Reduced graphene oxide (RGO)-SnOx (x=0,1,2) nanocomposite as high performance anode material for lithium-ion batteries

Although, metal oxide-graphene nanocomposites and their applications in Li ion battery is a subject of intense investigation over the years, the synthesis of the composite that often needs high temperature processing along with expensive equipment are the major issues to overcome. We demonstrate a f...

Full description

Saved in:
Bibliographic Details
Published inJournal of alloys and compounds Vol. 818; p. 152889
Main Authors Wu, Yi-Zhu, Brahma, Sanjaya, Weng, Shao-Chieh, Chang, Chia-Chin, Huang, Jow-Lay
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 25.03.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although, metal oxide-graphene nanocomposites and their applications in Li ion battery is a subject of intense investigation over the years, the synthesis of the composite that often needs high temperature processing along with expensive equipment are the major issues to overcome. We demonstrate a facile, low cost and room temperature synthesis of SnOX (x = 0,1,2) - reduced graphene oxide (RGO) nanocomposite where concurrent formation of SnO2, reduction of SnO2 to SnOx nanoparticles and graphene oxide to reduced graphene oxide takes place in one pot in-situ chemical reduction process. Concentration of the reducing agent (NaBH4, 0 mol–0.06 mol) is varied to examine the effect on the formation of the nanocomposite as well as their electrochemical performance. The RGO-SnOx nanocomposite prepared by using 0.04 mol of reducing agent reveal better Li storage performance, stable capacitance (833 mAh g−1 after 50 cycles, 767 mAh g−1 after 100 cycles, current rate = 100 mA g−1), and good rate capability (481 mAh g−1 at ∼1 A g−1). The lithium ion diffusion coefficient of RGO-SnOx (0.04 mol) nanocomposite is estimated as 2.4 × 10−10 m2s−1 that is one/two order higher than other RGO-SnOx nanocomposites which promotes the Li ion transport in the composite. The synthesis procedure has a strong potential to be one of the universal method for the preparation of a variety of composites by the suitable variant in the synthesis protocol. •Synthesis of SnOx/rGO (x = 0,1,2) nanocomposite at room temperature.•Room temperature chemical reduction procedure is used for the synthesis of the composite.•Enhanced capacity of 767 mAh g−1 @ 100 mA g−1 is achieved after 100 cycles.•The composite delivered significant rate capability (481 mAh g−1 at ∼1 A g−1).•Comprehensive investigation has been carried out.
AbstractList Although, metal oxide-graphene nanocomposites and their applications in Li ion battery is a subject of intense investigation over the years, the synthesis of the composite that often needs high temperature processing along with expensive equipment are the major issues to overcome. We demonstrate a facile, low cost and room temperature synthesis of SnOX (x = 0,1,2) - reduced graphene oxide (RGO) nanocomposite where concurrent formation of SnO2, reduction of SnO2 to SnOx nanoparticles and graphene oxide to reduced graphene oxide takes place in one pot in-situ chemical reduction process. Concentration of the reducing agent (NaBH4, 0 mol–0.06 mol) is varied to examine the effect on the formation of the nanocomposite as well as their electrochemical performance. The RGO-SnOx nanocomposite prepared by using 0.04 mol of reducing agent reveal better Li storage performance, stable capacitance (833 mAh g−1 after 50 cycles, 767 mAh g−1 after 100 cycles, current rate = 100 mA g−1), and good rate capability (481 mAh g−1 at ∼1 A g−1). The lithium ion diffusion coefficient of RGO-SnOx (0.04 mol) nanocomposite is estimated as 2.4 × 10−10 m2s−1 that is one/two order higher than other RGO-SnOx nanocomposites which promotes the Li ion transport in the composite. The synthesis procedure has a strong potential to be one of the universal method for the preparation of a variety of composites by the suitable variant in the synthesis protocol. •Synthesis of SnOx/rGO (x = 0,1,2) nanocomposite at room temperature.•Room temperature chemical reduction procedure is used for the synthesis of the composite.•Enhanced capacity of 767 mAh g−1 @ 100 mA g−1 is achieved after 100 cycles.•The composite delivered significant rate capability (481 mAh g−1 at ∼1 A g−1).•Comprehensive investigation has been carried out.
Although, metal oxide-graphene nanocomposites and their applications in Li ion battery is a subject of intense investigation over the years, the synthesis of the composite that often needs high temperature processing along with expensive equipment are the major issues to overcome. We demonstrate a facile, low cost and room temperature synthesis of SnOX (x = 0,1,2) - reduced graphene oxide (RGO) nanocomposite where concurrent formation of SnO2, reduction of SnO2 to SnOx nanoparticles and graphene oxide to reduced graphene oxide takes place in one pot in-situ chemical reduction process. Concentration of the reducing agent (NaBH4, 0 mol–0.06 mol) is varied to examine the effect on the formation of the nanocomposite as well as their electrochemical performance. The RGO-SnOx nanocomposite prepared by using 0.04 mol of reducing agent reveal better Li storage performance, stable capacitance (833 mAh g−1 after 50 cycles, 767 mAh g−1 after 100 cycles, current rate = 100 mA g−1), and good rate capability (481 mAh g−1 at ∼1 A g−1). The lithium ion diffusion coefficient of RGO-SnOx (0.04 mol) nanocomposite is estimated as 2.4 × 10−10 m2s−1 that is one/two order higher than other RGO-SnOx nanocomposites which promotes the Li ion transport in the composite. The synthesis procedure has a strong potential to be one of the universal method for the preparation of a variety of composites by the suitable variant in the synthesis protocol.
ArticleNumber 152889
Author Wu, Yi-Zhu
Weng, Shao-Chieh
Brahma, Sanjaya
Huang, Jow-Lay
Chang, Chia-Chin
Author_xml – sequence: 1
  givenname: Yi-Zhu
  surname: Wu
  fullname: Wu, Yi-Zhu
  organization: Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan, ROC
– sequence: 2
  givenname: Sanjaya
  surname: Brahma
  fullname: Brahma, Sanjaya
  organization: Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan, ROC
– sequence: 3
  givenname: Shao-Chieh
  surname: Weng
  fullname: Weng, Shao-Chieh
  organization: Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan, ROC
– sequence: 4
  givenname: Chia-Chin
  orcidid: 0000-0002-8037-4488
  surname: Chang
  fullname: Chang, Chia-Chin
  email: ccchang@mail.nutn.edu.tw
  organization: R & D Center for Li-ion Battery, National University of Tainan, Tainan, 70005, Taiwan, ROC
– sequence: 5
  givenname: Jow-Lay
  surname: Huang
  fullname: Huang, Jow-Lay
  email: jlh888@mail.ncku.edu.tw
  organization: Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan, ROC
BookMark eNqFkFFrFDEQx4NU8Fr9CELAlxa6Z2azuU0QKVK0CoWDqs8hm53tZdlN1iRXzm9vjuuTL30amPn_ZpjfOTnzwSMh74GtgcHm47gezTTZMK9rBmoNopZSvSIrkC2vms1GnZEVU7WoJJfyDTlPaWSsJDmsyNMD9nuLPX2MZtmhRxoOrkd6-XC3vap--u2BXh4-s2u4rq-oNz6UM0tILiM1ie7c444uGIcQZ-Nt6flQ4NlkjM5MtPTp5PLO7efKBU87k48TTG_J68FMCd891wvy-9vXX7ffq_vt3Y_bL_eV5bzN1dAjZ7IRpttwjspYJhCAd6zrYADBzaCsai0bWmHBDLaT0HS2blkDICUCvyAfTnuXGP7sMWU9hn305aSuuWg4U0KokhKnlI0hpYiDXqKbTfyrgemjYj3qZ8X6qFifFBfu03-cddnk8mmOxk0v0jcnGouAJ4dRJ-uwWOxdRJt1H9wLG_4BX5uc_g
CitedBy_id crossref_primary_10_1007_s11581_021_04192_w
crossref_primary_10_3390_c6040081
crossref_primary_10_3390_en13184867
crossref_primary_10_1016_j_matchemphys_2020_124011
crossref_primary_10_1016_j_cplett_2021_138529
crossref_primary_10_1016_j_diamond_2023_109688
crossref_primary_10_1038_s41598_024_67647_w
crossref_primary_10_1039_D0RA10194J
crossref_primary_10_1016_j_jallcom_2020_153970
crossref_primary_10_1039_D0DT00857E
crossref_primary_10_1016_j_cej_2021_133675
crossref_primary_10_1039_D0QM00710B
crossref_primary_10_1007_s10854_024_12494_8
crossref_primary_10_1115_1_4054130
crossref_primary_10_1016_j_jallcom_2021_159687
crossref_primary_10_1016_j_jelechem_2022_116741
crossref_primary_10_1007_s43207_022_00210_3
Cites_doi 10.1039/C1JM14199F
10.1016/j.electacta.2014.12.065
10.1016/j.electacta.2014.06.024
10.1088/0957-4484/23/48/485604
10.1021/nn200493r
10.1021/nn4016899
10.1021/am301962d
10.1557/jmr.2014.32
10.1007/s10854-018-0069-y
10.1016/j.apsusc.2014.07.188
10.1021/acsami.9b00214
10.1016/j.electacta.2016.08.079
10.1002/smll.201502183
10.1021/cm901247t
10.1016/j.ceramint.2013.04.037
10.1038/srep09055
10.1016/j.nanoso.2018.03.004
10.1016/j.nanoso.2018.03.008
10.3390/ma6010156
10.1021/acsami.5b05819
10.1021/am201541s
10.1016/j.electacta.2014.11.100
10.1021/acs.chemmater.5b00885
10.1021/acsami.5b08719
10.1021/jp306041y
10.1021/la303663x
10.1016/j.jallcom.2016.03.136
10.1016/j.carbon.2011.12.040
10.1016/j.diamond.2015.06.005
10.1039/C3DT52661E
10.1016/j.nanoso.2017.07.002
10.1021/am405557c
10.1016/j.electacta.2013.09.093
10.1021/am401239f
10.1021/am402124r
10.3390/ma12081229
10.1016/j.jallcom.2017.02.019
10.1016/j.elecom.2009.07.035
10.1186/1556-276X-7-215
10.1016/j.nanoen.2014.06.006
10.1016/j.ceramint.2016.12.134
10.1021/jp1050047
ContentType Journal Article
Copyright 2019
Copyright Elsevier BV Mar 25, 2020
Copyright_xml – notice: 2019
– notice: Copyright Elsevier BV Mar 25, 2020
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/j.jallcom.2019.152889
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4669
ExternalDocumentID 10_1016_j_jallcom_2019_152889
S0925838819341350
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SMS
SSH
T9H
WUQ
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c337t-fde30845ab633e9ac05e113b0bb1f153af9c97c0f75c1afcb814bc27041188e13
IEDL.DBID .~1
ISSN 0925-8388
IngestDate Fri Jul 25 08:42:18 EDT 2025
Tue Jul 01 03:58:19 EDT 2025
Thu Apr 24 23:04:44 EDT 2025
Fri Feb 23 02:48:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion battery
SnO2
Nanocomposite
Reduced graphene oxide
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-fde30845ab633e9ac05e113b0bb1f153af9c97c0f75c1afcb814bc27041188e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8037-4488
PQID 2354309559
PQPubID 2045454
ParticipantIDs proquest_journals_2354309559
crossref_primary_10_1016_j_jallcom_2019_152889
crossref_citationtrail_10_1016_j_jallcom_2019_152889
elsevier_sciencedirect_doi_10_1016_j_jallcom_2019_152889
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-25
PublicationDateYYYYMMDD 2020-03-25
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-25
  day: 25
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Journal of alloys and compounds
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Shen, Hu, Shi, Lu, Qin, Li, Ye (bib35) 2009; 21
Chen, Ma, Wang, Chen, Ge (bib32) 2016; 215
Xu, Zhao, Niu, Zhang, Cai, Han, He, Shen, Yan, Qu, Mai (bib33) 2014; 8
Xu, Zhang, Chen, Li, Li, Liu (bib24) 2016; 677
Zhu, Wang, Xie, Cao, Zhu, Zhao, Yang (bib30) 2015; 154
Selva Roselin, Juang, Hsieh, Sagadevan, Umar, Selvin, Hegazy (bib9) 2019; 12
Birrozzi, Raccichini, Nobili, Marinaro, Tossici, Marassi (bib22) 2014; 137
Liu, Huang, Hao, Liu, Li (bib18) 2013; 39
Yang, Xie, Wang, Wu, Chen, Xu (bib5) 2017; 11
Gao, Yue, Tao, Fan (bib37) 2013; 29
Park, Yu, Pinna, Woo, Jang, Chung, Cho, Sung, Piao (bib15) 2012; 22
Wang, Xu, Sun, Gao, Yao (bib28) 2014; 6
Xia, Li, Li, Liu, Wang, Li, Lü, Spendelow, Zhang, Wu (bib8) 2013; 5
Wang, Li, Wang, Yang, Geng, Li, Cai, Sham, Sun (bib16) 2012; 116
Zhao, Zhang, Xia, Dong, Xu, Niu, He, Yan, Qu, Mai (bib34) 2016; 12
Jin, Gao, Zeng, Zhang, Liu, Shao, Jin (bib44) 2015; 58
Chen (bib1) 2013; 6
Jiao, Chen, Jiang, Zhang, Ling, Zhuang, Su, Cao, Zhao (bib10) 2014; 29
Lin, Peng, Xiang, Ruan, Yan, Natelson, Tour (bib27) 2013; 7
Liu, An, Yang, Zhang (bib29) 2015; 5
Wang, Dong, Zhang, Chen, Jiang, Wu, Zhang (bib3) 2018; 15
Wang, Zhang, He (bib4) 2018; 15
Liang, Zhao, Guo, Li (bib26) 2012; 4
Fei, Lin, Yuan, Chen, Xie, Li, Xu, Deng, Smirnov, Luo (bib7) 2013; 5
Sun, Xiao, Jiang, Li, Huang, Geng (bib40) 2015; 27
Zhang, Peng, Guo, Cai, Chen, Wexler, Li, Liu (bib11) 2012; 50
Li, Lv, Lu, Li (bib25) 2010; 114
Weng, Brahma, Chang, Huang (bib39) 2017; 43
Gholizadeh, Malekzadeh, Pourarian (bib45) 2018; 29
Zhu, Zhu, Murali, Stoller, Ruoff (bib6) 2011; 5
Liang, Wei, Zhong, Yang, Li, Guo (bib13) 2012; 4
Yao, Shen, Wang, Liu, Wang (bib14) 2009; 11
Liu, Zhong, Yang, Pan, Gu, Yu (bib31) 2015; 152
Zhao, Yue, Xu, Sun, Bao (bib36) 2017; 704
Zhu, Wang, Xie, Cao, Zhu, Zhao, Yang (bib38) 2015; 154
Wu, Xu, Lu, Ge, Iocozzia, Han, Jiang, Lin (bib2) 2015; 1500400
Wang, Wen, Liu, Tan, Yuan, Zhang (bib43) 2012; 23
Li, Liu, Liu, Yang, Xin, Zhou, Zhang, Stanciu, Xie (bib23) 2015; 7
Wang, Su, Park, Ahn, Wang (bib17) 2012; 7
Lee, Han, Oh, Lah, Sohn, Pyo (bib19) 2013; 113
Ma, Fan, Chen, Yang, Hui, Zhang, Bielawski, Geng (bib41) 2019; 11
Phulpoto, Sun, Qi, Xiao, Yan, Geng (bib42) 2017; 28
Xie, Sun, George, Zhou, Lian, Zhou (bib12) 2015; 7
Chen, Wang, Zhai, Zhang, Wu, Wei, Chen (bib20) 2014; 43
Wu, Wu, Wang, Yin, Ye, Deng, Zhu, Ye, Li (bib21) 2014; 315
Zhu (10.1016/j.jallcom.2019.152889_bib30) 2015; 154
Zhao (10.1016/j.jallcom.2019.152889_bib36) 2017; 704
Weng (10.1016/j.jallcom.2019.152889_bib39) 2017; 43
Chen (10.1016/j.jallcom.2019.152889_bib20) 2014; 43
Gholizadeh (10.1016/j.jallcom.2019.152889_bib45) 2018; 29
Yao (10.1016/j.jallcom.2019.152889_bib14) 2009; 11
Wang (10.1016/j.jallcom.2019.152889_bib16) 2012; 116
Zhu (10.1016/j.jallcom.2019.152889_bib6) 2011; 5
Wang (10.1016/j.jallcom.2019.152889_bib28) 2014; 6
Fei (10.1016/j.jallcom.2019.152889_bib7) 2013; 5
Jiao (10.1016/j.jallcom.2019.152889_bib10) 2014; 29
Lee (10.1016/j.jallcom.2019.152889_bib19) 2013; 113
Li (10.1016/j.jallcom.2019.152889_bib25) 2010; 114
Liang (10.1016/j.jallcom.2019.152889_bib13) 2012; 4
Liu (10.1016/j.jallcom.2019.152889_bib29) 2015; 5
Wu (10.1016/j.jallcom.2019.152889_bib21) 2014; 315
Birrozzi (10.1016/j.jallcom.2019.152889_bib22) 2014; 137
Shen (10.1016/j.jallcom.2019.152889_bib35) 2009; 21
Sun (10.1016/j.jallcom.2019.152889_bib40) 2015; 27
Wang (10.1016/j.jallcom.2019.152889_bib4) 2018; 15
Park (10.1016/j.jallcom.2019.152889_bib15) 2012; 22
Zhao (10.1016/j.jallcom.2019.152889_bib34) 2016; 12
Gao (10.1016/j.jallcom.2019.152889_bib37) 2013; 29
Lin (10.1016/j.jallcom.2019.152889_bib27) 2013; 7
Xie (10.1016/j.jallcom.2019.152889_bib12) 2015; 7
Wang (10.1016/j.jallcom.2019.152889_bib17) 2012; 7
Liu (10.1016/j.jallcom.2019.152889_bib31) 2015; 152
Xu (10.1016/j.jallcom.2019.152889_bib24) 2016; 677
Zhang (10.1016/j.jallcom.2019.152889_bib11) 2012; 50
Yang (10.1016/j.jallcom.2019.152889_bib5) 2017; 11
Phulpoto (10.1016/j.jallcom.2019.152889_bib42) 2017; 28
Liang (10.1016/j.jallcom.2019.152889_bib26) 2012; 4
Wang (10.1016/j.jallcom.2019.152889_bib3) 2018; 15
Xu (10.1016/j.jallcom.2019.152889_bib33) 2014; 8
Wang (10.1016/j.jallcom.2019.152889_bib43) 2012; 23
Zhu (10.1016/j.jallcom.2019.152889_bib38) 2015; 154
Liu (10.1016/j.jallcom.2019.152889_bib18) 2013; 39
Ma (10.1016/j.jallcom.2019.152889_bib41) 2019; 11
Selva Roselin (10.1016/j.jallcom.2019.152889_bib9) 2019; 12
Li (10.1016/j.jallcom.2019.152889_bib23) 2015; 7
Jin (10.1016/j.jallcom.2019.152889_bib44) 2015; 58
Chen (10.1016/j.jallcom.2019.152889_bib1) 2013; 6
Wu (10.1016/j.jallcom.2019.152889_bib2) 2015; 1500400
Chen (10.1016/j.jallcom.2019.152889_bib32) 2016; 215
Xia (10.1016/j.jallcom.2019.152889_bib8) 2013; 5
References_xml – volume: 1500400
  start-page: 1
  year: 2015
  end-page: 40
  ident: bib2
  article-title: Graphene-containing nanomaterials for lithium-ion batteries
  publication-title: Adv. Energy Mater.
– volume: 137
  start-page: 228
  year: 2014
  end-page: 234
  ident: bib22
  article-title: High-stability graphene nano sheets/SnO
  publication-title: Electrochim. Acta
– volume: 315
  start-page: 400
  year: 2014
  end-page: 406
  ident: bib21
  article-title: A facile method for in-situ synthesis of SnO
  publication-title: Appl. Surf. Sci.
– volume: 116
  start-page: 22149
  year: 2012
  end-page: 22156
  ident: bib16
  article-title: Defect-rich crystalline SnO
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 6001
  year: 2013
  end-page: 6006
  ident: bib27
  article-title: Graphene nanoribbon and nanostructured SnO
  publication-title: ACS Nano
– volume: 5
  start-page: 9055
  year: 2015
  ident: bib29
  article-title: Superior cycle performance and high reversible capacity of SnO
  publication-title: Sci. Rep.
– volume: 4
  start-page: 454
  year: 2012
  end-page: 459
  ident: bib13
  article-title: One-step in situ synthesis of SnO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 50
  start-page: 1897
  year: 2012
  end-page: 1903
  ident: bib11
  article-title: Carbon-coated SnO
  publication-title: Carbon
– volume: 29
  start-page: 957
  year: 2013
  end-page: 964
  ident: bib37
  article-title: Novel strategy for preparation of graphene-Pd, Pt composite, and its enhanced electrocatalytic activity for alcohol oxidation
  publication-title: Langmuir
– volume: 21
  start-page: 3514
  year: 2009
  end-page: 3520
  ident: bib35
  article-title: Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets
  publication-title: Chem. Mater.
– volume: 704
  start-page: 51
  year: 2017
  end-page: 57
  ident: bib36
  article-title: Graphene-based Pt/SnO
  publication-title: J. Alloy. Comp.
– volume: 29
  start-page: 609
  year: 2014
  end-page: 616
  ident: bib10
  article-title: Synthesis of nanoparticles, nanorods, and mesoporous SnO
  publication-title: J. Mater. Res.
– volume: 7
  start-page: 27087
  year: 2015
  end-page: 27095
  ident: bib23
  article-title: Facile preparation of graphene/SnO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 196
  year: 2014
  end-page: 204
  ident: bib33
  article-title: Heterogeneous branched core–shell SnO
  publication-title: Nano Energy
– volume: 43
  start-page: 4873
  year: 2017
  end-page: 4879
  ident: bib39
  article-title: Synthesis of MnOx/reduced graphene oxide nanocomposite as an anode electrode for lithium-ion batteries
  publication-title: Ceram. Int.
– volume: 215
  start-page: 42
  year: 2016
  end-page: 49
  ident: bib32
  article-title: Hierarchical porous SnO
  publication-title: Electrochim. Acta
– volume: 677
  start-page: 237
  year: 2016
  end-page: 244
  ident: bib24
  article-title: SiO
  publication-title: J. Alloy. Comp.
– volume: 5
  start-page: 3333
  year: 2011
  end-page: 3338
  ident: bib6
  article-title: Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries
  publication-title: ACS Nano
– volume: 15
  start-page: 216
  year: 2018
  end-page: 223
  ident: bib4
  article-title: Flower-like TiO2-B particles wrapped by graphene with different contents as an anode material for lithium-ion batteries
  publication-title: Nano-Structures & Nano-Objects
– volume: 15
  start-page: 48
  year: 2018
  end-page: 53
  ident: bib3
  article-title: Metal–organic framework derived titanium-based anode materials for lithium ion batteries
  publication-title: Nano-Structures & Nano-Objects
– volume: 12
  start-page: 1229
  year: 2019
  ident: bib9
  article-title: Recent advances and perspectives of carbon-based nanostructures as anode materials for Li-ion batteries
  publication-title: Materials
– volume: 114
  start-page: 21770
  year: 2010
  end-page: 21774
  ident: bib25
  article-title: Preparation of SnO
  publication-title: J. Phys. Chem. C
– volume: 4
  start-page: 5742
  year: 2012
  end-page: 5748
  ident: bib26
  article-title: Flexible free-standing graphene/SnO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 19402
  year: 2018
  end-page: 19412
  ident: bib45
  article-title: Rapid and efficient synthesis of reduced graphene oxide nano-sheets using CO ambient atmosphere as a reducing agent
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 5
  start-page: 8607
  year: 2013
  end-page: 8614
  ident: bib8
  article-title: Graphene/Fe2O3/SnO2 ternary nanocomposites as a high- performance anode for lithium ion batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 154
  start-page: 338
  year: 2015
  end-page: 344
  ident: bib30
  article-title: Effects of graphene oxide function groups on SnO
  publication-title: Electrochim. Acta
– volume: 154
  start-page: 338
  year: 2015
  end-page: 344
  ident: bib38
  article-title: Effects of graphene oxide function groups on SnO
  publication-title: Electrochim. Acta
– volume: 7
  start-page: 27735
  year: 2015
  end-page: 27742
  ident: bib12
  article-title: Amorphous ultrathin SnO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 156
  year: 2013
  end-page: 183
  ident: bib1
  article-title: Recent progress in advanced materials for lithium ion batteries
  publication-title: Materials
– volume: 11
  start-page: 1849
  year: 2009
  end-page: 1852
  ident: bib14
  article-title: In situ chemical synthesis of SnO
  publication-title: Electrochem. Commun.
– volume: 113
  start-page: 149
  year: 2013
  end-page: 155
  ident: bib19
  article-title: Tin dioxide nanoparticles impregnated in graphite oxide for improved lithium storage and cyclability in secondary ion batteries
  publication-title: Electrochim. Acta
– volume: 22
  start-page: 2520
  year: 2012
  end-page: 2525
  ident: bib15
  article-title: A facile hydrazine-assisted hydrothermal method for the deposition of monodisperse SnO
  publication-title: J. Mater. Chem.
– volume: 7
  start-page: 215
  year: 2012
  ident: bib17
  article-title: Graphene-supported SnO
  publication-title: Nanoscale Res. Lett.
– volume: 28
  start-page: 1
  year: 2017
  end-page: 11
  ident: bib42
  article-title: Tuning the morphologies of fluorine-doped tin oxides in the three-dimensional architecture of graphene for highperformance lithium-ion batteries
  publication-title: Nanotechnology
– volume: 12
  start-page: 588
  year: 2016
  end-page: 594
  ident: bib34
  article-title: SnO
  publication-title: Small
– volume: 11
  start-page: 13234
  year: 2019
  end-page: 13243
  ident: bib41
  article-title: Covalent confinement of sulfur copolymers onto graphene sheets affords ultrastable Lithium−Sulfur batteries with fast cathode kinetics
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  start-page: 4594
  year: 2015
  end-page: 4603
  ident: bib40
  article-title: Fluorine-doped SnO2@Graphene porous composite for high capacity lithium-ion batteries
  publication-title: Chem. Mater.
– volume: 23
  start-page: 485604
  year: 2012
  ident: bib43
  article-title: Rapid and efficient synthesis of soluble graphene nanosheets using N-methyl-p-aminophenol sulfate as a reducing agent
  publication-title: Nanotechnology
– volume: 39
  start-page: 8623
  year: 2013
  end-page: 8627
  ident: bib18
  article-title: SnO
  publication-title: Ceram. Int.
– volume: 6
  start-page: 3427
  year: 2014
  end-page: 3436
  ident: bib28
  article-title: Solvothermal-induced 3D macroscopic SnO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 152
  start-page: 178
  year: 2015
  end-page: 186
  ident: bib31
  article-title: Gram-scale synthesis of graphene-mesoporous SnO
  publication-title: Electrochim. Acta
– volume: 58
  start-page: 54
  year: 2015
  end-page: 61
  ident: bib44
  article-title: Effects of reduction methods on the structure and thermal conductivity of free-standing reduced graphene oxide films
  publication-title: Diam. Relat. Mater.
– volume: 43
  start-page: 3137
  year: 2014
  end-page: 3143
  ident: bib20
  article-title: A facile one-pot reduction method for the preparation of a SnO/SnO
  publication-title: Dalton Trans.
– volume: 5
  start-page: 5330
  year: 2013
  end-page: 5335
  ident: bib7
  article-title: Reduced graphene oxide wrapped FeS nanocomposite for lithium-ion battery anode with improved performance
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 76
  year: 2017
  end-page: 81
  ident: bib5
  article-title: Green synthesis of [(C4H9)4N]3[PMo12O40]/graphene nanosheets nanocomposites as advanced cathode for high performance lithium ion batteries
  publication-title: Nano-Structures & Nano-Objects
– volume: 22
  start-page: 2520
  year: 2012
  ident: 10.1016/j.jallcom.2019.152889_bib15
  article-title: A facile hydrazine-assisted hydrothermal method for the deposition of monodisperse SnO2 nanoparticles onto graphene for lithium ion batteries
  publication-title: J. Mater. Chem.
  doi: 10.1039/C1JM14199F
– volume: 154
  start-page: 338
  year: 2015
  ident: 10.1016/j.jallcom.2019.152889_bib38
  article-title: Effects of graphene oxide function groups on SnO2-graphene nanocomposite for lithium storage application
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.12.065
– volume: 137
  start-page: 228
  year: 2014
  ident: 10.1016/j.jallcom.2019.152889_bib22
  article-title: High-stability graphene nano sheets/SnO2composite anode for lithium ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.06.024
– volume: 23
  start-page: 485604
  issue: 48
  year: 2012
  ident: 10.1016/j.jallcom.2019.152889_bib43
  article-title: Rapid and efficient synthesis of soluble graphene nanosheets using N-methyl-p-aminophenol sulfate as a reducing agent
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/48/485604
– volume: 5
  start-page: 3333
  issue: 4
  year: 2011
  ident: 10.1016/j.jallcom.2019.152889_bib6
  article-title: Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries
  publication-title: ACS Nano
  doi: 10.1021/nn200493r
– volume: 7
  start-page: 6001
  issue: 7
  year: 2013
  ident: 10.1016/j.jallcom.2019.152889_bib27
  article-title: Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries
  publication-title: ACS Nano
  doi: 10.1021/nn4016899
– volume: 4
  start-page: 5742
  year: 2012
  ident: 10.1016/j.jallcom.2019.152889_bib26
  article-title: Flexible free-standing graphene/SnO2 nanocomposites paper for Li- ion battery
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am301962d
– volume: 29
  start-page: 609
  issue: 5
  year: 2014
  ident: 10.1016/j.jallcom.2019.152889_bib10
  article-title: Synthesis of nanoparticles, nanorods, and mesoporous SnO2 as anode materials for lithium-ion batteries
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2014.32
– volume: 154
  start-page: 338
  year: 2015
  ident: 10.1016/j.jallcom.2019.152889_bib30
  article-title: Effects of graphene oxide function groups on SnO2/graphene nanocomposites for lithium storage application
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.12.065
– volume: 29
  start-page: 19402
  issue: 22
  year: 2018
  ident: 10.1016/j.jallcom.2019.152889_bib45
  article-title: Rapid and efficient synthesis of reduced graphene oxide nano-sheets using CO ambient atmosphere as a reducing agent
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-018-0069-y
– volume: 315
  start-page: 400
  year: 2014
  ident: 10.1016/j.jallcom.2019.152889_bib21
  article-title: A facile method for in-situ synthesis of SnO2/graphene as a high-performance anode material for lithium-ion batteries
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.07.188
– volume: 11
  start-page: 13234
  year: 2019
  ident: 10.1016/j.jallcom.2019.152889_bib41
  article-title: Covalent confinement of sulfur copolymers onto graphene sheets affords ultrastable Lithium−Sulfur batteries with fast cathode kinetics
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b00214
– volume: 1500400
  start-page: 1
  year: 2015
  ident: 10.1016/j.jallcom.2019.152889_bib2
  article-title: Graphene-containing nanomaterials for lithium-ion batteries
  publication-title: Adv. Energy Mater.
– volume: 215
  start-page: 42
  year: 2016
  ident: 10.1016/j.jallcom.2019.152889_bib32
  article-title: Hierarchical porous SnO2/reduced graphene oxide composites for high-performance lithium-ion battery anodes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.08.079
– volume: 28
  start-page: 1
  issue: 395404
  year: 2017
  ident: 10.1016/j.jallcom.2019.152889_bib42
  article-title: Tuning the morphologies of fluorine-doped tin oxides in the three-dimensional architecture of graphene for highperformance lithium-ion batteries
  publication-title: Nanotechnology
– volume: 12
  start-page: 588
  issue: 5
  year: 2016
  ident: 10.1016/j.jallcom.2019.152889_bib34
  article-title: SnO2 quantum Dots@Graphene oxide as a high-rate and long-life anode material for lithium-ion batteries
  publication-title: Small
  doi: 10.1002/smll.201502183
– volume: 21
  start-page: 3514
  year: 2009
  ident: 10.1016/j.jallcom.2019.152889_bib35
  article-title: Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets
  publication-title: Chem. Mater.
  doi: 10.1021/cm901247t
– volume: 39
  start-page: 8623
  year: 2013
  ident: 10.1016/j.jallcom.2019.152889_bib18
  article-title: SnO2 nano-spheres/graphene hybrid for high-performance lithium ion battery anodes
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2013.04.037
– volume: 5
  start-page: 9055
  issue: 1–10
  year: 2015
  ident: 10.1016/j.jallcom.2019.152889_bib29
  article-title: Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries
  publication-title: Sci. Rep.
  doi: 10.1038/srep09055
– volume: 15
  start-page: 48
  year: 2018
  ident: 10.1016/j.jallcom.2019.152889_bib3
  article-title: Metal–organic framework derived titanium-based anode materials for lithium ion batteries
  publication-title: Nano-Structures & Nano-Objects
  doi: 10.1016/j.nanoso.2018.03.004
– volume: 15
  start-page: 216
  year: 2018
  ident: 10.1016/j.jallcom.2019.152889_bib4
  article-title: Flower-like TiO2-B particles wrapped by graphene with different contents as an anode material for lithium-ion batteries
  publication-title: Nano-Structures & Nano-Objects
  doi: 10.1016/j.nanoso.2018.03.008
– volume: 6
  start-page: 156
  year: 2013
  ident: 10.1016/j.jallcom.2019.152889_bib1
  article-title: Recent progress in advanced materials for lithium ion batteries
  publication-title: Materials
  doi: 10.3390/ma6010156
– volume: 7
  start-page: 27087
  year: 2015
  ident: 10.1016/j.jallcom.2019.152889_bib23
  article-title: Facile preparation of graphene/SnO2 xerogel hybrids as the anode material in Li-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b05819
– volume: 4
  start-page: 454
  year: 2012
  ident: 10.1016/j.jallcom.2019.152889_bib13
  article-title: One-step in situ synthesis of SnO2/graphene nanocomposites and its application as an anode material for Li-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am201541s
– volume: 152
  start-page: 178
  year: 2015
  ident: 10.1016/j.jallcom.2019.152889_bib31
  article-title: Gram-scale synthesis of graphene-mesoporous SnO2 composite as anode for lithium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.11.100
– volume: 27
  start-page: 4594
  year: 2015
  ident: 10.1016/j.jallcom.2019.152889_bib40
  article-title: Fluorine-doped SnO2@Graphene porous composite for high capacity lithium-ion batteries
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b00885
– volume: 7
  start-page: 27735
  year: 2015
  ident: 10.1016/j.jallcom.2019.152889_bib12
  article-title: Amorphous ultrathin SnO2 films by atomic layer deposition on graphene network as highly stable anodes for lithium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b08719
– volume: 116
  start-page: 22149
  year: 2012
  ident: 10.1016/j.jallcom.2019.152889_bib16
  article-title: Defect-rich crystalline SnO2 immobilized on graphene nanosheets with enhanced cycle performance for Li ion batteries
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp306041y
– volume: 29
  start-page: 957
  year: 2013
  ident: 10.1016/j.jallcom.2019.152889_bib37
  article-title: Novel strategy for preparation of graphene-Pd, Pt composite, and its enhanced electrocatalytic activity for alcohol oxidation
  publication-title: Langmuir
  doi: 10.1021/la303663x
– volume: 677
  start-page: 237
  year: 2016
  ident: 10.1016/j.jallcom.2019.152889_bib24
  article-title: SiO2@SnO2/graphene composite with a coating and hierarchical structure as high performance anode material for lithium ion battery
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2016.03.136
– volume: 50
  start-page: 1897
  year: 2012
  ident: 10.1016/j.jallcom.2019.152889_bib11
  article-title: Carbon-coated SnO2/graphene nanosheets as highly reversible anode materials for lithium ion batteries
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.12.040
– volume: 58
  start-page: 54
  year: 2015
  ident: 10.1016/j.jallcom.2019.152889_bib44
  article-title: Effects of reduction methods on the structure and thermal conductivity of free-standing reduced graphene oxide films
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2015.06.005
– volume: 43
  start-page: 3137
  year: 2014
  ident: 10.1016/j.jallcom.2019.152889_bib20
  article-title: A facile one-pot reduction method for the preparation of a SnO/SnO2/GNS composite for high performance lithium ion batteries
  publication-title: Dalton Trans.
  doi: 10.1039/C3DT52661E
– volume: 11
  start-page: 76
  year: 2017
  ident: 10.1016/j.jallcom.2019.152889_bib5
  article-title: Green synthesis of [(C4H9)4N]3[PMo12O40]/graphene nanosheets nanocomposites as advanced cathode for high performance lithium ion batteries
  publication-title: Nano-Structures & Nano-Objects
  doi: 10.1016/j.nanoso.2017.07.002
– volume: 6
  start-page: 3427
  year: 2014
  ident: 10.1016/j.jallcom.2019.152889_bib28
  article-title: Solvothermal-induced 3D macroscopic SnO2/nitrogen-doped graphene aerogels for high capacity and long-life lithium storage
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am405557c
– volume: 113
  start-page: 149
  year: 2013
  ident: 10.1016/j.jallcom.2019.152889_bib19
  article-title: Tin dioxide nanoparticles impregnated in graphite oxide for improved lithium storage and cyclability in secondary ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.09.093
– volume: 5
  start-page: 5330
  year: 2013
  ident: 10.1016/j.jallcom.2019.152889_bib7
  article-title: Reduced graphene oxide wrapped FeS nanocomposite for lithium-ion battery anode with improved performance
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am401239f
– volume: 5
  start-page: 8607
  year: 2013
  ident: 10.1016/j.jallcom.2019.152889_bib8
  article-title: Graphene/Fe2O3/SnO2 ternary nanocomposites as a high- performance anode for lithium ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am402124r
– volume: 12
  start-page: 1229
  year: 2019
  ident: 10.1016/j.jallcom.2019.152889_bib9
  article-title: Recent advances and perspectives of carbon-based nanostructures as anode materials for Li-ion batteries
  publication-title: Materials
  doi: 10.3390/ma12081229
– volume: 704
  start-page: 51
  year: 2017
  ident: 10.1016/j.jallcom.2019.152889_bib36
  article-title: Graphene-based Pt/SnO2 nanocomposite with superior electrochemical performance for lithium-ion batteries
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2017.02.019
– volume: 11
  start-page: 1849
  year: 2009
  ident: 10.1016/j.jallcom.2019.152889_bib14
  article-title: In situ chemical synthesis of SnO2–graphene nanocomposite as anode materials for lithium-ion batteries
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2009.07.035
– volume: 7
  start-page: 215
  year: 2012
  ident: 10.1016/j.jallcom.2019.152889_bib17
  article-title: Graphene-supported SnO2 nanoparticles prepared by a solvothermal approach for an enhanced electrochemical performance in lithium-ion batteries
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-7-215
– volume: 8
  start-page: 196
  year: 2014
  ident: 10.1016/j.jallcom.2019.152889_bib33
  article-title: Heterogeneous branched core–shell SnO2–PANI nanorod arrays with mechanical integrity and three dimensional electron transport for lithium batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.06.006
– volume: 43
  start-page: 4873
  year: 2017
  ident: 10.1016/j.jallcom.2019.152889_bib39
  article-title: Synthesis of MnOx/reduced graphene oxide nanocomposite as an anode electrode for lithium-ion batteries
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.12.134
– volume: 114
  start-page: 21770
  year: 2010
  ident: 10.1016/j.jallcom.2019.152889_bib25
  article-title: Preparation of SnO2-nanocrystal/graphene-nanosheets composites and their lithium storage ability
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1050047
SSID ssj0001931
Score 2.4043024
Snippet Although, metal oxide-graphene nanocomposites and their applications in Li ion battery is a subject of intense investigation over the years, the synthesis of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 152889
SubjectTerms Anodes
Chemical reduction
Diffusion coefficient
Electrochemical analysis
Electrode materials
Graphene
High temperature
Ion diffusion
Ion transport
Lithium-ion batteries
Lithium-ion battery
Metal oxides
Nanocomposite
Nanocomposites
Nanoparticles
Organic chemistry
Rechargeable batteries
Reduced graphene oxide
Reducing agents
Room temperature
SnO2
Tin dioxide
Title Reduced graphene oxide (RGO)-SnOx (x=0,1,2) nanocomposite as high performance anode material for lithium-ion batteries
URI https://dx.doi.org/10.1016/j.jallcom.2019.152889
https://www.proquest.com/docview/2354309559
Volume 818
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5NQwh4QFBAbIzJDzxs0tw6sbPYDzxMFaOA2KSNSXuzYscWrUparR3qE387d25CASFN4tXxRZHvcj-S774DeBN1xCy8FFyZ4LFACYqbwkRCArjoMMDUjr5Dfj47Hl2pj9fF9RYMu14YglW2vn_t05O3blcG7WkO5uPx4FKYnP75YUgjT5zqdqVKsvL-jw3MA6-mqXm4mdPuTRfPYNKfVNMpgUYwChqaBKRp2vu_49NfnjqFn9Mn8LjNG9nJ-tGewlZoevBg2I1r68Gj35gFe3A_ITv94hl8vyBy1lCzRE2Nno3NVuM6sIOL9-eH_LI5X7GD1VtxlB3lh6ypmhmBzAnJFVi1YMRmzOab5gKGG1AY09xkuQzXGSbyX8e33zhqmLlE14nV93O4On33ZTji7bAF7qUslzzWQQqtisodSxlM5UURskw64VwW0S1W0XhTehHLwmdV9E5nyvm8FApLFB0y-QK2m1kTXgKrMSfTUYhgtEONaEOUMBWWvSrkQZqwA6o7YutbJnIaiDG1HeRsYlvNWNKMXWtmB_q_xOZrKo67BHSnP_uHTVkMF3eJ7nX6tu1LvbC5LJRMlH27_3_nV_Awp5JdSJ4Xe7C9vLkNrzGvWbr9ZLj7cO_kw6fR2U-oxPYx
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBalZXR9KG22sd5WPeyhhSqRLbmWHvYwQrts6wV6gb4JS5ZYQuqEJi152m_fOYrdbGNQ2KusY4yPdC72p-8j5GNQAarwnDOpvYMGxUumMx0QCWCDhQRTWvwOeX5x3LuV3-6yuyXSbc7CIKyyjv3zmB6jdT3Sqd9mZ9zvd665TvGfH6Q0jMTYt69I2L4oY9D-ucB5wOUomwezGU5fHOPpDNqDYjhE1AikQY1SQArl3v-doP4K1TH_nG6Q9bpwpJ_nz7ZJlnzVIqvdRq-tRdZ-oxZskVcR2ukmb8jTFbKz-pJGbmoIbXQ065eeHlx9uTxk19XljB7MPvGj5Cg9pFVRjRBljlAuT4sJRTpjOl6cLqAwAYyhzo1Ll8I4hUr-R__xnoGLqY18ndB-vyW3pyc33R6r1RaYEyKfslB6wZXMCnsshNeF45lPEmG5tUmAuFgE7XTueMgzlxTBWZVI69KcS-hRlE_EO7JcjSr_ntASijIVOPdaWSlzpZETpoC-V_rUC-23iGxesXE1FTkqYgxNgzkbmNozBj1j5p7ZIu1ns_Gci-MlA9X4z_yxqAzki5dMdxt_m3pXT0wqMikiZ9_2_995n6z2bs7PzNnXi-875HWK_TsXLM12yfL04dHvQZEztR_iIv4FRwn3vw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced+graphene+oxide+%28RGO%29-SnOx+%28x%3D0%2C1%2C2%29+nanocomposite+as+high+performance+anode+material+for+lithium-ion+batteries&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Wu%2C+Yi-Zhu&rft.au=Brahma%2C+Sanjaya&rft.au=Weng%2C+Shao-Chieh&rft.au=Chang%2C+Chia-Chin&rft.date=2020-03-25&rft.issn=0925-8388&rft.volume=818&rft.spage=152889&rft_id=info:doi/10.1016%2Fj.jallcom.2019.152889&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2019_152889
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon