A New Frequentist Implementation of the Daniels and Hughes Bivariate Meta‐Analysis Model for Surrogate Endpoint Evaluation
ABSTRACT Surrogate endpoints are used when the primary outcome is difficult to measure accurately. Determining if a measure is suitable to use as a surrogate endpoint is a challenging task and a variety of meta‐analysis models have been proposed for this purpose. The Daniels and Hughes bivariate mod...
Saved in:
Published in | Biometrical journal Vol. 67; no. 2; pp. e70048 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley - VCH Verlag GmbH & Co. KGaA
01.04.2025
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0323-3847 1521-4036 1521-4036 |
DOI | 10.1002/bimj.70048 |
Cover
Loading…
Abstract | ABSTRACT
Surrogate endpoints are used when the primary outcome is difficult to measure accurately. Determining if a measure is suitable to use as a surrogate endpoint is a challenging task and a variety of meta‐analysis models have been proposed for this purpose. The Daniels and Hughes bivariate model for trial‐level surrogate endpoint evaluation is gaining traction but presents difficulties for frequentist estimation and hitherto only Bayesian solutions have been available. This is because the marginal model is not a conventional linear model and the number of unknown parameters increases at the same rate as the number of studies. This second property raises immediate concerns that the maximum likelihood estimator of the model's unknown variance component may be downwardly biased. We derive maximum likelihood estimating equations to motivate a bias adjusted estimator of this parameter. The bias correction terms in our proposed estimating equation are easily computed and have an intuitively appealing algebraic form. A simulation study is performed to illustrate how this estimator overcomes the difficulties associated with maximum likelihood estimation. We illustrate our methods using two contrasting examples from oncology. |
---|---|
AbstractList | Surrogate endpoints are used when the primary outcome is difficult to measure accurately. Determining if a measure is suitable to use as a surrogate endpoint is a challenging task and a variety of meta‐analysis models have been proposed for this purpose. The Daniels and Hughes bivariate model for trial‐level surrogate endpoint evaluation is gaining traction but presents difficulties for frequentist estimation and hitherto only Bayesian solutions have been available. This is because the marginal model is not a conventional linear model and the number of unknown parameters increases at the same rate as the number of studies. This second property raises immediate concerns that the maximum likelihood estimator of the model's unknown variance component may be downwardly biased. We derive maximum likelihood estimating equations to motivate a bias adjusted estimator of this parameter. The bias correction terms in our proposed estimating equation are easily computed and have an intuitively appealing algebraic form. A simulation study is performed to illustrate how this estimator overcomes the difficulties associated with maximum likelihood estimation. We illustrate our methods using two contrasting examples from oncology. Surrogate endpoints are used when the primary outcome is difficult to measure accurately. Determining if a measure is suitable to use as a surrogate endpoint is a challenging task and a variety of meta-analysis models have been proposed for this purpose. The Daniels and Hughes bivariate model for trial-level surrogate endpoint evaluation is gaining traction but presents difficulties for frequentist estimation and hitherto only Bayesian solutions have been available. This is because the marginal model is not a conventional linear model and the number of unknown parameters increases at the same rate as the number of studies. This second property raises immediate concerns that the maximum likelihood estimator of the model's unknown variance component may be downwardly biased. We derive maximum likelihood estimating equations to motivate a bias adjusted estimator of this parameter. The bias correction terms in our proposed estimating equation are easily computed and have an intuitively appealing algebraic form. A simulation study is performed to illustrate how this estimator overcomes the difficulties associated with maximum likelihood estimation. We illustrate our methods using two contrasting examples from oncology.Surrogate endpoints are used when the primary outcome is difficult to measure accurately. Determining if a measure is suitable to use as a surrogate endpoint is a challenging task and a variety of meta-analysis models have been proposed for this purpose. The Daniels and Hughes bivariate model for trial-level surrogate endpoint evaluation is gaining traction but presents difficulties for frequentist estimation and hitherto only Bayesian solutions have been available. This is because the marginal model is not a conventional linear model and the number of unknown parameters increases at the same rate as the number of studies. This second property raises immediate concerns that the maximum likelihood estimator of the model's unknown variance component may be downwardly biased. We derive maximum likelihood estimating equations to motivate a bias adjusted estimator of this parameter. The bias correction terms in our proposed estimating equation are easily computed and have an intuitively appealing algebraic form. A simulation study is performed to illustrate how this estimator overcomes the difficulties associated with maximum likelihood estimation. We illustrate our methods using two contrasting examples from oncology. Surrogate endpoints are used when the primary outcome is difficult to measure accurately. Determining if a measure is suitable to use as a surrogate endpoint is a challenging task and a variety of meta‐analysis models have been proposed for this purpose. The Daniels and Hughes bivariate model for trial‐level surrogate endpoint evaluation is gaining traction but presents difficulties for frequentist estimation and hitherto only Bayesian solutions have been available. This is because the marginal model is not a conventional linear model and the number of unknown parameters increases at the same rate as the number of studies. This second property raises immediate concerns that the maximum likelihood estimator of the model's unknown variance component may be downwardly biased. We derive maximum likelihood estimating equations to motivate a bias adjusted estimator of this parameter. The bias correction terms in our proposed estimating equation are easily computed and have an intuitively appealing algebraic form. A simulation study is performed to illustrate how this estimator overcomes the difficulties associated with maximum likelihood estimation. We illustrate our methods using two contrasting examples from oncology. ABSTRACT Surrogate endpoints are used when the primary outcome is difficult to measure accurately. Determining if a measure is suitable to use as a surrogate endpoint is a challenging task and a variety of meta‐analysis models have been proposed for this purpose. The Daniels and Hughes bivariate model for trial‐level surrogate endpoint evaluation is gaining traction but presents difficulties for frequentist estimation and hitherto only Bayesian solutions have been available. This is because the marginal model is not a conventional linear model and the number of unknown parameters increases at the same rate as the number of studies. This second property raises immediate concerns that the maximum likelihood estimator of the model's unknown variance component may be downwardly biased. We derive maximum likelihood estimating equations to motivate a bias adjusted estimator of this parameter. The bias correction terms in our proposed estimating equation are easily computed and have an intuitively appealing algebraic form. A simulation study is performed to illustrate how this estimator overcomes the difficulties associated with maximum likelihood estimation. We illustrate our methods using two contrasting examples from oncology. |
Author | Abrams, Keith R. Sweeting, Michael Jackson, Dan van Aert, Robbie C. M. Viechtbauer, Wolfgang Bujkiewicz, Sylwia |
AuthorAffiliation | 3 Biostatistics Research Group Department of Population Health Sciences University of Leicester Leicester UK 1 Statistical Innovation Group, AstraZeneca Cambridge UK 2 Tilburg University Tilburg the Netherlands 5 Maastricht University Maastricht the Netherlands 4 Department of Statistics and Warwick Medical School University of Warwick Coventry UK |
AuthorAffiliation_xml | – name: 1 Statistical Innovation Group, AstraZeneca Cambridge UK – name: 5 Maastricht University Maastricht the Netherlands – name: 4 Department of Statistics and Warwick Medical School University of Warwick Coventry UK – name: 3 Biostatistics Research Group Department of Population Health Sciences University of Leicester Leicester UK – name: 2 Tilburg University Tilburg the Netherlands |
Author_xml | – sequence: 1 givenname: Dan orcidid: 0000-0002-4963-8123 surname: Jackson fullname: Jackson, Dan email: daniel.jackson1@astrazeneca.com organization: Statistical Innovation Group, AstraZeneca – sequence: 2 givenname: Michael surname: Sweeting fullname: Sweeting, Michael organization: Statistical Innovation Group, AstraZeneca – sequence: 3 givenname: Robbie C. M. surname: van Aert fullname: van Aert, Robbie C. M. organization: Tilburg University – sequence: 4 givenname: Sylwia surname: Bujkiewicz fullname: Bujkiewicz, Sylwia organization: University of Leicester – sequence: 5 givenname: Keith R. surname: Abrams fullname: Abrams, Keith R. organization: University of Warwick – sequence: 6 givenname: Wolfgang surname: Viechtbauer fullname: Viechtbauer, Wolfgang organization: Maastricht University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40105204$$D View this record in MEDLINE/PubMed |
BookMark | eNp90c1uEzEQB3ALFdE0cOEBkCUuCGmLP3az9gmlJaVBDRyAs-XujhNHXju1d1NF4sAj8Iw8CU5TKuDAybL883g8_xN05IMHhJ5TckoJYW-ubbc-rQkpxSM0ohWjRUn45AiNCGe84KKsj9FJSmtCiCQle4KOS0JJxUg5Qt-m-CPc4osINwP43qYez7uNgy5vdG-Dx8HgfgX4nfYWXMLat_hyWK4g4TO71dHqHvACev3z-4-p126XbMKL0ILDJkT8eYgxLPdm5ttNsL7Hs612w13tp-ix0S7Bs_t1jL5ezL6cXxZXn97Pz6dXRcO5EEUrjZGmkcIQqAxhvDWVrA2RjaSca2Mq2jY1rSeMSmigEqIVNW3JRJZmonONMXp7qLsZrjtom_y3qJ3aRNvpuFNBW_X3ibcrtQxbRalklOVXxujVfYUY8qBSrzqbGnBOewhDUpzWQvBSSpnpy3_oOgwxT2avJGOMVrzO6sWfLT308juZDF4fQBNDShHMA6FE7WNX-9jVXewZ0wO-tQ52_5HqbL74cLjzC36XsV4 |
Cites_doi | 10.1002/sim.7561 10.1002/pst.1749 10.1002/jrsm.1490 10.1186/1471-2288-14-92 10.1002/sim.4780080407 10.1002/sim.8465 10.1002/bimj.201200152 10.1016/j.lungcan.2022.06.009 10.1093/biostatistics/kxs003 10.1002/sim.6117 10.1016/j.canep.2019.101665 10.1002/(SICI)1097-0258(19991030)18:20<2693::AID-SIM235>3.0.CO;2-V 10.1177/0962280216631361 10.1093/biostatistics/1.1.49 10.1002/sim.8187 10.1111/j.1467-985X.2008.00593.x 10.1002/sim.5831 10.1177/0962280215597260 10.1002/bimj.201800071 10.3310/hta13080 10.1002/sim.5679 10.1002/(SICI)1097-0258(19970915)16:17<1965::AID-SIM630>3.0.CO;2-M 10.1002/jrsm.1129 10.2307/2530695 10.1111/biom.12762 10.1002/sim.1186 10.1111/1467-9876.00244 10.1002/sim.2112 10.2307/1914288 10.1002/jrsm.1164 10.1038/s41416-020-0805-y 10.1002/sim.4172 10.1081/BIP-120024209 10.1093/biostatistics/kxm023 10.1002/sim.7588 10.1016/j.jspi.2007.06.005 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). published by Wiley‐VCH GmbH. 2025 The Author(s). Biometrical Journal published by Wiley‐VCH GmbH. 2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025 The Author(s). published by Wiley‐VCH GmbH. – notice: 2025 The Author(s). Biometrical Journal published by Wiley‐VCH GmbH. – notice: 2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 5PM |
DOI | 10.1002/bimj.70048 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1521-4036 |
EndPage | n/a |
ExternalDocumentID | PMC11921291 40105204 10_1002_bimj_70048 BIMJ70048 |
Genre | researchArticle Journal Article |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 24P 3-9 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AHMBA AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DUUFO EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M67 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XBAML XG1 XPP XV2 Y6R YHZ ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGXDD AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c3388-d9ff9fc98f0e5f023df597f09c9133aff51dc7176219ece588d871d0694f6ac33 |
IEDL.DBID | 24P |
ISSN | 0323-3847 1521-4036 |
IngestDate | Thu Aug 21 18:40:23 EDT 2025 Fri Jul 11 07:27:10 EDT 2025 Fri Jul 25 09:21:00 EDT 2025 Sun Jun 01 01:35:34 EDT 2025 Sun Jul 06 05:09:26 EDT 2025 Mon Apr 21 09:10:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | meta‐regression surrogate endpoint bias correction multivariate meta‐analysis maximum likelihood estimation |
Language | English |
License | Attribution 2025 The Author(s). Biometrical Journal published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3388-d9ff9fc98f0e5f023df597f09c9133aff51dc7176219ece588d871d0694f6ac33 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-3 ObjectType-Evidence Based Healthcare-1 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4963-8123 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.70048 |
PMID | 40105204 |
PQID | 3192221537 |
PQPubID | 105592 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11921291 proquest_miscellaneous_3178834999 proquest_journals_3192221537 pubmed_primary_40105204 crossref_primary_10_1002_bimj_70048 wiley_primary_10_1002_bimj_70048_BIMJ70048 |
PublicationCentury | 2000 |
PublicationDate | April 2025 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: April 2025 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Biometrical journal |
PublicationTitleAlternate | Biom J |
PublicationYear | 2025 |
Publisher | Wiley - VCH Verlag GmbH & Co. KGaA John Wiley and Sons Inc |
Publisher_xml | – name: Wiley - VCH Verlag GmbH & Co. KGaA – name: John Wiley and Sons Inc |
References | 2001; 50 2015; 6 2017; 26 2020; 64 2022; 170 1989; 8 2003; 13 2020; 39 2008; 9 2019; 38 2011; 30 2020; 122 2009; 172 2000; 1 2018; 60 2012; 13 2016; 15 2018; 27 2005; 24 1948; 16 2009; 13 2016; 7 2021; 12 2013; 55 2013; 32 1986; 42 2021 1999; 18 2002; 21 2019 2014; 14 1997; 16 2018; 74 2008; 138 2009; 3 2018; 37 2014; 33 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 Burzykowski T. (e_1_2_10_7_1) 2021 Wagner A. (e_1_2_10_39_1) 2009; 3 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – volume: 32 start-page: 3926 year: 2013 end-page: 3943 article-title: Multivariate Meta‐Analysis of Mixed Outcomes: A Bayesian Approach publication-title: Statistics in Medicine – volume: 15 start-page: 341 year: 2016 end-page: 348 article-title: A Bayesian Hierarchical Surrogate Outcome Model for Multiple Sclerosis publication-title: Pharmaceutical Statistics – volume: 13 start-page: 8 year: 2009 article-title: The use of Surrogate Outcomes in Model‐Based Cost‐Effectiveness Analyses: A Survey of UK Health Technology Assessment Reports publication-title: Health Technology Assessment – volume: 42 start-page: 805 year: 1986 end-page: 820 article-title: Unbalanced Repeated‐Measures Models With Structured Covariance Matrices publication-title: Biometrics – volume: 6 start-page: 157 year: 2015 end-page: 174 article-title: Multivariate Meta‐Analysis Using Individual Participant Data publication-title: Research Synthesis Methods – volume: 74 start-page: 548 year: 2018 end-page: 556 article-title: A Matrix‐Based Method of Moments for Fitting the Multivariate Random Effects Model for Meta‐Analysis and Meta‐Regression publication-title: Biometrics – volume: 64 year: 2020 article-title: Combining Tumour Response and Progression Free Survival as Surrogate Endpoints for Overall Survival in Advanced Colorectal Cancer publication-title: Cancer Epidemiology – volume: 30 start-page: 2481 year: 2011 end-page: 2498 article-title: Multivariate Meta‐Analysis: Potential and Promise publication-title: Statistics in Medicine – volume: 38 start-page: 3322 year: 2019 end-page: 3341 article-title: Bivariate Network Meta‐Analysis for Surrogate Endpoint Evaluation publication-title: Statistics in Medicine – volume: 170 start-page: 122 year: 2022 end-page: 132 article-title: Correlations Between Objective Response Rate and Survival‐Based Endpoints in First‐Line Advanced Non‐Small Cell Lung Cancer: A Systematic Review and Meta‐Analysis publication-title: Lung Cancer – volume: 27 start-page: 428 year: 2018 end-page: 450 article-title: Bayesian Bivariate Meta‐Analysis of Correlated Effects: Impact of the Prior Distributions on the Between‐Study Correlation, Borrowing of Strength, and Joint Inferences publication-title: Statistical Methods in Medical Research – volume: 1 start-page: 49 year: 2000 end-page: 67 article-title: The Validation of Surrogate Endpoints in Meta‐Analyses of Randomized Experiments publication-title: Biostatistics – volume: 37 start-page: 1059 year: 2018 end-page: 1085 article-title: A Comparison of Seven Random‐Effects Models Formeta‐Analyses That Estimate the Summary Odds Ratio publication-title: Statistics in Medicine – volume: 7 start-page: 55 year: 2016 end-page: 79 article-title: Methods to Estimate the Between‐Study Variance and Its Uncertainty in Meta‐Analysis publication-title: Research Synthesis Methods – volume: 8 start-page: 431 year: 1989 end-page: 440 article-title: Surrogate Endpoints in Clinical Trials: Definition and Operational Criteria publication-title: Statistics in Medicine – volume: 172 start-page: 789 year: 2009 end-page: 811 article-title: Multivariate Meta‐Analysis: The Effect of Ignoring Within‐Study Correlation publication-title: Journal of the Royal Statistical Society, Series A – volume: 50 start-page: 405 year: 2001 end-page: 422 article-title: Validation of Surrogate end Points in Multiple Randomized Clinical Trials With Failure Time end Points publication-title: Journal of the Royal Statistical Society, Series C – volume: 138 start-page: 432 year: 2008 end-page: 449 article-title: The Meta‐Analytic Framework for the Evaluation of Surrogate Endpoints in Clinical Trials publication-title: Journal of Statistical Planning and Inference – volume: 33 start-page: 2275 year: 2014 end-page: 2287 article-title: An Approach for Modelling Multiple Correlated Outcomes in a Network of Interventions Using Odds Ratios publication-title: Statistics in Medicine – volume: 60 start-page: 1040 year: 2018 end-page: 1058 article-title: When Should Meta‐Analysis Avoid Making Hidden Normality Assumptions? publication-title: Biometrical Journal – volume: 18 start-page: 2693 year: 1999 end-page: 2708 article-title: Explaining Heterogeneity in Meta‐Analysis: A Comparison of Methods publication-title: Statistics in Medicine – volume: 37 start-page: 507 year: 2018 end-page: 518 article-title: Five Criteria for Using a Surrogate Endpoint to Predict Treatment Effect Based on Data From Multiple Previous Trials publication-title: Statistics in Medicine – volume: 122 start-page: 1707 year: 2020 end-page: 1714 article-title: Progression‐Free Survival as a Surrogate for Overall Survival in Oncology Trials: A Methodological Systematic Review publication-title: British Journal of Cancer – volume: 14 start-page: 92 year: 2014 article-title: Network Meta‐Analysis of Multiple Outcome Measures Accounting for Borrowing of Information Across Outcomes publication-title: BMC Medical Research Methodology – volume: 39 start-page: 1103 year: 2020 end-page: 1124 article-title: Bayesian Hierarchical Meta‐Analytic Methods for Modeling Surrogate Relationships That Vary Across Treatment Classes Using Aggregate Data publication-title: Statistics in Medicine – volume: 55 start-page: 231 year: 2013 end-page: 245 article-title: A Matrix‐Based Method of Moments for Fitting the Multivariate Random Effects Model for Meta‐Analysis and Meta‐Regression publication-title: Biometrical Journal – volume: 16 start-page: 1 year: 1948 end-page: 32 article-title: Consistent Estimates Based on Partially Consistent Observations publication-title: Econometrica – volume: 21 start-page: 1539 year: 2002 end-page: 1558 article-title: Quantifying Heterogeneity in a Meta‐Analysis publication-title: Statistics in Medicine – volume: 13 start-page: 777 year: 2003 end-page: 792 article-title: Exploring the Relationship Between Surrogates and Clinical Outcomes: Analysis of Individual Patient Data vs. Meta‐Regression on Group‐Level Summary Statistics publication-title: Journal of Biopharmaceutical Statistics – volume: 16 start-page: 1965 year: 1997 end-page: 1982 article-title: Meta‐Analysis for the Evaluation of Potential Surrogate Markers publication-title: Statistics in Medicine – volume: 26 start-page: 2287 year: 2017 end-page: 2318 article-title: Uncertainty in the Bayesian Meta‐Analysis of Normally Distributed Surrogate Endpoints publication-title: Statistical Methods in Medical Research – volume: 12 start-page: 429 year: 2021 end-page: 447 article-title: Study Specific Prediction Intervals for Random‐Effects Meta‐Analysis: A Tutorial publication-title: Research Synthesis Methods – start-page: 457 year: 2021 end-page: 477 – volume: 24 start-page: 2401 year: 2005 end-page: 2428 article-title: How Vague is Vague? A Simulation Study of the Impact of the Use of Vague Prior Distributions in MCMC Using WinBUGS publication-title: Statistics in Medicine – volume: 9 start-page: 172 year: 2008 end-page: 186 article-title: An Alternative Model for Bivariate Random‐Effects Meta‐Analysis When the Within‐Study Correlations are Unknown publication-title: Biostatistics – year: 2019 – volume: 13 start-page: 609 year: 2012 end-page: 624 article-title: A Unified Procedure for Meta‐Analytic Evaluation of Surrogate End Points in Randomized Clinical Trials publication-title: Biostatistics – volume: 3 year: 2009 article-title: Anti‐Angiogenic Therapies Formetastatic Colorectal Cancer publication-title: Cochrane Database of Systematic Reviews – volume: 32 start-page: 1191 year: 2013 end-page: 1205 article-title: Estimating Within‐Study Covariances in Multivariate Meta‐Analysis With Multiple Outcomes publication-title: Statistics in Medicine – ident: e_1_2_10_3_1 doi: 10.1002/sim.7561 – ident: e_1_2_10_29_1 doi: 10.1002/pst.1749 – ident: e_1_2_10_37_1 doi: 10.1002/jrsm.1490 – ident: e_1_2_10_2_1 doi: 10.1186/1471-2288-14-92 – ident: e_1_2_10_31_1 doi: 10.1002/sim.4780080407 – ident: e_1_2_10_30_1 doi: 10.1002/sim.8465 – ident: e_1_2_10_21_1 doi: 10.1002/bimj.201200152 – ident: e_1_2_10_17_1 doi: 10.1016/j.lungcan.2022.06.009 – ident: e_1_2_10_13_1 doi: 10.1093/biostatistics/kxs003 – ident: e_1_2_10_15_1 doi: 10.1002/sim.6117 – ident: e_1_2_10_16_1 doi: 10.1016/j.canep.2019.101665 – ident: e_1_2_10_35_1 doi: 10.1002/(SICI)1097-0258(19991030)18:20<2693::AID-SIM235>3.0.CO;2-V – ident: e_1_2_10_5_1 doi: 10.1177/0962280216631361 – start-page: 457 volume-title: Handbook of Meta‐Analysis year: 2021 ident: e_1_2_10_7_1 – ident: e_1_2_10_8_1 doi: 10.1093/biostatistics/1.1.49 – ident: e_1_2_10_12_1 doi: 10.1002/sim.8187 – ident: e_1_2_10_33_1 doi: 10.1111/j.1467-985X.2008.00593.x – ident: e_1_2_10_9_1 doi: 10.1002/sim.5831 – ident: e_1_2_10_10_1 doi: 10.1177/0962280215597260 – ident: e_1_2_10_22_1 doi: 10.1002/bimj.201800071 – ident: e_1_2_10_36_1 doi: 10.3310/hta13080 – ident: e_1_2_10_40_1 doi: 10.1002/sim.5679 – ident: e_1_2_10_14_1 doi: 10.1002/(SICI)1097-0258(19970915)16:17<1965::AID-SIM630>3.0.CO;2-M – ident: e_1_2_10_34_1 doi: 10.1002/jrsm.1129 – ident: e_1_2_10_25_1 doi: 10.2307/2530695 – ident: e_1_2_10_24_1 doi: 10.1111/biom.12762 – ident: e_1_2_10_18_1 doi: 10.1002/sim.1186 – volume: 3 year: 2009 ident: e_1_2_10_39_1 article-title: Anti‐Angiogenic Therapies Formetastatic Colorectal Cancer publication-title: Cochrane Database of Systematic Reviews – ident: e_1_2_10_6_1 doi: 10.1111/1467-9876.00244 – ident: e_1_2_10_26_1 doi: 10.1002/sim.2112 – ident: e_1_2_10_28_1 doi: 10.2307/1914288 – ident: e_1_2_10_38_1 doi: 10.1002/jrsm.1164 – ident: e_1_2_10_4_1 doi: 10.1038/s41416-020-0805-y – ident: e_1_2_10_20_1 doi: 10.1002/sim.4172 – ident: e_1_2_10_19_1 doi: 10.1081/BIP-120024209 – ident: e_1_2_10_32_1 doi: 10.1093/biostatistics/kxm023 – ident: e_1_2_10_23_1 doi: 10.1002/sim.7588 – ident: e_1_2_10_27_1 doi: 10.1016/j.jspi.2007.06.005 – ident: e_1_2_10_11_1 |
SSID | ssj0009042 |
Score | 2.382377 |
Snippet | ABSTRACT
Surrogate endpoints are used when the primary outcome is difficult to measure accurately. Determining if a measure is suitable to use as a surrogate... Surrogate endpoints are used when the primary outcome is difficult to measure accurately. Determining if a measure is suitable to use as a surrogate endpoint... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e70048 |
SubjectTerms | Bayes Theorem Bayesian analysis Bias bias correction Biomarkers Biometry - methods Bivariate analysis Endpoint Determination - methods Humans Likelihood Functions Mathematical models Maximum likelihood estimation Maximum likelihood estimators Meta-analysis Meta-Analysis as Topic meta‐regression Models, Statistical multivariate meta‐analysis Parameters surrogate endpoint |
Title | A New Frequentist Implementation of the Daniels and Hughes Bivariate Meta‐Analysis Model for Surrogate Endpoint Evaluation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.70048 https://www.ncbi.nlm.nih.gov/pubmed/40105204 https://www.proquest.com/docview/3192221537 https://www.proquest.com/docview/3178834999 https://pubmed.ncbi.nlm.nih.gov/PMC11921291 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD7UiuBL8e60tUT0SRg7m7lsAr70ssu2sCJqoW9DMknsis2U3dmC4IM_wd_oL_GczO5sl0LBl2EgmQs5ycn3JTnfAXibJzrXqUtiXhUyzlJlYolIOeamr7VQRcEtBSePPxajs-z0PD_fgA_LWJhWH6JbcKOREfw1DXClZ_sr0VA9ufz-nsTZxT24T7G11Mt59mkluZtk7R4CT-MUnXAnTsr3V8-uT0e3MObto5I3IWyYg4aPYGsBHtlBa-3HsGH9E3jQppP8-RR-HTD0WWw4DcejGzQgC-K_l4v4Is9qxxDwsTaufMaUN2w0_3ZhZ-xwco2sGYEnG9tG_f39Z6lWwihb2g-G2JZ9mU-nNS27sYE3V_XEN2zQiYU_g7Ph4OvRKF5kV4grpKUiNtI56SopXGJzh1O3cUguXCIribxVOZf3TIVkr0CfZiubC2GQXBkKlHWFwnc8h01fe_sSmJIiE9r2c2vTjAi3K7jOKfhQJpVxaQRvlo1cXrUiGmUrl8xLMkUZTBHB7rL9y8VAmpXoIRDBoFvuR_C6K8YhQPsaytt6TnWQx6dE3SJ40Zqr-0xGGUB5kkUg1gzZVSB57fUSP7kIMts9korjshfBu2DzO369PDwZn4a77f-pvAMPOaUTDgeBdmGzmc7tK8Q4jd4LXRmvx5_5P3Zi-s8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3batwwEB3ShNK8lKa3uM1FpX0quPHKsld6TMoumzQbCk0gb8a2pGZLI4ddb6HQh35Cv7Ff0hnZ680SKOTNIPmCxhqdI82cAXiXREVSxDYKeZmqUMS5DhUi5ZDrflHIPE25oeTk8Vk6uhAnl8llG5tDuTCNPkS34UYzw_trmuC0IX2wVA0tJtffPpA6u3wAGyLlfarcwMXnpeZuJJpDBB6HMXrhTp2UHyzvXV2P7oDMu7GStzGsX4SGT-Bxix7ZYWPuLVgz7ik8bOpJ_nwGvw4ZOi02nPr46BotyLz673WbYORYZRkiPtYkls9Y7jQbzb9emRk7mvxA2ozIk41Nnf_9_WchV8KoXNp3huCWfZlPpxXtu7GB0zfVxNVs0KmFP4eL4eD84yhsyyuEJfJSGWplrbKlkjYyicW1W1tkFzZSpULimlub9HSJbC9Fp2ZKk0ipkV1pypS1aY7PeAHrrnJmG1iupJCF6SfGxIIYt015kVD2oYpKbeMA3i4GObtpVDSyRi-ZZ2SKzJsigJ3F-GftTJpl6CIQwqBf7gfwpmvGOUAHG7kz1Zz6IJGPibsF8LIxV_caQSVAeSQCkCuG7DqQvvZqi5tceZ3tHmnFcdUL4L23-X8-PTs6Hp_4q1f36bwPj0bn49Ps9Pjs02vY5FRb2EcF7cB6PZ2bXQQ8dbHnf-t_EYr9Ug |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtNAEB2VIhAviDuGAoPgCcnUWV-yK_HSQqK0kKoSVOqbZXt3aap2HSUOEhIPfALfyJcws04cokpIvFny-qKdndlzdnfOALxOozItYxuFospUmMSFDhUh5VDoflnKIsuE4eTk8VE2OkkOT9PTLXi3yoVp9SG6BTf2DB-v2cGn2u6uRUPLyeX5WxZnl9fgOu_28fgWyfFacjdK2j0EEYcxBeFOnFTsrp_dnI6uYMyrRyX_hrB-DhregdtL8Ih7rbXvwpZx9-BGW07y-334sYcUs3A488ejGzIgevHfy2V-kcPaIgE-bPPK51g4jaPF1zMzx_3JN2LNBDxxbJri989fK7US5GppF0jYFj8vZrOal91w4PS0nrgGB51Y-AM4GQ6-vB-Fy-oKYUW0VIZaWatspaSNTGpp6taWyIWNVKWItxbWpj1dEdnLKKaZyqRSaiJXmhNlbVbQOx7CtqudeQxYKJnI0vRTY-KECbfNRJly8qGKKm3jAF6tOjmftiIaeSuXLHI2Re5NEcDOqv_zpSPNc4oQhGAoLPcDeNndJhfgfY3CmXrBbYjHx0zdAnjUmqv7TMIVQEWUBCA3DNk1YHntzTtucuZltnssFSdUL4A33ub_-PV8_2B86K-e_E_jF3Dz-MMw_3Rw9PEp3BJcWdifCdqB7Wa2MM8I7jTlcz-q_wCecPyE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Frequentist+Implementation+of+the+Daniels+and+Hughes+Bivariate+Meta-Analysis+Model+for+Surrogate+Endpoint+Evaluation&rft.jtitle=Biometrical+journal&rft.au=Jackson%2C+Dan&rft.au=Sweeting%2C+Michael&rft.au=van+Aert%2C+Robbie+C+M&rft.au=Bujkiewicz%2C+Sylwia&rft.date=2025-04-01&rft.eissn=1521-4036&rft.volume=67&rft.issue=2&rft.spage=e70048&rft_id=info:doi/10.1002%2Fbimj.70048&rft_id=info%3Apmid%2F40105204&rft.externalDocID=40105204 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0323-3847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0323-3847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0323-3847&client=summon |