Receptor-mediated regulation of plasminogen activator function: plasminogen activation by two directly membrane-anchored forms of urokinase
The generation of the broad specificity serine protease plasmin in the pericellular environment is regulated by binding of the urokinase‐type plasminogen activator (uPA) to its specific glycosylphosphatidylinositol (GPI)‐anchored cell‐surface receptor, uPAR. This interaction potentiates the reciproc...
Saved in:
Published in | Journal of peptide science Vol. 6; no. 9; pp. 432 - 439 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.09.2000
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The generation of the broad specificity serine protease plasmin in the pericellular environment is regulated by binding of the urokinase‐type plasminogen activator (uPA) to its specific glycosylphosphatidylinositol (GPI)‐anchored cell‐surface receptor, uPAR. This interaction potentiates the reciprocal activation of the cell‐associated zymogens pro‐uPA and plasminogen. To further study the role of uPAR in this mechanism, we have expressed two directly membrane‐anchored chimeric forms of uPA, one anchored by a C‐terminal GPI‐moiety (GPI‐uPA), the other with a C‐terminal transmembrane peptide (TM‐uPA). These were expressed in the monocyte‐like cell lines U937 and THP‐1, which are excellent models for kinetic and mechanistic studies of cell‐surface plasminogen activation. In both cell‐lines, GPI‐uPA activated cell‐associated plasminogen with characteristics both qualitatively and quantitatively indistinguishable from those of uPAR‐bound uPA. By contrast, TM‐uPA activated cell‐associated plasminogen less efficiently. This was due to effects on the Km for plasminogen activation (which was increased up to five‐fold) and the efficiency of pro‐uPA activation (which was decreased approximately four‐fold). These observations suggest that uPAR serves two essential roles in mediating efficient cell‐surface plasminogen activation. In addition to confining uPA to the cell‐surface, the GPI‐anchor plays an important role by increasing accessibility to substrate plasminogen and, thus, enhancing catalysis. However, the data also demonstrate that, in the presence of an alternative mechanism for uPA localization, uPAR is dispensable and, therefore, unlikely to participate in any additional interactions that may be necessary for the efficiency of this proteolytic system. In these experiments zymogen pro‐uPA was unexpectedly found to be constitutively activated when expressed in THP‐1 cells, suggesting the presence of an alternative plasmin‐independent proteolytic activation mechanism in these cells. Copyright © 2000 European Peptide Society and John Wiley & Sons, Ltd. |
---|---|
AbstractList | The generation of the broad specificity serine protease plasmin in the pericellular environment is regulated by binding of the urokinase-type plasminogen activator (uPA) to its specific glycosylphosphatidylinositol (GPI)-anchored cell-surface receptor, uPAR. This interaction potentiates the reciprocal activation of the cell-associated zymogens pro-uPA and plasminogen. To further study the role of uPAR in this mechanism, we have expressed two directly membrane-anchored chimeric forms of uPA, one anchored by a C-terminal GPI-moiety (GPI-uPA), the other with a C-terminal transmembrane peptide (TM-uPA). These were expressed in the monocyte-like cell lines U937 and THP-1, which are excellent models for kinetic and mechanistic studies of cell-surface plasminogen activation. In both cell-lines, GPI-uPA activated cell-associated plasminogen with characteristics both qualitatively and quantitatively indistinguishable from those of uPAR-bound uPA. By contrast, TM-uPA activated cell-associated plasminogen less efficiently. This was due to effects on the K, for plasminogen activation (which was increased up to five-fold) and the efficiency of pro-uPA activation (which was decreased approximately four-fold). These observations suggest that uPAR serves two essential roles in mediating efficient cell-surface plasminogen activation. In addition to confining uPA to the cell-surface, the GPI-anchor plays an important role by increasing accessibility to substrate plasminogen and, thus, enhancing catalysis. However, the data also demonstrate that, in the presence of an alternative mechanism for uPA localization, uPAR is dispensable and, therefore, unlikely to participate in any additional interactions that may be necessary for the efficiency of this proteolytic system. In these experiments zymogen pro-uPA was unexpectedly found to be constitutively activated when expressed in THP-1 cells, suggesting the presence of an alternative plasmin-independent proteolytic activation mechanism in these cells. The generation of the broad specificity serine protease plasmin in the pericellular environment is regulated by binding of the urokinase‐type plasminogen activator (uPA) to its specific glycosylphosphatidylinositol (GPI)‐anchored cell‐surface receptor, uPAR. This interaction potentiates the reciprocal activation of the cell‐associated zymogens pro‐uPA and plasminogen. To further study the role of uPAR in this mechanism, we have expressed two directly membrane‐anchored chimeric forms of uPA, one anchored by a C‐terminal GPI‐moiety (GPI‐uPA), the other with a C‐terminal transmembrane peptide (TM‐uPA). These were expressed in the monocyte‐like cell lines U937 and THP‐1, which are excellent models for kinetic and mechanistic studies of cell‐surface plasminogen activation. In both cell‐lines, GPI‐uPA activated cell‐associated plasminogen with characteristics both qualitatively and quantitatively indistinguishable from those of uPAR‐bound uPA. By contrast, TM‐uPA activated cell‐associated plasminogen less efficiently. This was due to effects on the Km for plasminogen activation (which was increased up to five‐fold) and the efficiency of pro‐uPA activation (which was decreased approximately four‐fold). These observations suggest that uPAR serves two essential roles in mediating efficient cell‐surface plasminogen activation. In addition to confining uPA to the cell‐surface, the GPI‐anchor plays an important role by increasing accessibility to substrate plasminogen and, thus, enhancing catalysis. However, the data also demonstrate that, in the presence of an alternative mechanism for uPA localization, uPAR is dispensable and, therefore, unlikely to participate in any additional interactions that may be necessary for the efficiency of this proteolytic system. In these experiments zymogen pro‐uPA was unexpectedly found to be constitutively activated when expressed in THP‐1 cells, suggesting the presence of an alternative plasmin‐independent proteolytic activation mechanism in these cells. Copyright © 2000 European Peptide Society and John Wiley & Sons, Ltd. The generation of the broad specificity serine protease plasmin in the pericellular environment is regulated by binding of the urokinase-type plasminogen activator (uPA) to its specific glycosylphosphatidylinositol (GPI)-anchored cell-surface receptor, uPAR. This interaction potentiates the reciprocal activation of the cell-associated zymogens pro-uPA and plasminogen. To further study the role of uPAR in this mechanism, we have expressed two directly membrane-anchored chimeric forms of uPA, one anchored by a C-terminal GPI-moiety (GPI-uPA), the other with a C-terminal transmembrane peptide (TM-uPA). These were expressed in the monocyte-like cell lines U937 and THP-1, which are excellent models for kinetic and mechanistic studies of cell-surface plasminogen activation. In both cell-lines, GPI-uPA activated cell-associated plasminogen with characteristics both qualitatively and quantitatively indistinguishable from those of uPAR-bound uPA. By contrast, TM-uPA activated cell-associated plasminogen less efficiently. This was due to effects on the Km for plasminogen activation (which was increased up to five-fold) and the efficiency of pro-uPA activation (which was decreased approximately four-fold). These observations suggest that uPAR serves two essential roles in mediating efficient cell-surface plasminogen activation. In addition to confining uPA to the cell-surface, the GPI-anchor plays an important role by increasing accessibility to substrate plasminogen and, thus, enhancing catalysis. However, the data also demonstrate that, in the presence of an alternative mechanism for uPA localization, uPAR is dispensable and, therefore, unlikely to participate in any additional interactions that may be necessary for the efficiency of this proteolytic system. In these experiments zymogen pro-uPA was unexpectedly found to be constitutively activated when expressed in THP-1 cells, suggesting the presence of an alternative plasmin-independent proteolytic activation mechanism in these cells. |
Author | Dichek, David A. Vines, David J. Ellis, Vincent Lee, Sung W. |
Author_xml | – sequence: 1 givenname: David J. surname: Vines fullname: Vines, David J. organization: Thrombosis Research Institute, Manresa Road, London, UK – sequence: 2 givenname: Sung W. surname: Lee fullname: Lee, Sung W. organization: Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, USA – sequence: 3 givenname: David A. surname: Dichek fullname: Dichek, David A. organization: Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, USA – sequence: 4 givenname: Vincent surname: Ellis fullname: Ellis, Vincent email: vellis@tri-london.ac.uk organization: Thrombosis Research Institute, Manresa Road, London, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11016879$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctu1DAUhiNURC_wCigrBIsMviSOPSCkanqhojBMKYLdkeOclLRJPNhJyzwDL42jjMqmEnhjy_7P91v69qOdznYYRTklM0oIe02JUgnlMn_JSFjqlZirtyln8_nh2VHy-cuC5eodn5HZYvmGJatH0d79xM54zrOECZrvRvveX48AlYkn0S6lhAqZq73o9wUaXPfWJS2Wte6xjB1eDY3ua9vFtorXjfZt3dkr7GJt-vpWh3BcDZ0ZE_OH3sfJYhP3dzYua4embzZxi23hdIeJ7swP60JNZV3rx4bB2Zu60x6fRo8r3Xh8tt0Poq8nx5eL98n58vRscXieGM6lSrJKERRGVbosSKoolUpQWhVSCkzTMjVKScykKk0hhcCSSKpZhVWKGQunjB9ELybu2tmfA_oe2tobbJrwPzt4yBknVFLxzyCjNE2J4CG4nILGWe8dVrB2davdBiiBUSSMWmDUApNIEKAgiAQIImESCRwILJbAYBWIz7fVQxHM_OVtzYXAxRS4qxvc_H_fg3XbmwBNJmjte_x1D9XuBkTO8wy-fTqFjx_E5dH3FYMT_gceBMq0 |
Cites_doi | 10.1038/337579a0 10.1016/S0021-9258(18)34566-6 10.1016/0014-5793(94)00674-1 10.1038/308037a0 10.1016/S0021-9258(18)42376-9 10.1016/S0021-9258(18)98963-5 10.1016/S0021-9258(18)53468-2 10.1016/S0021-9258(17)37173-9 10.1038/42408 10.1016/S0021-9258(18)94159-1 10.1016/0092-8674(86)90782-8 10.1042/bj2960505 10.1182/blood.V90.6.2312 10.1021/bi00268a014 10.1074/jbc.271.25.14779 10.1021/bi972787k 10.1021/bi00052a038 10.1016/S0021-9258(17)41961-2 10.1021/bi981714d 10.1016/S0021-9258(18)51580-5 10.1083/jcb.115.1.75 10.1084/jem.174.1.35 10.1083/jcb.129.2.335 10.1016/S1050-1738(97)00084-4 10.1083/jcb.124.1.205 10.1074/jbc.271.45.28168 10.1016/S0021-9258(18)48128-8 10.1016/0014-5793(91)81042-7 10.1083/jcb.112.3.377 10.1074/jbc.271.37.22885 10.1083/jcb.103.6.2411 10.1021/bi00148a019 |
ContentType | Journal Article |
Copyright | Copyright © European Peptide Society and John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © European Peptide Society and John Wiley & Sons, Ltd. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 8FD FR3 P64 7X8 |
DOI | 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry |
EISSN | 1099-1387 |
EndPage | 439 |
ExternalDocumentID | 10_1002_1099_1387_200009_6_9_432__AID_PSC279_3_0_CO_2_Q 11016879 PSC279 ark_67375_WNG_MK6TDXQ2_F |
Genre | article Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GrantInformation_xml | – fundername: British Heart Foundation funderid: PG/97173; PG/98053 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 UB1 V2E V8K W8V W99 WBFHL WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 8FD FR3 P64 7X8 |
ID | FETCH-LOGICAL-c3389-5f90e6c9fadb0491189611fb886e44d4c998e589dcb866ed081a2fef4e521a253 |
IEDL.DBID | DR2 |
ISSN | 1075-2617 |
IngestDate | Thu Aug 15 23:24:23 EDT 2024 Sat Aug 17 03:43:02 EDT 2024 Fri Aug 23 02:12:04 EDT 2024 Sat Sep 28 07:36:25 EDT 2024 Sat Aug 24 00:53:30 EDT 2024 Wed Oct 30 09:47:59 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3389-5f90e6c9fadb0491189611fb886e44d4c998e589dcb866ed081a2fef4e521a253 |
Notes | British Heart Foundation - No. PG/97173; No. PG/98053 ark:/67375/WNG-MK6TDXQ2-F ArticleID:PSC279 istex:AB1983DCAB8C56D81108DA694456EB14CB890F64 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 11016879 |
PQID | 21144063 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_72301816 proquest_miscellaneous_21144063 crossref_primary_10_1002_1099_1387_200009_6_9_432__AID_PSC279_3_0_CO_2_Q pubmed_primary_11016879 wiley_primary_10_1002_1099_1387_200009_6_9_432_AID_PSC279_3_0_CO_2_Q_PSC279 istex_primary_ark_67375_WNG_MK6TDXQ2_F |
PublicationCentury | 2000 |
PublicationDate | September 2000 |
PublicationDateYYYYMMDD | 2000-09-01 |
PublicationDate_xml | – month: 09 year: 2000 text: September 2000 |
PublicationDecade | 2000 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: England |
PublicationTitle | Journal of peptide science |
PublicationTitleAlternate | J. Peptide Sci |
PublicationYear | 2000 |
Publisher | John Wiley & Sons, Ltd |
Publisher_xml | – name: John Wiley & Sons, Ltd |
References | Plow EF, Freaney DE, Plescia J, Miles LA. The plasminogen system and cell surfaces: evidence for plasminogen and urokinase receptors on the same cell type. J. Cell Biol. 1986; 103: 2411-2420. Stoppelli MP, Tacchetti C, Cubellis MV, Corti A, Hearing VJ, Cassani G, Appella E, Blasi F. Autocrine saturation of pro-urokinase receptors on human A431 cells. Cell 1986; 45: 675-684. Zhang F, Crise B, Su B, Hou Y, Rose JK, Bothwell A, Jacobson K. Lateral diffusion of membrane-spanning and glycosylphosphatidylinositol-linked proteins: toward establishing rules governing the lateral mobility of membrane proteins. J. Cell Biol. 1991; 115: 75-84. Stahl A, Mueller BM. The urokinase-type plasminogen activator receptor, a GPI-linked protein, is localized in caveolae. J. Cell Biol. 1995; 129: 335-344. Nowak UK, Li X, Teuten AJ, Smith RAG, Dobson CM. NMR studies of the dynamics of the multidomain protein urokinase-type plasminogen activator. Biochemistry 1993; 32: 298-309. Ellis V, Whawell SA, Werner F, Deadman JJ. Assembly of urokinase receptor-mediated plasminogen activation complexes involves direct, non-active-site interactions between urokinase and plasminogen. Biochemistry 1999; 38: 651-659. Ellis V, Whawell SA. Vascular smooth muscle cells potentiate plasmin generation by both urokinase and tissue plasminogen activator dependent mechanisms: Evidence for a specific tPA receptor on these cells. Blood 1997; 90: 2312-2322. Ellis V, Scully MF, Kakkar VV. Plasminogen activation by single-chain urokinase in functional isolation. A kinetic study. J. Biol. Chem. 1987; 262: 14 998-15 003. Ellis V, Scully MF, Kakkar VV. Plasminogen activation initiated by single-chain urokinase-type plasminogen activator. Potentiation by U937 monocytes. J. Biol. Chem. 1989; 264: 2185-2188. Ploug M, Ellis V. Structure-function relationships in the receptor for urokinase-type plasminogen activator. Comparison to other members of the Ly-6 family and snake venom α-neurotoxins. [Review] FEBS Letters. 1994; 349: 163-168. Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387: 569-572. Lublin DM, Coyne KE. Phospholipid-anchored and transmembrane versions of either decay-accelerating factor or membrane cofactor protein show equal efficiency in protection from complement-mediated cell damage. J. Exp. Med. 1991; 174: 35-44. Nielsen LS, Hansen JG, Skriver L, Wilson EL, Kaltoft K, Zeuthen J, Danø K. Purification of zymogen to plasminogen activator from human glioblastoma cells by affinity chromatography with monoclonal antibody. Biochemistry 1982; 21: 6410-6415. Lee SW, Ellis V, Dichek DA. Characterization of plasminogen activation by glycosylphosphatidylinositol-anchored urokinase. J. Biol. Chem. 1994; 269: 2411-2418. Ellis V. Cellular receptors for plasminogen activators-Recent advances. Trends Cardiovasc. Med. 1997; 7: 227-234. Ellis V. Functional analysis of the cellular receptor for urokinase in plasminogen activation. J. Biol. Chem. 1996; 271: 14 779-14 784. Wun TC, Ossowski L, Reich E. A proenzyme form of human urokinase. J. Biol. Chem. 1982; 257: 7262-7268. Rønne E, Behrendt N, Ellis V, Ploug M, Danø K, Høyer-Hansen G. Cell-induced potentiation of the plasminogen activation system is abolished by a monoclonal antibody that recognizes the NH2-terminal domain of the urokinase receptor. FEBS Lett. 1991; 288: 233-236. Oswald RE, Bogusky MJ, Bamberger M, Smith RAG, Dobson CM. Dynamics of the multidomain fibrinolytic protein urokinase from two-dimensional NMR. Nature 1989; 337: 579-582. Li H, Kuo A, Kochan J, Strickland D, Kariko K, Barnathan ES, Cines DB. Endocytosis of urokinase-plasminogen activator inhibitor type 1 complexes bound to a chimeric transmembrane urokinase receptor. J. Biol. Chem. 1994; 269: 8153-8158. Mostov KE, Friedlander M, Blobel G. The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin-like domains. Nature 1984; 308: 37-43. Ploug M, Ostergaard S, Hansen LB, Holm A, Dano K. Photoaffinity labeling of the human receptor for urokinase-type plasminogen activator using a decapeptide antagonist. Evidence for a composite ligand-binding site and a short interdomain separation. Biochemistry 1998; 37: 3612-3622. McCallum CD, Hapak RC, Neuenschwander PF, Morrissey JH, Johnson AE. The location of the active site of blood coagulation factor VIIa above the membrane surface and its reorientation upon association with tissue factor. A fluorescence energy transfer study. J. Biol. Chem. 1996; 271: 28 168-28 175. Behrendt N, Rønne E, Danø K. Domain interplay in the urokinase receptor. Requirement for the third domain in high affinity ligand binding and demonstration of ligand contact sites in distinct receptor domains. J. Biol. Chem. 1996; 271: 22 885-22 894. Ellis V, Danø K. Potentiation of plasminogen activation by an anti-urokinase monoclonal antibody due to ternary complex formation. A mechanistic model for receptor-mediated plasminogen activation. J. Biol. Chem. 1993; 268: 4806-4813. Stephens RW, Bokman AM, Myohanen HT, Reisberg T, Tapiovaara H, Pedersen N, Grøndahl-Hansen J, Llinas M, Vaheri A. Heparin binding to the urokinase kringle domain. Biochemistry 1992; 31: 7572-7579. Lu RL, Esmon NL, Esmon CT, Johnson AE. The active site of the thrombin-thrombomodulin complex. A fluorescence energy transfer measurement of its distance above the membrane surface. J. Biol. Chem. 1989; 264: 12 956-12 962. Ellis V, Danø K. Specific inhibition of the activity of the urokinase receptor-mediated cell-surface plasminogen activation system by suramin. Biochem. J. 1993; 296: 505-510. Lee SW, Kahn ML, Dichek DA. Expression of an anchored urokinase in the apical endothelial cell membrane. Preservation of enzymatic activity and enhancement of cell surface plasminogen activation. J. Biol. Chem. 1992; 267: 13 020-13 027. Barth A, Muller-Taubenberger A, Taranto P, Gerisch G. Replacement of the phospholipid-anchor in the contact site A glycoprotein of D. discoideum by a transmembrane region does not impede cell adhesion but reduces residence time on the cell surface. J. Cell Biol. 1994; 124: 205-215. Su B, Waneck GL, Flavell RA, Bothwell AL. The glycosyl phosphatidylinositol anchor is critical for Ly-6A/E-mediated T cell activation. J. Cell Biol. 1991; 112: 377-384. Ellis V, Behrendt N, Danø K. Plasminogen activation by receptor-bound urokinase. A kinetic study with both cell-associated and isolated receptor. J. Biol. Chem. 1991; 266: 12 752-12 758. 1987; 262 1991; 174 1989; 337 1991; 112 1992; 267 1984; 308 1993; 268 1992; 31 1991; 115 1997; 7 1998; 37 1997; 90 1994; 124 1986; 103 1991; 266 1991; 288 1994; 269 1986; 45 1993; 32 1999; 38 1982; 21 1989; 264 1997; 387 1996; 271 1995; 129 1982; 257 1994; 349 1993; 296 Barth (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB31) 1994; 124 Lee (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB15) 1992; 267 Wun (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB1) 1982; 257 Ellis (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB14) 1999; 38 Behrendt (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB21) 1996; 271 Ellis (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB3) 1987; 262 Ploug (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB5) 1994; 349 Li (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB32) 1994; 269 Ellis (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB13) 1993; 296 Mostov (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB18) 1984; 308 Ellis (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB4) 1997; 7 Ellis (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB12) 1993; 268 Ploug (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB20) 1998; 37 Simons (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB26) 1997; 387 Stahl (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB27) 1995; 129 Stoppelli (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB19) 1986; 45 Plow (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB8) 1986; 103 Ellis (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB9) 1996; 271 Ellis (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB6) 1989; 264 Ellis (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB28) 1997; 90 Lu (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB23) 1989; 264 Nowak (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB11) 1993; 32 Stephens (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB22) 1992; 31 Nielsen (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB2) 1982; 21 Zhang (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB25) 1991; 115 Lublin (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB29) 1991; 174 Oswald (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB10) 1989; 337 Su (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB30) 1991; 112 Ellis (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB7) 1991; 266 Rønne (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB17) 1991; 288 McCallum (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB24) 1996; 271 Lee (10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB16) 1994; 269 |
References_xml | – volume: 387 start-page: 569 year: 1997 end-page: 572 article-title: Functional rafts in cell membranes publication-title: Nature – volume: 267 start-page: 13 020 year: 1992 end-page: 13 027 article-title: Expression of an anchored urokinase in the apical endothelial cell membrane. Preservation of enzymatic activity and enhancement of cell surface plasminogen activation publication-title: J. Biol. Chem. – volume: 266 start-page: 12 752 year: 1991 end-page: 12 758 article-title: Plasminogen activation by receptor‐bound urokinase. A kinetic study with both cell‐associated and isolated receptor publication-title: J. Biol. Chem. – volume: 257 start-page: 7262 year: 1982 end-page: 7268 article-title: A proenzyme form of human urokinase publication-title: J. Biol. Chem. – volume: 124 start-page: 205 year: 1994 end-page: 215 article-title: Replacement of the phospholipid‐anchor in the contact site A glycoprotein of by a transmembrane region does not impede cell adhesion but reduces residence time on the cell surface publication-title: J. Cell Biol. – volume: 337 start-page: 579 year: 1989 end-page: 582 article-title: Dynamics of the multidomain fibrinolytic protein urokinase from two‐dimensional NMR publication-title: Nature – volume: 296 start-page: 505 year: 1993 end-page: 510 article-title: Specific inhibition of the activity of the urokinase receptor‐mediated cell‐surface plasminogen activation system by suramin publication-title: Biochem. J. – volume: 268 start-page: 4806 year: 1993 end-page: 4813 article-title: Potentiation of plasminogen activation by an anti‐urokinase monoclonal antibody due to ternary complex formation. A mechanistic model for receptor‐mediated plasminogen activation publication-title: J. Biol. Chem. – volume: 31 start-page: 7572 year: 1992 end-page: 7579 article-title: Heparin binding to the urokinase kringle domain publication-title: Biochemistry – volume: 271 start-page: 22 885 year: 1996 end-page: 22 894 article-title: Domain interplay in the urokinase receptor. Requirement for the third domain in high affinity ligand binding and demonstration of ligand contact sites in distinct receptor domains publication-title: J. Biol. Chem. – volume: 264 start-page: 12 956 year: 1989 end-page: 12 962 article-title: The active site of the thrombin–thrombomodulin complex. A fluorescence energy transfer measurement of its distance above the membrane surface publication-title: J. Biol. Chem. – volume: 308 start-page: 37 year: 1984 end-page: 43 article-title: The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin‐like domains publication-title: Nature – volume: 262 start-page: 14 998 year: 1987 end-page: 15 003 article-title: Plasminogen activation by single‐chain urokinase in functional isolation. A kinetic study publication-title: J. Biol. Chem. – volume: 288 start-page: 233 year: 1991 end-page: 236 article-title: Cell‐induced potentiation of the plasminogen activation system is abolished by a monoclonal antibody that recognizes the NH ‐terminal domain of the urokinase receptor publication-title: FEBS Lett. – volume: 21 start-page: 6410 year: 1982 end-page: 6415 article-title: Purification of zymogen to plasminogen activator from human glioblastoma cells by affinity chromatography with monoclonal antibody publication-title: Biochemistry – volume: 37 start-page: 3612 year: 1998 end-page: 3622 article-title: Photoaffinity labeling of the human receptor for urokinase‐type plasminogen activator using a decapeptide antagonist. Evidence for a composite ligand‐binding site and a short interdomain separation publication-title: Biochemistry – volume: 90 start-page: 2312 year: 1997 end-page: 2322 article-title: Vascular smooth muscle cells potentiate plasmin generation by both urokinase and tissue plasminogen activator dependent mechanisms: Evidence for a specific tPA receptor on these cells publication-title: Blood – volume: 174 start-page: 35 year: 1991 end-page: 44 article-title: Phospholipid‐anchored and transmembrane versions of either decay‐accelerating factor or membrane cofactor protein show equal efficiency in protection from complement‐mediated cell damage publication-title: J. Exp. Med. – volume: 269 start-page: 2411 year: 1994 end-page: 2418 article-title: Characterization of plasminogen activation by glycosylphosphatidylinositol‐anchored urokinase publication-title: J. Biol. Chem. – volume: 271 start-page: 28 168 year: 1996 end-page: 28 175 article-title: The location of the active site of blood coagulation factor VIIa above the membrane surface and its reorientation upon association with tissue factor. A fluorescence energy transfer study publication-title: J. Biol. Chem. – volume: 45 start-page: 675 year: 1986 end-page: 684 article-title: Autocrine saturation of pro‐urokinase receptors on human A431 cells publication-title: Cell – volume: 115 start-page: 75 year: 1991 end-page: 84 article-title: Lateral diffusion of membrane‐spanning and glycosylphosphatidylinositol‐linked proteins: toward establishing rules governing the lateral mobility of membrane proteins publication-title: J. Cell Biol. – volume: 269 start-page: 8153 year: 1994 end-page: 8158 article-title: Endocytosis of urokinase‐plasminogen activator inhibitor type 1 complexes bound to a chimeric transmembrane urokinase receptor publication-title: J. Biol. Chem. – volume: 103 start-page: 2411 year: 1986 end-page: 2420 article-title: The plasminogen system and cell surfaces: evidence for plasminogen and urokinase receptors on the same cell type publication-title: J. Cell Biol. – volume: 112 start-page: 377 year: 1991 end-page: 384 article-title: The glycosyl phosphatidylinositol anchor is critical for Ly‐6A/E‐mediated T cell activation publication-title: J. Cell Biol. – volume: 271 start-page: 14 779 year: 1996 end-page: 14 784 article-title: Functional analysis of the cellular receptor for urokinase in plasminogen activation publication-title: J. Biol. Chem. – volume: 349 start-page: 163 year: 1994 end-page: 168 article-title: Structure–function relationships in the receptor for urokinase‐type plasminogen activator. Comparison to other members of the Ly‐6 family and snake venom α‐neurotoxins. [Review] publication-title: FEBS Letters. – volume: 38 start-page: 651 year: 1999 end-page: 659 article-title: Assembly of urokinase receptor‐mediated plasminogen activation complexes involves direct, non‐active‐site interactions between urokinase and plasminogen publication-title: Biochemistry – volume: 7 start-page: 227 year: 1997 end-page: 234 article-title: Cellular receptors for plasminogen activators‐Recent advances publication-title: Trends Cardiovasc. Med. – volume: 32 start-page: 298 year: 1993 end-page: 309 article-title: NMR studies of the dynamics of the multidomain protein urokinase‐type plasminogen activator publication-title: Biochemistry – volume: 129 start-page: 335 year: 1995 end-page: 344 article-title: The urokinase‐type plasminogen activator receptor, a GPI‐linked protein, is localized in caveolae publication-title: J. Cell Biol. – volume: 264 start-page: 2185 year: 1989 end-page: 2188 article-title: Plasminogen activation initiated by single‐chain urokinase‐type plasminogen activator. Potentiation by U937 monocytes publication-title: J. Biol. Chem. – volume: 337 start-page: 579 year: 1989 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB10 publication-title: Nature doi: 10.1038/337579a0 contributor: fullname: Oswald – volume: 257 start-page: 7262 year: 1982 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB1 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)34566-6 contributor: fullname: Wun – volume: 349 start-page: 163 year: 1994 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB5 publication-title: FEBS Letters. doi: 10.1016/0014-5793(94)00674-1 contributor: fullname: Ploug – volume: 308 start-page: 37 year: 1984 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB18 publication-title: Nature doi: 10.1038/308037a0 contributor: fullname: Mostov – volume: 267 start-page: 13?020 year: 1992 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB15 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)42376-9 contributor: fullname: Lee – volume: 266 start-page: 12?752 year: 1991 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB7 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)98963-5 contributor: fullname: Ellis – volume: 268 start-page: 4806 year: 1993 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB12 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)53468-2 contributor: fullname: Ellis – volume: 269 start-page: 8153 year: 1994 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB32 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)37173-9 contributor: fullname: Li – volume: 387 start-page: 569 year: 1997 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB26 publication-title: Nature doi: 10.1038/42408 contributor: fullname: Simons – volume: 264 start-page: 2185 year: 1989 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB6 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)94159-1 contributor: fullname: Ellis – volume: 45 start-page: 675 year: 1986 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB19 publication-title: Cell doi: 10.1016/0092-8674(86)90782-8 contributor: fullname: Stoppelli – volume: 296 start-page: 505 year: 1993 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB13 publication-title: Biochem. J. doi: 10.1042/bj2960505 contributor: fullname: Ellis – volume: 90 start-page: 2312 year: 1997 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB28 publication-title: Blood doi: 10.1182/blood.V90.6.2312 contributor: fullname: Ellis – volume: 21 start-page: 6410 year: 1982 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB2 publication-title: Biochemistry doi: 10.1021/bi00268a014 contributor: fullname: Nielsen – volume: 271 start-page: 14?779 year: 1996 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB9 publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.25.14779 contributor: fullname: Ellis – volume: 37 start-page: 3612 year: 1998 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB20 publication-title: Biochemistry doi: 10.1021/bi972787k contributor: fullname: Ploug – volume: 32 start-page: 298 year: 1993 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB11 publication-title: Biochemistry doi: 10.1021/bi00052a038 contributor: fullname: Nowak – volume: 269 start-page: 2411 year: 1994 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB16 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)41961-2 contributor: fullname: Lee – volume: 38 start-page: 651 year: 1999 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB14 publication-title: Biochemistry doi: 10.1021/bi981714d contributor: fullname: Ellis – volume: 264 start-page: 12?956 year: 1989 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB23 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)51580-5 contributor: fullname: Lu – volume: 115 start-page: 75 year: 1991 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB25 publication-title: J. Cell Biol. doi: 10.1083/jcb.115.1.75 contributor: fullname: Zhang – volume: 174 start-page: 35 year: 1991 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB29 publication-title: J. Exp. Med. doi: 10.1084/jem.174.1.35 contributor: fullname: Lublin – volume: 129 start-page: 335 year: 1995 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB27 publication-title: J. Cell Biol. doi: 10.1083/jcb.129.2.335 contributor: fullname: Stahl – volume: 7 start-page: 227 year: 1997 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB4 publication-title: Trends Cardiovasc. Med. doi: 10.1016/S1050-1738(97)00084-4 contributor: fullname: Ellis – volume: 124 start-page: 205 year: 1994 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB31 publication-title: J. Cell Biol. doi: 10.1083/jcb.124.1.205 contributor: fullname: Barth – volume: 271 start-page: 28?168 year: 1996 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB24 publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.45.28168 contributor: fullname: McCallum – volume: 262 start-page: 14?998 year: 1987 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB3 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)48128-8 contributor: fullname: Ellis – volume: 288 start-page: 233 year: 1991 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB17 publication-title: FEBS Lett. doi: 10.1016/0014-5793(91)81042-7 contributor: fullname: Rønne – volume: 112 start-page: 377 year: 1991 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB30 publication-title: J. Cell Biol. doi: 10.1083/jcb.112.3.377 contributor: fullname: Su – volume: 271 start-page: 22?885 year: 1996 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB21 publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.37.22885 contributor: fullname: Behrendt – volume: 103 start-page: 2411 year: 1986 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB8 publication-title: J. Cell Biol. doi: 10.1083/jcb.103.6.2411 contributor: fullname: Plow – volume: 31 start-page: 7572 year: 1992 ident: 10.1002/1099-1387(200009)6:9<432::AID-PSC279>3.0.CO;2-Q-BIB22 publication-title: Biochemistry doi: 10.1021/bi00148a019 contributor: fullname: Stephens |
SSID | ssj0009956 |
Score | 1.6028787 |
Snippet | The generation of the broad specificity serine protease plasmin in the pericellular environment is regulated by binding of the urokinase‐type plasminogen... The generation of the broad specificity serine protease plasmin in the pericellular environment is regulated by binding of the urokinase-type plasminogen... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 432 |
SubjectTerms | Cell Membrane - metabolism Cells, Cultured Enzyme Precursors - metabolism Fibrinolysin - metabolism Genetic Vectors Glycosylphosphatidylinositols - metabolism Humans Kinetics Monocytes - metabolism Peptide Fragments - metabolism plasmin Plasminogen - metabolism plasminogen activator Plasminogen Activators - metabolism receptor Receptors, Cell Surface - antagonists & inhibitors Receptors, Cell Surface - metabolism Receptors, Urokinase Plasminogen Activator Recombinant Proteins - metabolism serine protease Time Factors Transfection urokinase Urokinase-Type Plasminogen Activator - metabolism |
Title | Receptor-mediated regulation of plasminogen activator function: plasminogen activation by two directly membrane-anchored forms of urokinase |
URI | https://api.istex.fr/ark:/67375/WNG-MK6TDXQ2-F/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1099-1387%28200009%296%3A9%3C432%3A%3AAID-PSC279%3E3.0.CO%3B2-Q https://www.ncbi.nlm.nih.gov/pubmed/11016879 https://search.proquest.com/docview/21144063 https://search.proquest.com/docview/72301816 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1Lb9NAEF5VRSpceJSXefpAERycxo9d7waEVJyGQJWWQCtyW_mxhirEDo4DlBP_AMRP5Jcw47UTFQWJA0LKIXKcHe_OzM73rWdnCbmnqEhDgMYWD7mwIAT4VkRDbqmE2iGGjLaPG5wH-6x_5L0Y0dEa-dDshdH1IRYLbugZ1XyNDh5Gs-1l0VB8pYMV9IAyc6eCOsCdGehVbLmB5zrwDT47z7vWy9eB48PVXbfVbgUHW-5TxxrCrG27PiaBdV8tC07hPk-dpYi5X7a_Qfxa4vZC3gMt7SHriMcgp9NZyniiJTyC9k_FuTOoss-rQOxpTFwFtd4F8qMZDp3LMm7Ny6gVf_mtUuR_Ha-L5HwNkc0dbdOXyJrKNsnZoDmZbpNsDOqEgMvkG8BeNS3z4ufX79UmGADQZqHe1oeSmXlqToEfTI6zHDzFxF0cH3GZwcR4jnd0Vv2O_4xOzPJTbuqQ__7EnKgJ9D5TIAgc5V1egCAE_DOUMS_y8XEGgOAKOertHgZ9qz5jwoqBnAuLpqKtWAwGm0RAloBuCWbbacQ5U56XeDHQUUW5SOKIM6YSQFChk6rUU4B7Qoe6V8l6lmfqOjFFCHEjCWmacCDdgPxSgGZJ4lPlJBRmN4P0G4uQU11KROqi0Q7mAQiJypFaNZJJIUEpUoJCpFaIdGVbBgfSkUOD3K8satFOWIwxQ8-n8s3-MznYY4fd0dCRPYPcbUxOgpLwZRCMVD6fSSD-HoA59893-MBOAf8xg1zTtrp8alzy4b4wyF5lcX_fnZW9qa_c-Ket3STndNUETAe8RdbLYq5uA34sozuVy_8CeSFVuA |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1Lb9NAEB6VVmq58Civ8KoPFMHBaWJ7196AkFqnISVNSiAVua3seA1ViB25CVBO_AOQ-If9Jcx4nURFQeKAkHyIHNvj3Znd-b71zCzAI8VEHCA0Nr3AEya6ANcMWeCZKmLVgFxGxaUE53aHN4-dV33WX4Fslguj60PMF9xoZOTzNQ1wWpDeWVQNpW86VEIPObNn5VgHyTNHxYpt23dsC3_hsXtQN1-_9S0Xz-7b5UrZP9q29yyzewnWcJKwadeD-ptFySnK9NRxihT9VXXXwS1E7swFPtHinvKaeI6CarWFkBdaxDMUcMHTrZHSviyDsRdRce7WGlfh56xDdDTLsDydhOXB199qRf7fHrsGVwqUbOxqs74OKyrZhA1_tjndJqy3i5iAG_Adka8aT9Ls_NuPPA8GMbSRqffFvmRGGhtjpAijkyTFwWJQIscnWmkwyKXTFbVl_9Od4Zkx-Zwa2ut_PDNGaoTNTxQKwrHyIc1QEGH-U5IxzdLhSYKY4CYcN_Z7ftMstpkwB8jPhcliUVF8gDYbhciXkHEJXq3Goedx5TiRM0BGqpgnokHoca4iBFGBFavYUQh9AovZt2A1SRN1BwwRoOuIAhZHHvJuBH8xorMocpmyIoYTXAmaM5OQY11NROq60RaFAghJypFaNZJLIVEpUqJCpFaItGVF-kfSkt0SPM5Nav6cIBtSkJ7L5LvOS9lu8V6937VkowRbM5uTqCT6HoQ9lU5PJXJ_B_Gc_ecrXCSoCAF5CW5rY128Na36eK4oQSs3ub9vztLWFGfu_tOnbcFGs9c-lIcHndY9uKyLKFB04H1YnWRT9QDh5CR8mI__X9JlWdI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV3NbtNAEB6VVgq98FOghL_6QBEcnCa2d-0NCKk4DSkhaQOtyG1lx2uoQuzgJkA58QYgHpEnYcbrJCoKEgeElEPkOP68OzOeb9YzswD3FRNxgNTY9AJPmOgCXDNkgWeqiNUCchlVlwqcO13eOnZe9Fl_BT7MamF0f4j5ghtZRv68JgMfR_HOomkovdKhDnoYMntWTnUwduYoV7Ft-45t4Tf87O43zMPXvuXi0T27Uq34B9v2M8vsXYA1h9tVygJrvFp0nKJCT52mSMlfNbcEbgG5Mwd8qOEe8bp4gkD1-gLkqYZ4jADnHN0ayezzMhZ7nhTnXq15GX7M5kMnswwr00lYGXz5rVXkf52wK3Cp4MjGrlbqq7Cikg246M-2ptuAUqfICLgG35D3qvEkzX5-_Z5XwSCDNjL1ttiVzEhjY4wBwugkSdFUDCrj-EjrDAY5dDqjvux3-md4Zkw-pYb2-e_PjJEa4egThUBoKe_SDIGI8Z8SxjRLhycJMoLrcNzcO_JbZrHJhDnA6FyYLBZVxQeosVGI0RLGW4LXanHoeVw5TuQMMB5VzBPRIPQ4VxFSqMCKVewoJD6BxewbsJqkiboJhgjQcUQBiyMPo26kfjFysyhymbIiho-3MrRmGiHHupeI1F2jLUoEEJKEI7VoJJdColCkRIFILRBpy6r0D6Qle2V4kGvU_DpBNqQUPZfJN93nstPmR41-z5LNMmzNVE6ikOhtEM5UOj2VGPk7yObsP5_hYniKBJCXYVPr6uKuac3Hc0UZ2rnG_f1wlo6mOHLrn15tC0qHjaZ8ud9t34Z13UGBUgPvwOokm6q7yCUn4b3c-n8BWLJYgQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Receptor-mediated+regulation+of+plasminogen+activator+function%3A+plasminogen+activation+by+two+directly+membrane-anchored+forms+of+urokinase&rft.jtitle=Journal+of+peptide+science&rft.au=Vines%2C+David+J.&rft.au=Lee%2C+Sung+W.&rft.au=Dichek%2C+David+A.&rft.au=Ellis%2C+Vincent&rft.date=2000-09-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=1075-2617&rft.eissn=1099-1387&rft.volume=6&rft.issue=9&rft.spage=432&rft.epage=439&rft_id=info:doi/10.1002%2F1099-1387%28200009%296%3A9%3C432%3A%3AAID-PSC279%3E3.0.CO%3B2-Q&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_MK6TDXQ2_F |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1075-2617&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1075-2617&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1075-2617&client=summon |