From first to second order nonequilibrium phase transition in crystal-amorphous interface: Effects of spatial and kinetic constraints
Crystalline materials undergo phase transitions to disordered state at the melting point when being heated; but the transition can also occur from crystal to amorphous solids when subject to various other stimuli such as chemical mixing, irradiation, or hydrogen permeation, etc. The amorphization tr...
Saved in:
Published in | Journal of alloys and compounds Vol. 850; p. 156841 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
05.01.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0925-8388 1873-4669 |
DOI | 10.1016/j.jallcom.2020.156841 |
Cover
Abstract | Crystalline materials undergo phase transitions to disordered state at the melting point when being heated; but the transition can also occur from crystal to amorphous solids when subject to various other stimuli such as chemical mixing, irradiation, or hydrogen permeation, etc. The amorphization transition observed in experiments is often first order, but theories predict a possibility of the second order. Here, we demonstrate that the first order transition can indeed become continuous in a diffusion couple using molecular dynamics simulation. The amorphization transition happens anisotropically at the interface between a crystal and an amorphous alloy with a steady concentration gradient. Under the non-equilibrium condition and the spatial constraint, the amorphization of the crystalline phase can proceed without the abrupt changes in thermodynamic properties often seen in the first order transition. A homogeneous model and theoretical analysis also confirm that an isentropic transition can appear when sufficient defects or impurity atoms are introduced under certain kinetic constraints. Our study provides a reasonable explanation for the inconsistency existing in the experiments and simulations or theories on the thermodynamic understanding of the disordering process in the crystal-amorphous transitions.
(a-g) Atomic structural evolution of a crystal Al layer from 0 to 6000 ps. The upper panels are the atomic configurational views with Al atoms colored yellow, Cu blue and Zr red; the middle panels are the atomic configurational views colored by the values of the S(k) for each atom; and the bottom ones are the distribution of S(k) of the atoms with a bin of 0.05 Å. When Al layer is crystal, the values of S(k) is at the right side close to 1 and when more disorder occurs, the values of S(k) shifts to the left side, and eventually when amorphization occurs, the values approach zero. [Display omitted]
•An unusual continuous transition in a diffusion couple made of an equilibrium crystal metal and a metastable amorphous phase is reported.•The transition from crystal to amorphous phase is driven by concentration gradient at the interface region where all finite changes of thermodynamic quantities disappear.•The cause for the transition is the kinetic constraint, i.e. the low temperature and limited time and space. |
---|---|
AbstractList | Crystalline materials undergo phase transitions to disordered state at the melting point when being heated; but the transition can also occur from crystal to amorphous solids when subject to various other stimuli such as chemical mixing, irradiation, or hydrogen permeation, etc. The amorphization transition observed in experiments is often first order, but theories predict a possibility of the second order. Here, we demonstrate that the first order transition can indeed become continuous in a diffusion couple using molecular dynamics simulation. The amorphization transition happens anisotropically at the interface between a crystal and an amorphous alloy with a steady concentration gradient. Under the non-equilibrium condition and the spatial constraint, the amorphization of the crystalline phase can proceed without the abrupt changes in thermodynamic properties often seen in the first order transition. A homogeneous model and theoretical analysis also confirm that an isentropic transition can appear when sufficient defects or impurity atoms are introduced under certain kinetic constraints. Our study provides a reasonable explanation for the inconsistency existing in the experiments and simulations or theories on the thermodynamic understanding of the disordering process in the crystal-amorphous transitions.
(a-g) Atomic structural evolution of a crystal Al layer from 0 to 6000 ps. The upper panels are the atomic configurational views with Al atoms colored yellow, Cu blue and Zr red; the middle panels are the atomic configurational views colored by the values of the S(k) for each atom; and the bottom ones are the distribution of S(k) of the atoms with a bin of 0.05 Å. When Al layer is crystal, the values of S(k) is at the right side close to 1 and when more disorder occurs, the values of S(k) shifts to the left side, and eventually when amorphization occurs, the values approach zero. [Display omitted]
•An unusual continuous transition in a diffusion couple made of an equilibrium crystal metal and a metastable amorphous phase is reported.•The transition from crystal to amorphous phase is driven by concentration gradient at the interface region where all finite changes of thermodynamic quantities disappear.•The cause for the transition is the kinetic constraint, i.e. the low temperature and limited time and space. Crystalline materials undergo phase transitions to disordered state at the melting point when being heated; but the transition can also occur from crystal to amorphous solids when subject to various other stimuli such as chemical mixing, irradiation, or hydrogen permeation, etc. The amorphization transition observed in experiments is often first order, but theories predict a possibility of the second order. Here, we demonstrate that the first order transition can indeed become continuous in a diffusion couple using molecular dynamics simulation. The amorphization transition happens anisotropically at the interface between a crystal and an amorphous alloy with a steady concentration gradient. Under the non-equilibrium condition and the spatial constraint, the amorphization of the crystalline phase can proceed without the abrupt changes in thermodynamic properties often seen in the first order transition. A homogeneous model and theoretical analysis also confirm that an isentropic transition can appear when sufficient defects or impurity atoms are introduced under certain kinetic constraints. Our study provides a reasonable explanation for the inconsistency existing in the experiments and simulations or theories on the thermodynamic understanding of the disordering process in the crystal-amorphous transitions. |
ArticleNumber | 156841 |
Author | Zhu, Yiying Wu, Lingkang Wang, Hao Li, Mo |
Author_xml | – sequence: 1 givenname: Yiying surname: Zhu fullname: Zhu, Yiying organization: Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, PR China – sequence: 2 givenname: Hao surname: Wang fullname: Wang, Hao organization: Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, PR China – sequence: 3 givenname: Lingkang surname: Wu fullname: Wu, Lingkang organization: Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, PR China – sequence: 4 givenname: Mo surname: Li fullname: Li, Mo email: mo.li@gatech.edu organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States |
BookMark | eNqFkMtq3TAQhkVJoCeXRygIuvapZF1stYtSQtIWAt00ayHLIyLXlhxJLuQB-t6ROVl1k9XAMN__M98FOgsxAEIfKDlSQuWn6TiZebZxObakrTshe07foQPtO9ZwKdUZOhDViqZnff8eXeQ8EUKoYvSA_t2luGDnUy64RJzBxjDimEZIeK952vzsh-S3Ba-PJgMuyYTsi48B-4Btes7FzI1ZYlof45brskByxsJnfOsc2JJxdDivpngzY1PD__gAxVtcm3JNq0C-QufOzBmuX-cleri7_X3zo7n_9f3nzbf7xjLWlcYJNgghhRgU2M45y0XLDQMhacdE2xtC-5aP4Kzo3GAHRhThg-qU5L2TSrFL9PGUu6b4tEEueopbCrVSt1xSwmjH9ytxurIp5pzA6TX5xaRnTYnejetJvxrXu3F9Ml65L_9x1hezq9rfnN-kv55oqAL-ekg6Ww_BwuhT1ajH6N9IeAFtgaTL |
CitedBy_id | crossref_primary_10_1016_j_jajp_2022_100120 crossref_primary_10_1016_j_cplett_2020_138187 crossref_primary_10_1016_j_surfcoat_2022_128413 |
Cites_doi | 10.1038/356133a0 10.1103/PhysRevLett.57.2295 10.1103/PhysRevLett.51.415 10.1016/j.actamat.2016.04.032 10.1126/science.1118611 10.1557/JMR.1990.0286 10.1103/PhysRevB.44.101 10.1016/0079-6425(86)90005-8 10.1016/j.jallcom.2018.04.259 10.1021/cr60135a002 10.1006/jcph.1995.1039 10.1007/BF02667556 10.1063/1.3583671 10.1103/PhysRevB.42.5481 10.1143/JJAP.22.L94 10.1103/PhysRevB.29.6443 10.1103/PhysRevB.47.7700 10.1103/PhysRevLett.102.245501 10.1038/334050a0 10.1103/PhysRevLett.70.1120 10.1016/j.intermet.2011.07.007 10.4028/www.scientific.net/MSF.179-181.855 10.1016/0257-8972(94)90041-8 10.1016/S0022-3115(96)00740-4 10.1016/0956-7151(91)90258-3 10.1103/PhysRevB.62.13979 10.1103/PhysRevLett.59.2987 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Jan 5, 2021 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Jan 5, 2021 |
DBID | AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1016/j.jallcom.2020.156841 |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1873-4669 |
ExternalDocumentID | 10_1016_j_jallcom_2020_156841 S0925838820332059 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SMS SSH T9H WUQ 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c337t-f53b55655b9ec7ffc4524a3e56173528a01824defc57fbcb30904b979648f6993 |
IEDL.DBID | AIKHN |
ISSN | 0925-8388 |
IngestDate | Sun Jul 13 05:15:38 EDT 2025 Tue Jul 01 03:58:48 EDT 2025 Thu Apr 24 23:00:54 EDT 2025 Fri Feb 23 02:47:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Molecular dynamics simulation Amorphization Crystal-amorphous interface Metallic glass Non-equilibrium transition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-f53b55655b9ec7ffc4524a3e56173528a01824defc57fbcb30904b979648f6993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2461031749 |
PQPubID | 2045454 |
ParticipantIDs | proquest_journals_2461031749 crossref_primary_10_1016_j_jallcom_2020_156841 crossref_citationtrail_10_1016_j_jallcom_2020_156841 elsevier_sciencedirect_doi_10_1016_j_jallcom_2020_156841 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-05 |
PublicationDateYYYYMMDD | 2021-01-05 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Journal of alloys and compounds |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Martínez, Aguilar, Briones, Guzmán, Zelaya, Troncoso, Rojas (bib7) 2018; 765 Mori, Fujita, Fujita (bib8) 1983; 22 Koike (bib14) 1993; 47 Zhu, Liao, Shi, Tang, Li (bib20) 2016; 112 Rehn, Okamoto, Pearson, Bhadra, Grimsditch (bib15) 1987; 59 Li, Li (bib13) 2011; 109 Oh, Kauffmann, Scheu, Kaplan, Rühle (bib21) 2005; 310 Johnson (bib1) 1986; 30 Li, Johnson, Goddard (bib28) 1995 Okamoto, Lam, Rehn (bib4) 1999 Hollanders, Thijsse, Mittemeijer (bib6) 1990; 42 Howe, Phillips, Motta, Okamoto (bib9) 1994; 66 Li, Johnson (bib12) 1993; 70 Dörner, Mehrer (bib3) 1991; 44 Fecht, Johnson (bib26) 1988; 334 Li (bib16) 2000; 62 Murray, Peruzzi, Abriata (bib23) 1992; 13 Motta (bib10) 1997; 244 Cheng, Ma, Sheng (bib18) 2009; 102 Schwarz, Johnson (bib11) 1983; 51 Plimpton (bib17) 1995; 117 Cotts, Meng, Johnson (bib2) 1986; 57 Fecht (bib25) 1992; 356 Daw, Baskes (bib19) 1984; 29 Ponweiser, Lengauer, Richter (bib22) 2011; 19 Wolf, Okamoto, Yip, Lutsko, Kluge (bib24) 1990; 5 Lee, Choi, Kim, Lee (bib5) 1991; 39 Kauzmann (bib27) 1948; 43 Plimpton (10.1016/j.jallcom.2020.156841_bib17) 1995; 117 Ponweiser (10.1016/j.jallcom.2020.156841_bib22) 2011; 19 Kauzmann (10.1016/j.jallcom.2020.156841_bib27) 1948; 43 Johnson (10.1016/j.jallcom.2020.156841_bib1) 1986; 30 Li (10.1016/j.jallcom.2020.156841_bib16) 2000; 62 Fecht (10.1016/j.jallcom.2020.156841_bib26) 1988; 334 Li (10.1016/j.jallcom.2020.156841_bib13) 2011; 109 Zhu (10.1016/j.jallcom.2020.156841_bib20) 2016; 112 Daw (10.1016/j.jallcom.2020.156841_bib19) 1984; 29 Li (10.1016/j.jallcom.2020.156841_bib12) 1993; 70 Hollanders (10.1016/j.jallcom.2020.156841_bib6) 1990; 42 Mori (10.1016/j.jallcom.2020.156841_bib8) 1983; 22 Oh (10.1016/j.jallcom.2020.156841_bib21) 2005; 310 Murray (10.1016/j.jallcom.2020.156841_bib23) 1992; 13 Okamoto (10.1016/j.jallcom.2020.156841_bib4) 1999 Wolf (10.1016/j.jallcom.2020.156841_bib24) 1990; 5 Motta (10.1016/j.jallcom.2020.156841_bib10) 1997; 244 Fecht (10.1016/j.jallcom.2020.156841_bib25) 1992; 356 Howe (10.1016/j.jallcom.2020.156841_bib9) 1994; 66 Cotts (10.1016/j.jallcom.2020.156841_bib2) 1986; 57 Dörner (10.1016/j.jallcom.2020.156841_bib3) 1991; 44 Schwarz (10.1016/j.jallcom.2020.156841_bib11) 1983; 51 Cheng (10.1016/j.jallcom.2020.156841_bib18) 2009; 102 Rehn (10.1016/j.jallcom.2020.156841_bib15) 1987; 59 Koike (10.1016/j.jallcom.2020.156841_bib14) 1993; 47 Martínez (10.1016/j.jallcom.2020.156841_bib7) 2018; 765 Lee (10.1016/j.jallcom.2020.156841_bib5) 1991; 39 Li (10.1016/j.jallcom.2020.156841_bib28) 1995 |
References_xml | – volume: 39 start-page: 1693 year: 1991 end-page: 1701 ident: bib5 article-title: Transformation characteristics of hydrogen-induced amorphization of the ordered Zr3Al phase publication-title: Acta Metall. Mater. – volume: 66 start-page: 411 year: 1994 end-page: 418 ident: bib9 article-title: Irradiation-induced phase transformations in zirconium alloys publication-title: Surf. Coating. Technol. – volume: 42 start-page: 5481 year: 1990 ident: bib6 article-title: Amorphization along interfaces and grain boundaries in polycrystalline multilayers: an X-ray-diffraction study of Ni/Ti multilayers publication-title: Phys. Rev. B – volume: 62 start-page: 13979 year: 2000 ident: bib16 article-title: Defect-induced topological order-to-disorder transitions in two-dimensional binary substitutional solid solutions: a molecular dynamics study publication-title: Phys. Rev. B – volume: 112 start-page: 378 year: 2016 end-page: 389 ident: bib20 article-title: Interdiffusion cross crystal-amorphous interface: an atomistic simulation publication-title: Acta Mater. – volume: 22 start-page: L94 year: 1983 ident: bib8 article-title: Electron irradiation induced amorphization at dislocations in NiTi publication-title: Jpn. J. Appl. Phys. – volume: 57 start-page: 2295 year: 1986 ident: bib2 article-title: Calorimetric study of amorphization in planar, binary, multilayer, thin-film diffusion couples of Ni and Zr publication-title: Phys. Rev. Lett. – volume: 43 start-page: 219 year: 1948 end-page: 256 ident: bib27 article-title: The nature of the glassy state and the behavior of liquids at low temperatures publication-title: Chem. Rev. – volume: 30 start-page: 81 year: 1986 end-page: 134 ident: bib1 article-title: Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials publication-title: Prog. Mater. Sci. – volume: 44 start-page: 101 year: 1991 ident: bib3 article-title: Tracer diffusion and thermal stability in amorphous Co-Zr and their relevance for solid-state amorphization publication-title: Phys. Rev. B – volume: 109 start-page: 103507 year: 2011 ident: bib13 article-title: A mean-field model for amorphization in crystalline solid solutions publication-title: J. Appl. Phys. – volume: 356 start-page: 133 year: 1992 ident: bib25 article-title: Defect-induced melting and solid-state amorphization publication-title: Nature – volume: 5 start-page: 286 year: 1990 end-page: 301 ident: bib24 article-title: Thermodynamic parallels between solid-state amorphization and melting publication-title: J. Mater. Res. – volume: 765 start-page: 771 year: 2018 end-page: 781 ident: bib7 article-title: Effects of Zr on the amorphization of Cu-Ni-Zr alloys prepared by mechanical alloying publication-title: J. Alloys Compd. – volume: 102 year: 2009 ident: bib18 article-title: Atomic level structure in multicomponent bulk metallic glass publication-title: Phys. Rev. Lett. – volume: 13 start-page: 277 year: 1992 end-page: 291 ident: bib23 article-title: The Al-Zr (aluminum-zirconium) system publication-title: J. Phase Equil. – volume: 310 start-page: 661 year: 2005 end-page: 663 ident: bib21 article-title: Ordered liquid aluminum at the interface with sapphire publication-title: Science – volume: 29 start-page: 6443 year: 1984 end-page: 6453 ident: bib19 article-title: Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals publication-title: Phys. Rev. B – volume: 47 start-page: 7700 year: 1993 ident: bib14 article-title: Elastic instability of crystals caused by static atom displacement: a mechanism for solid-state amorphization publication-title: Phys. Rev. B – volume: 244 start-page: 227 year: 1997 end-page: 250 ident: bib10 article-title: Amorphization of intermetallic compounds under irradiation—a review publication-title: J. Nucl. Mater. – volume: 51 start-page: 415 year: 1983 ident: bib11 article-title: Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals publication-title: Phys. Rev. Lett. – volume: 19 start-page: 1737 year: 2011 end-page: 1746 ident: bib22 article-title: Re-investigation of phase equilibria in the system Al–Cu and structural analysis of the high-temperature phase η1-Al1− δCu publication-title: Intermetallics – volume: 117 start-page: 1 year: 1995 end-page: 19 ident: bib17 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J. Comput. Phys. – volume: 70 start-page: 1120 year: 1993 ident: bib12 article-title: Instability of metastable solid solutions and the crystal to glass transition publication-title: Phys. Rev. Lett. – volume: 59 start-page: 2987 year: 1987 ident: bib15 article-title: Solid-state amorphization of Zr 3 Al: evidence of an elastic instability and first-order phase transformation publication-title: Phys. Rev. Lett. – volume: 334 start-page: 50 year: 1988 ident: bib26 article-title: Entropy and enthalpy catastrophe as a stability limit for crystalline material publication-title: Nature – start-page: 855 year: 1995 ident: bib28 article-title: Configurationally frozen defects, random strains and landau theory of crystals to glass transition publication-title: Mater Sci Forum, Trans Tech Publ – start-page: 1 year: 1999 end-page: 135 ident: bib4 article-title: Physics of Crystal-To-Glass Transformations, Solid State Physics – volume: 356 start-page: 133 issue: 6365 year: 1992 ident: 10.1016/j.jallcom.2020.156841_bib25 article-title: Defect-induced melting and solid-state amorphization publication-title: Nature doi: 10.1038/356133a0 – volume: 57 start-page: 2295 issue: 18 year: 1986 ident: 10.1016/j.jallcom.2020.156841_bib2 article-title: Calorimetric study of amorphization in planar, binary, multilayer, thin-film diffusion couples of Ni and Zr publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.57.2295 – volume: 51 start-page: 415 issue: 5 year: 1983 ident: 10.1016/j.jallcom.2020.156841_bib11 article-title: Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.51.415 – volume: 112 start-page: 378 year: 2016 ident: 10.1016/j.jallcom.2020.156841_bib20 article-title: Interdiffusion cross crystal-amorphous interface: an atomistic simulation publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.04.032 – volume: 310 start-page: 661 issue: 5748 year: 2005 ident: 10.1016/j.jallcom.2020.156841_bib21 article-title: Ordered liquid aluminum at the interface with sapphire publication-title: Science doi: 10.1126/science.1118611 – volume: 5 start-page: 286 issue: 2 year: 1990 ident: 10.1016/j.jallcom.2020.156841_bib24 article-title: Thermodynamic parallels between solid-state amorphization and melting publication-title: J. Mater. Res. doi: 10.1557/JMR.1990.0286 – volume: 44 start-page: 101 issue: 1 year: 1991 ident: 10.1016/j.jallcom.2020.156841_bib3 article-title: Tracer diffusion and thermal stability in amorphous Co-Zr and their relevance for solid-state amorphization publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.44.101 – volume: 30 start-page: 81 issue: 2 year: 1986 ident: 10.1016/j.jallcom.2020.156841_bib1 article-title: Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials publication-title: Prog. Mater. Sci. doi: 10.1016/0079-6425(86)90005-8 – volume: 765 start-page: 771 year: 2018 ident: 10.1016/j.jallcom.2020.156841_bib7 article-title: Effects of Zr on the amorphization of Cu-Ni-Zr alloys prepared by mechanical alloying publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.04.259 – volume: 43 start-page: 219 issue: 2 year: 1948 ident: 10.1016/j.jallcom.2020.156841_bib27 article-title: The nature of the glassy state and the behavior of liquids at low temperatures publication-title: Chem. Rev. doi: 10.1021/cr60135a002 – volume: 117 start-page: 1 issue: 1 year: 1995 ident: 10.1016/j.jallcom.2020.156841_bib17 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 13 start-page: 277 issue: 3 year: 1992 ident: 10.1016/j.jallcom.2020.156841_bib23 article-title: The Al-Zr (aluminum-zirconium) system publication-title: J. Phase Equil. doi: 10.1007/BF02667556 – volume: 109 start-page: 103507 issue: 10 year: 2011 ident: 10.1016/j.jallcom.2020.156841_bib13 article-title: A mean-field model for amorphization in crystalline solid solutions publication-title: J. Appl. Phys. doi: 10.1063/1.3583671 – volume: 42 start-page: 5481 issue: 9 year: 1990 ident: 10.1016/j.jallcom.2020.156841_bib6 article-title: Amorphization along interfaces and grain boundaries in polycrystalline multilayers: an X-ray-diffraction study of Ni/Ti multilayers publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.42.5481 – volume: 22 start-page: L94 issue: 2A year: 1983 ident: 10.1016/j.jallcom.2020.156841_bib8 article-title: Electron irradiation induced amorphization at dislocations in NiTi publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.22.L94 – volume: 29 start-page: 6443 issue: 12 year: 1984 ident: 10.1016/j.jallcom.2020.156841_bib19 article-title: Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.29.6443 – volume: 47 start-page: 7700 issue: 13 year: 1993 ident: 10.1016/j.jallcom.2020.156841_bib14 article-title: Elastic instability of crystals caused by static atom displacement: a mechanism for solid-state amorphization publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.7700 – volume: 102 issue: 24 year: 2009 ident: 10.1016/j.jallcom.2020.156841_bib18 article-title: Atomic level structure in multicomponent bulk metallic glass publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.245501 – start-page: 1 year: 1999 ident: 10.1016/j.jallcom.2020.156841_bib4 – volume: 334 start-page: 50 issue: 6177 year: 1988 ident: 10.1016/j.jallcom.2020.156841_bib26 article-title: Entropy and enthalpy catastrophe as a stability limit for crystalline material publication-title: Nature doi: 10.1038/334050a0 – volume: 70 start-page: 1120 issue: 8 year: 1993 ident: 10.1016/j.jallcom.2020.156841_bib12 article-title: Instability of metastable solid solutions and the crystal to glass transition publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.70.1120 – volume: 19 start-page: 1737 issue: 11 year: 2011 ident: 10.1016/j.jallcom.2020.156841_bib22 article-title: Re-investigation of phase equilibria in the system Al–Cu and structural analysis of the high-temperature phase η1-Al1− δCu publication-title: Intermetallics doi: 10.1016/j.intermet.2011.07.007 – start-page: 855 year: 1995 ident: 10.1016/j.jallcom.2020.156841_bib28 article-title: Configurationally frozen defects, random strains and landau theory of crystals to glass transition publication-title: Mater Sci Forum, Trans Tech Publ doi: 10.4028/www.scientific.net/MSF.179-181.855 – volume: 66 start-page: 411 issue: 1–3 year: 1994 ident: 10.1016/j.jallcom.2020.156841_bib9 article-title: Irradiation-induced phase transformations in zirconium alloys publication-title: Surf. Coating. Technol. doi: 10.1016/0257-8972(94)90041-8 – volume: 244 start-page: 227 issue: 3 year: 1997 ident: 10.1016/j.jallcom.2020.156841_bib10 article-title: Amorphization of intermetallic compounds under irradiation—a review publication-title: J. Nucl. Mater. doi: 10.1016/S0022-3115(96)00740-4 – volume: 39 start-page: 1693 issue: 7 year: 1991 ident: 10.1016/j.jallcom.2020.156841_bib5 article-title: Transformation characteristics of hydrogen-induced amorphization of the ordered Zr3Al phase publication-title: Acta Metall. Mater. doi: 10.1016/0956-7151(91)90258-3 – volume: 62 start-page: 13979 issue: 21 year: 2000 ident: 10.1016/j.jallcom.2020.156841_bib16 article-title: Defect-induced topological order-to-disorder transitions in two-dimensional binary substitutional solid solutions: a molecular dynamics study publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.62.13979 – volume: 59 start-page: 2987 issue: 26 year: 1987 ident: 10.1016/j.jallcom.2020.156841_bib15 article-title: Solid-state amorphization of Zr 3 Al: evidence of an elastic instability and first-order phase transformation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.59.2987 |
SSID | ssj0001931 |
Score | 2.3460193 |
Snippet | Crystalline materials undergo phase transitions to disordered state at the melting point when being heated; but the transition can also occur from crystal to... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 156841 |
SubjectTerms | Amorphization Amorphous alloys Amorphous materials Concentration gradient Crystal defects Crystal structure Crystal-amorphous interface Crystallinity Hydrogen permeation Melting points Metallic glass Metallic glasses Molecular dynamics Molecular dynamics simulation Non-equilibrium transition Phase transitions Thermodynamic properties |
Title | From first to second order nonequilibrium phase transition in crystal-amorphous interface: Effects of spatial and kinetic constraints |
URI | https://dx.doi.org/10.1016/j.jallcom.2020.156841 https://www.proquest.com/docview/2461031749 |
Volume | 850 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB1BECocKgitCgS0B67Oh3c3znJDEVEoKpcWidtqvfEKpwlOY-fAhRv_mxl7HWglhNSr5VmNPfbMG_vtG4AzRN1OJJYHIY9UIKyZBEogkFOx64XWRoNqFsGPm_74Vny_k3cbMKz3whCt0uf-KqeX2dof6fi72VmkaednV4X0zw9LGMcFpdqErZCrvmzA1sXV9fhmnZARo5SD8_D8gAxeN_J0pu2pmc2INxIibmpjMzMQvfdK1D_JuqxAoz347KEju6i824eN5KEJn4b1xLYm7L4RF2zCdknutPkBPI-W2Zy5FIEeKzKWUw88YaXoJsPuP_mzSkvm_2rOFvdY1VhBBazkcrH0gdnlI0LIWWDmGQYlW-WMNCaWztjknFXqxznLHMuJnI0OGlz8N_qBbjJL8JOmUBT5F7gdXf4ajgM_fiGwnEdF4CSPJeI9GavERs5ZIUNheIKIKyJNGNPF3kRMEmdl5GIb867qiljR3taB6yPu-QoNuohvwBzJA3OHmbe0MIpa4xD7eDlRiCfMIYj6jmvrtcnJuZmuSWhT7QOlKVC6CtQhtNdmi0qc4yODQR1O_ddTprGAfGTaqsOv_WueaxLjw6wYCXX0_ysfw05IRBn6riNb0CiWq-QEkU4Rn8Jm-6l36p_nFzAb_o4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB7xEAIOKyggXgs-cE1bYpvUe0PVVuV5ASRuluPGIqUlpUkPXLjxv3fGSZZlJYTENbKtScaZ-Sb5_A3AEaJuJxLLg5BHKhDWDAIlEMip2B2H1kadshfB1fVJ_06c38v7OejWZ2GIVlnF_jKm-2hdXWlVT7M1SdPWTVuF9M8PUxjHBaWah0UheUS8vubrO88DEYpvm4ejAxr-foynNWwOzWhErJEQUVMTS5mOOP4sQf0Xqn3-6a3Bjwo4stPStnWYS54asNyt-7U1YPUfacEGLHlqp8034K03zcbMpQjzWJGxnCrgAfOSmwxr_-R5lnre_2zMJg-Y01hB6cszuVj6xOz0BQHkKDDjDF2SzXJGChNTZ2zyi5XaxznLHMuJmo0GGlz8Ee1AM5kl8Ek9KIp8E-56v2-7_aBqvhBYzqMicJLHEtGejFViI-eskKEwPEG8FZEijGljZSIGibMycrGNeVu1RazoZGvHnSDq2YIFuoltYI7EgbnDuOtnGEWFcYhVvBwoRBNmB0T9xLWtlMnJuJGuKWhDXTlKk6N06agdaP6dNimlOb6a0KndqT_sMY3p46up-7X7dfWS55qk-DAmRkLtfn_lQ1ju315d6suz64s9WAmJMkNfeOQ-LBTTWfITMU8RH_g9_QdbqP9Z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+first+to+second+order+nonequilibrium+phase+transition+in+crystal-amorphous+interface%3A+Effects+of+spatial+and+kinetic+constraints&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Zhu%2C+Yiying&rft.au=Wang%2C+Hao&rft.au=Wu%2C+Lingkang&rft.au=Li%2C+Mo&rft.date=2021-01-05&rft.pub=Elsevier+BV&rft.issn=0925-8388&rft.eissn=1873-4669&rft.volume=850&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jallcom.2020.156841&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |