Anomaly Prediction over Human Crowded Scenes via Associate-Based Data Mining and K-Ary Tree Hashing

Anomaly detection and behavioral recognition are key research areas widely used to improve human safety. However, in recent times, with the extensive use of surveillance systems and the substantial increase in the volume of recorded scenes, the conventional analysis of categorizing anomalous events...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of intelligent systems Vol. 2023; no. 1
Main Authors Yasin, Affan, Tahir, Sheikh Badar ud din, Frnda, Jaroslav, Fatima, Rubia, Ali Khan, Javed, Anwar, Muhammad Shahid
Format Journal Article
LanguageEnglish
Published New York Hindawi 2023
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Anomaly detection and behavioral recognition are key research areas widely used to improve human safety. However, in recent times, with the extensive use of surveillance systems and the substantial increase in the volume of recorded scenes, the conventional analysis of categorizing anomalous events has proven to be a difficult task. As a result, machine learning researchers require a smart surveillance system to detect anomalies. This research introduces a robust system for predicting pedestrian anomalies. First, we acquired the crowd data as input from two benchmark datasets (including Avenue and ADOC). Then, different denoising techniques (such as frame conversion, background subtraction, and RGB-to-binary image conversion) for unfiltered data are carried out. Second, texton segmentation is performed to identify human subjects from acquired denoised data. Third, we used Gaussian smoothing and crowd clustering to analyze the multiple subjects from the acquired data for further estimations. The next step is to perform feature extraction to multiple abstract cues from the data. These bag of features include periodic motion, shape autocorrelation, and motion direction flow. Then, the abstracted features are mapped into a single vector in order to apply data optimization and mining techniques. Next, we apply the associate-based mining approach for optimized feature selection. Finally, the resultant vector is served to the k-ary tree hashing classifier to track normal and abnormal activities in pedestrian crowded scenes.
AbstractList Anomaly detection and behavioral recognition are key research areas widely used to improve human safety. However, in recent times, with the extensive use of surveillance systems and the substantial increase in the volume of recorded scenes, the conventional analysis of categorizing anomalous events has proven to be a difficult task. As a result, machine learning researchers require a smart surveillance system to detect anomalies. This research introduces a robust system for predicting pedestrian anomalies. First, we acquired the crowd data as input from two benchmark datasets (including Avenue and ADOC). Then, different denoising techniques (such as frame conversion, background subtraction, and RGB-to-binary image conversion) for unfiltered data are carried out. Second, texton segmentation is performed to identify human subjects from acquired denoised data. Third, we used Gaussian smoothing and crowd clustering to analyze the multiple subjects from the acquired data for further estimations. The next step is to perform feature extraction to multiple abstract cues from the data. These bag of features include periodic motion, shape autocorrelation, and motion direction flow. Then, the abstracted features are mapped into a single vector in order to apply data optimization and mining techniques. Next, we apply the associate-based mining approach for optimized feature selection. Finally, the resultant vector is served to the k-ary tree hashing classifier to track normal and abnormal activities in pedestrian crowded scenes.
Author Anwar, Muhammad Shahid
Yasin, Affan
Frnda, Jaroslav
Ali Khan, Javed
Tahir, Sheikh Badar ud din
Fatima, Rubia
Author_xml – sequence: 1
  givenname: Affan
  orcidid: 0000-0002-0166-2239
  surname: Yasin
  fullname: Yasin, Affan
  organization: School of Software EngineeringNorthwestern Polytechnical University (NPU)Xian 710072ShaanxiChinanwpu.edu.cn
– sequence: 2
  givenname: Sheikh Badar ud din
  orcidid: 0000-0003-2459-1610
  surname: Tahir
  fullname: Tahir, Sheikh Badar ud din
  organization: Department of Computer ScienceShaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST)Islamabad 44000Pakistanszabist.edu.pk
– sequence: 3
  givenname: Jaroslav
  orcidid: 0000-0001-6065-3087
  surname: Frnda
  fullname: Frnda, Jaroslav
  organization: Department of Quantitative Methods and Economic InformaticsFaculty of Operation and Economics of Transport and CommunicationUniversity of ZilinaZilina 01026Slovakiauniza.sk
– sequence: 4
  givenname: Rubia
  orcidid: 0000-0002-7144-1925
  surname: Fatima
  fullname: Fatima, Rubia
  organization: School of Software EngineeringTsinghua University (THU)BeijingChinanjucm.edu.cn
– sequence: 5
  givenname: Javed
  orcidid: 0000-0003-3306-1195
  surname: Ali Khan
  fullname: Ali Khan, Javed
  organization: Department of Software EngineeringUniversity of Science and TechnologyBannu 28100Pakistanustb.edu.pk
– sequence: 6
  givenname: Muhammad Shahid
  orcidid: 0000-0001-8093-6690
  surname: Anwar
  fullname: Anwar, Muhammad Shahid
  organization: Department of AI and SoftwareGachon UniversitySeongnam-si 13120Republic of Koreagachon.ac.kr
BookMark eNp9kE1LAzEQhoNUsK3e_AEBj7o2H5tN9rjWj4oVBSt4W6bZrKa0SU22Lf33bmlPgl5mYOZ5Z3jfHuo47wxC55RcUyrEgBHGB7liLGXqCHUpyVVCKf3ooC5RKk0UlfwE9WKcEUKpTEUX6cL5Bcy3-DWYyurGeof92gQ8Wi3A4WHwm8pU-E0bZyJeW8BFjF5baExyA7Fd3UID-Nk66z4xuAo_JUXY4kkwBo8gfrXjU3Rcwzyas0Pvo_f7u8lwlIxfHh6HxTjRnMsmqUXGtTKE8xraqrQUhkzTWmd5ykQuKAATKZGasCmf5rLipJrKOhNc5XVGK95HF_u7y-C_VyY25cyvgmtflkylmWJKSNVSbE_p4GMMpi61bWBnvAlg5yUl5S7MchdmeQizFV39Ei2DXUDY_oVf7vHWfgUb-z_9A18_giw
CitedBy_id crossref_primary_10_2478_ias_2024_0002
Cites_doi 10.1109/ACCESS.2019.2904712
10.1109/TCSVT.2016.2637778
10.1007/978-3-319-46454-1_21
10.5220/0006618402790286
10.1109/AVSS.2016.7738074
10.1016/j.micpro.2016.02.012
10.1007/978-3-319-59081-3_23
10.1016/j.engappai.2018.08.014
10.1109/AVSS.2019.8909898
10.1007/978-3-030-20893-6_39
10.33422/4kiconf.2018.12.24
10.1007/s11042-015-3199-8
10.1109/CVPR.2011.5995524
10.1109/CVPR42600.2020.01438
10.1109/ACCESS.2020.2995764
10.1109/CVPR.2016.86
10.1007/s11042-017-5020-3
10.1109/CVPR.2013.337
10.1007/s00371-020-01974-7
10.1109/ICCV.2019.00563
10.1109/CVPR.2015.7298909
10.1109/CVPR.2009.5206569
10.1109/ICIP.2017.8296547
10.1109/ICMEW.2018.8551517
10.1109/CVPR.2018.00684
10.1109/CVPR.2018.00678
10.1109/CVPR.2011.5995434
10.1109/ICCV.2013.338
10.1109/IVS.2017.7995975
10.1109/ICCV.2017.45
10.1109/APSIPAASC47483.2019.9023261
ContentType Journal Article
Copyright Copyright © 2023 Affan Yasin et al.
Copyright © 2023 Affan Yasin et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2023 Affan Yasin et al.
– notice: Copyright © 2023 Affan Yasin et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1155/2023/9822428
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1098-111X
Editor Qi, Lianyong
Editor_xml – sequence: 1
  givenname: Lianyong
  surname: Qi
  fullname: Qi, Lianyong
ExternalDocumentID 10_1155_2023_9822428
GrantInformation_xml – fundername: European Union
  grantid: CZ.10.03.01/00/22_003/0000048
– fundername: Ministerstvo Školství, Mládeže a Tělovýchovy
  grantid: 90254; SP 7/2023
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXME
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ARAPS
ARCSS
ATUGU
AUFTA
AZBYB
AZQEC
AZVAB
BAFTC
BENPR
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EDO
F00
F01
F04
G-S
G.N
GNP
GNUQQ
GODZA
H.T
H.X
HBH
HCIFZ
HHY
HZ~
I-F
IX1
J0M
JPC
K7-
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M7S
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PIMPY
PQQKQ
PTHSS
Q.N
Q11
QB0
QRW
R.K
RHU
RHW
RHX
RWI
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
WZISG
XG1
XPP
XV2
ZZTAW
~IA
~WT
.Y3
24P
31~
AANHP
AASGY
AAYOK
AAYXX
ABDPE
ABEML
ACBWZ
ACCMX
ACRPL
ACSCC
ACXQS
ACYXJ
ADMLS
ADNMO
AFZJQ
AGQPQ
AI.
AIURR
ALUQN
ASPBG
AVWKF
AZFZN
BDRZF
BFHJK
CITATION
CMOOK
EJD
FEDTE
H13
HF~
HVGLF
LH4
LW6
M59
MVM
PALCI
PHGZM
PHGZT
RIWAO
RJQFR
ROL
SAMSI
VH1
ZY4
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L6V
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c337t-f563c8e033fae038c75e0b4fc69425951aa25407c02b3b97d30db7f65389f61d3
IEDL.DBID RHX
ISSN 0884-8173
IngestDate Sun Jul 13 04:53:49 EDT 2025
Tue Jul 01 02:44:39 EDT 2025
Thu Apr 24 22:51:24 EDT 2025
Sun Jun 02 19:22:42 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-f563c8e033fae038c75e0b4fc69425951aa25407c02b3b97d30db7f65389f61d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2459-1610
0000-0002-0166-2239
0000-0001-8093-6690
0000-0001-6065-3087
0000-0003-3306-1195
0000-0002-7144-1925
OpenAccessLink https://dx.doi.org/10.1155/2023/9822428
PQID 2846828578
PQPubID 1026350
ParticipantIDs proquest_journals_2846828578
crossref_citationtrail_10_1155_2023_9822428
crossref_primary_10_1155_2023_9822428
hindawi_primary_10_1155_2023_9822428
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of intelligent systems
PublicationYear 2023
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References e_1_2_10_22_2
e_1_2_10_45_2
e_1_2_10_44_2
e_1_2_10_20_2
e_1_2_10_43_2
e_1_2_10_21_2
e_1_2_10_42_2
Genzel M. (e_1_2_10_23_2) 2022; 45
e_1_2_10_41_2
e_1_2_10_40_2
Duchi J. (e_1_2_10_24_2) 2011; 12
Gholami S. (e_1_2_10_10_2) 2022; 89
e_1_2_10_19_2
e_1_2_10_1_2
e_1_2_10_3_2
e_1_2_10_17_2
e_1_2_10_2_2
e_1_2_10_18_2
e_1_2_10_39_2
e_1_2_10_5_2
e_1_2_10_15_2
e_1_2_10_38_2
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_37_2
e_1_2_10_7_2
e_1_2_10_13_2
e_1_2_10_36_2
e_1_2_10_6_2
e_1_2_10_14_2
e_1_2_10_35_2
e_1_2_10_9_2
e_1_2_10_11_2
e_1_2_10_34_2
e_1_2_10_8_2
e_1_2_10_33_2
e_1_2_10_32_2
Gholami S. (e_1_2_10_12_2) 2022; 111
e_1_2_10_31_2
e_1_2_10_30_2
e_1_2_10_28_2
e_1_2_10_29_2
e_1_2_10_26_2
e_1_2_10_27_2
e_1_2_10_25_2
e_1_2_10_46_2
References_xml – ident: e_1_2_10_25_2
  doi: 10.1109/ACCESS.2019.2904712
– volume: 111
  year: 2022
  ident: e_1_2_10_12_2
  article-title: Don’t need labeled data for open-book question answering
  publication-title: Applied Sciences
– ident: e_1_2_10_29_2
– ident: e_1_2_10_33_2
  doi: 10.1109/TCSVT.2016.2637778
– volume: 45
  year: 2022
  ident: e_1_2_10_23_2
  article-title: Solving inverse problems with deep neural networks-robustness included
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– ident: e_1_2_10_20_2
  doi: 10.1007/978-3-319-46454-1_21
– ident: e_1_2_10_2_2
  doi: 10.5220/0006618402790286
– ident: e_1_2_10_8_2
  doi: 10.1109/AVSS.2016.7738074
– ident: e_1_2_10_9_2
– ident: e_1_2_10_38_2
  doi: 10.1016/j.micpro.2016.02.012
– ident: e_1_2_10_34_2
  doi: 10.1007/978-3-319-59081-3_23
– ident: e_1_2_10_3_2
  doi: 10.1016/j.engappai.2018.08.014
– ident: e_1_2_10_26_2
  doi: 10.1109/AVSS.2019.8909898
– ident: e_1_2_10_37_2
  doi: 10.1007/978-3-030-20893-6_39
– ident: e_1_2_10_44_2
  doi: 10.1007/978-3-319-59081-3_23
– ident: e_1_2_10_4_2
  doi: 10.33422/4kiconf.2018.12.24
– ident: e_1_2_10_1_2
  doi: 10.1007/s11042-015-3199-8
– volume: 89
  start-page: 60
  year: 2022
  ident: e_1_2_10_10_2
  article-title: Flight delay prediction using deep learning and conversational voice-based agents
  publication-title: Am. Acad. Sci. Res. J. Eng. Technol. Sci
– ident: e_1_2_10_17_2
  doi: 10.1109/CVPR.2011.5995524
– ident: e_1_2_10_42_2
  doi: 10.1109/CVPR42600.2020.01438
– ident: e_1_2_10_28_2
  doi: 10.1109/ACCESS.2020.2995764
– volume: 12
  year: 2011
  ident: e_1_2_10_24_2
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_10_46_2
  doi: 10.1109/CVPR.2016.86
– ident: e_1_2_10_5_2
  doi: 10.1007/s11042-017-5020-3
– ident: e_1_2_10_32_2
  doi: 10.1109/CVPR.2013.337
– ident: e_1_2_10_41_2
– ident: e_1_2_10_27_2
  doi: 10.1007/s00371-020-01974-7
– ident: e_1_2_10_13_2
– ident: e_1_2_10_15_2
  doi: 10.1109/ICCV.2019.00563
– ident: e_1_2_10_18_2
  doi: 10.1109/CVPR.2015.7298909
– ident: e_1_2_10_19_2
  doi: 10.1109/CVPR.2009.5206569
– ident: e_1_2_10_36_2
  doi: 10.1109/ICIP.2017.8296547
– ident: e_1_2_10_6_2
  doi: 10.1109/ICMEW.2018.8551517
– ident: e_1_2_10_39_2
– ident: e_1_2_10_35_2
  doi: 10.1109/CVPR.2018.00684
– ident: e_1_2_10_31_2
  doi: 10.1007/978-3-319-46454-1_21
– ident: e_1_2_10_14_2
  doi: 10.1109/CVPR.2018.00678
– ident: e_1_2_10_16_2
  doi: 10.1109/CVPR.2011.5995434
– ident: e_1_2_10_30_2
  doi: 10.1109/ICCV.2013.338
– ident: e_1_2_10_11_2
  doi: 10.1109/IVS.2017.7995975
– ident: e_1_2_10_22_2
  doi: 10.1109/ICCV.2017.45
– ident: e_1_2_10_21_2
– ident: e_1_2_10_40_2
  doi: 10.1109/CVPR.2018.00684
– ident: e_1_2_10_43_2
– ident: e_1_2_10_45_2
  doi: 10.1109/ICCV.2017.45
– ident: e_1_2_10_7_2
  doi: 10.1109/APSIPAASC47483.2019.9023261
SSID ssj0011745
Score 2.3586555
Snippet Anomaly detection and behavioral recognition are key research areas widely used to improve human safety. However, in recent times, with the extensive use of...
SourceID proquest
crossref
hindawi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Anomalies
Classification
Clustering
Conversion
Data acquisition
Data mining
Datasets
Dictionaries
Feature extraction
Human performance
Identification
Image processing
Image segmentation
Intelligent systems
Machine learning
Noise reduction
Optimization
Optimization techniques
Researchers
Smoothing
Surveillance
Surveillance systems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEA5qEbz4Ft_koCcJ3TbJJnsSrZWiWIq00NuS12KhttpWpf_ezG62CqJe9rLDHmaSb-abZOdD6MznIKdjT0tUJCxhtsZJEiWW1DNlfZQVlwn8O_zQjls9dtfn_dBwm4ZrlSUm5kBtxwZ65FUPozFMWxPy8uWVgGoUnK4GCY1lVPEQLD35qlw3253HxTmCr7d5UUcyImuCllffOQfWT6swvY6BEvu3pLT6BGz4Y_ADnfOUc7uJ1kOtiK-K4G6hJTfaRhulDgMO23IHGc_hn9VwjjsTOHYBV2O4mYnzDj1ueKZtnfX2gGv4faBwGRRHrn0Ws_hGzRR-yLUisBpZfE-uJnPcnTiHW4Xa0i7q3Ta7jRYJ4gnEUCpmJOMxNdJFlGbKP6UR3EWaZSZO_Db1dZVSdRi-Z6K6pjoRlkZWiyz2AJhkcc3SPbQyGo_cPsKJYkJq7QRTjmkWqZpUVGvBjYRJpOoAXZTeS02YLA4CF8M0Zxicp-DrNPj6AJ0vrF-KiRq_2J2FQPxjdlxGKQ3bb5p-LZbDv18foTX4WNFTOUYrs8mbO_FVxkyfhqX0CZA_zJU
  priority: 102
  providerName: ProQuest
Title Anomaly Prediction over Human Crowded Scenes via Associate-Based Data Mining and K-Ary Tree Hashing
URI https://dx.doi.org/10.1155/2023/9822428
https://www.proquest.com/docview/2846828578
Volume 2023
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sRfDiW6zWsod6ksW0m80mxz4takvRFnoLu9kNFmqUNCr9987mUdAiekkITHKYx858O5tvEKpDDtLSAVgiLK6IrRqMeJanSDMUCqwsmOuZf4eHI2cwte9mbJaTJC03W_iQ7Qw8pzeGZg4q5RIqgYMZUD6YrZsFUFSzrFi0idvgtDjf_uPdb5ln59lA3s_5xhKc5pX-AdrLC0Lcyix4iLZ0dIT2i2ELOI-9YxQAUH8RixUex6a3YvSJzfFLnG7D4w7AaaUVyJvFC3_MBS40r0kbUpXCXZEIPEwHQmARKXxPWvEKT2Kt8SAbqXSCpv3epDMg-YQEElDKExIyhwautigNBVzdgDNtSTsMHA9iEYonIZqGYS-wmpJKjytqKclDB1Y5L3Qaip6icvQa6TOEPWFzV0rNbaFtaVui4QoqJWeBa-hGRQVdF9rzg5w-3EyxWPgpjGDMN7r2c11X0NVa-i2jzfhFrp4b4g-xamElP4-xpQ-J1TH8e9w9_99XLtCuecw2UKqonMTv-hJKikTWwK36tzW03eoOH57g3u6Nxo-11M2-ALH3xOk
linkProvider Hindawi Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5RECqXlkIRb3yAU2WxWdtr76GqUiCEhiAOQeK2-LUCCTYQ0qL8KX5jPfsAJFR64rKXHfkw83keHns-gO0Qg7xJQlmiI-kody1B0yh1NM61C1bWQqX4drh_knTP-K9zcT4Fj81bGLxW2fjE0lG7ocUz8t3gRhOctibVj9s7iqxR2F1tKDQqWPT85CGUbPffj_aDfXfiuHMw2OvSmlWAWsbkmOYiYVb5iLFch6-yUvjI8NwmacBvSDi0jnEqnY1iw0wqHYuckXkSPEOaJy3HwrofYIYzluKOUp3Dp65FyO5FlbVyqlqSNRfthcAzBraLs_I48r6_CIGzl1h7P1y9igVlgOvMw6c6MyXtCkpfYMoXC_C5YX0gtRNYBNsuhjf6ekJOR9jkQcMSvAdKyn4A2Qt1vfMuyKMXJX-uNGkg4OnPEDMd2ddjTfolMwXRhSM92h5NyGDkPelW3E5f4exdlLoE08Ww8MtAUs2lMsZLrj03PNItpZkxUliFc0_1CnxrtJfZeo450mlcZ2U9I0SGus5qXa_AzpP0bTW_4x9y27Uh_iO23lgpqzf7ffYMzdW3f2_Bx-6gf5wdH5301mAOF65Oc9Zhejz67TdCfjM2myWoCFy8N4r_Atg8BzA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuvBGFAntoT2gVx7vrtQ8IpU2jlNAoQq3Um9mXRaXilDRQ5a_x65ix1wUJAadefPHIh5nP89iZnQ9gB2NQsBmWJSbRnks_ULxICs_Tyni0slF5QXeHj2bZ5ES-P1WnG_CjuwtDY5WdT2wctV84OiPvoxvNaNuazvtVHIuYj8bvLr5yYpCiTmtHp9FCZBrWV1i-Xb49HKGtd9N0fHC8P-GRYYA7IfSKVyoTLg-JEJXBZ-60ComVlcsKxDImH8aktKHOJakVttBeJN7qKkMvUVTZwAv87i3Y1CiS9GBz72A2_3jdw8BcX7U5rOT5QItu7F4pOnEQfdqcJ4kF_reAePszVeJXZ39EhibcjR_AvZinsmELrIewEepHcL_jgGDRJTwGN6wXX8z5ms2X1PIhMzOaCmVNd4DtY5Xvg0d58qns-5lhHSAC38MI6tnIrAw7angqmKk9m_Lhcs2OlyGwScv09ARObkStT6FXL-rwDFhhpM6tDVqaIK1MzCA3wlqtXE5bUM0WvOm0V7q41ZzINc7LprpRqiRdl1HXW7B7LX3RbvP4i9xONMR_xLY7K5Xx178sfwH1-b9fv4Y7iODyw-Fs-gLu0nfbo51t6K2W38JLTHZW9lVEFYNPNw3kn7PbDMI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+Prediction+over+Human+Crowded+Scenes+via+Associate%E2%80%90Based+Data+Mining+and+K%E2%80%90Ary+Tree+Hashing&rft.jtitle=International+journal+of+intelligent+systems&rft.au=Yasin%2C+Affan&rft.au=Tahir%2C+Sheikh+Badar+ud+din&rft.au=Frnda%2C+Jaroslav&rft.au=Fatima%2C+Rubia&rft.date=2023&rft.issn=0884-8173&rft.eissn=1098-111X&rft.volume=2023&rft.issue=1&rft_id=info:doi/10.1155%2F2023%2F9822428&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2023_9822428
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8173&client=summon