Screen-printed flexible thermoelectric generator with directional heat collection design
A thermoelectric generator (TEG) was fabricated on a flexible substrate by screen printing and pressured sintering techniques for low-temperature heat harvesting applications. The screen-printed Bi-Sb-Te (p-type) and Bi-Se-Te (n-type) films that are sintered at 345 °C under a pressure of 25 MPa show...
Saved in:
Published in | Journal of alloys and compounds Vol. 836; p. 155471 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
25.09.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A thermoelectric generator (TEG) was fabricated on a flexible substrate by screen printing and pressured sintering techniques for low-temperature heat harvesting applications. The screen-printed Bi-Sb-Te (p-type) and Bi-Se-Te (n-type) films that are sintered at 345 °C under a pressure of 25 MPa show the respective thermoelectric power factor of 14.3 and 8.4 μW/cm⋅K2 at room temperature. A planar TEG made of three pairs of Bi-Sb-Te and Bi-Se-Te thermoelements delivers an output power of 50 μW at a temperature difference of 54.9 °C. The flexible TEG shows no electrical degradation after 1000 cycles of bending in the longitudinal and transverse directions of the thermoelements. A directional heat collection design is proposed to maximize the heat supply area of planar TEGs. The fabricated TEG can attain a maximum output power density of 58.3 μW/cm2 under a temperature difference of 5.7 °C with a graphite heat transmission layer attached to a heat source at the temperature of 39.8 °C. It can serve as a self-sustained power source for wearable electronics and sensing devices by harvesting thermal energy from environment or human body.
•A μ-watt flexible thermoelectric generator is made by screen-printing technology.•Thermoelectric power factors of printed films are enhanced by pressured sintering.•The planar TEG shows no electrical degradation after 1000 bending cycles.•A heat transmission layer is implemented to raise TEG heat collection capacity. |
---|---|
AbstractList | A thermoelectric generator (TEG) was fabricated on a flexible substrate by screen printing and pressured sintering techniques for low-temperature heat harvesting applications. The screen-printed Bi-Sb-Te (p-type) and Bi-Se-Te (n-type) films that are sintered at 345 °C under a pressure of 25 MPa show the respective thermoelectric power factor of 14.3 and 8.4 μW/cm⋅K2 at room temperature. A planar TEG made of three pairs of Bi-Sb-Te and Bi-Se-Te thermoelements delivers an output power of 50 μW at a temperature difference of 54.9 °C. The flexible TEG shows no electrical degradation after 1000 cycles of bending in the longitudinal and transverse directions of the thermoelements. A directional heat collection design is proposed to maximize the heat supply area of planar TEGs. The fabricated TEG can attain a maximum output power density of 58.3 μW/cm2 under a temperature difference of 5.7 °C with a graphite heat transmission layer attached to a heat source at the temperature of 39.8 °C. It can serve as a self-sustained power source for wearable electronics and sensing devices by harvesting thermal energy from environment or human body.
•A μ-watt flexible thermoelectric generator is made by screen-printing technology.•Thermoelectric power factors of printed films are enhanced by pressured sintering.•The planar TEG shows no electrical degradation after 1000 bending cycles.•A heat transmission layer is implemented to raise TEG heat collection capacity. A thermoelectric generator (TEG) was fabricated on a flexible substrate by screen printing and pressured sintering techniques for low-temperature heat harvesting applications. The screen-printed Bi-Sb-Te (p-type) and Bi-Se-Te (n-type) films that are sintered at 345 °C under a pressure of 25 MPa show the respective thermoelectric power factor of 14.3 and 8.4 μW/cm⋅K2 at room temperature. A planar TEG made of three pairs of Bi-Sb-Te and Bi-Se-Te thermoelements delivers an output power of 50 μW at a temperature difference of 54.9 °C. The flexible TEG shows no electrical degradation after 1000 cycles of bending in the longitudinal and transverse directions of the thermoelements. A directional heat collection design is proposed to maximize the heat supply area of planar TEGs. The fabricated TEG can attain a maximum output power density of 58.3 μW/cm2 under a temperature difference of 5.7 °C with a graphite heat transmission layer attached to a heat source at the temperature of 39.8 °C. It can serve as a self-sustained power source for wearable electronics and sensing devices by harvesting thermal energy from environment or human body. |
ArticleNumber | 155471 |
Author | Liao, Chien-Neng Chang, Pin-Shiuan |
Author_xml | – sequence: 1 givenname: Pin-Shiuan surname: Chang fullname: Chang, Pin-Shiuan – sequence: 2 givenname: Chien-Neng surname: Liao fullname: Liao, Chien-Neng email: cnliao@mx.nthu.edu.tw |
BookMark | eNqFkEtLAzEUhYNUsK3-BGHA9dRkkpnMrESKLyi4UMFdSDM3bYY0qUnq498bme5dXTj3nMs93wxNnHeA0CXBC4JJcz0sBmmt8rtFhaus1TXj5ARNSctpyZqmm6Ap7qq6bGnbnqFZjAPGmHSUTNH7iwoArtwH4xL0hbbwbdYWirSFsPNgQaVgVLEBB0EmH4ovk7ZFb0JeGO-kLbYgU6G8taNS9BDNxp2jUy1thIvjnKO3-7vX5WO5en54Wt6uSkUpT6WGmjCqq7bump73awKcgyaSgcKUknatuo5rorKr7ziXedv0Faa1Yho3ek3n6Gq8uw_-4wAxicEfQv4riooxzDpcNSS76tGlgo8xgBa58E6GH0Gw-IMoBnGEKP4gihFizt2MOcgVPg0EEZUBp2AEIHpv_rnwC5VDgHQ |
CitedBy_id | crossref_primary_10_1002_ece2_17 crossref_primary_10_1039_D1TA03647E crossref_primary_10_20517_ss_2023_34 crossref_primary_10_1063_5_0049347 crossref_primary_10_1002_admi_202300171 crossref_primary_10_1016_j_matchemphys_2022_126269 crossref_primary_10_1002_sstr_202300282 crossref_primary_10_1016_j_pmatsci_2022_101003 crossref_primary_10_1021_acsami_4c02467 crossref_primary_10_1016_j_nanoen_2021_106774 crossref_primary_10_1002_adma_202004832 crossref_primary_10_1016_j_energy_2024_131232 crossref_primary_10_1021_acsaem_4c00740 crossref_primary_10_3390_coatings13010209 crossref_primary_10_20517_ss_2023_20 crossref_primary_10_1002_adma_202307945 crossref_primary_10_1039_D0NR08144B crossref_primary_10_1016_j_cej_2022_135172 crossref_primary_10_1021_acsami_3c06851 crossref_primary_10_1002_admt_202302226 crossref_primary_10_1063_5_0134684 crossref_primary_10_1007_s11771_023_5257_0 crossref_primary_10_1016_j_mattod_2022_06_001 crossref_primary_10_1002_adfm_202207903 crossref_primary_10_1002_cey2_541 crossref_primary_10_1016_j_ceramint_2023_02_233 crossref_primary_10_3390_ijms25116152 |
Cites_doi | 10.1039/C5TC01781E 10.1016/j.jallcom.2013.12.136 10.1063/1.4960573 10.1063/1.4928459 10.1002/adma.201807916 10.1016/j.cej.2020.124295 10.1149/1.2454653 10.1039/C9RA09801A 10.1002/adma.201804930 10.1016/j.rser.2017.01.177 10.1002/er.4206 10.1007/s11664-013-2930-3 10.1016/0022-3697(86)90010-7 10.1016/j.vacuum.2017.07.030 10.1007/s11664-019-07235-1 10.1126/science.1158899 10.1007/s11664-009-0704-8 10.1002/adfm.201905796 10.1038/nnano.2008.417 10.1038/nmat2090 10.1016/j.intermet.2015.08.009 10.1016/j.jpcs.2013.07.019 10.1016/S0025-5408(96)00149-3 10.1016/j.jallcom.2010.09.102 10.1016/0167-6636(96)00021-X 10.1016/j.sna.2003.11.039 10.1002/admi.201700870 10.1007/s11664-012-2435-5 10.1088/1742-6596/1052/1/012008 10.1016/j.sna.2017.10.055 10.1016/j.nanoen.2017.08.061 10.1016/j.nanoen.2016.11.012 10.1016/j.nanoen.2018.01.031 10.1016/j.nanoen.2018.06.020 10.1016/j.jpowsour.2019.01.040 10.1021/acs.chemmater.9b01500 10.1039/C7TC01797A 10.1109/JMEMS.2009.2021104 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Sep 25, 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Sep 25, 2020 |
DBID | AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1016/j.jallcom.2020.155471 |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1873-4669 |
ExternalDocumentID | 10_1016_j_jallcom_2020_155471 S0925838820318351 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- 29J AAQXK AAXKI AAYXX ABXDB ACNNM ADMUD AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SMS T9H WUQ 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c337t-fe5143f28596d7db1e77ef1a4ec03318bc997f1c514d977a77e6d2035c4f06fb3 |
IEDL.DBID | AIKHN |
ISSN | 0925-8388 |
IngestDate | Thu Oct 10 20:05:31 EDT 2024 Thu Sep 26 17:32:02 EDT 2024 Fri Feb 23 02:47:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Screen printing Heat conduction Thermoelectric generator Flexibility Sintering Power |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-fe5143f28596d7db1e77ef1a4ec03318bc997f1c514d977a77e6d2035c4f06fb3 |
PQID | 2440490261 |
PQPubID | 2045454 |
ParticipantIDs | proquest_journals_2440490261 crossref_primary_10_1016_j_jallcom_2020_155471 elsevier_sciencedirect_doi_10_1016_j_jallcom_2020_155471 |
PublicationCentury | 2000 |
PublicationDate | 2020-09-25 |
PublicationDateYYYYMMDD | 2020-09-25 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Journal of alloys and compounds |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Wang, Cagin (bib30) 2007; 76 Hou, Nie, Zhao, Zhou, Mu, Zhu, Zhang (bib23) 2018; 50 Komisarchik, Fuks, Gelbstein (bib4) 2016; 120 Kato, Kuriyama, Yabuki, Miyazaki (bib35) 2018; 1052 Appel, Gelbstein (bib6) 2014; 43 Choi, Kim, Kim, We, Oh, Cho (bib22) 2017; 5 Strasser, Aigner, Lauterbach, Sturm, Franosch, Wachutka (bib9) 2004; 114 Cohen, Kaller, Komisarchik, Fuks, Gelbstein (bib3) 2015; 3 Kim, Kim, Choi, Kim, Lee, Park, Cho (bib15) 2017; 4 Zhang, Lu, Zhang, Zhang (bib7) 2011; 509 Yuan, Tang, Liu, Xu, Liu, Zhang, Chen, Li (bib14) 2017; 267 Takayama, Takashiri (bib19) 2017; 144 Xu, Hong, Shi, Wang, Ge, Bai, Wang, Dargusch, Zou, Chen (bib25) 2019; 31 Guttmann, Dadon, Gelbstein (bib5) 2015; 118 Choi, Kim, Kim, Yang, Oh, Cho (bib16) 2018; 46 Dolbow, Gosz (bib40) 1996; 23 Glatz, Schwyter, Durrer, Hierold (bib11) 2009; 18 Wang, Liu, Shi, Hong, Wang, Li, Wang, Zou, Chen (bib36) 2019 Wang, Yang, Shi, Shi, Chen, Dargusch, Zou, Chen (bib26) 2019; 31 Zhou, Li, Tan, Li (bib18) 2014; 590 Jo, Choo, Kim, Heo, Son (bib27) 2019; 31 Selvan, Hasan, Mohamed Ali (bib10) 2019; 43 Liao, She, Liao, Chu (bib29) 2007; 154 Chowdhury, Prasher, Lofgreen, Chrysler, Narasimhan, Mahajan, Koester, Alley, Venkatasubramanian (bib12) 2009; 4 Siddique, Mahmud, Van Heyst (bib38) 2017; 73 Bell (bib1) 2008; 321 Yuan, Tang, Liu, Xu, Liu, Li, Zhang, Wang (bib13) 2019; 414 Varghese, Dun, Kempf, Saeidi-Javash, Karthik, Richardson, Hollar, Estrada, Zhang (bib24) 2020; 30 Navratil, Starý, Plechacek (bib32) 1996; 31 Kwon, Ju, Yoon, Kim (bib21) 2009; 38 Jung, Jeong, Kang, Kim, Jeong, Lee, Son, Baik, Kim, Choi (bib34) 2017; 40 Rojas, Conchouso, Arevalo, Singh, Foulds, Hussain (bib17) 2017; 31 Picard, Turenne, Vasilevskiy, Masut (bib39) 2013; 42 Lee, Shen, Han (bib20) 2019; 48 Snyder, Toberer (bib33) 2008; 7 Bao, Chen, Yu, Liu, Huang, Han, Tang, Zhou, Yang, Chen (bib37) 2020; 388 Hossain, Li, Yu, Yong, Bahk, Skafidas (bib28) 2020; 10 Sadia, Aminov, Mogilyansky, Gelbstein (bib2) 2016; 68 Horak, Čermák, Koudelka (bib31) 1986; 47 Zhang, Lu, Zhang, Zhang (bib8) 2013; 74 Wang (10.1016/j.jallcom.2020.155471_bib30) 2007; 76 Appel (10.1016/j.jallcom.2020.155471_bib6) 2014; 43 Kim (10.1016/j.jallcom.2020.155471_bib15) 2017; 4 Xu (10.1016/j.jallcom.2020.155471_bib25) 2019; 31 Navratil (10.1016/j.jallcom.2020.155471_bib32) 1996; 31 Wang (10.1016/j.jallcom.2020.155471_bib36) 2019 Lee (10.1016/j.jallcom.2020.155471_bib20) 2019; 48 Picard (10.1016/j.jallcom.2020.155471_bib39) 2013; 42 Varghese (10.1016/j.jallcom.2020.155471_bib24) 2020; 30 Glatz (10.1016/j.jallcom.2020.155471_bib11) 2009; 18 Choi (10.1016/j.jallcom.2020.155471_bib16) 2018; 46 Zhang (10.1016/j.jallcom.2020.155471_bib8) 2013; 74 Liao (10.1016/j.jallcom.2020.155471_bib29) 2007; 154 Rojas (10.1016/j.jallcom.2020.155471_bib17) 2017; 31 Horak (10.1016/j.jallcom.2020.155471_bib31) 1986; 47 Cohen (10.1016/j.jallcom.2020.155471_bib3) 2015; 3 Zhou (10.1016/j.jallcom.2020.155471_bib18) 2014; 590 Hossain (10.1016/j.jallcom.2020.155471_bib28) 2020; 10 Yuan (10.1016/j.jallcom.2020.155471_bib14) 2017; 267 Snyder (10.1016/j.jallcom.2020.155471_bib33) 2008; 7 Guttmann (10.1016/j.jallcom.2020.155471_bib5) 2015; 118 Zhang (10.1016/j.jallcom.2020.155471_bib7) 2011; 509 Yuan (10.1016/j.jallcom.2020.155471_bib13) 2019; 414 Bell (10.1016/j.jallcom.2020.155471_bib1) 2008; 321 Takayama (10.1016/j.jallcom.2020.155471_bib19) 2017; 144 Jung (10.1016/j.jallcom.2020.155471_bib34) 2017; 40 Dolbow (10.1016/j.jallcom.2020.155471_bib40) 1996; 23 Komisarchik (10.1016/j.jallcom.2020.155471_bib4) 2016; 120 Kwon (10.1016/j.jallcom.2020.155471_bib21) 2009; 38 Hou (10.1016/j.jallcom.2020.155471_bib23) 2018; 50 Choi (10.1016/j.jallcom.2020.155471_bib22) 2017; 5 Selvan (10.1016/j.jallcom.2020.155471_bib10) 2019; 43 Chowdhury (10.1016/j.jallcom.2020.155471_bib12) 2009; 4 Sadia (10.1016/j.jallcom.2020.155471_bib2) 2016; 68 Kato (10.1016/j.jallcom.2020.155471_bib35) 2018; 1052 Bao (10.1016/j.jallcom.2020.155471_bib37) 2020; 388 Wang (10.1016/j.jallcom.2020.155471_bib26) 2019; 31 Jo (10.1016/j.jallcom.2020.155471_bib27) 2019; 31 Siddique (10.1016/j.jallcom.2020.155471_bib38) 2017; 73 Strasser (10.1016/j.jallcom.2020.155471_bib9) 2004; 114 |
References_xml | – volume: 144 start-page: 164 year: 2017 end-page: 171 ident: bib19 article-title: Multi-layered-stack thermoelectric generators using p-type Sb publication-title: Vacuum contributor: fullname: Takashiri – volume: 590 start-page: 362 year: 2014 end-page: 367 ident: bib18 article-title: Thermoelectric properties of Pb-doped bismuth telluride thin films deposited by magnetron sputtering publication-title: J. Alloys Compd. contributor: fullname: Li – volume: 267 start-page: 496 year: 2017 end-page: 504 ident: bib14 article-title: A stacked and miniaturized radioisotope thermoelectric generator by screen printing publication-title: Sensor. Actuator. A contributor: fullname: Li – volume: 31 start-page: 1804930 year: 2019 ident: bib27 article-title: Ink processing for thermoelectric materials and power-generating devices publication-title: Adv. Mater. contributor: fullname: Son – volume: 23 start-page: 311 year: 1996 end-page: 321 ident: bib40 article-title: Effect of out-of-plane properties of a polyimide film on the stress fields in microelectronic structures publication-title: Mech. Mater. contributor: fullname: Gosz – volume: 1052 year: 2018 ident: bib35 article-title: Organic-inorganic thermoelectric material for a printed generator publication-title: J. Phys. Conf. Ser contributor: fullname: Miyazaki – volume: 74 start-page: 1859 year: 2013 end-page: 1864 ident: bib8 article-title: Electrical transport properties of CaMnO publication-title: J. Phys. Chem. Solid. contributor: fullname: Zhang – volume: 4 start-page: 1700870 year: 2017 ident: bib15 article-title: Realization of high-performance screen-printed flexible thermoelectric generator by improving contact characteristics publication-title: Adv. Mater. Interfaces contributor: fullname: Cho – volume: 18 start-page: 763 year: 2009 end-page: 772 ident: bib11 article-title: Bi publication-title: J. Microelectromech. Syst. contributor: fullname: Hierold – volume: 31 start-page: 296 year: 2017 end-page: 301 ident: bib17 article-title: Paper-based origami flexible and foldable thermoelectric nanogenerator publication-title: Nano Energy contributor: fullname: Hussain – volume: 30 start-page: 1905796 year: 2020 ident: bib24 article-title: Flexible thermoelectric devices of ultrahigh power factor by scalable printing and interface engineering publication-title: Adv. Funct. Mater. contributor: fullname: Zhang – volume: 31 start-page: 1807916 year: 2019 ident: bib26 article-title: Flexible thermoelectric materials and generators: challenges and innovations publication-title: Adv. Mater. contributor: fullname: Chen – volume: 43 start-page: 1976 year: 2014 end-page: 1982 ident: bib6 article-title: A comparison between the effects of Sb and Bi doping on the thermoelectric properties of the Ti publication-title: J. Electron. Mater. contributor: fullname: Gelbstein – volume: 43 start-page: 113 year: 2019 end-page: 140 ident: bib10 article-title: Methodological reviews and analyses on the emerging research trends and progresses of thermoelectric generators publication-title: Int. J. Energy Res. contributor: fullname: Mohamed Ali – volume: 414 start-page: 509 year: 2019 end-page: 516 ident: bib13 article-title: Improving the performance of a screen-printed micro-radioisotope thermoelectric generator through stacking integration publication-title: J. Power Sources contributor: fullname: Wang – volume: 76 year: 2007 ident: bib30 article-title: Electronic structure of the thermoelectric materials Bi publication-title: Phys. Rev. B contributor: fullname: Cagin – volume: 42 start-page: 2343 year: 2013 end-page: 2349 ident: bib39 article-title: Numerical simulation of performance and thermomechanical behavior of thermoelectric modules with segmented bismuth-telluride-based legs publication-title: J. Electron. Mater. contributor: fullname: Masut – volume: 114 start-page: 362 year: 2004 end-page: 370 ident: bib9 article-title: Micromachined CMOS thermoelectric generators as on-chip power supply publication-title: Sensor Actuat. A Phys. contributor: fullname: Wachutka – volume: 118 year: 2015 ident: bib5 article-title: Electronic tuning of the transport properties of off-stoichiometric Pb publication-title: J. Appl. Phys. contributor: fullname: Gelbstein – volume: 388 start-page: 124295 year: 2020 ident: bib37 article-title: Texture-dependent thermoelectric properties of nano-structured Bi publication-title: Chem. Eng. J. contributor: fullname: Chen – volume: 120 year: 2016 ident: bib4 article-title: High thermoelectric potential of n-type Pb publication-title: J. Appl. Phys. contributor: fullname: Gelbstein – volume: 46 start-page: 39 year: 2018 end-page: 44 ident: bib16 article-title: Enhancement of reproducibility and reliability in a high-performance flexible thermoelectric generator using screen-printed materials publication-title: Nano Energy contributor: fullname: Cho – volume: 509 start-page: 542 year: 2011 end-page: 545 ident: bib7 article-title: First principle investigation of electronic structure of CaMnO publication-title: J. Alloys Compd. contributor: fullname: Zhang – volume: 50 start-page: 766 year: 2018 end-page: 776 ident: bib23 article-title: Fabrication and excellent performances of Bi publication-title: Nano Energy contributor: fullname: Zhang – volume: 47 start-page: 805 year: 1986 end-page: 809 ident: bib31 article-title: Energy formation of antisite defects in doped Sb publication-title: J. Phys. Chem. Solid. contributor: fullname: Koudelka – volume: 48 start-page: 5464 year: 2019 end-page: 5470 ident: bib20 article-title: Flexible thermoelectric module using Bi-Te and Sb-Te thin films for temperature sensors publication-title: J. Electron. Mater. contributor: fullname: Han – volume: 31 start-page: 5238 year: 2019 end-page: 5244 ident: bib25 article-title: High-performance PEDOT:PSS flexible thermoelectric materials and their devices by triple post-treatments publication-title: Chem. Mater. contributor: fullname: Chen – volume: 154 start-page: H304 year: 2007 end-page: H308 ident: bib29 article-title: Oscillatory transport properties of thermally annealed Bi/Te multilayer thin films publication-title: J. Electrochem. Soc. contributor: fullname: Chu – year: 2019 ident: bib36 article-title: Enhanced thermoelectric properties of nanostructured n-type Bi2Te3 by suppressing Te vacancy through non-equilibrium fast reaction publication-title: Chem. Eng. J. contributor: fullname: Chen – volume: 7 start-page: 105 year: 2008 end-page: 114 ident: bib33 article-title: Complex thermoelectric materials publication-title: Nat. Mater. contributor: fullname: Toberer – volume: 5 start-page: 8559 year: 2017 end-page: 8565 ident: bib22 article-title: Enhanced thermoelectric properties of screen-printed Bi publication-title: J. Mater. Chem. C contributor: fullname: Cho – volume: 40 start-page: 663 year: 2017 end-page: 672 ident: bib34 article-title: Wearable solar thermoelectric generator driven by unprecedentedly high temperature difference publication-title: Nano energy contributor: fullname: Choi – volume: 68 start-page: 71 year: 2016 end-page: 77 ident: bib2 article-title: Texture anisotropy of higher manganese silicide following arc-melting and hot-pressing publication-title: Intermetallics contributor: fullname: Gelbstein – volume: 38 start-page: 920 year: 2009 end-page: 924 ident: bib21 article-title: Fabrication of bismuth telluride-based alloy thin film thermoelectric devices grown by metal organic chemical vapor deposition publication-title: J. Electron. Mater. contributor: fullname: Kim – volume: 73 start-page: 730 year: 2017 end-page: 744 ident: bib38 article-title: A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges publication-title: Renew. Sustain. Energy Rev. contributor: fullname: Van Heyst – volume: 31 start-page: 1559 year: 1996 end-page: 1566 ident: bib32 article-title: Thermoelectric properties of p-type antimony bismuth telluride alloys prepared by cold pressing publication-title: Mater. Res. Bull. contributor: fullname: Plechacek – volume: 321 start-page: 1457 year: 2008 end-page: 1461 ident: bib1 article-title: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems publication-title: Science contributor: fullname: Bell – volume: 4 start-page: 235 year: 2009 ident: bib12 article-title: On-chip cooling by superlattice-based thin-film thermoelectrics publication-title: Nat. Nanotechnol. contributor: fullname: Venkatasubramanian – volume: 3 start-page: 9559 year: 2015 end-page: 9564 ident: bib3 article-title: Enhancement of the thermoelectric properties of n-type PbTe by Na and Cl co-doping publication-title: J. Mater. Chem. C contributor: fullname: Gelbstein – volume: 10 start-page: 8421 year: 2020 end-page: 8434 ident: bib28 article-title: Recent advances in printable thermoelectric devices: materials, printing techniques, and applications publication-title: RSC Adv. contributor: fullname: Skafidas – volume: 3 start-page: 9559 year: 2015 ident: 10.1016/j.jallcom.2020.155471_bib3 article-title: Enhancement of the thermoelectric properties of n-type PbTe by Na and Cl co-doping publication-title: J. Mater. Chem. C doi: 10.1039/C5TC01781E contributor: fullname: Cohen – volume: 590 start-page: 362 year: 2014 ident: 10.1016/j.jallcom.2020.155471_bib18 article-title: Thermoelectric properties of Pb-doped bismuth telluride thin films deposited by magnetron sputtering publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2013.12.136 contributor: fullname: Zhou – volume: 120 year: 2016 ident: 10.1016/j.jallcom.2020.155471_bib4 article-title: High thermoelectric potential of n-type Pb1-xTixTe alloys publication-title: J. Appl. Phys. doi: 10.1063/1.4960573 contributor: fullname: Komisarchik – volume: 118 year: 2015 ident: 10.1016/j.jallcom.2020.155471_bib5 article-title: Electronic tuning of the transport properties of off-stoichiometric PbxSn1-xTe thermoelectric alloys by Bi2Te3 doping publication-title: J. Appl. Phys. doi: 10.1063/1.4928459 contributor: fullname: Guttmann – volume: 31 start-page: 1807916 year: 2019 ident: 10.1016/j.jallcom.2020.155471_bib26 article-title: Flexible thermoelectric materials and generators: challenges and innovations publication-title: Adv. Mater. doi: 10.1002/adma.201807916 contributor: fullname: Wang – volume: 388 start-page: 124295 year: 2020 ident: 10.1016/j.jallcom.2020.155471_bib37 article-title: Texture-dependent thermoelectric properties of nano-structured Bi2Te3 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124295 contributor: fullname: Bao – volume: 154 start-page: H304 year: 2007 ident: 10.1016/j.jallcom.2020.155471_bib29 article-title: Oscillatory transport properties of thermally annealed Bi/Te multilayer thin films publication-title: J. Electrochem. Soc. doi: 10.1149/1.2454653 contributor: fullname: Liao – volume: 10 start-page: 8421 year: 2020 ident: 10.1016/j.jallcom.2020.155471_bib28 article-title: Recent advances in printable thermoelectric devices: materials, printing techniques, and applications publication-title: RSC Adv. doi: 10.1039/C9RA09801A contributor: fullname: Hossain – volume: 31 start-page: 1804930 year: 2019 ident: 10.1016/j.jallcom.2020.155471_bib27 article-title: Ink processing for thermoelectric materials and power-generating devices publication-title: Adv. Mater. doi: 10.1002/adma.201804930 contributor: fullname: Jo – volume: 73 start-page: 730 year: 2017 ident: 10.1016/j.jallcom.2020.155471_bib38 article-title: A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.01.177 contributor: fullname: Siddique – volume: 43 start-page: 113 year: 2019 ident: 10.1016/j.jallcom.2020.155471_bib10 article-title: Methodological reviews and analyses on the emerging research trends and progresses of thermoelectric generators publication-title: Int. J. Energy Res. doi: 10.1002/er.4206 contributor: fullname: Selvan – volume: 43 start-page: 1976 year: 2014 ident: 10.1016/j.jallcom.2020.155471_bib6 article-title: A comparison between the effects of Sb and Bi doping on the thermoelectric properties of the Ti0.3Zr0.35Hf0.35NiSn half-heusler alloy publication-title: J. Electron. Mater. doi: 10.1007/s11664-013-2930-3 contributor: fullname: Appel – volume: 47 start-page: 805 year: 1986 ident: 10.1016/j.jallcom.2020.155471_bib31 article-title: Energy formation of antisite defects in doped Sb2Te3 and Bi2Te3 crystals publication-title: J. Phys. Chem. Solid. doi: 10.1016/0022-3697(86)90010-7 contributor: fullname: Horak – volume: 144 start-page: 164 year: 2017 ident: 10.1016/j.jallcom.2020.155471_bib19 article-title: Multi-layered-stack thermoelectric generators using p-type Sb2Te3 and n-type Bi2Te3 thin films by radio-frequency magnetron sputtering publication-title: Vacuum doi: 10.1016/j.vacuum.2017.07.030 contributor: fullname: Takayama – volume: 48 start-page: 5464 year: 2019 ident: 10.1016/j.jallcom.2020.155471_bib20 article-title: Flexible thermoelectric module using Bi-Te and Sb-Te thin films for temperature sensors publication-title: J. Electron. Mater. doi: 10.1007/s11664-019-07235-1 contributor: fullname: Lee – volume: 321 start-page: 1457 year: 2008 ident: 10.1016/j.jallcom.2020.155471_bib1 article-title: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems publication-title: Science doi: 10.1126/science.1158899 contributor: fullname: Bell – volume: 38 start-page: 920 year: 2009 ident: 10.1016/j.jallcom.2020.155471_bib21 article-title: Fabrication of bismuth telluride-based alloy thin film thermoelectric devices grown by metal organic chemical vapor deposition publication-title: J. Electron. Mater. doi: 10.1007/s11664-009-0704-8 contributor: fullname: Kwon – volume: 30 start-page: 1905796 year: 2020 ident: 10.1016/j.jallcom.2020.155471_bib24 article-title: Flexible thermoelectric devices of ultrahigh power factor by scalable printing and interface engineering publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905796 contributor: fullname: Varghese – year: 2019 ident: 10.1016/j.jallcom.2020.155471_bib36 article-title: Enhanced thermoelectric properties of nanostructured n-type Bi2Te3 by suppressing Te vacancy through non-equilibrium fast reaction publication-title: Chem. Eng. J. contributor: fullname: Wang – volume: 4 start-page: 235 year: 2009 ident: 10.1016/j.jallcom.2020.155471_bib12 article-title: On-chip cooling by superlattice-based thin-film thermoelectrics publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.417 contributor: fullname: Chowdhury – volume: 7 start-page: 105 year: 2008 ident: 10.1016/j.jallcom.2020.155471_bib33 article-title: Complex thermoelectric materials publication-title: Nat. Mater. doi: 10.1038/nmat2090 contributor: fullname: Snyder – volume: 68 start-page: 71 year: 2016 ident: 10.1016/j.jallcom.2020.155471_bib2 article-title: Texture anisotropy of higher manganese silicide following arc-melting and hot-pressing publication-title: Intermetallics doi: 10.1016/j.intermet.2015.08.009 contributor: fullname: Sadia – volume: 74 start-page: 1859 year: 2013 ident: 10.1016/j.jallcom.2020.155471_bib8 article-title: Electrical transport properties of CaMnO3 thermoelectric compound: a theoretical study publication-title: J. Phys. Chem. Solid. doi: 10.1016/j.jpcs.2013.07.019 contributor: fullname: Zhang – volume: 31 start-page: 1559 year: 1996 ident: 10.1016/j.jallcom.2020.155471_bib32 article-title: Thermoelectric properties of p-type antimony bismuth telluride alloys prepared by cold pressing publication-title: Mater. Res. Bull. doi: 10.1016/S0025-5408(96)00149-3 contributor: fullname: Navratil – volume: 509 start-page: 542 year: 2011 ident: 10.1016/j.jallcom.2020.155471_bib7 article-title: First principle investigation of electronic structure of CaMnO3 thermoelectric publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2010.09.102 contributor: fullname: Zhang – volume: 23 start-page: 311 year: 1996 ident: 10.1016/j.jallcom.2020.155471_bib40 article-title: Effect of out-of-plane properties of a polyimide film on the stress fields in microelectronic structures publication-title: Mech. Mater. doi: 10.1016/0167-6636(96)00021-X contributor: fullname: Dolbow – volume: 114 start-page: 362 year: 2004 ident: 10.1016/j.jallcom.2020.155471_bib9 article-title: Micromachined CMOS thermoelectric generators as on-chip power supply publication-title: Sensor Actuat. A Phys. doi: 10.1016/j.sna.2003.11.039 contributor: fullname: Strasser – volume: 4 start-page: 1700870 year: 2017 ident: 10.1016/j.jallcom.2020.155471_bib15 article-title: Realization of high-performance screen-printed flexible thermoelectric generator by improving contact characteristics publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201700870 contributor: fullname: Kim – volume: 42 start-page: 2343 year: 2013 ident: 10.1016/j.jallcom.2020.155471_bib39 article-title: Numerical simulation of performance and thermomechanical behavior of thermoelectric modules with segmented bismuth-telluride-based legs publication-title: J. Electron. Mater. doi: 10.1007/s11664-012-2435-5 contributor: fullname: Picard – volume: 1052 year: 2018 ident: 10.1016/j.jallcom.2020.155471_bib35 article-title: Organic-inorganic thermoelectric material for a printed generator publication-title: J. Phys. Conf. Ser doi: 10.1088/1742-6596/1052/1/012008 contributor: fullname: Kato – volume: 267 start-page: 496 year: 2017 ident: 10.1016/j.jallcom.2020.155471_bib14 article-title: A stacked and miniaturized radioisotope thermoelectric generator by screen printing publication-title: Sensor. Actuator. A doi: 10.1016/j.sna.2017.10.055 contributor: fullname: Yuan – volume: 40 start-page: 663 year: 2017 ident: 10.1016/j.jallcom.2020.155471_bib34 article-title: Wearable solar thermoelectric generator driven by unprecedentedly high temperature difference publication-title: Nano energy doi: 10.1016/j.nanoen.2017.08.061 contributor: fullname: Jung – volume: 31 start-page: 296 year: 2017 ident: 10.1016/j.jallcom.2020.155471_bib17 article-title: Paper-based origami flexible and foldable thermoelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.11.012 contributor: fullname: Rojas – volume: 46 start-page: 39 year: 2018 ident: 10.1016/j.jallcom.2020.155471_bib16 article-title: Enhancement of reproducibility and reliability in a high-performance flexible thermoelectric generator using screen-printed materials publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.01.031 contributor: fullname: Choi – volume: 50 start-page: 766 year: 2018 ident: 10.1016/j.jallcom.2020.155471_bib23 article-title: Fabrication and excellent performances of Bi0.5Sb1.5Te3/epoxy flexible thermoelectric cooling devices publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.020 contributor: fullname: Hou – volume: 76 year: 2007 ident: 10.1016/j.jallcom.2020.155471_bib30 article-title: Electronic structure of the thermoelectric materials Bi2Te3 and Sb2Te3 from first-principles calculations publication-title: Phys. Rev. B contributor: fullname: Wang – volume: 414 start-page: 509 year: 2019 ident: 10.1016/j.jallcom.2020.155471_bib13 article-title: Improving the performance of a screen-printed micro-radioisotope thermoelectric generator through stacking integration publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.01.040 contributor: fullname: Yuan – volume: 31 start-page: 5238 year: 2019 ident: 10.1016/j.jallcom.2020.155471_bib25 article-title: High-performance PEDOT:PSS flexible thermoelectric materials and their devices by triple post-treatments publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b01500 contributor: fullname: Xu – volume: 5 start-page: 8559 year: 2017 ident: 10.1016/j.jallcom.2020.155471_bib22 article-title: Enhanced thermoelectric properties of screen-printed Bi0.5Sb1.5Te3 and Bi2Te2.7Se0.3 thick films using a post annealing process with mechanical pressure publication-title: J. Mater. Chem. C doi: 10.1039/C7TC01797A contributor: fullname: Choi – volume: 18 start-page: 763 year: 2009 ident: 10.1016/j.jallcom.2020.155471_bib11 article-title: Bi2Te3-based flexible micro thermoelectric generator with optimized design publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2009.2021104 contributor: fullname: Glatz |
SSID | ssj0001931 |
Score | 2.5073075 |
Snippet | A thermoelectric generator (TEG) was fabricated on a flexible substrate by screen printing and pressured sintering techniques for low-temperature heat... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 155471 |
SubjectTerms | Antimony Bismuth selenium telluride Collection Electronic devices Energy harvesting Flexibility Heat Heat conduction Heat transmission Low temperature Power Power factor Room temperature Screen printing Sensors Sintering Substrates Tellurium Temperature gradients Thermal energy Thermoelectric generator Thermoelectric generators Thermoelectricity |
Title | Screen-printed flexible thermoelectric generator with directional heat collection design |
URI | https://dx.doi.org/10.1016/j.jallcom.2020.155471 https://www.proquest.com/docview/2440490261 |
Volume | 836 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qi6gH0apYH2UPXrdNNmk2OZaiVMVeVOhtSfYhLbUttl797c7k4QtE8JhkN4Qvk5lvNrPfAFwE0srYk5b7zkQ8FELz2JcpxyxMeibTxuSKN3ejaPgY3ox74xoMqr0wVFZZ-v7Cp-feujzTLdHsLieT7r2XCPrnhyGM7JK2UTcwHIm4Do3-9e1w9OGQkaPkjfNwPKcJnxt5utPONJ3NqG5EIG_qUHCV_m8h6oezziPQ1R7sltSR9Yun24eanTdha1B1bGvCzhdxwSZs5sWdenUA43tN1TWc1vCQYDJHIpjZzDIif8-LohPORLOnXIIak3BGq7OsQCZfKmTkshnZTHGGmbzw4xAery4fBkNedlTgOgjkmjtL_MiRaF1kpMl8K6V1fhpa7QWIYqaTRDpf4yiDxDDFq5FBfHs6dF7ksuAI6vPF3B4DSxIkellsI5e4MNQiwcQvjaQwmkT9dNaCTgWiWhbCGaqqKJuqEnVFqKsC9RbEFdTqmwUodO5_TT2rXo0qP8GVEqR8mFCKefL_O5_CNh1RgYjonUF9_fJqz5GFrLM2bHTe_HZpa--1itxn |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTgJBEK0YjUEPRlEjrn3w2jAb09NHQiS4cRESbp2ZXgwEgQj-v1WzuCXGxGsvk8mb6qrXPdWvAK5DYUXiCct9Z2IeBYHmiS9Sjrsw4ZlMG5Mr3jwO4v4ouhu3xxvQre7CUFpl6fsLn55767KlVaLZWk4mrSdPBvTPD0MY2SVdo95CNiBxdW51bu_7gw-HjBwlL5yH4zlN-LzI05o2p-lsRnkjAfKmJgVX4f8Won446zwC9fZhr6SOrFO83QFs2Hkdat2qYlsddr-IC9ZhO0_u1KtDGD9pyq7hdIaHBJM5EsHMZpYR-XtZFJVwJpo95xLUuAlndDrLCmTyo0JGLpuRzRQtzOSJH0cw6t0Mu31eVlTgOgzFmjtL_MiRaF1shMl8K4R1fhpZ7YWIYqalFM7XOMogMUyxNzaIb1tHzotdFh7D5nwxtyfApESilyU2dtJFkQ4kbvzSWARGk6ifzhrQrEBUy0I4Q1UZZVNVoq4IdVWg3oCkglp9swCFzv2vqefVp1HlElypgJQPJW0xT___5Cuo9YePD-rhdnB_BjvUQ8kiQfscNtevb_YCGck6uywt7h0M5d5b |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Screen-printed+flexible+thermoelectric+generator+with+directional+heat+collection+design&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Chang%2C+Pin-Shiuan&rft.au=Liao%2C+Chien-Neng&rft.date=2020-09-25&rft.issn=0925-8388&rft.volume=836&rft.spage=155471&rft_id=info:doi/10.1016%2Fj.jallcom.2020.155471&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2020_155471 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |