– volume: 268
  start-page: 4806
  year: 1993
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB12
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)53468-2
  contributor:
    fullname: Ellis
– volume: 269
  start-page: 8153
  year: 1994
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB32
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)37173-9
  contributor:
    fullname: Li
– volume: 387
  start-page: 569
  year: 1997
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB26
  publication-title: Nature
  doi: 10.1038/42408
  contributor:
    fullname: Simons
– volume: 264
  start-page: 2185
  year: 1989
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB6
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)94159-1
  contributor:
    fullname: Ellis
– volume: 45
  start-page: 675
  year: 1986
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB19
  publication-title: Cell
  doi: 10.1016/0092-8674(86)90782-8
  contributor:
    fullname: Stoppelli
– volume: 296
  start-page: 505
  year: 1993
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB13
  publication-title: Biochem. J.
  doi: 10.1042/bj2960505
  contributor:
    fullname: Ellis
– volume: 90
  start-page: 2312
  year: 1997
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB28
  publication-title: Blood
  doi: 10.1182/blood.V90.6.2312
  contributor:
    fullname: Ellis
– volume: 21
  start-page: 6410
  year: 1982
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB2
  publication-title: Biochemistry
  doi: 10.1021/bi00268a014
  contributor:
    fullname: Nielsen
– volume: 271
  start-page: 14?779
  year: 1996
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB9
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.25.14779
  contributor:
    fullname: Ellis
– volume: 37
  start-page: 3612
  year: 1998
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB20
  publication-title: Biochemistry
  doi: 10.1021/bi972787k
  contributor:
    fullname: Ploug
– volume: 32
  start-page: 298
  year: 1993
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB11
  publication-title: Biochemistry
  doi: 10.1021/bi00052a038
  contributor:
    fullname: Nowak
– volume: 269
  start-page: 2411
  year: 1994
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB16
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)41961-2
  contributor:
    fullname: Lee
– volume: 38
  start-page: 651
  year: 1999
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB14
  publication-title: Biochemistry
  doi: 10.1021/bi981714d
  contributor:
    fullname: Ellis
– volume: 264
  start-page: 12?956
  year: 1989
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB23
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)51580-5
  contributor:
    fullname: Lu
– volume: 115
  start-page: 75
  year: 1991
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB25
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.115.1.75
  contributor:
    fullname: Zhang
– volume: 174
  start-page: 35
  year: 1991
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB29
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.174.1.35
  contributor:
    fullname: Lublin
– volume: 129
  start-page: 335
  year: 1995
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB27
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.129.2.335
  contributor:
    fullname: Stahl
– volume: 7
  start-page: 227
  year: 1997
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB4
  publication-title: Trends Cardiovasc. Med.
  doi: 10.1016/S1050-1738(97)00084-4
  contributor:
    fullname: Ellis
– volume: 124
  start-page: 205
  year: 1994
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB31
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.124.1.205
  contributor:
    fullname: Barth
– volume: 271
  start-page: 28?168
  year: 1996
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB24
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.45.28168
  contributor:
    fullname: McCallum
– volume: 262
  start-page: 14?998
  year: 1987
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB3
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)48128-8
  contributor:
    fullname: Ellis
– volume: 288
  start-page: 233
  year: 1991
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB17
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(91)81042-7
  contributor:
    fullname: Rønne
– volume: 112
  start-page: 377
  year: 1991
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB30
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.112.3.377
  contributor:
    fullname: Su
– volume: 271
  start-page: 22?885
  year: 1996
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB21
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.37.22885
  contributor:
    fullname: Behrendt
– volume: 103
  start-page: 2411
  year: 1986
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB8
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.103.6.2411
  contributor:
    fullname: Plow
– volume: 31
  start-page: 7572
  year: 1992
  ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB22
  publication-title: Biochemistry
  doi: 10.1021/bi00148a019
  contributor:
    fullname: Stephens
SSID ssj0009956
Score 1.6028787
Snippet The generation of the broad specificity serine protease plasmin in the pericellular environment is regulated by binding of the urokinase‐type plasminogen...
The generation of the broad specificity serine protease plasmin in the pericellular environment is regulated by binding of the urokinase-type plasminogen...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 432
SubjectTerms Cell Membrane - metabolism
Cells, Cultured
Enzyme Precursors - metabolism
Fibrinolysin - metabolism
Genetic Vectors
Glycosylphosphatidylinositols - metabolism
Humans
Kinetics
Monocytes - metabolism
Peptide Fragments - metabolism
plasmin
Plasminogen - metabolism
plasminogen activator
Plasminogen Activators - metabolism
receptor
Receptors, Cell Surface - antagonists & inhibitors
Receptors, Cell Surface - metabolism
Receptors, Urokinase Plasminogen Activator
Recombinant Proteins - metabolism
serine protease
Time Factors
Transfection
urokinase
Urokinase-Type Plasminogen Activator - metabolism
Title Receptor-mediated regulation of plasminogen activator function: plasminogen activation by two directly membrane-anchored forms of urokinase
URI https://api.istex.fr/ark:/67375/WNG-MK6TDXQ2-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1099-1387%28200009%296%3A9%3C432%3A%3AAID-PSC279%3E3.0.CO%3B2-Q
https://www.ncbi.nlm.nih.gov/pubmed/11016879
https://search.proquest.com/docview/21144063
https://search.proquest.com/docview/72301816
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1Lb9NAEF5VRSpceJSXefpAERycxo9d7waEVJyGQJWWQCtyW_mxhirEDo4DlBP_AMRP5Jcw47UTFQWJA0LKIXKcHe_OzM73rWdnCbmnqEhDgMYWD7mwIAT4VkRDbqmE2iGGjLaPG5wH-6x_5L0Y0dEa-dDshdH1IRYLbugZ1XyNDh5Gs-1l0VB8pYMV9IAyc6eCOsCdGehVbLmB5zrwDT47z7vWy9eB48PVXbfVbgUHW-5TxxrCrG27PiaBdV8tC07hPk-dpYi5X7a_Qfxa4vZC3gMt7SHriMcgp9NZyniiJTyC9k_FuTOoss-rQOxpTFwFtd4F8qMZDp3LMm7Ny6gVf_mtUuR_Ha-L5HwNkc0dbdOXyJrKNsnZoDmZbpNsDOqEgMvkG8BeNS3z4ufX79UmGADQZqHe1oeSmXlqToEfTI6zHDzFxF0cH3GZwcR4jnd0Vv2O_4xOzPJTbuqQ__7EnKgJ9D5TIAgc5V1egCAE_DOUMS_y8XEGgOAKOertHgZ9qz5jwoqBnAuLpqKtWAwGm0RAloBuCWbbacQ5U56XeDHQUUW5SOKIM6YSQFChk6rUU4B7Qoe6V8l6lmfqOjFFCHEjCWmacCDdgPxSgGZJ4lPlJBRmN4P0G4uQU11KROqi0Q7mAQiJypFaNZJJIUEpUoJCpFaIdGVbBgfSkUOD3K8satFOWIwxQ8-n8s3-MznYY4fd0dCRPYPcbUxOgpLwZRCMVD6fSSD-HoA59893-MBOAf8xg1zTtrp8alzy4b4wyF5lcX_fnZW9qa_c-Ket3STndNUETAe8RdbLYq5uA34sozuVy_8CeSFVuA
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1Lb9NAEB6VVmq58Civ8KoPFMHBaWJ7196AkFqnISVNSiAVua3seA1ViB25CVBO_AOQ-If9Jcx4nURFQeKAkHyIHNvj3Znd-b71zCzAI8VEHCA0Nr3AEya6ANcMWeCZKmLVgFxGxaUE53aHN4-dV33WX4Fslguj60PMF9xoZOTzNQ1wWpDeWVQNpW86VEIPObNn5VgHyTNHxYpt23dsC3_hsXtQN1-_9S0Xz-7b5UrZP9q29yyzewnWcJKwadeD-ptFySnK9NRxihT9VXXXwS1E7swFPtHinvKaeI6CarWFkBdaxDMUcMHTrZHSviyDsRdRce7WGlfh56xDdDTLsDydhOXB199qRf7fHrsGVwqUbOxqs74OKyrZhA1_tjndJqy3i5iAG_Adka8aT9Ls_NuPPA8GMbSRqffFvmRGGhtjpAijkyTFwWJQIscnWmkwyKXTFbVl_9Od4Zkx-Zwa2ut_PDNGaoTNTxQKwrHyIc1QEGH-U5IxzdLhSYKY4CYcN_Z7ftMstpkwB8jPhcliUVF8gDYbhciXkHEJXq3Goedx5TiRM0BGqpgnokHoca4iBFGBFavYUQh9AovZt2A1SRN1BwwRoOuIAhZHHvJuBH8xorMocpmyIoYTXAmaM5OQY11NROq60RaFAghJypFaNZJLIVEpUqJCpFaItGVF-kfSkt0SPM5Nav6cIBtSkJ7L5LvOS9lu8V6937VkowRbM5uTqCT6HoQ9lU5PJXJ_B_Gc_ecrXCSoCAF5CW5rY128Na36eK4oQSs3ub9vztLWFGfu_tOnbcFGs9c-lIcHndY9uKyLKFB04H1YnWRT9QDh5CR8mI__X9JlWdI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV3NbtNAEB6VVgq98FOghL_6QBEcnCa2d-0NCKk4DSkhaQOtyG1lx2uoQuzgJkA58QYgHpEnYcbrJCoKEgeElEPkOP68OzOeb9YzswD3FRNxgNTY9AJPmOgCXDNkgWeqiNUCchlVlwqcO13eOnZe9Fl_BT7MamF0f4j5ghtZRv68JgMfR_HOomkovdKhDnoYMntWTnUwduYoV7Ft-45t4Tf87O43zMPXvuXi0T27Uq34B9v2M8vsXYA1h9tVygJrvFp0nKJCT52mSMlfNbcEbgG5Mwd8qOEe8bp4gkD1-gLkqYZ4jADnHN0ayezzMhZ7nhTnXq15GX7M5kMnswwr00lYGXz5rVXkf52wK3Cp4MjGrlbqq7Cikg246M-2ptuAUqfICLgG35D3qvEkzX5-_Z5XwSCDNjL1ttiVzEhjY4wBwugkSdFUDCrj-EjrDAY5dDqjvux3-md4Zkw-pYb2-e_PjJEa4egThUBoKe_SDIGI8Z8SxjRLhycJMoLrcNzcO_JbZrHJhDnA6FyYLBZVxQeosVGI0RLGW4LXanHoeVw5TuQMMB5VzBPRIPQ4VxFSqMCKVewoJD6BxewbsJqkiboJhgjQcUQBiyMPo26kfjFysyhymbIiho-3MrRmGiHHupeI1F2jLUoEEJKEI7VoJJdColCkRIFILRBpy6r0D6Qle2V4kGvU_DpBNqQUPZfJN93nstPmR41-z5LNMmzNVE6ikOhtEM5UOj2VGPk7yObsP5_hYniKBJCXYVPr6uKuac3Hc0UZ2rnG_f1wlo6mOHLrn15tC0qHjaZ8ud9t34Z13UGBUgPvwOokm6q7yCUn4b3c-n8BWLJYgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Receptor-mediated+regulation+of+plasminogen+activator+function%3A+plasminogen+activation+by+two+directly+membrane-anchored+forms+of+urokinase&rft.jtitle=Journal+of+peptide+science&rft.au=Vines%2C+David+J.&rft.au=Lee%2C+Sung+W.&rft.au=Dichek%2C+David+A.&rft.au=Ellis%2C+Vincent&rft.date=2000-09-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=1075-2617&rft.eissn=1099-1387&rft.volume=6&rft.issue=9&rft.spage=432&rft.epage=439&rft_id=info:doi/10.1002%2F1099-1387%28200009%296%3A9%3C432%3A%3AAID-PSC279%3E3.0.CO%3B2-Q&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_MK6TDXQ2_F
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1075-2617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1075-2617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1075-2617&client=summon