Construction of steady-active self-supported porous Ir-based electrocatalysts for the oxygen evolution reaction

Developing highly active and stable oxygen evolution reaction (OER) catalysts for water electrolysis remains a great challenge. A self-supported Ir nanocatalyst was prepared via a self-assembly method. Its porous structure and residual metal incorporation contributed to its high activity and stabili...

Full description

Saved in:
Bibliographic Details
Published inChemical communications (Cambridge, England) Vol. 59; no. 13; pp. 1813 - 1816
Main Authors Wang, Yongsheng, Guo, Xiaoxuan, Wang, Xinyu, Huang, Junling, Yin, Likun, Zhu, Wei, Zhuang, Zhongbin
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 09.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing highly active and stable oxygen evolution reaction (OER) catalysts for water electrolysis remains a great challenge. A self-supported Ir nanocatalyst was prepared via a self-assembly method. Its porous structure and residual metal incorporation contributed to its high activity and stability for the OER in acid. A self-supported Ir nanocatalyst was prepared via a facile self-assembly method. The porous structure and residual metal incorporation contributed to the high activity and stability of the nanocatalyst for the oxygen evolution reaction in acid.
AbstractList Developing highly active and stable oxygen evolution reaction (OER) catalysts for water electrolysis remains a great challenge. A self-supported Ir nanocatalyst was prepared a self-assembly method. Its porous structure and residual metal incorporation contributed to its high activity and stability for the OER in acid.
Developing highly active and stable oxygen evolution reaction (OER) catalysts for water electrolysis remains a great challenge. A self-supported Ir nanocatalyst was prepared via a self-assembly method. Its porous structure and residual metal incorporation contributed to its high activity and stability for the OER in acid.
Developing highly active and stable oxygen evolution reaction (OER) catalysts for water electrolysis remains a great challenge. A self-supported Ir nanocatalyst was prepared via a self-assembly method. Its porous structure and residual metal incorporation contributed to its high activity and stability for the OER in acid.Developing highly active and stable oxygen evolution reaction (OER) catalysts for water electrolysis remains a great challenge. A self-supported Ir nanocatalyst was prepared via a self-assembly method. Its porous structure and residual metal incorporation contributed to its high activity and stability for the OER in acid.
Developing highly active and stable oxygen evolution reaction (OER) catalysts for water electrolysis remains a great challenge. A self-supported Ir nanocatalyst was prepared via a self-assembly method. Its porous structure and residual metal incorporation contributed to its high activity and stability for the OER in acid. A self-supported Ir nanocatalyst was prepared via a facile self-assembly method. The porous structure and residual metal incorporation contributed to the high activity and stability of the nanocatalyst for the oxygen evolution reaction in acid.
Developing highly active and stable oxygen evolution reaction (OER) catalysts for water electrolysis remains a great challenge. A self-supported Ir nanocatalyst was prepared via a self-assembly method. Its porous structure and residual metal incorporation contributed to its high activity and stability for the OER in acid.
Author Guo, Xiaoxuan
Wang, Yongsheng
Zhu, Wei
Wang, Xinyu
Huang, Junling
Zhuang, Zhongbin
Yin, Likun
AuthorAffiliation Institute of Science and Technology
Beijing Key Laboratory of Energy Environmental Catalysis
Beijing University of Chemical Technology
State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering
International Clean Energy Research Office
China Three Gorges Corporation
AuthorAffiliation_xml – sequence: 0
  name: China Three Gorges Corporation
– sequence: 0
  name: Beijing Key Laboratory of Energy Environmental Catalysis
– sequence: 0
  name: Institute of Science and Technology
– sequence: 0
  name: State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering
– sequence: 0
  name: International Clean Energy Research Office
– sequence: 0
  name: Beijing University of Chemical Technology
Author_xml – sequence: 1
  givenname: Yongsheng
  surname: Wang
  fullname: Wang, Yongsheng
– sequence: 2
  givenname: Xiaoxuan
  surname: Guo
  fullname: Guo, Xiaoxuan
– sequence: 3
  givenname: Xinyu
  surname: Wang
  fullname: Wang, Xinyu
– sequence: 4
  givenname: Junling
  surname: Huang
  fullname: Huang, Junling
– sequence: 5
  givenname: Likun
  surname: Yin
  fullname: Yin, Likun
– sequence: 6
  givenname: Wei
  surname: Zhu
  fullname: Zhu, Wei
– sequence: 7
  givenname: Zhongbin
  surname: Zhuang
  fullname: Zhuang, Zhongbin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36722877$$D View this record in MEDLINE/PubMed
BookMark eNptkctLxDAQxoMovi_elYAXEap5NI8epT5B8KLgrWTTqVa6zZqki_vfm-76ADGXSYbffJOZbwet964HhA4oOaOEF-c1s5ZIxqldQ9uUyzwTuX5eH--iyBTPxRbaCeGNpEOF3kRbXCrGtFLbyJWuD9EPNraux67BIYKpF5lJiTngAF2ThWE2cz5CjVNwQ8B3PpuYkN7QgY3eWRNNtwgx4MZ5HF8Bu4_FC_QY5q4blsoezLLFHtpoTBdg_yvuoqfrq8fyNrt_uLkrL-4zy7mKWWNyxoXSdFJwbo2khSLECqKo5AQE04Rr0HVttGWCEGYnhVQ11JIKaEgDfBedrHRn3r0PEGI1bYOFrjM9pBEqpkYpnUuZ0OM_6JsbfJ9-N1J5zrlgKlFHX9QwmUJdzXw7NX5Rfa8yAacrwHoXgofmB6GkGn2qLllZLn0qE0z-wLaNZlxQ9Kbt_i85XJX4YH-kf63nn9wenwE
CitedBy_id crossref_primary_10_1016_j_jechem_2024_11_033
crossref_primary_10_1002_cplu_202300514
crossref_primary_10_1002_cnma_202400327
crossref_primary_10_1039_D4QM00842A
crossref_primary_10_3390_coatings13111957
Cites_doi 10.1021/acscatal.9b00280
10.1021/jacs.5b07788
10.1021/acs.accounts.8b00070
10.1002/sia.6225
10.1021/acscatal.0c04613
10.1002/adfm.202108465
10.1016/j.ijhydene.2020.03.109
10.1039/C7SE00113D
10.1002/anie.201507626
10.1007/s40843-017-9187-1
10.1002/anie.201911470
10.1002/anie.200701355
10.1021/acscatal.7b04410
10.1021/acs.nanolett.0c04878
10.1038/s41467-017-01734-7
10.1039/C5SC00518C
10.1021/acsnano.7b00233
10.1021/acscatal.9b00648
10.1126/sciadv.1501602
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d2cc06231c
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1364-548X
EndPage 1816
ExternalDocumentID 36722877
10_1039_D2CC06231C
d2cc06231c
Genre Journal Article
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29B
4.4
53G
5GY
6J9
705
70~
7~J
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACBEA
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
IH2
J3I
M4U
N9A
O9-
P2P
R7B
R7C
R7D
RAOCF
RCNCU
RPMJG
RRA
RRC
RSCEA
SJN
SKA
SKF
SKH
SLH
TN5
TWZ
UPT
VH6
VQA
WH7
X7L
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c337t-fa4235781b933ca619700c5071630e528038e8dda8c25002cb967ded615ef0fe3
ISSN 1359-7345
1364-548X
IngestDate Fri Jul 11 04:09:11 EDT 2025
Mon Jun 30 04:07:21 EDT 2025
Wed Feb 19 02:25:25 EST 2025
Thu Apr 24 23:03:40 EDT 2025
Tue Jul 01 04:22:58 EDT 2025
Tue Dec 17 20:58:44 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-fa4235781b933ca619700c5071630e528038e8dda8c25002cb967ded615ef0fe3
Notes https://doi.org/10.1039/d2cc06231c
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7187-1266
0000-0002-0317-7229
PMID 36722877
PQID 2774433527
PQPubID 2047502
PageCount 4
ParticipantIDs proquest_miscellaneous_2771638466
crossref_citationtrail_10_1039_D2CC06231C
crossref_primary_10_1039_D2CC06231C
rsc_primary_d2cc06231c
proquest_journals_2774433527
pubmed_primary_36722877
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-09
PublicationDateYYYYMMDD 2023-02-09
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-09
  day: 09
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical communications (Cambridge, England)
PublicationTitleAlternate Chem Commun (Camb)
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Spöri (D2CC06231C/cit14/1) 2019; 9
Freakley (D2CC06231C/cit20/1) 2017; 49
Daiane Ferreira da Silva (D2CC06231C/cit8/1) 2021; 11
Yin (D2CC06231C/cit18/1) 2019; 58
Claudel (D2CC06231C/cit3/1) 2019; 9
Bai (D2CC06231C/cit10/1) 2007; 46
Lettenmeier (D2CC06231C/cit12/1) 2016; 55
Liu (D2CC06231C/cit17/1) 2021; 21
Xu (D2CC06231C/cit19/1) 2018; 51
Oh (D2CC06231C/cit5/1) 2015; 6
Zheng (D2CC06231C/cit16/1) 2016; 2
Park (D2CC06231C/cit13/1) 2017; 11
Zhang (D2CC06231C/cit4/1) 2018; 61
Pareek (D2CC06231C/cit1/1) 2020; 3
Kim (D2CC06231C/cit9/1) 2017; 8
Grigoriev (D2CC06231C/cit2/1) 2020; 45
Fu (D2CC06231C/cit7/1) 2017; 1
Tackett (D2CC06231C/cit11/1) 2018; 8
Reier (D2CC06231C/cit15/1) 2015; 137
She (D2CC06231C/cit6/1) 2022; 32
References_xml – volume: 3
  start-page: 319
  year: 2020
  ident: D2CC06231C/cit1/1
  publication-title: Mater. Sci. Technol.
– volume: 9
  start-page: 4688
  year: 2019
  ident: D2CC06231C/cit3/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00280
– volume: 137
  start-page: 13031
  year: 2015
  ident: D2CC06231C/cit15/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b07788
– volume: 51
  start-page: 1590
  year: 2018
  ident: D2CC06231C/cit19/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00070
– volume: 49
  start-page: 794
  year: 2017
  ident: D2CC06231C/cit20/1
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.6225
– volume: 11
  start-page: 4107
  year: 2021
  ident: D2CC06231C/cit8/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c04613
– volume: 32
  start-page: 2108465
  year: 2022
  ident: D2CC06231C/cit6/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202108465
– volume: 45
  start-page: 26036
  year: 2020
  ident: D2CC06231C/cit2/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.03.109
– volume: 1
  start-page: 1199
  year: 2017
  ident: D2CC06231C/cit7/1
  publication-title: Sustainable Energy Fuels
  doi: 10.1039/C7SE00113D
– volume: 55
  start-page: 742
  year: 2016
  ident: D2CC06231C/cit12/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201507626
– volume: 61
  start-page: 926
  year: 2018
  ident: D2CC06231C/cit4/1
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-017-9187-1
– volume: 58
  start-page: 18676
  year: 2019
  ident: D2CC06231C/cit18/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201911470
– volume: 46
  start-page: 6650
  year: 2007
  ident: D2CC06231C/cit10/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200701355
– volume: 8
  start-page: 2615
  year: 2018
  ident: D2CC06231C/cit11/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b04410
– volume: 21
  start-page: 2809
  year: 2021
  ident: D2CC06231C/cit17/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c04878
– volume: 8
  start-page: 1449
  year: 2017
  ident: D2CC06231C/cit9/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01734-7
– volume: 6
  start-page: 3321
  year: 2015
  ident: D2CC06231C/cit5/1
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC00518C
– volume: 11
  start-page: 5500
  year: 2017
  ident: D2CC06231C/cit13/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00233
– volume: 9
  start-page: 6653
  year: 2019
  ident: D2CC06231C/cit14/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00648
– volume: 2
  start-page: e1501602
  year: 2016
  ident: D2CC06231C/cit16/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501602
SSID ssj0000158
Score 2.4504242
Snippet Developing highly active and stable oxygen evolution reaction (OER) catalysts for water electrolysis remains a great challenge. A self-supported Ir...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1813
SubjectTerms Electrocatalysts
Electrolysis
Oxygen evolution reactions
Self-assembly
Title Construction of steady-active self-supported porous Ir-based electrocatalysts for the oxygen evolution reaction
URI https://www.ncbi.nlm.nih.gov/pubmed/36722877
https://www.proquest.com/docview/2774433527
https://www.proquest.com/docview/2771638466
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKdoAL4tegMJARXFBlcGI3P45T6bRNZVxaEU5RajvdpCmZlgat3PjPeXbsJIUeBpe0cl0n8vfZfs_x-x5C7wOZa9UxSkQmBeGwZpIYfDYSBRmUMuEtqQ5O_nIenCz4WTJOBoNf_eiS9fKj-LkzruR_UIUywFVHyf4Dsm2jUADfAV-4AsJwvRPGOtum03_VVp9BbEMyM4eNKnWVk6q-NtLlcgQf-rjr6Q3RK5cc2QQ4Zv9mU62r9sBhebtZae3_H_bZR2BXihY_p2rghAZEP8LEbOG2YWBmnm2ShPQ2HL7ZHervZbGqLpRdOfURoNps2yaXWXlbd6R19ZPLYlN3LLSlZ7WW-lj1Ny98Zs47x735lgWcgNOUNMvRjjI7SY_jPhlZb8oFE4XtXAso01Kq0heCgo3niW7Fc2_5z7-mx4vZLJ1Pk_k9tO-DpwFT5f7RdH4662mQmSSv7VM5jVsWf-ra3rZq_nJVwHC5cQlljOEyf4QeWo8DHzX0eYwGqniC7k9cor-nqOzTCJc53qIR3qYRbmiEHY3wnzTCQCMMNMINjXBLI-xo9AwtjqfzyQmxeTiIYCxckzzjRhTJW8aMiQxc7pBSoR2JgFE11vnNIhVJmUUCDGrqi2UchFJJGPgqp7liB2ivKAv1AmHliRxcEsk9rngu48yTknp5llPJZMT5EH1w_ZgKK1Kvc6VcpeawBIvTz_5kYvp8MkTv2rrXjTTLzlqHDo7UDt0qBaQ519GG4RC9bX-Gbtdvy7JCQT_qOtpX4UEwRM8bGNvbsCD0_SiEfx8Arm1xx4eXd2j2FXrQDYlDtAdAq9dg4a6XbywHfwNe66zp
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+steady-active+self-supported+porous+Ir-based+electrocatalysts+for+the+oxygen+evolution+reaction&rft.jtitle=Chemical+communications+%28Cambridge%2C+England%29&rft.au=Wang%2C+Yongsheng&rft.au=Guo%2C+Xiaoxuan&rft.au=Wang%2C+Xinyu&rft.au=Huang%2C+Junling&rft.date=2023-02-09&rft.issn=1364-548X&rft.eissn=1364-548X&rft.volume=59&rft.issue=13&rft.spage=1813&rft_id=info:doi/10.1039%2Fd2cc06231c&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon