Reduced graphene oxide (RGO)-SnOx (x=0,1,2) nanocomposite as high performance anode material for lithium-ion batteries
Although, metal oxide-graphene nanocomposites and their applications in Li ion battery is a subject of intense investigation over the years, the synthesis of the composite that often needs high temperature processing along with expensive equipment are the major issues to overcome. We demonstrate a f...
Saved in:
Published in | Journal of alloys and compounds Vol. 818; p. 152889 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
25.03.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although, metal oxide-graphene nanocomposites and their applications in Li ion battery is a subject of intense investigation over the years, the synthesis of the composite that often needs high temperature processing along with expensive equipment are the major issues to overcome. We demonstrate a facile, low cost and room temperature synthesis of SnOX (x = 0,1,2) - reduced graphene oxide (RGO) nanocomposite where concurrent formation of SnO2, reduction of SnO2 to SnOx nanoparticles and graphene oxide to reduced graphene oxide takes place in one pot in-situ chemical reduction process. Concentration of the reducing agent (NaBH4, 0 mol–0.06 mol) is varied to examine the effect on the formation of the nanocomposite as well as their electrochemical performance. The RGO-SnOx nanocomposite prepared by using 0.04 mol of reducing agent reveal better Li storage performance, stable capacitance (833 mAh g−1 after 50 cycles, 767 mAh g−1 after 100 cycles, current rate = 100 mA g−1), and good rate capability (481 mAh g−1 at ∼1 A g−1). The lithium ion diffusion coefficient of RGO-SnOx (0.04 mol) nanocomposite is estimated as 2.4 × 10−10 m2s−1 that is one/two order higher than other RGO-SnOx nanocomposites which promotes the Li ion transport in the composite. The synthesis procedure has a strong potential to be one of the universal method for the preparation of a variety of composites by the suitable variant in the synthesis protocol.
•Synthesis of SnOx/rGO (x = 0,1,2) nanocomposite at room temperature.•Room temperature chemical reduction procedure is used for the synthesis of the composite.•Enhanced capacity of 767 mAh g−1 @ 100 mA g−1 is achieved after 100 cycles.•The composite delivered significant rate capability (481 mAh g−1 at ∼1 A g−1).•Comprehensive investigation has been carried out. |
---|---|
AbstractList | Although, metal oxide-graphene nanocomposites and their applications in Li ion battery is a subject of intense investigation over the years, the synthesis of the composite that often needs high temperature processing along with expensive equipment are the major issues to overcome. We demonstrate a facile, low cost and room temperature synthesis of SnOX (x = 0,1,2) - reduced graphene oxide (RGO) nanocomposite where concurrent formation of SnO2, reduction of SnO2 to SnOx nanoparticles and graphene oxide to reduced graphene oxide takes place in one pot in-situ chemical reduction process. Concentration of the reducing agent (NaBH4, 0 mol–0.06 mol) is varied to examine the effect on the formation of the nanocomposite as well as their electrochemical performance. The RGO-SnOx nanocomposite prepared by using 0.04 mol of reducing agent reveal better Li storage performance, stable capacitance (833 mAh g−1 after 50 cycles, 767 mAh g−1 after 100 cycles, current rate = 100 mA g−1), and good rate capability (481 mAh g−1 at ∼1 A g−1). The lithium ion diffusion coefficient of RGO-SnOx (0.04 mol) nanocomposite is estimated as 2.4 × 10−10 m2s−1 that is one/two order higher than other RGO-SnOx nanocomposites which promotes the Li ion transport in the composite. The synthesis procedure has a strong potential to be one of the universal method for the preparation of a variety of composites by the suitable variant in the synthesis protocol.
•Synthesis of SnOx/rGO (x = 0,1,2) nanocomposite at room temperature.•Room temperature chemical reduction procedure is used for the synthesis of the composite.•Enhanced capacity of 767 mAh g−1 @ 100 mA g−1 is achieved after 100 cycles.•The composite delivered significant rate capability (481 mAh g−1 at ∼1 A g−1).•Comprehensive investigation has been carried out. Although, metal oxide-graphene nanocomposites and their applications in Li ion battery is a subject of intense investigation over the years, the synthesis of the composite that often needs high temperature processing along with expensive equipment are the major issues to overcome. We demonstrate a facile, low cost and room temperature synthesis of SnOX (x = 0,1,2) - reduced graphene oxide (RGO) nanocomposite where concurrent formation of SnO2, reduction of SnO2 to SnOx nanoparticles and graphene oxide to reduced graphene oxide takes place in one pot in-situ chemical reduction process. Concentration of the reducing agent (NaBH4, 0 mol–0.06 mol) is varied to examine the effect on the formation of the nanocomposite as well as their electrochemical performance. The RGO-SnOx nanocomposite prepared by using 0.04 mol of reducing agent reveal better Li storage performance, stable capacitance (833 mAh g−1 after 50 cycles, 767 mAh g−1 after 100 cycles, current rate = 100 mA g−1), and good rate capability (481 mAh g−1 at ∼1 A g−1). The lithium ion diffusion coefficient of RGO-SnOx (0.04 mol) nanocomposite is estimated as 2.4 × 10−10 m2s−1 that is one/two order higher than other RGO-SnOx nanocomposites which promotes the Li ion transport in the composite. The synthesis procedure has a strong potential to be one of the universal method for the preparation of a variety of composites by the suitable variant in the synthesis protocol. |
ArticleNumber | 152889 |
Author | Wu, Yi-Zhu Weng, Shao-Chieh Brahma, Sanjaya Huang, Jow-Lay Chang, Chia-Chin |
Author_xml | – sequence: 1 givenname: Yi-Zhu surname: Wu fullname: Wu, Yi-Zhu organization: Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan, ROC – sequence: 2 givenname: Sanjaya surname: Brahma fullname: Brahma, Sanjaya organization: Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan, ROC – sequence: 3 givenname: Shao-Chieh surname: Weng fullname: Weng, Shao-Chieh organization: Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan, ROC – sequence: 4 givenname: Chia-Chin orcidid: 0000-0002-8037-4488 surname: Chang fullname: Chang, Chia-Chin email: ccchang@mail.nutn.edu.tw organization: R & D Center for Li-ion Battery, National University of Tainan, Tainan, 70005, Taiwan, ROC – sequence: 5 givenname: Jow-Lay surname: Huang fullname: Huang, Jow-Lay email: jlh888@mail.ncku.edu.tw organization: Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan, ROC |
BookMark | eNqFkFFrFDEQx4NU8Fr9CELAlxa6Z2azuU0QKVK0CoWDqs8hm53tZdlN1iRXzm9vjuuTL30amPn_ZpjfOTnzwSMh74GtgcHm47gezTTZMK9rBmoNopZSvSIrkC2vms1GnZEVU7WoJJfyDTlPaWSsJDmsyNMD9nuLPX2MZtmhRxoOrkd6-XC3vap--u2BXh4-s2u4rq-oNz6UM0tILiM1ie7c444uGIcQZ-Nt6flQ4NlkjM5MtPTp5PLO7efKBU87k48TTG_J68FMCd891wvy-9vXX7ffq_vt3Y_bL_eV5bzN1dAjZ7IRpttwjspYJhCAd6zrYADBzaCsai0bWmHBDLaT0HS2blkDICUCvyAfTnuXGP7sMWU9hn305aSuuWg4U0KokhKnlI0hpYiDXqKbTfyrgemjYj3qZ8X6qFifFBfu03-cddnk8mmOxk0v0jcnGouAJ4dRJ-uwWOxdRJt1H9wLG_4BX5uc_g |
CitedBy_id | crossref_primary_10_1007_s11581_021_04192_w crossref_primary_10_3390_c6040081 crossref_primary_10_3390_en13184867 crossref_primary_10_1016_j_matchemphys_2020_124011 crossref_primary_10_1016_j_cplett_2021_138529 crossref_primary_10_1016_j_diamond_2023_109688 crossref_primary_10_1038_s41598_024_67647_w crossref_primary_10_1039_D0RA10194J crossref_primary_10_1016_j_jallcom_2020_153970 crossref_primary_10_1039_D0DT00857E crossref_primary_10_1016_j_cej_2021_133675 crossref_primary_10_1039_D0QM00710B crossref_primary_10_1007_s10854_024_12494_8 crossref_primary_10_1115_1_4054130 crossref_primary_10_1016_j_jallcom_2021_159687 crossref_primary_10_1016_j_jelechem_2022_116741 crossref_primary_10_1007_s43207_022_00210_3 |
Cites_doi | 10.1039/C1JM14199F 10.1016/j.electacta.2014.12.065 10.1016/j.electacta.2014.06.024 10.1088/0957-4484/23/48/485604 10.1021/nn200493r 10.1021/nn4016899 10.1021/am301962d 10.1557/jmr.2014.32 10.1007/s10854-018-0069-y 10.1016/j.apsusc.2014.07.188 10.1021/acsami.9b00214 10.1016/j.electacta.2016.08.079 10.1002/smll.201502183 10.1021/cm901247t 10.1016/j.ceramint.2013.04.037 10.1038/srep09055 10.1016/j.nanoso.2018.03.004 10.1016/j.nanoso.2018.03.008 10.3390/ma6010156 10.1021/acsami.5b05819 10.1021/am201541s 10.1016/j.electacta.2014.11.100 10.1021/acs.chemmater.5b00885 10.1021/acsami.5b08719 10.1021/jp306041y 10.1021/la303663x 10.1016/j.jallcom.2016.03.136 10.1016/j.carbon.2011.12.040 10.1016/j.diamond.2015.06.005 10.1039/C3DT52661E 10.1016/j.nanoso.2017.07.002 10.1021/am405557c 10.1016/j.electacta.2013.09.093 10.1021/am401239f 10.1021/am402124r 10.3390/ma12081229 10.1016/j.jallcom.2017.02.019 10.1016/j.elecom.2009.07.035 10.1186/1556-276X-7-215 10.1016/j.nanoen.2014.06.006 10.1016/j.ceramint.2016.12.134 10.1021/jp1050047 |
ContentType | Journal Article |
Copyright | 2019 Copyright Elsevier BV Mar 25, 2020 |
Copyright_xml | – notice: 2019 – notice: Copyright Elsevier BV Mar 25, 2020 |
DBID | AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1016/j.jallcom.2019.152889 |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1873-4669 |
ExternalDocumentID | 10_1016_j_jallcom_2019_152889 S0925838819341350 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SMS SSH T9H WUQ 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c337t-fde30845ab633e9ac05e113b0bb1f153af9c97c0f75c1afcb814bc27041188e13 |
IEDL.DBID | .~1 |
ISSN | 0925-8388 |
IngestDate | Fri Jul 25 08:42:18 EDT 2025 Tue Jul 01 03:58:19 EDT 2025 Thu Apr 24 23:04:44 EDT 2025 Fri Feb 23 02:48:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium-ion battery SnO2 Nanocomposite Reduced graphene oxide |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-fde30845ab633e9ac05e113b0bb1f153af9c97c0f75c1afcb814bc27041188e13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8037-4488 |
PQID | 2354309559 |
PQPubID | 2045454 |
ParticipantIDs | proquest_journals_2354309559 crossref_primary_10_1016_j_jallcom_2019_152889 crossref_citationtrail_10_1016_j_jallcom_2019_152889 elsevier_sciencedirect_doi_10_1016_j_jallcom_2019_152889 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-25 |
PublicationDateYYYYMMDD | 2020-03-25 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Journal of alloys and compounds |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Shen, Hu, Shi, Lu, Qin, Li, Ye (bib35) 2009; 21 Chen, Ma, Wang, Chen, Ge (bib32) 2016; 215 Xu, Zhao, Niu, Zhang, Cai, Han, He, Shen, Yan, Qu, Mai (bib33) 2014; 8 Xu, Zhang, Chen, Li, Li, Liu (bib24) 2016; 677 Zhu, Wang, Xie, Cao, Zhu, Zhao, Yang (bib30) 2015; 154 Selva Roselin, Juang, Hsieh, Sagadevan, Umar, Selvin, Hegazy (bib9) 2019; 12 Birrozzi, Raccichini, Nobili, Marinaro, Tossici, Marassi (bib22) 2014; 137 Liu, Huang, Hao, Liu, Li (bib18) 2013; 39 Yang, Xie, Wang, Wu, Chen, Xu (bib5) 2017; 11 Gao, Yue, Tao, Fan (bib37) 2013; 29 Park, Yu, Pinna, Woo, Jang, Chung, Cho, Sung, Piao (bib15) 2012; 22 Wang, Xu, Sun, Gao, Yao (bib28) 2014; 6 Xia, Li, Li, Liu, Wang, Li, Lü, Spendelow, Zhang, Wu (bib8) 2013; 5 Wang, Li, Wang, Yang, Geng, Li, Cai, Sham, Sun (bib16) 2012; 116 Zhao, Zhang, Xia, Dong, Xu, Niu, He, Yan, Qu, Mai (bib34) 2016; 12 Jin, Gao, Zeng, Zhang, Liu, Shao, Jin (bib44) 2015; 58 Chen (bib1) 2013; 6 Jiao, Chen, Jiang, Zhang, Ling, Zhuang, Su, Cao, Zhao (bib10) 2014; 29 Lin, Peng, Xiang, Ruan, Yan, Natelson, Tour (bib27) 2013; 7 Liu, An, Yang, Zhang (bib29) 2015; 5 Wang, Dong, Zhang, Chen, Jiang, Wu, Zhang (bib3) 2018; 15 Wang, Zhang, He (bib4) 2018; 15 Liang, Zhao, Guo, Li (bib26) 2012; 4 Fei, Lin, Yuan, Chen, Xie, Li, Xu, Deng, Smirnov, Luo (bib7) 2013; 5 Sun, Xiao, Jiang, Li, Huang, Geng (bib40) 2015; 27 Zhang, Peng, Guo, Cai, Chen, Wexler, Li, Liu (bib11) 2012; 50 Li, Lv, Lu, Li (bib25) 2010; 114 Weng, Brahma, Chang, Huang (bib39) 2017; 43 Gholizadeh, Malekzadeh, Pourarian (bib45) 2018; 29 Zhu, Zhu, Murali, Stoller, Ruoff (bib6) 2011; 5 Liang, Wei, Zhong, Yang, Li, Guo (bib13) 2012; 4 Yao, Shen, Wang, Liu, Wang (bib14) 2009; 11 Liu, Zhong, Yang, Pan, Gu, Yu (bib31) 2015; 152 Zhao, Yue, Xu, Sun, Bao (bib36) 2017; 704 Zhu, Wang, Xie, Cao, Zhu, Zhao, Yang (bib38) 2015; 154 Wu, Xu, Lu, Ge, Iocozzia, Han, Jiang, Lin (bib2) 2015; 1500400 Wang, Wen, Liu, Tan, Yuan, Zhang (bib43) 2012; 23 Li, Liu, Liu, Yang, Xin, Zhou, Zhang, Stanciu, Xie (bib23) 2015; 7 Wang, Su, Park, Ahn, Wang (bib17) 2012; 7 Lee, Han, Oh, Lah, Sohn, Pyo (bib19) 2013; 113 Ma, Fan, Chen, Yang, Hui, Zhang, Bielawski, Geng (bib41) 2019; 11 Phulpoto, Sun, Qi, Xiao, Yan, Geng (bib42) 2017; 28 Xie, Sun, George, Zhou, Lian, Zhou (bib12) 2015; 7 Chen, Wang, Zhai, Zhang, Wu, Wei, Chen (bib20) 2014; 43 Wu, Wu, Wang, Yin, Ye, Deng, Zhu, Ye, Li (bib21) 2014; 315 Zhu (10.1016/j.jallcom.2019.152889_bib30) 2015; 154 Zhao (10.1016/j.jallcom.2019.152889_bib36) 2017; 704 Weng (10.1016/j.jallcom.2019.152889_bib39) 2017; 43 Chen (10.1016/j.jallcom.2019.152889_bib20) 2014; 43 Gholizadeh (10.1016/j.jallcom.2019.152889_bib45) 2018; 29 Yao (10.1016/j.jallcom.2019.152889_bib14) 2009; 11 Wang (10.1016/j.jallcom.2019.152889_bib16) 2012; 116 Zhu (10.1016/j.jallcom.2019.152889_bib6) 2011; 5 Wang (10.1016/j.jallcom.2019.152889_bib28) 2014; 6 Fei (10.1016/j.jallcom.2019.152889_bib7) 2013; 5 Jiao (10.1016/j.jallcom.2019.152889_bib10) 2014; 29 Lee (10.1016/j.jallcom.2019.152889_bib19) 2013; 113 Li (10.1016/j.jallcom.2019.152889_bib25) 2010; 114 Liang (10.1016/j.jallcom.2019.152889_bib13) 2012; 4 Liu (10.1016/j.jallcom.2019.152889_bib29) 2015; 5 Wu (10.1016/j.jallcom.2019.152889_bib21) 2014; 315 Birrozzi (10.1016/j.jallcom.2019.152889_bib22) 2014; 137 Shen (10.1016/j.jallcom.2019.152889_bib35) 2009; 21 Sun (10.1016/j.jallcom.2019.152889_bib40) 2015; 27 Wang (10.1016/j.jallcom.2019.152889_bib4) 2018; 15 Park (10.1016/j.jallcom.2019.152889_bib15) 2012; 22 Zhao (10.1016/j.jallcom.2019.152889_bib34) 2016; 12 Gao (10.1016/j.jallcom.2019.152889_bib37) 2013; 29 Lin (10.1016/j.jallcom.2019.152889_bib27) 2013; 7 Xie (10.1016/j.jallcom.2019.152889_bib12) 2015; 7 Wang (10.1016/j.jallcom.2019.152889_bib17) 2012; 7 Liu (10.1016/j.jallcom.2019.152889_bib31) 2015; 152 Xu (10.1016/j.jallcom.2019.152889_bib24) 2016; 677 Zhang (10.1016/j.jallcom.2019.152889_bib11) 2012; 50 Yang (10.1016/j.jallcom.2019.152889_bib5) 2017; 11 Phulpoto (10.1016/j.jallcom.2019.152889_bib42) 2017; 28 Liang (10.1016/j.jallcom.2019.152889_bib26) 2012; 4 Wang (10.1016/j.jallcom.2019.152889_bib3) 2018; 15 Xu (10.1016/j.jallcom.2019.152889_bib33) 2014; 8 Wang (10.1016/j.jallcom.2019.152889_bib43) 2012; 23 Zhu (10.1016/j.jallcom.2019.152889_bib38) 2015; 154 Liu (10.1016/j.jallcom.2019.152889_bib18) 2013; 39 Ma (10.1016/j.jallcom.2019.152889_bib41) 2019; 11 Selva Roselin (10.1016/j.jallcom.2019.152889_bib9) 2019; 12 Li (10.1016/j.jallcom.2019.152889_bib23) 2015; 7 Jin (10.1016/j.jallcom.2019.152889_bib44) 2015; 58 Chen (10.1016/j.jallcom.2019.152889_bib1) 2013; 6 Wu (10.1016/j.jallcom.2019.152889_bib2) 2015; 1500400 Chen (10.1016/j.jallcom.2019.152889_bib32) 2016; 215 Xia (10.1016/j.jallcom.2019.152889_bib8) 2013; 5 |
References_xml | – volume: 1500400 start-page: 1 year: 2015 end-page: 40 ident: bib2 article-title: Graphene-containing nanomaterials for lithium-ion batteries publication-title: Adv. Energy Mater. – volume: 137 start-page: 228 year: 2014 end-page: 234 ident: bib22 article-title: High-stability graphene nano sheets/SnO publication-title: Electrochim. Acta – volume: 315 start-page: 400 year: 2014 end-page: 406 ident: bib21 article-title: A facile method for in-situ synthesis of SnO publication-title: Appl. Surf. Sci. – volume: 116 start-page: 22149 year: 2012 end-page: 22156 ident: bib16 article-title: Defect-rich crystalline SnO publication-title: J. Phys. Chem. C – volume: 7 start-page: 6001 year: 2013 end-page: 6006 ident: bib27 article-title: Graphene nanoribbon and nanostructured SnO publication-title: ACS Nano – volume: 5 start-page: 9055 year: 2015 ident: bib29 article-title: Superior cycle performance and high reversible capacity of SnO publication-title: Sci. Rep. – volume: 4 start-page: 454 year: 2012 end-page: 459 ident: bib13 article-title: One-step in situ synthesis of SnO publication-title: ACS Appl. Mater. Interfaces – volume: 50 start-page: 1897 year: 2012 end-page: 1903 ident: bib11 article-title: Carbon-coated SnO publication-title: Carbon – volume: 29 start-page: 957 year: 2013 end-page: 964 ident: bib37 article-title: Novel strategy for preparation of graphene-Pd, Pt composite, and its enhanced electrocatalytic activity for alcohol oxidation publication-title: Langmuir – volume: 21 start-page: 3514 year: 2009 end-page: 3520 ident: bib35 article-title: Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets publication-title: Chem. Mater. – volume: 704 start-page: 51 year: 2017 end-page: 57 ident: bib36 article-title: Graphene-based Pt/SnO publication-title: J. Alloy. Comp. – volume: 29 start-page: 609 year: 2014 end-page: 616 ident: bib10 article-title: Synthesis of nanoparticles, nanorods, and mesoporous SnO publication-title: J. Mater. Res. – volume: 7 start-page: 27087 year: 2015 end-page: 27095 ident: bib23 article-title: Facile preparation of graphene/SnO publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 196 year: 2014 end-page: 204 ident: bib33 article-title: Heterogeneous branched core–shell SnO publication-title: Nano Energy – volume: 43 start-page: 4873 year: 2017 end-page: 4879 ident: bib39 article-title: Synthesis of MnOx/reduced graphene oxide nanocomposite as an anode electrode for lithium-ion batteries publication-title: Ceram. Int. – volume: 215 start-page: 42 year: 2016 end-page: 49 ident: bib32 article-title: Hierarchical porous SnO publication-title: Electrochim. Acta – volume: 677 start-page: 237 year: 2016 end-page: 244 ident: bib24 article-title: SiO publication-title: J. Alloy. Comp. – volume: 5 start-page: 3333 year: 2011 end-page: 3338 ident: bib6 article-title: Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries publication-title: ACS Nano – volume: 15 start-page: 216 year: 2018 end-page: 223 ident: bib4 article-title: Flower-like TiO2-B particles wrapped by graphene with different contents as an anode material for lithium-ion batteries publication-title: Nano-Structures & Nano-Objects – volume: 15 start-page: 48 year: 2018 end-page: 53 ident: bib3 article-title: Metal–organic framework derived titanium-based anode materials for lithium ion batteries publication-title: Nano-Structures & Nano-Objects – volume: 12 start-page: 1229 year: 2019 ident: bib9 article-title: Recent advances and perspectives of carbon-based nanostructures as anode materials for Li-ion batteries publication-title: Materials – volume: 114 start-page: 21770 year: 2010 end-page: 21774 ident: bib25 article-title: Preparation of SnO publication-title: J. Phys. Chem. C – volume: 4 start-page: 5742 year: 2012 end-page: 5748 ident: bib26 article-title: Flexible free-standing graphene/SnO publication-title: ACS Appl. Mater. Interfaces – volume: 29 start-page: 19402 year: 2018 end-page: 19412 ident: bib45 article-title: Rapid and efficient synthesis of reduced graphene oxide nano-sheets using CO ambient atmosphere as a reducing agent publication-title: J. Mater. Sci. Mater. Electron. – volume: 5 start-page: 8607 year: 2013 end-page: 8614 ident: bib8 article-title: Graphene/Fe2O3/SnO2 ternary nanocomposites as a high- performance anode for lithium ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 154 start-page: 338 year: 2015 end-page: 344 ident: bib30 article-title: Effects of graphene oxide function groups on SnO publication-title: Electrochim. Acta – volume: 154 start-page: 338 year: 2015 end-page: 344 ident: bib38 article-title: Effects of graphene oxide function groups on SnO publication-title: Electrochim. Acta – volume: 7 start-page: 27735 year: 2015 end-page: 27742 ident: bib12 article-title: Amorphous ultrathin SnO publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 156 year: 2013 end-page: 183 ident: bib1 article-title: Recent progress in advanced materials for lithium ion batteries publication-title: Materials – volume: 11 start-page: 1849 year: 2009 end-page: 1852 ident: bib14 article-title: In situ chemical synthesis of SnO publication-title: Electrochem. Commun. – volume: 113 start-page: 149 year: 2013 end-page: 155 ident: bib19 article-title: Tin dioxide nanoparticles impregnated in graphite oxide for improved lithium storage and cyclability in secondary ion batteries publication-title: Electrochim. Acta – volume: 22 start-page: 2520 year: 2012 end-page: 2525 ident: bib15 article-title: A facile hydrazine-assisted hydrothermal method for the deposition of monodisperse SnO publication-title: J. Mater. Chem. – volume: 7 start-page: 215 year: 2012 ident: bib17 article-title: Graphene-supported SnO publication-title: Nanoscale Res. Lett. – volume: 28 start-page: 1 year: 2017 end-page: 11 ident: bib42 article-title: Tuning the morphologies of fluorine-doped tin oxides in the three-dimensional architecture of graphene for highperformance lithium-ion batteries publication-title: Nanotechnology – volume: 12 start-page: 588 year: 2016 end-page: 594 ident: bib34 article-title: SnO publication-title: Small – volume: 11 start-page: 13234 year: 2019 end-page: 13243 ident: bib41 article-title: Covalent confinement of sulfur copolymers onto graphene sheets affords ultrastable Lithium−Sulfur batteries with fast cathode kinetics publication-title: ACS Appl. Mater. Interfaces – volume: 27 start-page: 4594 year: 2015 end-page: 4603 ident: bib40 article-title: Fluorine-doped SnO2@Graphene porous composite for high capacity lithium-ion batteries publication-title: Chem. Mater. – volume: 23 start-page: 485604 year: 2012 ident: bib43 article-title: Rapid and efficient synthesis of soluble graphene nanosheets using N-methyl-p-aminophenol sulfate as a reducing agent publication-title: Nanotechnology – volume: 39 start-page: 8623 year: 2013 end-page: 8627 ident: bib18 article-title: SnO publication-title: Ceram. Int. – volume: 6 start-page: 3427 year: 2014 end-page: 3436 ident: bib28 article-title: Solvothermal-induced 3D macroscopic SnO publication-title: ACS Appl. Mater. Interfaces – volume: 152 start-page: 178 year: 2015 end-page: 186 ident: bib31 article-title: Gram-scale synthesis of graphene-mesoporous SnO publication-title: Electrochim. Acta – volume: 58 start-page: 54 year: 2015 end-page: 61 ident: bib44 article-title: Effects of reduction methods on the structure and thermal conductivity of free-standing reduced graphene oxide films publication-title: Diam. Relat. Mater. – volume: 43 start-page: 3137 year: 2014 end-page: 3143 ident: bib20 article-title: A facile one-pot reduction method for the preparation of a SnO/SnO publication-title: Dalton Trans. – volume: 5 start-page: 5330 year: 2013 end-page: 5335 ident: bib7 article-title: Reduced graphene oxide wrapped FeS nanocomposite for lithium-ion battery anode with improved performance publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 76 year: 2017 end-page: 81 ident: bib5 article-title: Green synthesis of [(C4H9)4N]3[PMo12O40]/graphene nanosheets nanocomposites as advanced cathode for high performance lithium ion batteries publication-title: Nano-Structures & Nano-Objects – volume: 22 start-page: 2520 year: 2012 ident: 10.1016/j.jallcom.2019.152889_bib15 article-title: A facile hydrazine-assisted hydrothermal method for the deposition of monodisperse SnO2 nanoparticles onto graphene for lithium ion batteries publication-title: J. Mater. Chem. doi: 10.1039/C1JM14199F – volume: 154 start-page: 338 year: 2015 ident: 10.1016/j.jallcom.2019.152889_bib38 article-title: Effects of graphene oxide function groups on SnO2-graphene nanocomposite for lithium storage application publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.12.065 – volume: 137 start-page: 228 year: 2014 ident: 10.1016/j.jallcom.2019.152889_bib22 article-title: High-stability graphene nano sheets/SnO2composite anode for lithium ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.06.024 – volume: 23 start-page: 485604 issue: 48 year: 2012 ident: 10.1016/j.jallcom.2019.152889_bib43 article-title: Rapid and efficient synthesis of soluble graphene nanosheets using N-methyl-p-aminophenol sulfate as a reducing agent publication-title: Nanotechnology doi: 10.1088/0957-4484/23/48/485604 – volume: 5 start-page: 3333 issue: 4 year: 2011 ident: 10.1016/j.jallcom.2019.152889_bib6 article-title: Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries publication-title: ACS Nano doi: 10.1021/nn200493r – volume: 7 start-page: 6001 issue: 7 year: 2013 ident: 10.1016/j.jallcom.2019.152889_bib27 article-title: Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries publication-title: ACS Nano doi: 10.1021/nn4016899 – volume: 4 start-page: 5742 year: 2012 ident: 10.1016/j.jallcom.2019.152889_bib26 article-title: Flexible free-standing graphene/SnO2 nanocomposites paper for Li- ion battery publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am301962d – volume: 29 start-page: 609 issue: 5 year: 2014 ident: 10.1016/j.jallcom.2019.152889_bib10 article-title: Synthesis of nanoparticles, nanorods, and mesoporous SnO2 as anode materials for lithium-ion batteries publication-title: J. Mater. Res. doi: 10.1557/jmr.2014.32 – volume: 154 start-page: 338 year: 2015 ident: 10.1016/j.jallcom.2019.152889_bib30 article-title: Effects of graphene oxide function groups on SnO2/graphene nanocomposites for lithium storage application publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.12.065 – volume: 29 start-page: 19402 issue: 22 year: 2018 ident: 10.1016/j.jallcom.2019.152889_bib45 article-title: Rapid and efficient synthesis of reduced graphene oxide nano-sheets using CO ambient atmosphere as a reducing agent publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-018-0069-y – volume: 315 start-page: 400 year: 2014 ident: 10.1016/j.jallcom.2019.152889_bib21 article-title: A facile method for in-situ synthesis of SnO2/graphene as a high-performance anode material for lithium-ion batteries publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.07.188 – volume: 11 start-page: 13234 year: 2019 ident: 10.1016/j.jallcom.2019.152889_bib41 article-title: Covalent confinement of sulfur copolymers onto graphene sheets affords ultrastable Lithium−Sulfur batteries with fast cathode kinetics publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b00214 – volume: 1500400 start-page: 1 year: 2015 ident: 10.1016/j.jallcom.2019.152889_bib2 article-title: Graphene-containing nanomaterials for lithium-ion batteries publication-title: Adv. Energy Mater. – volume: 215 start-page: 42 year: 2016 ident: 10.1016/j.jallcom.2019.152889_bib32 article-title: Hierarchical porous SnO2/reduced graphene oxide composites for high-performance lithium-ion battery anodes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.08.079 – volume: 28 start-page: 1 issue: 395404 year: 2017 ident: 10.1016/j.jallcom.2019.152889_bib42 article-title: Tuning the morphologies of fluorine-doped tin oxides in the three-dimensional architecture of graphene for highperformance lithium-ion batteries publication-title: Nanotechnology – volume: 12 start-page: 588 issue: 5 year: 2016 ident: 10.1016/j.jallcom.2019.152889_bib34 article-title: SnO2 quantum Dots@Graphene oxide as a high-rate and long-life anode material for lithium-ion batteries publication-title: Small doi: 10.1002/smll.201502183 – volume: 21 start-page: 3514 year: 2009 ident: 10.1016/j.jallcom.2019.152889_bib35 article-title: Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets publication-title: Chem. Mater. doi: 10.1021/cm901247t – volume: 39 start-page: 8623 year: 2013 ident: 10.1016/j.jallcom.2019.152889_bib18 article-title: SnO2 nano-spheres/graphene hybrid for high-performance lithium ion battery anodes publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2013.04.037 – volume: 5 start-page: 9055 issue: 1–10 year: 2015 ident: 10.1016/j.jallcom.2019.152889_bib29 article-title: Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries publication-title: Sci. Rep. doi: 10.1038/srep09055 – volume: 15 start-page: 48 year: 2018 ident: 10.1016/j.jallcom.2019.152889_bib3 article-title: Metal–organic framework derived titanium-based anode materials for lithium ion batteries publication-title: Nano-Structures & Nano-Objects doi: 10.1016/j.nanoso.2018.03.004 – volume: 15 start-page: 216 year: 2018 ident: 10.1016/j.jallcom.2019.152889_bib4 article-title: Flower-like TiO2-B particles wrapped by graphene with different contents as an anode material for lithium-ion batteries publication-title: Nano-Structures & Nano-Objects doi: 10.1016/j.nanoso.2018.03.008 – volume: 6 start-page: 156 year: 2013 ident: 10.1016/j.jallcom.2019.152889_bib1 article-title: Recent progress in advanced materials for lithium ion batteries publication-title: Materials doi: 10.3390/ma6010156 – volume: 7 start-page: 27087 year: 2015 ident: 10.1016/j.jallcom.2019.152889_bib23 article-title: Facile preparation of graphene/SnO2 xerogel hybrids as the anode material in Li-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05819 – volume: 4 start-page: 454 year: 2012 ident: 10.1016/j.jallcom.2019.152889_bib13 article-title: One-step in situ synthesis of SnO2/graphene nanocomposites and its application as an anode material for Li-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am201541s – volume: 152 start-page: 178 year: 2015 ident: 10.1016/j.jallcom.2019.152889_bib31 article-title: Gram-scale synthesis of graphene-mesoporous SnO2 composite as anode for lithium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.11.100 – volume: 27 start-page: 4594 year: 2015 ident: 10.1016/j.jallcom.2019.152889_bib40 article-title: Fluorine-doped SnO2@Graphene porous composite for high capacity lithium-ion batteries publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b00885 – volume: 7 start-page: 27735 year: 2015 ident: 10.1016/j.jallcom.2019.152889_bib12 article-title: Amorphous ultrathin SnO2 films by atomic layer deposition on graphene network as highly stable anodes for lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b08719 – volume: 116 start-page: 22149 year: 2012 ident: 10.1016/j.jallcom.2019.152889_bib16 article-title: Defect-rich crystalline SnO2 immobilized on graphene nanosheets with enhanced cycle performance for Li ion batteries publication-title: J. Phys. Chem. C doi: 10.1021/jp306041y – volume: 29 start-page: 957 year: 2013 ident: 10.1016/j.jallcom.2019.152889_bib37 article-title: Novel strategy for preparation of graphene-Pd, Pt composite, and its enhanced electrocatalytic activity for alcohol oxidation publication-title: Langmuir doi: 10.1021/la303663x – volume: 677 start-page: 237 year: 2016 ident: 10.1016/j.jallcom.2019.152889_bib24 article-title: SiO2@SnO2/graphene composite with a coating and hierarchical structure as high performance anode material for lithium ion battery publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2016.03.136 – volume: 50 start-page: 1897 year: 2012 ident: 10.1016/j.jallcom.2019.152889_bib11 article-title: Carbon-coated SnO2/graphene nanosheets as highly reversible anode materials for lithium ion batteries publication-title: Carbon doi: 10.1016/j.carbon.2011.12.040 – volume: 58 start-page: 54 year: 2015 ident: 10.1016/j.jallcom.2019.152889_bib44 article-title: Effects of reduction methods on the structure and thermal conductivity of free-standing reduced graphene oxide films publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2015.06.005 – volume: 43 start-page: 3137 year: 2014 ident: 10.1016/j.jallcom.2019.152889_bib20 article-title: A facile one-pot reduction method for the preparation of a SnO/SnO2/GNS composite for high performance lithium ion batteries publication-title: Dalton Trans. doi: 10.1039/C3DT52661E – volume: 11 start-page: 76 year: 2017 ident: 10.1016/j.jallcom.2019.152889_bib5 article-title: Green synthesis of [(C4H9)4N]3[PMo12O40]/graphene nanosheets nanocomposites as advanced cathode for high performance lithium ion batteries publication-title: Nano-Structures & Nano-Objects doi: 10.1016/j.nanoso.2017.07.002 – volume: 6 start-page: 3427 year: 2014 ident: 10.1016/j.jallcom.2019.152889_bib28 article-title: Solvothermal-induced 3D macroscopic SnO2/nitrogen-doped graphene aerogels for high capacity and long-life lithium storage publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am405557c – volume: 113 start-page: 149 year: 2013 ident: 10.1016/j.jallcom.2019.152889_bib19 article-title: Tin dioxide nanoparticles impregnated in graphite oxide for improved lithium storage and cyclability in secondary ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.09.093 – volume: 5 start-page: 5330 year: 2013 ident: 10.1016/j.jallcom.2019.152889_bib7 article-title: Reduced graphene oxide wrapped FeS nanocomposite for lithium-ion battery anode with improved performance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am401239f – volume: 5 start-page: 8607 year: 2013 ident: 10.1016/j.jallcom.2019.152889_bib8 article-title: Graphene/Fe2O3/SnO2 ternary nanocomposites as a high- performance anode for lithium ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am402124r – volume: 12 start-page: 1229 year: 2019 ident: 10.1016/j.jallcom.2019.152889_bib9 article-title: Recent advances and perspectives of carbon-based nanostructures as anode materials for Li-ion batteries publication-title: Materials doi: 10.3390/ma12081229 – volume: 704 start-page: 51 year: 2017 ident: 10.1016/j.jallcom.2019.152889_bib36 article-title: Graphene-based Pt/SnO2 nanocomposite with superior electrochemical performance for lithium-ion batteries publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2017.02.019 – volume: 11 start-page: 1849 year: 2009 ident: 10.1016/j.jallcom.2019.152889_bib14 article-title: In situ chemical synthesis of SnO2–graphene nanocomposite as anode materials for lithium-ion batteries publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2009.07.035 – volume: 7 start-page: 215 year: 2012 ident: 10.1016/j.jallcom.2019.152889_bib17 article-title: Graphene-supported SnO2 nanoparticles prepared by a solvothermal approach for an enhanced electrochemical performance in lithium-ion batteries publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-7-215 – volume: 8 start-page: 196 year: 2014 ident: 10.1016/j.jallcom.2019.152889_bib33 article-title: Heterogeneous branched core–shell SnO2–PANI nanorod arrays with mechanical integrity and three dimensional electron transport for lithium batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.06.006 – volume: 43 start-page: 4873 year: 2017 ident: 10.1016/j.jallcom.2019.152889_bib39 article-title: Synthesis of MnOx/reduced graphene oxide nanocomposite as an anode electrode for lithium-ion batteries publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.12.134 – volume: 114 start-page: 21770 year: 2010 ident: 10.1016/j.jallcom.2019.152889_bib25 article-title: Preparation of SnO2-nanocrystal/graphene-nanosheets composites and their lithium storage ability publication-title: J. Phys. Chem. C doi: 10.1021/jp1050047 |
SSID | ssj0001931 |
Score | 2.4043024 |
Snippet | Although, metal oxide-graphene nanocomposites and their applications in Li ion battery is a subject of intense investigation over the years, the synthesis of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 152889 |
SubjectTerms | Anodes Chemical reduction Diffusion coefficient Electrochemical analysis Electrode materials Graphene High temperature Ion diffusion Ion transport Lithium-ion batteries Lithium-ion battery Metal oxides Nanocomposite Nanocomposites Nanoparticles Organic chemistry Rechargeable batteries Reduced graphene oxide Reducing agents Room temperature SnO2 Tin dioxide |
Title | Reduced graphene oxide (RGO)-SnOx (x=0,1,2) nanocomposite as high performance anode material for lithium-ion batteries |
URI | https://dx.doi.org/10.1016/j.jallcom.2019.152889 https://www.proquest.com/docview/2354309559 |
Volume | 818 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5NQwh4QFBAbIzJDzxs0tw6sbPYDzxMFaOA2KSNSXuzYscWrUparR3qE387d25CASFN4tXxRZHvcj-S774DeBN1xCy8FFyZ4LFACYqbwkRCArjoMMDUjr5Dfj47Hl2pj9fF9RYMu14YglW2vn_t05O3blcG7WkO5uPx4FKYnP75YUgjT5zqdqVKsvL-jw3MA6-mqXm4mdPuTRfPYNKfVNMpgUYwChqaBKRp2vu_49NfnjqFn9Mn8LjNG9nJ-tGewlZoevBg2I1r68Gj35gFe3A_ITv94hl8vyBy1lCzRE2Nno3NVuM6sIOL9-eH_LI5X7GD1VtxlB3lh6ypmhmBzAnJFVi1YMRmzOab5gKGG1AY09xkuQzXGSbyX8e33zhqmLlE14nV93O4On33ZTji7bAF7qUslzzWQQqtisodSxlM5UURskw64VwW0S1W0XhTehHLwmdV9E5nyvm8FApLFB0y-QK2m1kTXgKrMSfTUYhgtEONaEOUMBWWvSrkQZqwA6o7YutbJnIaiDG1HeRsYlvNWNKMXWtmB_q_xOZrKo67BHSnP_uHTVkMF3eJ7nX6tu1LvbC5LJRMlH27_3_nV_Awp5JdSJ4Xe7C9vLkNrzGvWbr9ZLj7cO_kw6fR2U-oxPYx |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBalZXR9KG22sd5WPeyhhSqRLbmWHvYwQrts6wV6gb4JS5ZYQuqEJi152m_fOYrdbGNQ2KusY4yPdC72p-8j5GNQAarwnDOpvYMGxUumMx0QCWCDhQRTWvwOeX5x3LuV3-6yuyXSbc7CIKyyjv3zmB6jdT3Sqd9mZ9zvd665TvGfH6Q0jMTYt69I2L4oY9D-ucB5wOUomwezGU5fHOPpDNqDYjhE1AikQY1SQArl3v-doP4K1TH_nG6Q9bpwpJ_nz7ZJlnzVIqvdRq-tRdZ-oxZskVcR2ukmb8jTFbKz-pJGbmoIbXQ065eeHlx9uTxk19XljB7MPvGj5Cg9pFVRjRBljlAuT4sJRTpjOl6cLqAwAYyhzo1Ll8I4hUr-R__xnoGLqY18ndB-vyW3pyc33R6r1RaYEyKfslB6wZXMCnsshNeF45lPEmG5tUmAuFgE7XTueMgzlxTBWZVI69KcS-hRlE_EO7JcjSr_ntASijIVOPdaWSlzpZETpoC-V_rUC-23iGxesXE1FTkqYgxNgzkbmNozBj1j5p7ZIu1ns_Gci-MlA9X4z_yxqAzki5dMdxt_m3pXT0wqMikiZ9_2_995n6z2bs7PzNnXi-875HWK_TsXLM12yfL04dHvQZEztR_iIv4FRwn3vw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced+graphene+oxide+%28RGO%29-SnOx+%28x%3D0%2C1%2C2%29+nanocomposite+as+high+performance+anode+material+for+lithium-ion+batteries&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Wu%2C+Yi-Zhu&rft.au=Brahma%2C+Sanjaya&rft.au=Weng%2C+Shao-Chieh&rft.au=Chang%2C+Chia-Chin&rft.date=2020-03-25&rft.issn=0925-8388&rft.volume=818&rft.spage=152889&rft_id=info:doi/10.1016%2Fj.jallcom.2019.152889&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2019_152889 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |