A study of Caputo fractional differential equations of variable order via Darbo's fixed point theorem and Kuratowski measure of noncompactness

This paper investigated the existence and stability of solutions for boundary value problems involving Caputo fractional differential equations of variable order. Unlike constant-order models, variable-order equations allow the fractional order to change over time, enabling more flexible and accurat...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 10; no. 7; pp. 15410 - 15432
Main Authors Souid, Mohammed Said, Sabit, Souhila, Bouazza, Zoubida, Sitthithakerngkiet, Kanokwan
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2025
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2025691

Cover

Abstract This paper investigated the existence and stability of solutions for boundary value problems involving Caputo fractional differential equations of variable order. Unlike constant-order models, variable-order equations allow the fractional order to change over time, enabling more flexible and accurate modeling of complex systems with evolving dynamics and memory. Using Darbo's fixed point theorem and the Kuratowski measure of noncompactness, we established new existence results for solutions within a Banach space of continuous functions. Our approach treated the variable order as piecewise constant, transforming the problem into a sequence of more manageable constant-order subproblems. Furthermore, we demonstrated Ulam-Hyers stability of the solutions, ensuring that small perturbations in the system did not lead to significant deviations in the results. To validate the theoretical findings, we provided a detailed example supported by numerical simulations. These results offered a solid foundation for future applications in science and engineering where system dynamics evolve over time.
AbstractList This paper investigated the existence and stability of solutions for boundary value problems involving Caputo fractional differential equations of variable order. Unlike constant-order models, variable-order equations allow the fractional order to change over time, enabling more flexible and accurate modeling of complex systems with evolving dynamics and memory. Using Darbo's fixed point theorem and the Kuratowski measure of noncompactness, we established new existence results for solutions within a Banach space of continuous functions. Our approach treated the variable order as piecewise constant, transforming the problem into a sequence of more manageable constant-order subproblems. Furthermore, we demonstrated Ulam-Hyers stability of the solutions, ensuring that small perturbations in the system did not lead to significant deviations in the results. To validate the theoretical findings, we provided a detailed example supported by numerical simulations. These results offered a solid foundation for future applications in science and engineering where system dynamics evolve over time.
Author Souid, Mohammed Said
Sabit, Souhila
Sitthithakerngkiet, Kanokwan
Bouazza, Zoubida
Author_xml – sequence: 1
  givenname: Mohammed Said
  surname: Souid
  fullname: Souid, Mohammed Said
– sequence: 2
  givenname: Souhila
  surname: Sabit
  fullname: Sabit, Souhila
– sequence: 3
  givenname: Zoubida
  surname: Bouazza
  fullname: Bouazza, Zoubida
– sequence: 4
  givenname: Kanokwan
  surname: Sitthithakerngkiet
  fullname: Sitthithakerngkiet, Kanokwan
BookMark eNpNkctOwzAQRS0EElC64wO8Y0OKY-fRLFF5VVRi0300tsfUJYmL7QD9Cb6ZBBBiNTNXozO6c0_JYec6JOQ8ZTNRieyqhbiZccbzokoPyAnPSpEU1Xx--K8_JtMQtowxnvKMl9kJ-bymIfZ6T52hC9j10VHjQUXrOmiotsagxy7aYcDXHkY9jLtv4C3IBqnzGj19s0BvwEt3EaixH6jpztku0rhB57Gl0Gn62HuI7j28WNoihN7jCBpcKNfuhpMdhnBGjgw0Aae_dULWd7frxUOyerpfLq5XiRKijInR0ggjpVQGOQMYPJcgCqaVNApzkzMmMxCqkKIUoFOpNVM8r7iEAqpUTMjyB6sdbOudty34fe3A1t-C8881-GhVg7XWXKTDw5jI88yUXHLkhSiyShZK6Hk2sC5_WMq7EDyaP17K6jGZekym_k1GfAH5mIdg
Cites_doi 10.1016/j.cnsns.2017.08.026
10.1007/978-1-4613-1281-9
10.3934/math.20241112
10.3390/math7030286
10.3934/math.2023038
10.1155/2024/5595720
10.3934/math.2023276
10.1007/s40314-018-0639-x
10.1002/mma.8306
10.1007/BF01911126
10.1016/j.physa.2017.12.007
10.1016/j.aml.2017.08.020
10.3934/math.20241398
10.3390/axioms12040339
10.1007/s12190-025-02386-3
10.3390/math9101134
10.3934/math.2020189
10.1007/s10915-024-02511-7
10.1016/j.cnsns.2015.10.027
10.3934/math.2024750
10.1080/10652469308819027
10.3934/math.2024403
10.3390/axioms11110634
10.1140/epjst/e2011-01390-6
10.1016/j.sigpro.2010.04.006
10.1007/s40314-018-0693-4
ContentType Journal Article
CorporateAuthor Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
Department of Economic Sciences, University of Tiaret, Algeria
Departement of Mathematics, University of Tiaret, Algeria
Department of Computer Science, University of Tiaret, Algeria
Intelligent and Nonlinear Dynamic Innovations Research Center, Science and Technology Research Institute, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
Department of Mathematics, Saveetha School of Engineering, SIMATS, Chennai, India
CorporateAuthor_xml – name: Department of Economic Sciences, University of Tiaret, Algeria
– name: Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
– name: Intelligent and Nonlinear Dynamic Innovations Research Center, Science and Technology Research Institute, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
– name: Department of Mathematics, Saveetha School of Engineering, SIMATS, Chennai, India
– name: Departement of Mathematics, University of Tiaret, Algeria
– name: Department of Computer Science, University of Tiaret, Algeria
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2025691
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 15432
ExternalDocumentID oai_doaj_org_article_dd23100203554f72b2e263649b6c3d84
10_3934_math_2025691
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c337t-fdbf3fbbbcfe20aa5697a360dcbfce5f500b4a3c6b373ad1bdd0c2592ba6a913
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Mon Sep 01 19:40:26 EDT 2025
Thu Jul 10 08:45:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-fdbf3fbbbcfe20aa5697a360dcbfce5f500b4a3c6b373ad1bdd0c2592ba6a913
OpenAccessLink https://doaj.org/article/dd23100203554f72b2e263649b6c3d84
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_dd23100203554f72b2e263649b6c3d84
crossref_primary_10_3934_math_2025691
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2025
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2025691-11
key-10.3934/math.2025691-33
key-10.3934/math.2025691-10
key-10.3934/math.2025691-32
key-10.3934/math.2025691-31
key-10.3934/math.2025691-30
key-10.3934/math.2025691-29
key-10.3934/math.2025691-28
key-10.3934/math.2025691-27
key-10.3934/math.2025691-26
key-10.3934/math.2025691-25
key-10.3934/math.2025691-24
key-10.3934/math.2025691-23
key-10.3934/math.2025691-22
key-10.3934/math.2025691-21
key-10.3934/math.2025691-20
key-10.3934/math.2025691-19
key-10.3934/math.2025691-18
key-10.3934/math.2025691-2
key-10.3934/math.2025691-17
key-10.3934/math.2025691-1
key-10.3934/math.2025691-16
key-10.3934/math.2025691-4
key-10.3934/math.2025691-15
key-10.3934/math.2025691-3
key-10.3934/math.2025691-14
key-10.3934/math.2025691-6
key-10.3934/math.2025691-13
key-10.3934/math.2025691-5
key-10.3934/math.2025691-12
key-10.3934/math.2025691-34
key-10.3934/math.2025691-8
key-10.3934/math.2025691-7
key-10.3934/math.2025691-9
References_xml – ident: key-10.3934/math.2025691-12
  doi: 10.1016/j.cnsns.2017.08.026
– ident: key-10.3934/math.2025691-13
  doi: 10.1007/978-1-4613-1281-9
– ident: key-10.3934/math.2025691-21
  doi: 10.3934/math.20241112
– ident: key-10.3934/math.2025691-32
  doi: 10.3390/math7030286
– ident: key-10.3934/math.2025691-3
– ident: key-10.3934/math.2025691-6
  doi: 10.3934/math.2023038
– ident: key-10.3934/math.2025691-9
  doi: 10.1155/2024/5595720
– ident: key-10.3934/math.2025691-10
  doi: 10.3934/math.2023276
– ident: key-10.3934/math.2025691-28
  doi: 10.1007/s40314-018-0639-x
– ident: key-10.3934/math.2025691-7
  doi: 10.1002/mma.8306
– ident: key-10.3934/math.2025691-22
  doi: 10.1007/BF01911126
– ident: key-10.3934/math.2025691-1
  doi: 10.1016/j.physa.2017.12.007
– ident: key-10.3934/math.2025691-15
– ident: key-10.3934/math.2025691-19
– ident: key-10.3934/math.2025691-29
  doi: 10.1016/j.aml.2017.08.020
– ident: key-10.3934/math.2025691-34
– ident: key-10.3934/math.2025691-5
  doi: 10.3934/math.20241398
– ident: key-10.3934/math.2025691-26
  doi: 10.3390/axioms12040339
– ident: key-10.3934/math.2025691-16
  doi: 10.1007/s12190-025-02386-3
– ident: key-10.3934/math.2025691-20
  doi: 10.3390/math9101134
– ident: key-10.3934/math.2025691-33
  doi: 10.3934/math.2020189
– ident: key-10.3934/math.2025691-30
  doi: 10.1007/s10915-024-02511-7
– ident: key-10.3934/math.2025691-2
– ident: key-10.3934/math.2025691-25
  doi: 10.1016/j.cnsns.2015.10.027
– ident: key-10.3934/math.2025691-17
  doi: 10.3934/math.2024750
– ident: key-10.3934/math.2025691-23
  doi: 10.1080/10652469308819027
– ident: key-10.3934/math.2025691-4
– ident: key-10.3934/math.2025691-18
  doi: 10.3934/math.2024403
– ident: key-10.3934/math.2025691-8
  doi: 10.3390/axioms11110634
– ident: key-10.3934/math.2025691-31
– ident: key-10.3934/math.2025691-24
  doi: 10.1140/epjst/e2011-01390-6
– ident: key-10.3934/math.2025691-27
  doi: 10.1016/j.sigpro.2010.04.006
– ident: key-10.3934/math.2025691-11
  doi: 10.1007/s40314-018-0693-4
– ident: key-10.3934/math.2025691-14
SSID ssj0002124274
Score 2.2779117
Snippet This paper investigated the existence and stability of solutions for boundary value problems involving Caputo fractional differential equations of variable...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 15410
SubjectTerms boundary value problem
darbo's fixed point
fractional differential equations
measure of noncompactness
ulam-hyers
variable order
Title A study of Caputo fractional differential equations of variable order via Darbo's fixed point theorem and Kuratowski measure of noncompactness
URI https://doaj.org/article/dd23100203554f72b2e263649b6c3d84
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveQAxRXVjx2nGUlFVoDIVqVvkp1RBk9KmhV_Bb-YubqsysbBGjuN8l9zD5_uOkFuhYpAySyKvjI9EolqR1tZG3ou2AXsXpxKLkwcvsv8qnkbJaKvVF54JC_TAAbimteiBYL4MDJ9PYx27WHIpMi0Nt-2aCZRlbCuYQh0MCllAvBVOuvOMiyb4f5h7AAuftX7ZoC2q_tqm9A7JwcoZpJ2wiCOy44pjsj_YMKnOT8h3h9YMsLT0tKumi6qkfhaKEeDOdXsT-E3fqfsItN1zHLuEGBiromjNrUmXY0VxM7q8n1M__nKWTstxUdFQxzihqrD0eYEp98_525hOws4hTlSURX1O3VSoFE_JsPc47PajVQ-FyHCeVpG32nOvtTbexUwpeP1Uccms0d64xCeMaaG4kZqnXNkWyIkZCIliraTKWvyM7MJz3Dmh3nDnOdLNKYfZQs2FzlLmpAT8bSIb5G4Naj4NTBk5RBgIfo7g5yvwG-QBEd-MQX7r-gJIPV9JPf9L6hf_Mckl2cM1hQ2VK7JbzRbuGlyMSt_UX9MPidDSRg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+study+of+Caputo+fractional+differential+equations+of+variable+order+via+Darbo%27s+fixed+point+theorem+and+Kuratowski+measure+of+noncompactness&rft.jtitle=AIMS+mathematics&rft.au=Souid%2C+Mohammed+Said&rft.au=Sabit%2C+Souhila&rft.au=Bouazza%2C+Zoubida&rft.au=Sitthithakerngkiet%2C+Kanokwan&rft.date=2025-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=10&rft.issue=7&rft.spage=15410&rft.epage=15432&rft_id=info:doi/10.3934%2Fmath.2025691&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2025691
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon