A study of Caputo fractional differential equations of variable order via Darbo's fixed point theorem and Kuratowski measure of noncompactness
This paper investigated the existence and stability of solutions for boundary value problems involving Caputo fractional differential equations of variable order. Unlike constant-order models, variable-order equations allow the fractional order to change over time, enabling more flexible and accurat...
Saved in:
Published in | AIMS mathematics Vol. 10; no. 7; pp. 15410 - 15432 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2025691 |
Cover
Abstract | This paper investigated the existence and stability of solutions for boundary value problems involving Caputo fractional differential equations of variable order. Unlike constant-order models, variable-order equations allow the fractional order to change over time, enabling more flexible and accurate modeling of complex systems with evolving dynamics and memory. Using Darbo's fixed point theorem and the Kuratowski measure of noncompactness, we established new existence results for solutions within a Banach space of continuous functions. Our approach treated the variable order as piecewise constant, transforming the problem into a sequence of more manageable constant-order subproblems. Furthermore, we demonstrated Ulam-Hyers stability of the solutions, ensuring that small perturbations in the system did not lead to significant deviations in the results. To validate the theoretical findings, we provided a detailed example supported by numerical simulations. These results offered a solid foundation for future applications in science and engineering where system dynamics evolve over time. |
---|---|
AbstractList | This paper investigated the existence and stability of solutions for boundary value problems involving Caputo fractional differential equations of variable order. Unlike constant-order models, variable-order equations allow the fractional order to change over time, enabling more flexible and accurate modeling of complex systems with evolving dynamics and memory. Using Darbo's fixed point theorem and the Kuratowski measure of noncompactness, we established new existence results for solutions within a Banach space of continuous functions. Our approach treated the variable order as piecewise constant, transforming the problem into a sequence of more manageable constant-order subproblems. Furthermore, we demonstrated Ulam-Hyers stability of the solutions, ensuring that small perturbations in the system did not lead to significant deviations in the results. To validate the theoretical findings, we provided a detailed example supported by numerical simulations. These results offered a solid foundation for future applications in science and engineering where system dynamics evolve over time. |
Author | Souid, Mohammed Said Sabit, Souhila Sitthithakerngkiet, Kanokwan Bouazza, Zoubida |
Author_xml | – sequence: 1 givenname: Mohammed Said surname: Souid fullname: Souid, Mohammed Said – sequence: 2 givenname: Souhila surname: Sabit fullname: Sabit, Souhila – sequence: 3 givenname: Zoubida surname: Bouazza fullname: Bouazza, Zoubida – sequence: 4 givenname: Kanokwan surname: Sitthithakerngkiet fullname: Sitthithakerngkiet, Kanokwan |
BookMark | eNpNkctOwzAQRS0EElC64wO8Y0OKY-fRLFF5VVRi0300tsfUJYmL7QD9Cb6ZBBBiNTNXozO6c0_JYec6JOQ8ZTNRieyqhbiZccbzokoPyAnPSpEU1Xx--K8_JtMQtowxnvKMl9kJ-bymIfZ6T52hC9j10VHjQUXrOmiotsagxy7aYcDXHkY9jLtv4C3IBqnzGj19s0BvwEt3EaixH6jpztku0rhB57Gl0Gn62HuI7j28WNoihN7jCBpcKNfuhpMdhnBGjgw0Aae_dULWd7frxUOyerpfLq5XiRKijInR0ggjpVQGOQMYPJcgCqaVNApzkzMmMxCqkKIUoFOpNVM8r7iEAqpUTMjyB6sdbOudty34fe3A1t-C8881-GhVg7XWXKTDw5jI88yUXHLkhSiyShZK6Hk2sC5_WMq7EDyaP17K6jGZekym_k1GfAH5mIdg |
Cites_doi | 10.1016/j.cnsns.2017.08.026 10.1007/978-1-4613-1281-9 10.3934/math.20241112 10.3390/math7030286 10.3934/math.2023038 10.1155/2024/5595720 10.3934/math.2023276 10.1007/s40314-018-0639-x 10.1002/mma.8306 10.1007/BF01911126 10.1016/j.physa.2017.12.007 10.1016/j.aml.2017.08.020 10.3934/math.20241398 10.3390/axioms12040339 10.1007/s12190-025-02386-3 10.3390/math9101134 10.3934/math.2020189 10.1007/s10915-024-02511-7 10.1016/j.cnsns.2015.10.027 10.3934/math.2024750 10.1080/10652469308819027 10.3934/math.2024403 10.3390/axioms11110634 10.1140/epjst/e2011-01390-6 10.1016/j.sigpro.2010.04.006 10.1007/s40314-018-0693-4 |
ContentType | Journal Article |
CorporateAuthor | Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand Department of Economic Sciences, University of Tiaret, Algeria Departement of Mathematics, University of Tiaret, Algeria Department of Computer Science, University of Tiaret, Algeria Intelligent and Nonlinear Dynamic Innovations Research Center, Science and Technology Research Institute, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand Department of Mathematics, Saveetha School of Engineering, SIMATS, Chennai, India |
CorporateAuthor_xml | – name: Department of Economic Sciences, University of Tiaret, Algeria – name: Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand – name: Intelligent and Nonlinear Dynamic Innovations Research Center, Science and Technology Research Institute, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand – name: Department of Mathematics, Saveetha School of Engineering, SIMATS, Chennai, India – name: Departement of Mathematics, University of Tiaret, Algeria – name: Department of Computer Science, University of Tiaret, Algeria |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2025691 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 15432 |
ExternalDocumentID | oai_doaj_org_article_dd23100203554f72b2e263649b6c3d84 10_3934_math_2025691 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c337t-fdbf3fbbbcfe20aa5697a360dcbfce5f500b4a3c6b373ad1bdd0c2592ba6a913 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Mon Sep 01 19:40:26 EDT 2025 Thu Jul 10 08:45:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-fdbf3fbbbcfe20aa5697a360dcbfce5f500b4a3c6b373ad1bdd0c2592ba6a913 |
OpenAccessLink | https://doaj.org/article/dd23100203554f72b2e263649b6c3d84 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dd23100203554f72b2e263649b6c3d84 crossref_primary_10_3934_math_2025691 |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2025 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2025691-11 key-10.3934/math.2025691-33 key-10.3934/math.2025691-10 key-10.3934/math.2025691-32 key-10.3934/math.2025691-31 key-10.3934/math.2025691-30 key-10.3934/math.2025691-29 key-10.3934/math.2025691-28 key-10.3934/math.2025691-27 key-10.3934/math.2025691-26 key-10.3934/math.2025691-25 key-10.3934/math.2025691-24 key-10.3934/math.2025691-23 key-10.3934/math.2025691-22 key-10.3934/math.2025691-21 key-10.3934/math.2025691-20 key-10.3934/math.2025691-19 key-10.3934/math.2025691-18 key-10.3934/math.2025691-2 key-10.3934/math.2025691-17 key-10.3934/math.2025691-1 key-10.3934/math.2025691-16 key-10.3934/math.2025691-4 key-10.3934/math.2025691-15 key-10.3934/math.2025691-3 key-10.3934/math.2025691-14 key-10.3934/math.2025691-6 key-10.3934/math.2025691-13 key-10.3934/math.2025691-5 key-10.3934/math.2025691-12 key-10.3934/math.2025691-34 key-10.3934/math.2025691-8 key-10.3934/math.2025691-7 key-10.3934/math.2025691-9 |
References_xml | – ident: key-10.3934/math.2025691-12 doi: 10.1016/j.cnsns.2017.08.026 – ident: key-10.3934/math.2025691-13 doi: 10.1007/978-1-4613-1281-9 – ident: key-10.3934/math.2025691-21 doi: 10.3934/math.20241112 – ident: key-10.3934/math.2025691-32 doi: 10.3390/math7030286 – ident: key-10.3934/math.2025691-3 – ident: key-10.3934/math.2025691-6 doi: 10.3934/math.2023038 – ident: key-10.3934/math.2025691-9 doi: 10.1155/2024/5595720 – ident: key-10.3934/math.2025691-10 doi: 10.3934/math.2023276 – ident: key-10.3934/math.2025691-28 doi: 10.1007/s40314-018-0639-x – ident: key-10.3934/math.2025691-7 doi: 10.1002/mma.8306 – ident: key-10.3934/math.2025691-22 doi: 10.1007/BF01911126 – ident: key-10.3934/math.2025691-1 doi: 10.1016/j.physa.2017.12.007 – ident: key-10.3934/math.2025691-15 – ident: key-10.3934/math.2025691-19 – ident: key-10.3934/math.2025691-29 doi: 10.1016/j.aml.2017.08.020 – ident: key-10.3934/math.2025691-34 – ident: key-10.3934/math.2025691-5 doi: 10.3934/math.20241398 – ident: key-10.3934/math.2025691-26 doi: 10.3390/axioms12040339 – ident: key-10.3934/math.2025691-16 doi: 10.1007/s12190-025-02386-3 – ident: key-10.3934/math.2025691-20 doi: 10.3390/math9101134 – ident: key-10.3934/math.2025691-33 doi: 10.3934/math.2020189 – ident: key-10.3934/math.2025691-30 doi: 10.1007/s10915-024-02511-7 – ident: key-10.3934/math.2025691-2 – ident: key-10.3934/math.2025691-25 doi: 10.1016/j.cnsns.2015.10.027 – ident: key-10.3934/math.2025691-17 doi: 10.3934/math.2024750 – ident: key-10.3934/math.2025691-23 doi: 10.1080/10652469308819027 – ident: key-10.3934/math.2025691-4 – ident: key-10.3934/math.2025691-18 doi: 10.3934/math.2024403 – ident: key-10.3934/math.2025691-8 doi: 10.3390/axioms11110634 – ident: key-10.3934/math.2025691-31 – ident: key-10.3934/math.2025691-24 doi: 10.1140/epjst/e2011-01390-6 – ident: key-10.3934/math.2025691-27 doi: 10.1016/j.sigpro.2010.04.006 – ident: key-10.3934/math.2025691-11 doi: 10.1007/s40314-018-0693-4 – ident: key-10.3934/math.2025691-14 |
SSID | ssj0002124274 |
Score | 2.2779117 |
Snippet | This paper investigated the existence and stability of solutions for boundary value problems involving Caputo fractional differential equations of variable... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 15410 |
SubjectTerms | boundary value problem darbo's fixed point fractional differential equations measure of noncompactness ulam-hyers variable order |
Title | A study of Caputo fractional differential equations of variable order via Darbo's fixed point theorem and Kuratowski measure of noncompactness |
URI | https://doaj.org/article/dd23100203554f72b2e263649b6c3d84 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveQAxRXVjx2nGUlFVoDIVqVvkp1RBk9KmhV_Bb-YubqsysbBGjuN8l9zD5_uOkFuhYpAySyKvjI9EolqR1tZG3ou2AXsXpxKLkwcvsv8qnkbJaKvVF54JC_TAAbimteiBYL4MDJ9PYx27WHIpMi0Nt-2aCZRlbCuYQh0MCllAvBVOuvOMiyb4f5h7AAuftX7ZoC2q_tqm9A7JwcoZpJ2wiCOy44pjsj_YMKnOT8h3h9YMsLT0tKumi6qkfhaKEeDOdXsT-E3fqfsItN1zHLuEGBiromjNrUmXY0VxM7q8n1M__nKWTstxUdFQxzihqrD0eYEp98_525hOws4hTlSURX1O3VSoFE_JsPc47PajVQ-FyHCeVpG32nOvtTbexUwpeP1Uccms0d64xCeMaaG4kZqnXNkWyIkZCIliraTKWvyM7MJz3Dmh3nDnOdLNKYfZQs2FzlLmpAT8bSIb5G4Naj4NTBk5RBgIfo7g5yvwG-QBEd-MQX7r-gJIPV9JPf9L6hf_Mckl2cM1hQ2VK7JbzRbuGlyMSt_UX9MPidDSRg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+study+of+Caputo+fractional+differential+equations+of+variable+order+via+Darbo%27s+fixed+point+theorem+and+Kuratowski+measure+of+noncompactness&rft.jtitle=AIMS+mathematics&rft.au=Souid%2C+Mohammed+Said&rft.au=Sabit%2C+Souhila&rft.au=Bouazza%2C+Zoubida&rft.au=Sitthithakerngkiet%2C+Kanokwan&rft.date=2025-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=10&rft.issue=7&rft.spage=15410&rft.epage=15432&rft_id=info:doi/10.3934%2Fmath.2025691&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2025691 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |