Construction of steady-active self-supported porous Ir-based electrocatalysts for the oxygen evolution reaction
Developing highly active and stable oxygen evolution reaction (OER) catalysts for water electrolysis remains a great challenge. A self-supported Ir nanocatalyst was prepared via a self-assembly method. Its porous structure and residual metal incorporation contributed to its high activity and stabili...
Saved in:
Published in | Chemical communications (Cambridge, England) Vol. 59; no. 13; pp. 1813 - 1816 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
09.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing highly active and stable oxygen evolution reaction (OER) catalysts for water electrolysis remains a great challenge. A self-supported Ir nanocatalyst was prepared
via
a self-assembly method. Its porous structure and residual metal incorporation contributed to its high activity and stability for the OER in acid.
A self-supported Ir nanocatalyst was prepared
via
a facile self-assembly method. The porous structure and residual metal incorporation contributed to the high activity and stability of the nanocatalyst for the oxygen evolution reaction in acid. |
---|---|
AbstractList | Developing highly active and stable oxygen evolution reaction (OER) catalysts for water electrolysis remains a great challenge. A self-supported Ir nanocatalyst was prepared
a self-assembly method. Its porous structure and residual metal incorporation contributed to its high activity and stability for the OER in acid. Developing highly active and stable oxygen evolution reaction (OER) catalysts for water electrolysis remains a great challenge. A self-supported Ir nanocatalyst was prepared via a self-assembly method. Its porous structure and residual metal incorporation contributed to its high activity and stability for the OER in acid. Developing highly active and stable oxygen evolution reaction (OER) catalysts for water electrolysis remains a great challenge. A self-supported Ir nanocatalyst was prepared via a self-assembly method. Its porous structure and residual metal incorporation contributed to its high activity and stability for the OER in acid.Developing highly active and stable oxygen evolution reaction (OER) catalysts for water electrolysis remains a great challenge. A self-supported Ir nanocatalyst was prepared via a self-assembly method. Its porous structure and residual metal incorporation contributed to its high activity and stability for the OER in acid. Developing highly active and stable oxygen evolution reaction (OER) catalysts for water electrolysis remains a great challenge. A self-supported Ir nanocatalyst was prepared via a self-assembly method. Its porous structure and residual metal incorporation contributed to its high activity and stability for the OER in acid. A self-supported Ir nanocatalyst was prepared via a facile self-assembly method. The porous structure and residual metal incorporation contributed to the high activity and stability of the nanocatalyst for the oxygen evolution reaction in acid. Developing highly active and stable oxygen evolution reaction (OER) catalysts for water electrolysis remains a great challenge. A self-supported Ir nanocatalyst was prepared via a self-assembly method. Its porous structure and residual metal incorporation contributed to its high activity and stability for the OER in acid. |
Author | Guo, Xiaoxuan Wang, Yongsheng Zhu, Wei Wang, Xinyu Huang, Junling Zhuang, Zhongbin Yin, Likun |
AuthorAffiliation | Institute of Science and Technology Beijing Key Laboratory of Energy Environmental Catalysis Beijing University of Chemical Technology State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering International Clean Energy Research Office China Three Gorges Corporation |
AuthorAffiliation_xml | – sequence: 0 name: China Three Gorges Corporation – sequence: 0 name: Beijing Key Laboratory of Energy Environmental Catalysis – sequence: 0 name: Institute of Science and Technology – sequence: 0 name: State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering – sequence: 0 name: International Clean Energy Research Office – sequence: 0 name: Beijing University of Chemical Technology |
Author_xml | – sequence: 1 givenname: Yongsheng surname: Wang fullname: Wang, Yongsheng – sequence: 2 givenname: Xiaoxuan surname: Guo fullname: Guo, Xiaoxuan – sequence: 3 givenname: Xinyu surname: Wang fullname: Wang, Xinyu – sequence: 4 givenname: Junling surname: Huang fullname: Huang, Junling – sequence: 5 givenname: Likun surname: Yin fullname: Yin, Likun – sequence: 6 givenname: Wei surname: Zhu fullname: Zhu, Wei – sequence: 7 givenname: Zhongbin surname: Zhuang fullname: Zhuang, Zhongbin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36722877$$D View this record in MEDLINE/PubMed |
BookMark | eNptkctLxDAQxoMovi_elYAXEap5NI8epT5B8KLgrWTTqVa6zZqki_vfm-76ADGXSYbffJOZbwet964HhA4oOaOEF-c1s5ZIxqldQ9uUyzwTuX5eH--iyBTPxRbaCeGNpEOF3kRbXCrGtFLbyJWuD9EPNraux67BIYKpF5lJiTngAF2ThWE2cz5CjVNwQ8B3PpuYkN7QgY3eWRNNtwgx4MZ5HF8Bu4_FC_QY5q4blsoezLLFHtpoTBdg_yvuoqfrq8fyNrt_uLkrL-4zy7mKWWNyxoXSdFJwbo2khSLECqKo5AQE04Rr0HVttGWCEGYnhVQ11JIKaEgDfBedrHRn3r0PEGI1bYOFrjM9pBEqpkYpnUuZ0OM_6JsbfJ9-N1J5zrlgKlFHX9QwmUJdzXw7NX5Rfa8yAacrwHoXgofmB6GkGn2qLllZLn0qE0z-wLaNZlxQ9Kbt_i85XJX4YH-kf63nn9wenwE |
CitedBy_id | crossref_primary_10_1016_j_jechem_2024_11_033 crossref_primary_10_1002_cplu_202300514 crossref_primary_10_1002_cnma_202400327 crossref_primary_10_1039_D4QM00842A crossref_primary_10_3390_coatings13111957 |
Cites_doi | 10.1021/acscatal.9b00280 10.1021/jacs.5b07788 10.1021/acs.accounts.8b00070 10.1002/sia.6225 10.1021/acscatal.0c04613 10.1002/adfm.202108465 10.1016/j.ijhydene.2020.03.109 10.1039/C7SE00113D 10.1002/anie.201507626 10.1007/s40843-017-9187-1 10.1002/anie.201911470 10.1002/anie.200701355 10.1021/acscatal.7b04410 10.1021/acs.nanolett.0c04878 10.1038/s41467-017-01734-7 10.1039/C5SC00518C 10.1021/acsnano.7b00233 10.1021/acscatal.9b00648 10.1126/sciadv.1501602 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d2cc06231c |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1364-548X |
EndPage | 1816 |
ExternalDocumentID | 36722877 10_1039_D2CC06231C d2cc06231c |
Genre | Journal Article |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 29B 4.4 53G 5GY 6J9 705 70~ 7~J AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACBEA ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ IH2 J3I M4U N9A O9- P2P R7B R7C R7D RAOCF RCNCU RPMJG RRA RRC RSCEA SJN SKA SKF SKH SLH TN5 TWZ UPT VH6 VQA WH7 X7L AAYXX AFRZK AKMSF ALUYA CITATION R56 NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c337t-fa4235781b933ca619700c5071630e528038e8dda8c25002cb967ded615ef0fe3 |
ISSN | 1359-7345 1364-548X |
IngestDate | Fri Jul 11 04:09:11 EDT 2025 Mon Jun 30 04:07:21 EDT 2025 Wed Feb 19 02:25:25 EST 2025 Thu Apr 24 23:03:40 EDT 2025 Tue Jul 01 04:22:58 EDT 2025 Tue Dec 17 20:58:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-fa4235781b933ca619700c5071630e528038e8dda8c25002cb967ded615ef0fe3 |
Notes | https://doi.org/10.1039/d2cc06231c Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7187-1266 0000-0002-0317-7229 |
PMID | 36722877 |
PQID | 2774433527 |
PQPubID | 2047502 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_2771638466 crossref_citationtrail_10_1039_D2CC06231C crossref_primary_10_1039_D2CC06231C rsc_primary_d2cc06231c proquest_journals_2774433527 pubmed_primary_36722877 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-09 |
PublicationDateYYYYMMDD | 2023-02-09 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical communications (Cambridge, England) |
PublicationTitleAlternate | Chem Commun (Camb) |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Spöri (D2CC06231C/cit14/1) 2019; 9 Freakley (D2CC06231C/cit20/1) 2017; 49 Daiane Ferreira da Silva (D2CC06231C/cit8/1) 2021; 11 Yin (D2CC06231C/cit18/1) 2019; 58 Claudel (D2CC06231C/cit3/1) 2019; 9 Bai (D2CC06231C/cit10/1) 2007; 46 Lettenmeier (D2CC06231C/cit12/1) 2016; 55 Liu (D2CC06231C/cit17/1) 2021; 21 Xu (D2CC06231C/cit19/1) 2018; 51 Oh (D2CC06231C/cit5/1) 2015; 6 Zheng (D2CC06231C/cit16/1) 2016; 2 Park (D2CC06231C/cit13/1) 2017; 11 Zhang (D2CC06231C/cit4/1) 2018; 61 Pareek (D2CC06231C/cit1/1) 2020; 3 Kim (D2CC06231C/cit9/1) 2017; 8 Grigoriev (D2CC06231C/cit2/1) 2020; 45 Fu (D2CC06231C/cit7/1) 2017; 1 Tackett (D2CC06231C/cit11/1) 2018; 8 Reier (D2CC06231C/cit15/1) 2015; 137 She (D2CC06231C/cit6/1) 2022; 32 |
References_xml | – volume: 3 start-page: 319 year: 2020 ident: D2CC06231C/cit1/1 publication-title: Mater. Sci. Technol. – volume: 9 start-page: 4688 year: 2019 ident: D2CC06231C/cit3/1 publication-title: ACS Catal. doi: 10.1021/acscatal.9b00280 – volume: 137 start-page: 13031 year: 2015 ident: D2CC06231C/cit15/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b07788 – volume: 51 start-page: 1590 year: 2018 ident: D2CC06231C/cit19/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00070 – volume: 49 start-page: 794 year: 2017 ident: D2CC06231C/cit20/1 publication-title: Surf. Interface Anal. doi: 10.1002/sia.6225 – volume: 11 start-page: 4107 year: 2021 ident: D2CC06231C/cit8/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c04613 – volume: 32 start-page: 2108465 year: 2022 ident: D2CC06231C/cit6/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202108465 – volume: 45 start-page: 26036 year: 2020 ident: D2CC06231C/cit2/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.03.109 – volume: 1 start-page: 1199 year: 2017 ident: D2CC06231C/cit7/1 publication-title: Sustainable Energy Fuels doi: 10.1039/C7SE00113D – volume: 55 start-page: 742 year: 2016 ident: D2CC06231C/cit12/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201507626 – volume: 61 start-page: 926 year: 2018 ident: D2CC06231C/cit4/1 publication-title: Sci. China Mater. doi: 10.1007/s40843-017-9187-1 – volume: 58 start-page: 18676 year: 2019 ident: D2CC06231C/cit18/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201911470 – volume: 46 start-page: 6650 year: 2007 ident: D2CC06231C/cit10/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200701355 – volume: 8 start-page: 2615 year: 2018 ident: D2CC06231C/cit11/1 publication-title: ACS Catal. doi: 10.1021/acscatal.7b04410 – volume: 21 start-page: 2809 year: 2021 ident: D2CC06231C/cit17/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c04878 – volume: 8 start-page: 1449 year: 2017 ident: D2CC06231C/cit9/1 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01734-7 – volume: 6 start-page: 3321 year: 2015 ident: D2CC06231C/cit5/1 publication-title: Chem. Sci. doi: 10.1039/C5SC00518C – volume: 11 start-page: 5500 year: 2017 ident: D2CC06231C/cit13/1 publication-title: ACS Nano doi: 10.1021/acsnano.7b00233 – volume: 9 start-page: 6653 year: 2019 ident: D2CC06231C/cit14/1 publication-title: ACS Catal. doi: 10.1021/acscatal.9b00648 – volume: 2 start-page: e1501602 year: 2016 ident: D2CC06231C/cit16/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.1501602 |
SSID | ssj0000158 |
Score | 2.4504242 |
Snippet | Developing highly active and stable oxygen evolution reaction (OER) catalysts for water electrolysis remains a great challenge. A self-supported Ir... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1813 |
SubjectTerms | Electrocatalysts Electrolysis Oxygen evolution reactions Self-assembly |
Title | Construction of steady-active self-supported porous Ir-based electrocatalysts for the oxygen evolution reaction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36722877 https://www.proquest.com/docview/2774433527 https://www.proquest.com/docview/2771638466 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKdoAL4tegMJARXFBlcGI3P45T6bRNZVxaEU5RajvdpCmZlgat3PjPeXbsJIUeBpe0cl0n8vfZfs_x-x5C7wOZa9UxSkQmBeGwZpIYfDYSBRmUMuEtqQ5O_nIenCz4WTJOBoNf_eiS9fKj-LkzruR_UIUywFVHyf4Dsm2jUADfAV-4AsJwvRPGOtum03_VVp9BbEMyM4eNKnWVk6q-NtLlcgQf-rjr6Q3RK5cc2QQ4Zv9mU62r9sBhebtZae3_H_bZR2BXihY_p2rghAZEP8LEbOG2YWBmnm2ShPQ2HL7ZHervZbGqLpRdOfURoNps2yaXWXlbd6R19ZPLYlN3LLSlZ7WW-lj1Ny98Zs47x735lgWcgNOUNMvRjjI7SY_jPhlZb8oFE4XtXAso01Kq0heCgo3niW7Fc2_5z7-mx4vZLJ1Pk_k9tO-DpwFT5f7RdH4662mQmSSv7VM5jVsWf-ra3rZq_nJVwHC5cQlljOEyf4QeWo8DHzX0eYwGqniC7k9cor-nqOzTCJc53qIR3qYRbmiEHY3wnzTCQCMMNMINjXBLI-xo9AwtjqfzyQmxeTiIYCxckzzjRhTJW8aMiQxc7pBSoR2JgFE11vnNIhVJmUUCDGrqi2UchFJJGPgqp7liB2ivKAv1AmHliRxcEsk9rngu48yTknp5llPJZMT5EH1w_ZgKK1Kvc6VcpeawBIvTz_5kYvp8MkTv2rrXjTTLzlqHDo7UDt0qBaQ519GG4RC9bX-Gbtdvy7JCQT_qOtpX4UEwRM8bGNvbsCD0_SiEfx8Arm1xx4eXd2j2FXrQDYlDtAdAq9dg4a6XbywHfwNe66zp |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+steady-active+self-supported+porous+Ir-based+electrocatalysts+for+the+oxygen+evolution+reaction&rft.jtitle=Chemical+communications+%28Cambridge%2C+England%29&rft.au=Wang%2C+Yongsheng&rft.au=Guo%2C+Xiaoxuan&rft.au=Wang%2C+Xinyu&rft.au=Huang%2C+Junling&rft.date=2023-02-09&rft.issn=1364-548X&rft.eissn=1364-548X&rft.volume=59&rft.issue=13&rft.spage=1813&rft_id=info:doi/10.1039%2Fd2cc06231c&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon |