Anomaly Prediction over Human Crowded Scenes via Associate-Based Data Mining and K-Ary Tree Hashing
Anomaly detection and behavioral recognition are key research areas widely used to improve human safety. However, in recent times, with the extensive use of surveillance systems and the substantial increase in the volume of recorded scenes, the conventional analysis of categorizing anomalous events...
Saved in:
Published in | International journal of intelligent systems Vol. 2023; no. 1 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Hindawi
2023
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Anomaly detection and behavioral recognition are key research areas widely used to improve human safety. However, in recent times, with the extensive use of surveillance systems and the substantial increase in the volume of recorded scenes, the conventional analysis of categorizing anomalous events has proven to be a difficult task. As a result, machine learning researchers require a smart surveillance system to detect anomalies. This research introduces a robust system for predicting pedestrian anomalies. First, we acquired the crowd data as input from two benchmark datasets (including Avenue and ADOC). Then, different denoising techniques (such as frame conversion, background subtraction, and RGB-to-binary image conversion) for unfiltered data are carried out. Second, texton segmentation is performed to identify human subjects from acquired denoised data. Third, we used Gaussian smoothing and crowd clustering to analyze the multiple subjects from the acquired data for further estimations. The next step is to perform feature extraction to multiple abstract cues from the data. These bag of features include periodic motion, shape autocorrelation, and motion direction flow. Then, the abstracted features are mapped into a single vector in order to apply data optimization and mining techniques. Next, we apply the associate-based mining approach for optimized feature selection. Finally, the resultant vector is served to the k-ary tree hashing classifier to track normal and abnormal activities in pedestrian crowded scenes. |
---|---|
AbstractList | Anomaly detection and behavioral recognition are key research areas widely used to improve human safety. However, in recent times, with the extensive use of surveillance systems and the substantial increase in the volume of recorded scenes, the conventional analysis of categorizing anomalous events has proven to be a difficult task. As a result, machine learning researchers require a smart surveillance system to detect anomalies. This research introduces a robust system for predicting pedestrian anomalies. First, we acquired the crowd data as input from two benchmark datasets (including Avenue and ADOC). Then, different denoising techniques (such as frame conversion, background subtraction, and RGB-to-binary image conversion) for unfiltered data are carried out. Second, texton segmentation is performed to identify human subjects from acquired denoised data. Third, we used Gaussian smoothing and crowd clustering to analyze the multiple subjects from the acquired data for further estimations. The next step is to perform feature extraction to multiple abstract cues from the data. These bag of features include periodic motion, shape autocorrelation, and motion direction flow. Then, the abstracted features are mapped into a single vector in order to apply data optimization and mining techniques. Next, we apply the associate-based mining approach for optimized feature selection. Finally, the resultant vector is served to the k-ary tree hashing classifier to track normal and abnormal activities in pedestrian crowded scenes. |
Author | Anwar, Muhammad Shahid Yasin, Affan Frnda, Jaroslav Ali Khan, Javed Tahir, Sheikh Badar ud din Fatima, Rubia |
Author_xml | – sequence: 1 givenname: Affan orcidid: 0000-0002-0166-2239 surname: Yasin fullname: Yasin, Affan organization: School of Software EngineeringNorthwestern Polytechnical University (NPU)Xian 710072ShaanxiChinanwpu.edu.cn – sequence: 2 givenname: Sheikh Badar ud din orcidid: 0000-0003-2459-1610 surname: Tahir fullname: Tahir, Sheikh Badar ud din organization: Department of Computer ScienceShaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST)Islamabad 44000Pakistanszabist.edu.pk – sequence: 3 givenname: Jaroslav orcidid: 0000-0001-6065-3087 surname: Frnda fullname: Frnda, Jaroslav organization: Department of Quantitative Methods and Economic InformaticsFaculty of Operation and Economics of Transport and CommunicationUniversity of ZilinaZilina 01026Slovakiauniza.sk – sequence: 4 givenname: Rubia orcidid: 0000-0002-7144-1925 surname: Fatima fullname: Fatima, Rubia organization: School of Software EngineeringTsinghua University (THU)BeijingChinanjucm.edu.cn – sequence: 5 givenname: Javed orcidid: 0000-0003-3306-1195 surname: Ali Khan fullname: Ali Khan, Javed organization: Department of Software EngineeringUniversity of Science and TechnologyBannu 28100Pakistanustb.edu.pk – sequence: 6 givenname: Muhammad Shahid orcidid: 0000-0001-8093-6690 surname: Anwar fullname: Anwar, Muhammad Shahid organization: Department of AI and SoftwareGachon UniversitySeongnam-si 13120Republic of Koreagachon.ac.kr |
BookMark | eNp9kE1LAzEQhoNUsK3e_AEBj7o2H5tN9rjWj4oVBSt4W6bZrKa0SU22Lf33bmlPgl5mYOZ5Z3jfHuo47wxC55RcUyrEgBHGB7liLGXqCHUpyVVCKf3ooC5RKk0UlfwE9WKcEUKpTEUX6cL5Bcy3-DWYyurGeof92gQ8Wi3A4WHwm8pU-E0bZyJeW8BFjF5baExyA7Fd3UID-Nk66z4xuAo_JUXY4kkwBo8gfrXjU3Rcwzyas0Pvo_f7u8lwlIxfHh6HxTjRnMsmqUXGtTKE8xraqrQUhkzTWmd5ykQuKAATKZGasCmf5rLipJrKOhNc5XVGK95HF_u7y-C_VyY25cyvgmtflkylmWJKSNVSbE_p4GMMpi61bWBnvAlg5yUl5S7MchdmeQizFV39Ei2DXUDY_oVf7vHWfgUb-z_9A18_giw |
CitedBy_id | crossref_primary_10_2478_ias_2024_0002 |
Cites_doi | 10.1109/ACCESS.2019.2904712 10.1109/TCSVT.2016.2637778 10.1007/978-3-319-46454-1_21 10.5220/0006618402790286 10.1109/AVSS.2016.7738074 10.1016/j.micpro.2016.02.012 10.1007/978-3-319-59081-3_23 10.1016/j.engappai.2018.08.014 10.1109/AVSS.2019.8909898 10.1007/978-3-030-20893-6_39 10.33422/4kiconf.2018.12.24 10.1007/s11042-015-3199-8 10.1109/CVPR.2011.5995524 10.1109/CVPR42600.2020.01438 10.1109/ACCESS.2020.2995764 10.1109/CVPR.2016.86 10.1007/s11042-017-5020-3 10.1109/CVPR.2013.337 10.1007/s00371-020-01974-7 10.1109/ICCV.2019.00563 10.1109/CVPR.2015.7298909 10.1109/CVPR.2009.5206569 10.1109/ICIP.2017.8296547 10.1109/ICMEW.2018.8551517 10.1109/CVPR.2018.00684 10.1109/CVPR.2018.00678 10.1109/CVPR.2011.5995434 10.1109/ICCV.2013.338 10.1109/IVS.2017.7995975 10.1109/ICCV.2017.45 10.1109/APSIPAASC47483.2019.9023261 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Affan Yasin et al. Copyright © 2023 Affan Yasin et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2023 Affan Yasin et al. – notice: Copyright © 2023 Affan Yasin et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | RHU RHW RHX AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1155/2023/9822428 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1098-111X |
Editor | Qi, Lianyong |
Editor_xml | – sequence: 1 givenname: Lianyong surname: Qi fullname: Qi, Lianyong |
ExternalDocumentID | 10_1155_2023_9822428 |
GrantInformation_xml | – fundername: European Union grantid: CZ.10.03.01/00/22_003/0000048 – fundername: Ministerstvo Školství, Mládeže a Tělovýchovy grantid: 90254; SP 7/2023 |
GroupedDBID | -~X .3N .4S .DC .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJCF ABJNI ABPVW ABUWG ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXME ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ARAPS ARCSS ATUGU AUFTA AZBYB AZQEC AZVAB BAFTC BENPR BGLVJ BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DWQXO EBS EDO F00 F01 F04 G-S G.N GNP GNUQQ GODZA H.T H.X HBH HCIFZ HHY HZ~ I-F IX1 J0M JPC K7- KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES M7S MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PIMPY PQQKQ PTHSS Q.N Q11 QB0 QRW R.K RHU RHW RHX RWI RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WWI WXSBR WYISQ WZISG XG1 XPP XV2 ZZTAW ~IA ~WT .Y3 24P 31~ AANHP AASGY AAYOK AAYXX ABDPE ABEML ACBWZ ACCMX ACRPL ACSCC ACXQS ACYXJ ADMLS ADNMO AFZJQ AGQPQ AI. AIURR ALUQN ASPBG AVWKF AZFZN BDRZF BFHJK CITATION CMOOK EJD FEDTE H13 HF~ HVGLF LH4 LW6 M59 MVM PALCI PHGZM PHGZT RIWAO RJQFR ROL SAMSI VH1 ZY4 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L6V L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c337t-f563c8e033fae038c75e0b4fc69425951aa25407c02b3b97d30db7f65389f61d3 |
IEDL.DBID | RHX |
ISSN | 0884-8173 |
IngestDate | Sun Jul 13 04:53:49 EDT 2025 Tue Jul 01 02:44:39 EDT 2025 Thu Apr 24 22:51:24 EDT 2025 Sun Jun 02 19:22:42 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-f563c8e033fae038c75e0b4fc69425951aa25407c02b3b97d30db7f65389f61d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2459-1610 0000-0002-0166-2239 0000-0001-8093-6690 0000-0001-6065-3087 0000-0003-3306-1195 0000-0002-7144-1925 |
OpenAccessLink | https://dx.doi.org/10.1155/2023/9822428 |
PQID | 2846828578 |
PQPubID | 1026350 |
ParticipantIDs | proquest_journals_2846828578 crossref_citationtrail_10_1155_2023_9822428 crossref_primary_10_1155_2023_9822428 hindawi_primary_10_1155_2023_9822428 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-00-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023-00-00 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | International journal of intelligent systems |
PublicationYear | 2023 |
Publisher | Hindawi John Wiley & Sons, Inc |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
References | e_1_2_10_22_2 e_1_2_10_45_2 e_1_2_10_44_2 e_1_2_10_20_2 e_1_2_10_43_2 e_1_2_10_21_2 e_1_2_10_42_2 Genzel M. (e_1_2_10_23_2) 2022; 45 e_1_2_10_41_2 e_1_2_10_40_2 Duchi J. (e_1_2_10_24_2) 2011; 12 Gholami S. (e_1_2_10_10_2) 2022; 89 e_1_2_10_19_2 e_1_2_10_1_2 e_1_2_10_3_2 e_1_2_10_17_2 e_1_2_10_2_2 e_1_2_10_18_2 e_1_2_10_39_2 e_1_2_10_5_2 e_1_2_10_15_2 e_1_2_10_38_2 e_1_2_10_4_2 e_1_2_10_16_2 e_1_2_10_37_2 e_1_2_10_7_2 e_1_2_10_13_2 e_1_2_10_36_2 e_1_2_10_6_2 e_1_2_10_14_2 e_1_2_10_35_2 e_1_2_10_9_2 e_1_2_10_11_2 e_1_2_10_34_2 e_1_2_10_8_2 e_1_2_10_33_2 e_1_2_10_32_2 Gholami S. (e_1_2_10_12_2) 2022; 111 e_1_2_10_31_2 e_1_2_10_30_2 e_1_2_10_28_2 e_1_2_10_29_2 e_1_2_10_26_2 e_1_2_10_27_2 e_1_2_10_25_2 e_1_2_10_46_2 |
References_xml | – ident: e_1_2_10_25_2 doi: 10.1109/ACCESS.2019.2904712 – volume: 111 year: 2022 ident: e_1_2_10_12_2 article-title: Don’t need labeled data for open-book question answering publication-title: Applied Sciences – ident: e_1_2_10_29_2 – ident: e_1_2_10_33_2 doi: 10.1109/TCSVT.2016.2637778 – volume: 45 year: 2022 ident: e_1_2_10_23_2 article-title: Solving inverse problems with deep neural networks-robustness included publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – ident: e_1_2_10_20_2 doi: 10.1007/978-3-319-46454-1_21 – ident: e_1_2_10_2_2 doi: 10.5220/0006618402790286 – ident: e_1_2_10_8_2 doi: 10.1109/AVSS.2016.7738074 – ident: e_1_2_10_9_2 – ident: e_1_2_10_38_2 doi: 10.1016/j.micpro.2016.02.012 – ident: e_1_2_10_34_2 doi: 10.1007/978-3-319-59081-3_23 – ident: e_1_2_10_3_2 doi: 10.1016/j.engappai.2018.08.014 – ident: e_1_2_10_26_2 doi: 10.1109/AVSS.2019.8909898 – ident: e_1_2_10_37_2 doi: 10.1007/978-3-030-20893-6_39 – ident: e_1_2_10_44_2 doi: 10.1007/978-3-319-59081-3_23 – ident: e_1_2_10_4_2 doi: 10.33422/4kiconf.2018.12.24 – ident: e_1_2_10_1_2 doi: 10.1007/s11042-015-3199-8 – volume: 89 start-page: 60 year: 2022 ident: e_1_2_10_10_2 article-title: Flight delay prediction using deep learning and conversational voice-based agents publication-title: Am. Acad. Sci. Res. J. Eng. Technol. Sci – ident: e_1_2_10_17_2 doi: 10.1109/CVPR.2011.5995524 – ident: e_1_2_10_42_2 doi: 10.1109/CVPR42600.2020.01438 – ident: e_1_2_10_28_2 doi: 10.1109/ACCESS.2020.2995764 – volume: 12 year: 2011 ident: e_1_2_10_24_2 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: Journal of Machine Learning Research – ident: e_1_2_10_46_2 doi: 10.1109/CVPR.2016.86 – ident: e_1_2_10_5_2 doi: 10.1007/s11042-017-5020-3 – ident: e_1_2_10_32_2 doi: 10.1109/CVPR.2013.337 – ident: e_1_2_10_41_2 – ident: e_1_2_10_27_2 doi: 10.1007/s00371-020-01974-7 – ident: e_1_2_10_13_2 – ident: e_1_2_10_15_2 doi: 10.1109/ICCV.2019.00563 – ident: e_1_2_10_18_2 doi: 10.1109/CVPR.2015.7298909 – ident: e_1_2_10_19_2 doi: 10.1109/CVPR.2009.5206569 – ident: e_1_2_10_36_2 doi: 10.1109/ICIP.2017.8296547 – ident: e_1_2_10_6_2 doi: 10.1109/ICMEW.2018.8551517 – ident: e_1_2_10_39_2 – ident: e_1_2_10_35_2 doi: 10.1109/CVPR.2018.00684 – ident: e_1_2_10_31_2 doi: 10.1007/978-3-319-46454-1_21 – ident: e_1_2_10_14_2 doi: 10.1109/CVPR.2018.00678 – ident: e_1_2_10_16_2 doi: 10.1109/CVPR.2011.5995434 – ident: e_1_2_10_30_2 doi: 10.1109/ICCV.2013.338 – ident: e_1_2_10_11_2 doi: 10.1109/IVS.2017.7995975 – ident: e_1_2_10_22_2 doi: 10.1109/ICCV.2017.45 – ident: e_1_2_10_21_2 – ident: e_1_2_10_40_2 doi: 10.1109/CVPR.2018.00684 – ident: e_1_2_10_43_2 – ident: e_1_2_10_45_2 doi: 10.1109/ICCV.2017.45 – ident: e_1_2_10_7_2 doi: 10.1109/APSIPAASC47483.2019.9023261 |
SSID | ssj0011745 |
Score | 2.3586555 |
Snippet | Anomaly detection and behavioral recognition are key research areas widely used to improve human safety. However, in recent times, with the extensive use of... |
SourceID | proquest crossref hindawi |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms Anomalies Classification Clustering Conversion Data acquisition Data mining Datasets Dictionaries Feature extraction Human performance Identification Image processing Image segmentation Intelligent systems Machine learning Noise reduction Optimization Optimization techniques Researchers Smoothing Surveillance Surveillance systems |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEA5qEbz4Ft_koCcJ3TbJJnsSrZWiWIq00NuS12KhttpWpf_ezG62CqJe9rLDHmaSb-abZOdD6MznIKdjT0tUJCxhtsZJEiWW1DNlfZQVlwn8O_zQjls9dtfn_dBwm4ZrlSUm5kBtxwZ65FUPozFMWxPy8uWVgGoUnK4GCY1lVPEQLD35qlw3253HxTmCr7d5UUcyImuCllffOQfWT6swvY6BEvu3pLT6BGz4Y_ADnfOUc7uJ1kOtiK-K4G6hJTfaRhulDgMO23IHGc_hn9VwjjsTOHYBV2O4mYnzDj1ueKZtnfX2gGv4faBwGRRHrn0Ws_hGzRR-yLUisBpZfE-uJnPcnTiHW4Xa0i7q3Ta7jRYJ4gnEUCpmJOMxNdJFlGbKP6UR3EWaZSZO_Db1dZVSdRi-Z6K6pjoRlkZWiyz2AJhkcc3SPbQyGo_cPsKJYkJq7QRTjmkWqZpUVGvBjYRJpOoAXZTeS02YLA4CF8M0Zxicp-DrNPj6AJ0vrF-KiRq_2J2FQPxjdlxGKQ3bb5p-LZbDv18foTX4WNFTOUYrs8mbO_FVxkyfhqX0CZA_zJU priority: 102 providerName: ProQuest |
Title | Anomaly Prediction over Human Crowded Scenes via Associate-Based Data Mining and K-Ary Tree Hashing |
URI | https://dx.doi.org/10.1155/2023/9822428 https://www.proquest.com/docview/2846828578 |
Volume | 2023 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sRfDiW6zWsod6ksW0m80mxz4takvRFnoLu9kNFmqUNCr9987mUdAiekkITHKYx858O5tvEKpDDtLSAVgiLK6IrRqMeJanSDMUCqwsmOuZf4eHI2cwte9mbJaTJC03W_iQ7Qw8pzeGZg4q5RIqgYMZUD6YrZsFUFSzrFi0idvgtDjf_uPdb5ln59lA3s_5xhKc5pX-AdrLC0Lcyix4iLZ0dIT2i2ELOI-9YxQAUH8RixUex6a3YvSJzfFLnG7D4w7AaaUVyJvFC3_MBS40r0kbUpXCXZEIPEwHQmARKXxPWvEKT2Kt8SAbqXSCpv3epDMg-YQEElDKExIyhwautigNBVzdgDNtSTsMHA9iEYonIZqGYS-wmpJKjytqKclDB1Y5L3Qaip6icvQa6TOEPWFzV0rNbaFtaVui4QoqJWeBa-hGRQVdF9rzg5w-3EyxWPgpjGDMN7r2c11X0NVa-i2jzfhFrp4b4g-xamElP4-xpQ-J1TH8e9w9_99XLtCuecw2UKqonMTv-hJKikTWwK36tzW03eoOH57g3u6Nxo-11M2-ALH3xOk |
linkProvider | Hindawi Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5RECqXlkIRb3yAU2WxWdtr76GqUiCEhiAOQeK2-LUCCTYQ0qL8KX5jPfsAJFR64rKXHfkw83keHns-gO0Qg7xJQlmiI-kody1B0yh1NM61C1bWQqX4drh_knTP-K9zcT4Fj81bGLxW2fjE0lG7ocUz8t3gRhOctibVj9s7iqxR2F1tKDQqWPT85CGUbPffj_aDfXfiuHMw2OvSmlWAWsbkmOYiYVb5iLFch6-yUvjI8NwmacBvSDi0jnEqnY1iw0wqHYuckXkSPEOaJy3HwrofYIYzluKOUp3Dp65FyO5FlbVyqlqSNRfthcAzBraLs_I48r6_CIGzl1h7P1y9igVlgOvMw6c6MyXtCkpfYMoXC_C5YX0gtRNYBNsuhjf6ekJOR9jkQcMSvAdKyn4A2Qt1vfMuyKMXJX-uNGkg4OnPEDMd2ddjTfolMwXRhSM92h5NyGDkPelW3E5f4exdlLoE08Ww8MtAUs2lMsZLrj03PNItpZkxUliFc0_1CnxrtJfZeo450mlcZ2U9I0SGus5qXa_AzpP0bTW_4x9y27Uh_iO23lgpqzf7ffYMzdW3f2_Bx-6gf5wdH5301mAOF65Oc9Zhejz67TdCfjM2myWoCFy8N4r_Atg8BzA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuvBGFAntoT2gVx7vrtQ8IpU2jlNAoQq3Um9mXRaXilDRQ5a_x65ix1wUJAadefPHIh5nP89iZnQ9gB2NQsBmWJSbRnks_ULxICs_Tyni0slF5QXeHj2bZ5ES-P1WnG_CjuwtDY5WdT2wctV84OiPvoxvNaNuazvtVHIuYj8bvLr5yYpCiTmtHp9FCZBrWV1i-Xb49HKGtd9N0fHC8P-GRYYA7IfSKVyoTLg-JEJXBZ-60ComVlcsKxDImH8aktKHOJakVttBeJN7qKkMvUVTZwAv87i3Y1CiS9GBz72A2_3jdw8BcX7U5rOT5QItu7F4pOnEQfdqcJ4kF_reAePszVeJXZ39EhibcjR_AvZinsmELrIewEepHcL_jgGDRJTwGN6wXX8z5ms2X1PIhMzOaCmVNd4DtY5Xvg0d58qns-5lhHSAC38MI6tnIrAw7angqmKk9m_Lhcs2OlyGwScv09ARObkStT6FXL-rwDFhhpM6tDVqaIK1MzCA3wlqtXE5bUM0WvOm0V7q41ZzINc7LprpRqiRdl1HXW7B7LX3RbvP4i9xONMR_xLY7K5Xx178sfwH1-b9fv4Y7iODyw-Fs-gLu0nfbo51t6K2W38JLTHZW9lVEFYNPNw3kn7PbDMI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+Prediction+over+Human+Crowded+Scenes+via+Associate%E2%80%90Based+Data+Mining+and+K%E2%80%90Ary+Tree+Hashing&rft.jtitle=International+journal+of+intelligent+systems&rft.au=Yasin%2C+Affan&rft.au=Tahir%2C+Sheikh+Badar+ud+din&rft.au=Frnda%2C+Jaroslav&rft.au=Fatima%2C+Rubia&rft.date=2023&rft.issn=0884-8173&rft.eissn=1098-111X&rft.volume=2023&rft.issue=1&rft_id=info:doi/10.1155%2F2023%2F9822428&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2023_9822428 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8173&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8173&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8173&client=summon |