A New Frequentist Implementation of the Daniels and Hughes Bivariate Meta‐Analysis Model for Surrogate Endpoint Evaluation

ABSTRACT Surrogate endpoints are used when the primary outcome is difficult to measure accurately. Determining if a measure is suitable to use as a surrogate endpoint is a challenging task and a variety of meta‐analysis models have been proposed for this purpose. The Daniels and Hughes bivariate mod...

Full description

Saved in:
Bibliographic Details
Published inBiometrical journal Vol. 67; no. 2; pp. e70048 - n/a
Main Authors Jackson, Dan, Sweeting, Michael, van Aert, Robbie C. M., Bujkiewicz, Sylwia, Abrams, Keith R., Viechtbauer, Wolfgang
Format Journal Article
LanguageEnglish
Published Germany Wiley - VCH Verlag GmbH & Co. KGaA 01.04.2025
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0323-3847
1521-4036
1521-4036
DOI10.1002/bimj.70048

Cover

Loading…
Abstract ABSTRACT Surrogate endpoints are used when the primary outcome is difficult to measure accurately. Determining if a measure is suitable to use as a surrogate endpoint is a challenging task and a variety of meta‐analysis models have been proposed for this purpose. The Daniels and Hughes bivariate model for trial‐level surrogate endpoint evaluation is gaining traction but presents difficulties for frequentist estimation and hitherto only Bayesian solutions have been available. This is because the marginal model is not a conventional linear model and the number of unknown parameters increases at the same rate as the number of studies. This second property raises immediate concerns that the maximum likelihood estimator of the model's unknown variance component may be downwardly biased. We derive maximum likelihood estimating equations to motivate a bias adjusted estimator of this parameter. The bias correction terms in our proposed estimating equation are easily computed and have an intuitively appealing algebraic form. A simulation study is performed to illustrate how this estimator overcomes the difficulties associated with maximum likelihood estimation. We illustrate our methods using two contrasting examples from oncology.
AbstractList Surrogate endpoints are used when the primary outcome is difficult to measure accurately. Determining if a measure is suitable to use as a surrogate endpoint is a challenging task and a variety of meta‐analysis models have been proposed for this purpose. The Daniels and Hughes bivariate model for trial‐level surrogate endpoint evaluation is gaining traction but presents difficulties for frequentist estimation and hitherto only Bayesian solutions have been available. This is because the marginal model is not a conventional linear model and the number of unknown parameters increases at the same rate as the number of studies. This second property raises immediate concerns that the maximum likelihood estimator of the model's unknown variance component may be downwardly biased. We derive maximum likelihood estimating equations to motivate a bias adjusted estimator of this parameter. The bias correction terms in our proposed estimating equation are easily computed and have an intuitively appealing algebraic form. A simulation study is performed to illustrate how this estimator overcomes the difficulties associated with maximum likelihood estimation. We illustrate our methods using two contrasting examples from oncology.
Surrogate endpoints are used when the primary outcome is difficult to measure accurately. Determining if a measure is suitable to use as a surrogate endpoint is a challenging task and a variety of meta-analysis models have been proposed for this purpose. The Daniels and Hughes bivariate model for trial-level surrogate endpoint evaluation is gaining traction but presents difficulties for frequentist estimation and hitherto only Bayesian solutions have been available. This is because the marginal model is not a conventional linear model and the number of unknown parameters increases at the same rate as the number of studies. This second property raises immediate concerns that the maximum likelihood estimator of the model's unknown variance component may be downwardly biased. We derive maximum likelihood estimating equations to motivate a bias adjusted estimator of this parameter. The bias correction terms in our proposed estimating equation are easily computed and have an intuitively appealing algebraic form. A simulation study is performed to illustrate how this estimator overcomes the difficulties associated with maximum likelihood estimation. We illustrate our methods using two contrasting examples from oncology.Surrogate endpoints are used when the primary outcome is difficult to measure accurately. Determining if a measure is suitable to use as a surrogate endpoint is a challenging task and a variety of meta-analysis models have been proposed for this purpose. The Daniels and Hughes bivariate model for trial-level surrogate endpoint evaluation is gaining traction but presents difficulties for frequentist estimation and hitherto only Bayesian solutions have been available. This is because the marginal model is not a conventional linear model and the number of unknown parameters increases at the same rate as the number of studies. This second property raises immediate concerns that the maximum likelihood estimator of the model's unknown variance component may be downwardly biased. We derive maximum likelihood estimating equations to motivate a bias adjusted estimator of this parameter. The bias correction terms in our proposed estimating equation are easily computed and have an intuitively appealing algebraic form. A simulation study is performed to illustrate how this estimator overcomes the difficulties associated with maximum likelihood estimation. We illustrate our methods using two contrasting examples from oncology.
Surrogate endpoints are used when the primary outcome is difficult to measure accurately. Determining if a measure is suitable to use as a surrogate endpoint is a challenging task and a variety of meta‐analysis models have been proposed for this purpose. The Daniels and Hughes bivariate model for trial‐level surrogate endpoint evaluation is gaining traction but presents difficulties for frequentist estimation and hitherto only Bayesian solutions have been available. This is because the marginal model is not a conventional linear model and the number of unknown parameters increases at the same rate as the number of studies. This second property raises immediate concerns that the maximum likelihood estimator of the model's unknown variance component may be downwardly biased. We derive maximum likelihood estimating equations to motivate a bias adjusted estimator of this parameter. The bias correction terms in our proposed estimating equation are easily computed and have an intuitively appealing algebraic form. A simulation study is performed to illustrate how this estimator overcomes the difficulties associated with maximum likelihood estimation. We illustrate our methods using two contrasting examples from oncology.
ABSTRACT Surrogate endpoints are used when the primary outcome is difficult to measure accurately. Determining if a measure is suitable to use as a surrogate endpoint is a challenging task and a variety of meta‐analysis models have been proposed for this purpose. The Daniels and Hughes bivariate model for trial‐level surrogate endpoint evaluation is gaining traction but presents difficulties for frequentist estimation and hitherto only Bayesian solutions have been available. This is because the marginal model is not a conventional linear model and the number of unknown parameters increases at the same rate as the number of studies. This second property raises immediate concerns that the maximum likelihood estimator of the model's unknown variance component may be downwardly biased. We derive maximum likelihood estimating equations to motivate a bias adjusted estimator of this parameter. The bias correction terms in our proposed estimating equation are easily computed and have an intuitively appealing algebraic form. A simulation study is performed to illustrate how this estimator overcomes the difficulties associated with maximum likelihood estimation. We illustrate our methods using two contrasting examples from oncology.
Author Abrams, Keith R.
Sweeting, Michael
Jackson, Dan
van Aert, Robbie C. M.
Viechtbauer, Wolfgang
Bujkiewicz, Sylwia
AuthorAffiliation 3 Biostatistics Research Group Department of Population Health Sciences University of Leicester Leicester UK
1 Statistical Innovation Group, AstraZeneca Cambridge UK
2 Tilburg University Tilburg the Netherlands
5 Maastricht University Maastricht the Netherlands
4 Department of Statistics and Warwick Medical School University of Warwick Coventry UK
AuthorAffiliation_xml – name: 1 Statistical Innovation Group, AstraZeneca Cambridge UK
– name: 5 Maastricht University Maastricht the Netherlands
– name: 4 Department of Statistics and Warwick Medical School University of Warwick Coventry UK
– name: 3 Biostatistics Research Group Department of Population Health Sciences University of Leicester Leicester UK
– name: 2 Tilburg University Tilburg the Netherlands
Author_xml – sequence: 1
  givenname: Dan
  orcidid: 0000-0002-4963-8123
  surname: Jackson
  fullname: Jackson, Dan
  email: daniel.jackson1@astrazeneca.com
  organization: Statistical Innovation Group, AstraZeneca
– sequence: 2
  givenname: Michael
  surname: Sweeting
  fullname: Sweeting, Michael
  organization: Statistical Innovation Group, AstraZeneca
– sequence: 3
  givenname: Robbie C. M.
  surname: van Aert
  fullname: van Aert, Robbie C. M.
  organization: Tilburg University
– sequence: 4
  givenname: Sylwia
  surname: Bujkiewicz
  fullname: Bujkiewicz, Sylwia
  organization: University of Leicester
– sequence: 5
  givenname: Keith R.
  surname: Abrams
  fullname: Abrams, Keith R.
  organization: University of Warwick
– sequence: 6
  givenname: Wolfgang
  surname: Viechtbauer
  fullname: Viechtbauer, Wolfgang
  organization: Maastricht University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40105204$$D View this record in MEDLINE/PubMed
BookMark eNp90c1uEzEQB3ALFdE0cOEBkCUuCGmLP3az9gmlJaVBDRyAs-XujhNHXju1d1NF4sAj8Iw8CU5TKuDAybL883g8_xN05IMHhJ5TckoJYW-ubbc-rQkpxSM0ohWjRUn45AiNCGe84KKsj9FJSmtCiCQle4KOS0JJxUg5Qt-m-CPc4osINwP43qYez7uNgy5vdG-Dx8HgfgX4nfYWXMLat_hyWK4g4TO71dHqHvACev3z-4-p126XbMKL0ILDJkT8eYgxLPdm5ttNsL7Hs612w13tp-ix0S7Bs_t1jL5ezL6cXxZXn97Pz6dXRcO5EEUrjZGmkcIQqAxhvDWVrA2RjaSca2Mq2jY1rSeMSmigEqIVNW3JRJZmonONMXp7qLsZrjtom_y3qJ3aRNvpuFNBW_X3ibcrtQxbRalklOVXxujVfYUY8qBSrzqbGnBOewhDUpzWQvBSSpnpy3_oOgwxT2avJGOMVrzO6sWfLT308juZDF4fQBNDShHMA6FE7WNX-9jVXewZ0wO-tQ52_5HqbL74cLjzC36XsV4
Cites_doi 10.1002/sim.7561
10.1002/pst.1749
10.1002/jrsm.1490
10.1186/1471-2288-14-92
10.1002/sim.4780080407
10.1002/sim.8465
10.1002/bimj.201200152
10.1016/j.lungcan.2022.06.009
10.1093/biostatistics/kxs003
10.1002/sim.6117
10.1016/j.canep.2019.101665
10.1002/(SICI)1097-0258(19991030)18:20<2693::AID-SIM235>3.0.CO;2-V
10.1177/0962280216631361
10.1093/biostatistics/1.1.49
10.1002/sim.8187
10.1111/j.1467-985X.2008.00593.x
10.1002/sim.5831
10.1177/0962280215597260
10.1002/bimj.201800071
10.3310/hta13080
10.1002/sim.5679
10.1002/(SICI)1097-0258(19970915)16:17<1965::AID-SIM630>3.0.CO;2-M
10.1002/jrsm.1129
10.2307/2530695
10.1111/biom.12762
10.1002/sim.1186
10.1111/1467-9876.00244
10.1002/sim.2112
10.2307/1914288
10.1002/jrsm.1164
10.1038/s41416-020-0805-y
10.1002/sim.4172
10.1081/BIP-120024209
10.1093/biostatistics/kxm023
10.1002/sim.7588
10.1016/j.jspi.2007.06.005
ContentType Journal Article
Copyright 2025 The Author(s). published by Wiley‐VCH GmbH.
2025 The Author(s). Biometrical Journal published by Wiley‐VCH GmbH.
2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). published by Wiley‐VCH GmbH.
– notice: 2025 The Author(s). Biometrical Journal published by Wiley‐VCH GmbH.
– notice: 2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
5PM
DOI 10.1002/bimj.70048
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1521-4036
EndPage n/a
ExternalDocumentID PMC11921291
40105204
10_1002_bimj_70048
BIMJ70048
Genre researchArticle
Journal Article
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
24P
3-9
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AHMBA
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M67
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
Y6R
YHZ
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGXDD
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c3388-d9ff9fc98f0e5f023df597f09c9133aff51dc7176219ece588d871d0694f6ac33
IEDL.DBID 24P
ISSN 0323-3847
1521-4036
IngestDate Thu Aug 21 18:40:23 EDT 2025
Fri Jul 11 07:27:10 EDT 2025
Fri Jul 25 09:21:00 EDT 2025
Sun Jun 01 01:35:34 EDT 2025
Sun Jul 06 05:09:26 EDT 2025
Mon Apr 21 09:10:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords meta‐regression
surrogate endpoint
bias correction
multivariate meta‐analysis
maximum likelihood estimation
Language English
License Attribution
2025 The Author(s). Biometrical Journal published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3388-d9ff9fc98f0e5f023df597f09c9133aff51dc7176219ece588d871d0694f6ac33
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4963-8123
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.70048
PMID 40105204
PQID 3192221537
PQPubID 105592
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11921291
proquest_miscellaneous_3178834999
proquest_journals_3192221537
pubmed_primary_40105204
crossref_primary_10_1002_bimj_70048
wiley_primary_10_1002_bimj_70048_BIMJ70048
PublicationCentury 2000
PublicationDate April 2025
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: April 2025
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Biometrical journal
PublicationTitleAlternate Biom J
PublicationYear 2025
Publisher Wiley - VCH Verlag GmbH & Co. KGaA
John Wiley and Sons Inc
Publisher_xml – name: Wiley - VCH Verlag GmbH & Co. KGaA
– name: John Wiley and Sons Inc
References 2001; 50
2015; 6
2017; 26
2020; 64
2022; 170
1989; 8
2003; 13
2020; 39
2008; 9
2019; 38
2011; 30
2020; 122
2009; 172
2000; 1
2018; 60
2012; 13
2016; 15
2018; 27
2005; 24
1948; 16
2009; 13
2016; 7
2021; 12
2013; 55
2013; 32
1986; 42
2021
1999; 18
2002; 21
2019
2014; 14
1997; 16
2018; 74
2008; 138
2009; 3
2018; 37
2014; 33
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Burzykowski T. (e_1_2_10_7_1) 2021
Wagner A. (e_1_2_10_39_1) 2009; 3
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 32
  start-page: 3926
  year: 2013
  end-page: 3943
  article-title: Multivariate Meta‐Analysis of Mixed Outcomes: A Bayesian Approach
  publication-title: Statistics in Medicine
– volume: 15
  start-page: 341
  year: 2016
  end-page: 348
  article-title: A Bayesian Hierarchical Surrogate Outcome Model for Multiple Sclerosis
  publication-title: Pharmaceutical Statistics
– volume: 13
  start-page: 8
  year: 2009
  article-title: The use of Surrogate Outcomes in Model‐Based Cost‐Effectiveness Analyses: A Survey of UK Health Technology Assessment Reports
  publication-title: Health Technology Assessment
– volume: 42
  start-page: 805
  year: 1986
  end-page: 820
  article-title: Unbalanced Repeated‐Measures Models With Structured Covariance Matrices
  publication-title: Biometrics
– volume: 6
  start-page: 157
  year: 2015
  end-page: 174
  article-title: Multivariate Meta‐Analysis Using Individual Participant Data
  publication-title: Research Synthesis Methods
– volume: 74
  start-page: 548
  year: 2018
  end-page: 556
  article-title: A Matrix‐Based Method of Moments for Fitting the Multivariate Random Effects Model for Meta‐Analysis and Meta‐Regression
  publication-title: Biometrics
– volume: 64
  year: 2020
  article-title: Combining Tumour Response and Progression Free Survival as Surrogate Endpoints for Overall Survival in Advanced Colorectal Cancer
  publication-title: Cancer Epidemiology
– volume: 30
  start-page: 2481
  year: 2011
  end-page: 2498
  article-title: Multivariate Meta‐Analysis: Potential and Promise
  publication-title: Statistics in Medicine
– volume: 38
  start-page: 3322
  year: 2019
  end-page: 3341
  article-title: Bivariate Network Meta‐Analysis for Surrogate Endpoint Evaluation
  publication-title: Statistics in Medicine
– volume: 170
  start-page: 122
  year: 2022
  end-page: 132
  article-title: Correlations Between Objective Response Rate and Survival‐Based Endpoints in First‐Line Advanced Non‐Small Cell Lung Cancer: A Systematic Review and Meta‐Analysis
  publication-title: Lung Cancer
– volume: 27
  start-page: 428
  year: 2018
  end-page: 450
  article-title: Bayesian Bivariate Meta‐Analysis of Correlated Effects: Impact of the Prior Distributions on the Between‐Study Correlation, Borrowing of Strength, and Joint Inferences
  publication-title: Statistical Methods in Medical Research
– volume: 1
  start-page: 49
  year: 2000
  end-page: 67
  article-title: The Validation of Surrogate Endpoints in Meta‐Analyses of Randomized Experiments
  publication-title: Biostatistics
– volume: 37
  start-page: 1059
  year: 2018
  end-page: 1085
  article-title: A Comparison of Seven Random‐Effects Models Formeta‐Analyses That Estimate the Summary Odds Ratio
  publication-title: Statistics in Medicine
– volume: 7
  start-page: 55
  year: 2016
  end-page: 79
  article-title: Methods to Estimate the Between‐Study Variance and Its Uncertainty in Meta‐Analysis
  publication-title: Research Synthesis Methods
– volume: 8
  start-page: 431
  year: 1989
  end-page: 440
  article-title: Surrogate Endpoints in Clinical Trials: Definition and Operational Criteria
  publication-title: Statistics in Medicine
– volume: 172
  start-page: 789
  year: 2009
  end-page: 811
  article-title: Multivariate Meta‐Analysis: The Effect of Ignoring Within‐Study Correlation
  publication-title: Journal of the Royal Statistical Society, Series A
– volume: 50
  start-page: 405
  year: 2001
  end-page: 422
  article-title: Validation of Surrogate end Points in Multiple Randomized Clinical Trials With Failure Time end Points
  publication-title: Journal of the Royal Statistical Society, Series C
– volume: 138
  start-page: 432
  year: 2008
  end-page: 449
  article-title: The Meta‐Analytic Framework for the Evaluation of Surrogate Endpoints in Clinical Trials
  publication-title: Journal of Statistical Planning and Inference
– volume: 33
  start-page: 2275
  year: 2014
  end-page: 2287
  article-title: An Approach for Modelling Multiple Correlated Outcomes in a Network of Interventions Using Odds Ratios
  publication-title: Statistics in Medicine
– volume: 60
  start-page: 1040
  year: 2018
  end-page: 1058
  article-title: When Should Meta‐Analysis Avoid Making Hidden Normality Assumptions?
  publication-title: Biometrical Journal
– volume: 18
  start-page: 2693
  year: 1999
  end-page: 2708
  article-title: Explaining Heterogeneity in Meta‐Analysis: A Comparison of Methods
  publication-title: Statistics in Medicine
– volume: 37
  start-page: 507
  year: 2018
  end-page: 518
  article-title: Five Criteria for Using a Surrogate Endpoint to Predict Treatment Effect Based on Data From Multiple Previous Trials
  publication-title: Statistics in Medicine
– volume: 122
  start-page: 1707
  year: 2020
  end-page: 1714
  article-title: Progression‐Free Survival as a Surrogate for Overall Survival in Oncology Trials: A Methodological Systematic Review
  publication-title: British Journal of Cancer
– volume: 14
  start-page: 92
  year: 2014
  article-title: Network Meta‐Analysis of Multiple Outcome Measures Accounting for Borrowing of Information Across Outcomes
  publication-title: BMC Medical Research Methodology
– volume: 39
  start-page: 1103
  year: 2020
  end-page: 1124
  article-title: Bayesian Hierarchical Meta‐Analytic Methods for Modeling Surrogate Relationships That Vary Across Treatment Classes Using Aggregate Data
  publication-title: Statistics in Medicine
– volume: 55
  start-page: 231
  year: 2013
  end-page: 245
  article-title: A Matrix‐Based Method of Moments for Fitting the Multivariate Random Effects Model for Meta‐Analysis and Meta‐Regression
  publication-title: Biometrical Journal
– volume: 16
  start-page: 1
  year: 1948
  end-page: 32
  article-title: Consistent Estimates Based on Partially Consistent Observations
  publication-title: Econometrica
– volume: 21
  start-page: 1539
  year: 2002
  end-page: 1558
  article-title: Quantifying Heterogeneity in a Meta‐Analysis
  publication-title: Statistics in Medicine
– volume: 13
  start-page: 777
  year: 2003
  end-page: 792
  article-title: Exploring the Relationship Between Surrogates and Clinical Outcomes: Analysis of Individual Patient Data vs. Meta‐Regression on Group‐Level Summary Statistics
  publication-title: Journal of Biopharmaceutical Statistics
– volume: 16
  start-page: 1965
  year: 1997
  end-page: 1982
  article-title: Meta‐Analysis for the Evaluation of Potential Surrogate Markers
  publication-title: Statistics in Medicine
– volume: 26
  start-page: 2287
  year: 2017
  end-page: 2318
  article-title: Uncertainty in the Bayesian Meta‐Analysis of Normally Distributed Surrogate Endpoints
  publication-title: Statistical Methods in Medical Research
– volume: 12
  start-page: 429
  year: 2021
  end-page: 447
  article-title: Study Specific Prediction Intervals for Random‐Effects Meta‐Analysis: A Tutorial
  publication-title: Research Synthesis Methods
– start-page: 457
  year: 2021
  end-page: 477
– volume: 24
  start-page: 2401
  year: 2005
  end-page: 2428
  article-title: How Vague is Vague? A Simulation Study of the Impact of the Use of Vague Prior Distributions in MCMC Using WinBUGS
  publication-title: Statistics in Medicine
– volume: 9
  start-page: 172
  year: 2008
  end-page: 186
  article-title: An Alternative Model for Bivariate Random‐Effects Meta‐Analysis When the Within‐Study Correlations are Unknown
  publication-title: Biostatistics
– year: 2019
– volume: 13
  start-page: 609
  year: 2012
  end-page: 624
  article-title: A Unified Procedure for Meta‐Analytic Evaluation of Surrogate End Points in Randomized Clinical Trials
  publication-title: Biostatistics
– volume: 3
  year: 2009
  article-title: Anti‐Angiogenic Therapies Formetastatic Colorectal Cancer
  publication-title: Cochrane Database of Systematic Reviews
– volume: 32
  start-page: 1191
  year: 2013
  end-page: 1205
  article-title: Estimating Within‐Study Covariances in Multivariate Meta‐Analysis With Multiple Outcomes
  publication-title: Statistics in Medicine
– ident: e_1_2_10_3_1
  doi: 10.1002/sim.7561
– ident: e_1_2_10_29_1
  doi: 10.1002/pst.1749
– ident: e_1_2_10_37_1
  doi: 10.1002/jrsm.1490
– ident: e_1_2_10_2_1
  doi: 10.1186/1471-2288-14-92
– ident: e_1_2_10_31_1
  doi: 10.1002/sim.4780080407
– ident: e_1_2_10_30_1
  doi: 10.1002/sim.8465
– ident: e_1_2_10_21_1
  doi: 10.1002/bimj.201200152
– ident: e_1_2_10_17_1
  doi: 10.1016/j.lungcan.2022.06.009
– ident: e_1_2_10_13_1
  doi: 10.1093/biostatistics/kxs003
– ident: e_1_2_10_15_1
  doi: 10.1002/sim.6117
– ident: e_1_2_10_16_1
  doi: 10.1016/j.canep.2019.101665
– ident: e_1_2_10_35_1
  doi: 10.1002/(SICI)1097-0258(19991030)18:20<2693::AID-SIM235>3.0.CO;2-V
– ident: e_1_2_10_5_1
  doi: 10.1177/0962280216631361
– start-page: 457
  volume-title: Handbook of Meta‐Analysis
  year: 2021
  ident: e_1_2_10_7_1
– ident: e_1_2_10_8_1
  doi: 10.1093/biostatistics/1.1.49
– ident: e_1_2_10_12_1
  doi: 10.1002/sim.8187
– ident: e_1_2_10_33_1
  doi: 10.1111/j.1467-985X.2008.00593.x
– ident: e_1_2_10_9_1
  doi: 10.1002/sim.5831
– ident: e_1_2_10_10_1
  doi: 10.1177/0962280215597260
– ident: e_1_2_10_22_1
  doi: 10.1002/bimj.201800071
– ident: e_1_2_10_36_1
  doi: 10.3310/hta13080
– ident: e_1_2_10_40_1
  doi: 10.1002/sim.5679
– ident: e_1_2_10_14_1
  doi: 10.1002/(SICI)1097-0258(19970915)16:17<1965::AID-SIM630>3.0.CO;2-M
– ident: e_1_2_10_34_1
  doi: 10.1002/jrsm.1129
– ident: e_1_2_10_25_1
  doi: 10.2307/2530695
– ident: e_1_2_10_24_1
  doi: 10.1111/biom.12762
– ident: e_1_2_10_18_1
  doi: 10.1002/sim.1186
– volume: 3
  year: 2009
  ident: e_1_2_10_39_1
  article-title: Anti‐Angiogenic Therapies Formetastatic Colorectal Cancer
  publication-title: Cochrane Database of Systematic Reviews
– ident: e_1_2_10_6_1
  doi: 10.1111/1467-9876.00244
– ident: e_1_2_10_26_1
  doi: 10.1002/sim.2112
– ident: e_1_2_10_28_1
  doi: 10.2307/1914288
– ident: e_1_2_10_38_1
  doi: 10.1002/jrsm.1164
– ident: e_1_2_10_4_1
  doi: 10.1038/s41416-020-0805-y
– ident: e_1_2_10_20_1
  doi: 10.1002/sim.4172
– ident: e_1_2_10_19_1
  doi: 10.1081/BIP-120024209
– ident: e_1_2_10_32_1
  doi: 10.1093/biostatistics/kxm023
– ident: e_1_2_10_23_1
  doi: 10.1002/sim.7588
– ident: e_1_2_10_27_1
  doi: 10.1016/j.jspi.2007.06.005
– ident: e_1_2_10_11_1
SSID ssj0009042
Score 2.382377
Snippet ABSTRACT Surrogate endpoints are used when the primary outcome is difficult to measure accurately. Determining if a measure is suitable to use as a surrogate...
Surrogate endpoints are used when the primary outcome is difficult to measure accurately. Determining if a measure is suitable to use as a surrogate endpoint...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e70048
SubjectTerms Bayes Theorem
Bayesian analysis
Bias
bias correction
Biomarkers
Biometry - methods
Bivariate analysis
Endpoint Determination - methods
Humans
Likelihood Functions
Mathematical models
Maximum likelihood estimation
Maximum likelihood estimators
Meta-analysis
Meta-Analysis as Topic
meta‐regression
Models, Statistical
multivariate meta‐analysis
Parameters
surrogate endpoint
Title A New Frequentist Implementation of the Daniels and Hughes Bivariate Meta‐Analysis Model for Surrogate Endpoint Evaluation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.70048
https://www.ncbi.nlm.nih.gov/pubmed/40105204
https://www.proquest.com/docview/3192221537
https://www.proquest.com/docview/3178834999
https://pubmed.ncbi.nlm.nih.gov/PMC11921291
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD7UiuBL8e60tUT0SRg7m7lsAr70ssu2sCJqoW9DMknsis2U3dmC4IM_wd_oL_GczO5sl0LBl2EgmQs5ycn3JTnfAXibJzrXqUtiXhUyzlJlYolIOeamr7VQRcEtBSePPxajs-z0PD_fgA_LWJhWH6JbcKOREfw1DXClZ_sr0VA9ufz-nsTZxT24T7G11Mt59mkluZtk7R4CT-MUnXAnTsr3V8-uT0e3MObto5I3IWyYg4aPYGsBHtlBa-3HsGH9E3jQppP8-RR-HTD0WWw4DcejGzQgC-K_l4v4Is9qxxDwsTaufMaUN2w0_3ZhZ-xwco2sGYEnG9tG_f39Z6lWwihb2g-G2JZ9mU-nNS27sYE3V_XEN2zQiYU_g7Ph4OvRKF5kV4grpKUiNtI56SopXGJzh1O3cUguXCIribxVOZf3TIVkr0CfZiubC2GQXBkKlHWFwnc8h01fe_sSmJIiE9r2c2vTjAi3K7jOKfhQJpVxaQRvlo1cXrUiGmUrl8xLMkUZTBHB7rL9y8VAmpXoIRDBoFvuR_C6K8YhQPsaytt6TnWQx6dE3SJ40Zqr-0xGGUB5kkUg1gzZVSB57fUSP7kIMts9korjshfBu2DzO369PDwZn4a77f-pvAMPOaUTDgeBdmGzmc7tK8Q4jd4LXRmvx5_5P3Zi-s8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3batwwEB3ShNK8lKa3uM1FpX0quPHKsld6TMoumzQbCk0gb8a2pGZLI4ddb6HQh35Cv7Ff0hnZ680SKOTNIPmCxhqdI82cAXiXREVSxDYKeZmqUMS5DhUi5ZDrflHIPE25oeTk8Vk6uhAnl8llG5tDuTCNPkS34UYzw_trmuC0IX2wVA0tJtffPpA6u3wAGyLlfarcwMXnpeZuJJpDBB6HMXrhTp2UHyzvXV2P7oDMu7GStzGsX4SGT-Bxix7ZYWPuLVgz7ik8bOpJ_nwGvw4ZOi02nPr46BotyLz673WbYORYZRkiPtYkls9Y7jQbzb9emRk7mvxA2ozIk41Nnf_9_WchV8KoXNp3huCWfZlPpxXtu7GB0zfVxNVs0KmFP4eL4eD84yhsyyuEJfJSGWplrbKlkjYyicW1W1tkFzZSpULimlub9HSJbC9Fp2ZKk0ipkV1pypS1aY7PeAHrrnJmG1iupJCF6SfGxIIYt015kVD2oYpKbeMA3i4GObtpVDSyRi-ZZ2SKzJsigJ3F-GftTJpl6CIQwqBf7gfwpmvGOUAHG7kz1Zz6IJGPibsF8LIxV_caQSVAeSQCkCuG7DqQvvZqi5tceZ3tHmnFcdUL4L23-X8-PTs6Hp_4q1f36bwPj0bn49Ps9Pjs02vY5FRb2EcF7cB6PZ2bXQQ8dbHnf-t_EYr9Ug
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtNAEB2VIhAviDuGAoPgCcnUWV-yK_HSQqK0kKoSVOqbZXt3aap2HSUOEhIPfALfyJcws04cokpIvFny-qKdndlzdnfOALxOozItYxuFospUmMSFDhUh5VDoflnKIsuE4eTk8VE2OkkOT9PTLXi3yoVp9SG6BTf2DB-v2cGn2u6uRUPLyeX5WxZnl9fgOu_28fgWyfFacjdK2j0EEYcxBeFOnFTsrp_dnI6uYMyrRyX_hrB-DhregdtL8Ih7rbXvwpZx9-BGW07y-334sYcUs3A488ejGzIgevHfy2V-kcPaIgE-bPPK51g4jaPF1zMzx_3JN2LNBDxxbJri989fK7US5GppF0jYFj8vZrOal91w4PS0nrgGB51Y-AM4GQ6-vB-Fy-oKYUW0VIZaWatspaSNTGpp6taWyIWNVKWItxbWpj1dEdnLKKaZyqRSaiJXmhNlbVbQOx7CtqudeQxYKJnI0vRTY-KECbfNRJly8qGKKm3jAF6tOjmftiIaeSuXLHI2Re5NEcDOqv_zpSPNc4oQhGAoLPcDeNndJhfgfY3CmXrBbYjHx0zdAnjUmqv7TMIVQEWUBCA3DNk1YHntzTtucuZltnssFSdUL4A33ub_-PV8_2B86K-e_E_jF3Dz-MMw_3Rw9PEp3BJcWdifCdqB7Wa2MM8I7jTlcz-q_wCecPyE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Frequentist+Implementation+of+the+Daniels+and+Hughes+Bivariate+Meta-Analysis+Model+for+Surrogate+Endpoint+Evaluation&rft.jtitle=Biometrical+journal&rft.au=Jackson%2C+Dan&rft.au=Sweeting%2C+Michael&rft.au=van+Aert%2C+Robbie+C+M&rft.au=Bujkiewicz%2C+Sylwia&rft.date=2025-04-01&rft.eissn=1521-4036&rft.volume=67&rft.issue=2&rft.spage=e70048&rft_id=info:doi/10.1002%2Fbimj.70048&rft_id=info%3Apmid%2F40105204&rft.externalDocID=40105204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0323-3847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0323-3847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0323-3847&client=summon