From first to second order nonequilibrium phase transition in crystal-amorphous interface: Effects of spatial and kinetic constraints

Crystalline materials undergo phase transitions to disordered state at the melting point when being heated; but the transition can also occur from crystal to amorphous solids when subject to various other stimuli such as chemical mixing, irradiation, or hydrogen permeation, etc. The amorphization tr...

Full description

Saved in:
Bibliographic Details
Published inJournal of alloys and compounds Vol. 850; p. 156841
Main Authors Zhu, Yiying, Wang, Hao, Wu, Lingkang, Li, Mo
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 05.01.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0925-8388
1873-4669
DOI10.1016/j.jallcom.2020.156841

Cover

Abstract Crystalline materials undergo phase transitions to disordered state at the melting point when being heated; but the transition can also occur from crystal to amorphous solids when subject to various other stimuli such as chemical mixing, irradiation, or hydrogen permeation, etc. The amorphization transition observed in experiments is often first order, but theories predict a possibility of the second order. Here, we demonstrate that the first order transition can indeed become continuous in a diffusion couple using molecular dynamics simulation. The amorphization transition happens anisotropically at the interface between a crystal and an amorphous alloy with a steady concentration gradient. Under the non-equilibrium condition and the spatial constraint, the amorphization of the crystalline phase can proceed without the abrupt changes in thermodynamic properties often seen in the first order transition. A homogeneous model and theoretical analysis also confirm that an isentropic transition can appear when sufficient defects or impurity atoms are introduced under certain kinetic constraints. Our study provides a reasonable explanation for the inconsistency existing in the experiments and simulations or theories on the thermodynamic understanding of the disordering process in the crystal-amorphous transitions. (a-g) Atomic structural evolution of a crystal Al layer from 0 to 6000 ps. The upper panels are the atomic configurational views with Al atoms colored yellow, Cu blue and Zr red; the middle panels are the atomic configurational views colored by the values of the S(k) for each atom; and the bottom ones are the distribution of S(k) of the atoms with a bin of 0.05 Å. When Al layer is crystal, the values of S(k) is at the right side close to 1 and when more disorder occurs, the values of S(k) shifts to the left side, and eventually when amorphization occurs, the values approach zero. [Display omitted] •An unusual continuous transition in a diffusion couple made of an equilibrium crystal metal and a metastable amorphous phase is reported.•The transition from crystal to amorphous phase is driven by concentration gradient at the interface region where all finite changes of thermodynamic quantities disappear.•The cause for the transition is the kinetic constraint, i.e. the low temperature and limited time and space.
AbstractList Crystalline materials undergo phase transitions to disordered state at the melting point when being heated; but the transition can also occur from crystal to amorphous solids when subject to various other stimuli such as chemical mixing, irradiation, or hydrogen permeation, etc. The amorphization transition observed in experiments is often first order, but theories predict a possibility of the second order. Here, we demonstrate that the first order transition can indeed become continuous in a diffusion couple using molecular dynamics simulation. The amorphization transition happens anisotropically at the interface between a crystal and an amorphous alloy with a steady concentration gradient. Under the non-equilibrium condition and the spatial constraint, the amorphization of the crystalline phase can proceed without the abrupt changes in thermodynamic properties often seen in the first order transition. A homogeneous model and theoretical analysis also confirm that an isentropic transition can appear when sufficient defects or impurity atoms are introduced under certain kinetic constraints. Our study provides a reasonable explanation for the inconsistency existing in the experiments and simulations or theories on the thermodynamic understanding of the disordering process in the crystal-amorphous transitions. (a-g) Atomic structural evolution of a crystal Al layer from 0 to 6000 ps. The upper panels are the atomic configurational views with Al atoms colored yellow, Cu blue and Zr red; the middle panels are the atomic configurational views colored by the values of the S(k) for each atom; and the bottom ones are the distribution of S(k) of the atoms with a bin of 0.05 Å. When Al layer is crystal, the values of S(k) is at the right side close to 1 and when more disorder occurs, the values of S(k) shifts to the left side, and eventually when amorphization occurs, the values approach zero. [Display omitted] •An unusual continuous transition in a diffusion couple made of an equilibrium crystal metal and a metastable amorphous phase is reported.•The transition from crystal to amorphous phase is driven by concentration gradient at the interface region where all finite changes of thermodynamic quantities disappear.•The cause for the transition is the kinetic constraint, i.e. the low temperature and limited time and space.
Crystalline materials undergo phase transitions to disordered state at the melting point when being heated; but the transition can also occur from crystal to amorphous solids when subject to various other stimuli such as chemical mixing, irradiation, or hydrogen permeation, etc. The amorphization transition observed in experiments is often first order, but theories predict a possibility of the second order. Here, we demonstrate that the first order transition can indeed become continuous in a diffusion couple using molecular dynamics simulation. The amorphization transition happens anisotropically at the interface between a crystal and an amorphous alloy with a steady concentration gradient. Under the non-equilibrium condition and the spatial constraint, the amorphization of the crystalline phase can proceed without the abrupt changes in thermodynamic properties often seen in the first order transition. A homogeneous model and theoretical analysis also confirm that an isentropic transition can appear when sufficient defects or impurity atoms are introduced under certain kinetic constraints. Our study provides a reasonable explanation for the inconsistency existing in the experiments and simulations or theories on the thermodynamic understanding of the disordering process in the crystal-amorphous transitions.
ArticleNumber 156841
Author Zhu, Yiying
Wu, Lingkang
Wang, Hao
Li, Mo
Author_xml – sequence: 1
  givenname: Yiying
  surname: Zhu
  fullname: Zhu, Yiying
  organization: Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, PR China
– sequence: 2
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
  organization: Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, PR China
– sequence: 3
  givenname: Lingkang
  surname: Wu
  fullname: Wu, Lingkang
  organization: Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, PR China
– sequence: 4
  givenname: Mo
  surname: Li
  fullname: Li, Mo
  email: mo.li@gatech.edu
  organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States
BookMark eNqFkMtq3TAQhkVJoCeXRygIuvapZF1stYtSQtIWAt00ayHLIyLXlhxJLuQB-t6ROVl1k9XAMN__M98FOgsxAEIfKDlSQuWn6TiZebZxObakrTshe07foQPtO9ZwKdUZOhDViqZnff8eXeQ8EUKoYvSA_t2luGDnUy64RJzBxjDimEZIeK952vzsh-S3Ba-PJgMuyYTsi48B-4Btes7FzI1ZYlof45brskByxsJnfOsc2JJxdDivpngzY1PD__gAxVtcm3JNq0C-QufOzBmuX-cleri7_X3zo7n_9f3nzbf7xjLWlcYJNgghhRgU2M45y0XLDQMhacdE2xtC-5aP4Kzo3GAHRhThg-qU5L2TSrFL9PGUu6b4tEEueopbCrVSt1xSwmjH9ytxurIp5pzA6TX5xaRnTYnejetJvxrXu3F9Ml65L_9x1hezq9rfnN-kv55oqAL-ekg6Ww_BwuhT1ajH6N9IeAFtgaTL
CitedBy_id crossref_primary_10_1016_j_jajp_2022_100120
crossref_primary_10_1016_j_cplett_2020_138187
crossref_primary_10_1016_j_surfcoat_2022_128413
Cites_doi 10.1038/356133a0
10.1103/PhysRevLett.57.2295
10.1103/PhysRevLett.51.415
10.1016/j.actamat.2016.04.032
10.1126/science.1118611
10.1557/JMR.1990.0286
10.1103/PhysRevB.44.101
10.1016/0079-6425(86)90005-8
10.1016/j.jallcom.2018.04.259
10.1021/cr60135a002
10.1006/jcph.1995.1039
10.1007/BF02667556
10.1063/1.3583671
10.1103/PhysRevB.42.5481
10.1143/JJAP.22.L94
10.1103/PhysRevB.29.6443
10.1103/PhysRevB.47.7700
10.1103/PhysRevLett.102.245501
10.1038/334050a0
10.1103/PhysRevLett.70.1120
10.1016/j.intermet.2011.07.007
10.4028/www.scientific.net/MSF.179-181.855
10.1016/0257-8972(94)90041-8
10.1016/S0022-3115(96)00740-4
10.1016/0956-7151(91)90258-3
10.1103/PhysRevB.62.13979
10.1103/PhysRevLett.59.2987
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Jan 5, 2021
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Jan 5, 2021
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/j.jallcom.2020.156841
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4669
ExternalDocumentID 10_1016_j_jallcom_2020_156841
S0925838820332059
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SMS
SSH
T9H
WUQ
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c337t-f53b55655b9ec7ffc4524a3e56173528a01824defc57fbcb30904b979648f6993
IEDL.DBID AIKHN
ISSN 0925-8388
IngestDate Sun Jul 13 05:15:38 EDT 2025
Tue Jul 01 03:58:48 EDT 2025
Thu Apr 24 23:00:54 EDT 2025
Fri Feb 23 02:47:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Molecular dynamics simulation
Amorphization
Crystal-amorphous interface
Metallic glass
Non-equilibrium transition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-f53b55655b9ec7ffc4524a3e56173528a01824defc57fbcb30904b979648f6993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2461031749
PQPubID 2045454
ParticipantIDs proquest_journals_2461031749
crossref_primary_10_1016_j_jallcom_2020_156841
crossref_citationtrail_10_1016_j_jallcom_2020_156841
elsevier_sciencedirect_doi_10_1016_j_jallcom_2020_156841
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-05
PublicationDateYYYYMMDD 2021-01-05
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-05
  day: 05
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Journal of alloys and compounds
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Martínez, Aguilar, Briones, Guzmán, Zelaya, Troncoso, Rojas (bib7) 2018; 765
Mori, Fujita, Fujita (bib8) 1983; 22
Koike (bib14) 1993; 47
Zhu, Liao, Shi, Tang, Li (bib20) 2016; 112
Rehn, Okamoto, Pearson, Bhadra, Grimsditch (bib15) 1987; 59
Li, Li (bib13) 2011; 109
Oh, Kauffmann, Scheu, Kaplan, Rühle (bib21) 2005; 310
Johnson (bib1) 1986; 30
Li, Johnson, Goddard (bib28) 1995
Okamoto, Lam, Rehn (bib4) 1999
Hollanders, Thijsse, Mittemeijer (bib6) 1990; 42
Howe, Phillips, Motta, Okamoto (bib9) 1994; 66
Li, Johnson (bib12) 1993; 70
Dörner, Mehrer (bib3) 1991; 44
Fecht, Johnson (bib26) 1988; 334
Li (bib16) 2000; 62
Murray, Peruzzi, Abriata (bib23) 1992; 13
Motta (bib10) 1997; 244
Cheng, Ma, Sheng (bib18) 2009; 102
Schwarz, Johnson (bib11) 1983; 51
Plimpton (bib17) 1995; 117
Cotts, Meng, Johnson (bib2) 1986; 57
Fecht (bib25) 1992; 356
Daw, Baskes (bib19) 1984; 29
Ponweiser, Lengauer, Richter (bib22) 2011; 19
Wolf, Okamoto, Yip, Lutsko, Kluge (bib24) 1990; 5
Lee, Choi, Kim, Lee (bib5) 1991; 39
Kauzmann (bib27) 1948; 43
Plimpton (10.1016/j.jallcom.2020.156841_bib17) 1995; 117
Ponweiser (10.1016/j.jallcom.2020.156841_bib22) 2011; 19
Kauzmann (10.1016/j.jallcom.2020.156841_bib27) 1948; 43
Johnson (10.1016/j.jallcom.2020.156841_bib1) 1986; 30
Li (10.1016/j.jallcom.2020.156841_bib16) 2000; 62
Fecht (10.1016/j.jallcom.2020.156841_bib26) 1988; 334
Li (10.1016/j.jallcom.2020.156841_bib13) 2011; 109
Zhu (10.1016/j.jallcom.2020.156841_bib20) 2016; 112
Daw (10.1016/j.jallcom.2020.156841_bib19) 1984; 29
Li (10.1016/j.jallcom.2020.156841_bib12) 1993; 70
Hollanders (10.1016/j.jallcom.2020.156841_bib6) 1990; 42
Mori (10.1016/j.jallcom.2020.156841_bib8) 1983; 22
Oh (10.1016/j.jallcom.2020.156841_bib21) 2005; 310
Murray (10.1016/j.jallcom.2020.156841_bib23) 1992; 13
Okamoto (10.1016/j.jallcom.2020.156841_bib4) 1999
Wolf (10.1016/j.jallcom.2020.156841_bib24) 1990; 5
Motta (10.1016/j.jallcom.2020.156841_bib10) 1997; 244
Fecht (10.1016/j.jallcom.2020.156841_bib25) 1992; 356
Howe (10.1016/j.jallcom.2020.156841_bib9) 1994; 66
Cotts (10.1016/j.jallcom.2020.156841_bib2) 1986; 57
Dörner (10.1016/j.jallcom.2020.156841_bib3) 1991; 44
Schwarz (10.1016/j.jallcom.2020.156841_bib11) 1983; 51
Cheng (10.1016/j.jallcom.2020.156841_bib18) 2009; 102
Rehn (10.1016/j.jallcom.2020.156841_bib15) 1987; 59
Koike (10.1016/j.jallcom.2020.156841_bib14) 1993; 47
Martínez (10.1016/j.jallcom.2020.156841_bib7) 2018; 765
Lee (10.1016/j.jallcom.2020.156841_bib5) 1991; 39
Li (10.1016/j.jallcom.2020.156841_bib28) 1995
References_xml – volume: 39
  start-page: 1693
  year: 1991
  end-page: 1701
  ident: bib5
  article-title: Transformation characteristics of hydrogen-induced amorphization of the ordered Zr3Al phase
  publication-title: Acta Metall. Mater.
– volume: 66
  start-page: 411
  year: 1994
  end-page: 418
  ident: bib9
  article-title: Irradiation-induced phase transformations in zirconium alloys
  publication-title: Surf. Coating. Technol.
– volume: 42
  start-page: 5481
  year: 1990
  ident: bib6
  article-title: Amorphization along interfaces and grain boundaries in polycrystalline multilayers: an X-ray-diffraction study of Ni/Ti multilayers
  publication-title: Phys. Rev. B
– volume: 62
  start-page: 13979
  year: 2000
  ident: bib16
  article-title: Defect-induced topological order-to-disorder transitions in two-dimensional binary substitutional solid solutions: a molecular dynamics study
  publication-title: Phys. Rev. B
– volume: 112
  start-page: 378
  year: 2016
  end-page: 389
  ident: bib20
  article-title: Interdiffusion cross crystal-amorphous interface: an atomistic simulation
  publication-title: Acta Mater.
– volume: 22
  start-page: L94
  year: 1983
  ident: bib8
  article-title: Electron irradiation induced amorphization at dislocations in NiTi
  publication-title: Jpn. J. Appl. Phys.
– volume: 57
  start-page: 2295
  year: 1986
  ident: bib2
  article-title: Calorimetric study of amorphization in planar, binary, multilayer, thin-film diffusion couples of Ni and Zr
  publication-title: Phys. Rev. Lett.
– volume: 43
  start-page: 219
  year: 1948
  end-page: 256
  ident: bib27
  article-title: The nature of the glassy state and the behavior of liquids at low temperatures
  publication-title: Chem. Rev.
– volume: 30
  start-page: 81
  year: 1986
  end-page: 134
  ident: bib1
  article-title: Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials
  publication-title: Prog. Mater. Sci.
– volume: 44
  start-page: 101
  year: 1991
  ident: bib3
  article-title: Tracer diffusion and thermal stability in amorphous Co-Zr and their relevance for solid-state amorphization
  publication-title: Phys. Rev. B
– volume: 109
  start-page: 103507
  year: 2011
  ident: bib13
  article-title: A mean-field model for amorphization in crystalline solid solutions
  publication-title: J. Appl. Phys.
– volume: 356
  start-page: 133
  year: 1992
  ident: bib25
  article-title: Defect-induced melting and solid-state amorphization
  publication-title: Nature
– volume: 5
  start-page: 286
  year: 1990
  end-page: 301
  ident: bib24
  article-title: Thermodynamic parallels between solid-state amorphization and melting
  publication-title: J. Mater. Res.
– volume: 765
  start-page: 771
  year: 2018
  end-page: 781
  ident: bib7
  article-title: Effects of Zr on the amorphization of Cu-Ni-Zr alloys prepared by mechanical alloying
  publication-title: J. Alloys Compd.
– volume: 102
  year: 2009
  ident: bib18
  article-title: Atomic level structure in multicomponent bulk metallic glass
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 277
  year: 1992
  end-page: 291
  ident: bib23
  article-title: The Al-Zr (aluminum-zirconium) system
  publication-title: J. Phase Equil.
– volume: 310
  start-page: 661
  year: 2005
  end-page: 663
  ident: bib21
  article-title: Ordered liquid aluminum at the interface with sapphire
  publication-title: Science
– volume: 29
  start-page: 6443
  year: 1984
  end-page: 6453
  ident: bib19
  article-title: Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals
  publication-title: Phys. Rev. B
– volume: 47
  start-page: 7700
  year: 1993
  ident: bib14
  article-title: Elastic instability of crystals caused by static atom displacement: a mechanism for solid-state amorphization
  publication-title: Phys. Rev. B
– volume: 244
  start-page: 227
  year: 1997
  end-page: 250
  ident: bib10
  article-title: Amorphization of intermetallic compounds under irradiation—a review
  publication-title: J. Nucl. Mater.
– volume: 51
  start-page: 415
  year: 1983
  ident: bib11
  article-title: Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals
  publication-title: Phys. Rev. Lett.
– volume: 19
  start-page: 1737
  year: 2011
  end-page: 1746
  ident: bib22
  article-title: Re-investigation of phase equilibria in the system Al–Cu and structural analysis of the high-temperature phase η1-Al1− δCu
  publication-title: Intermetallics
– volume: 117
  start-page: 1
  year: 1995
  end-page: 19
  ident: bib17
  article-title: Fast parallel algorithms for short-range molecular dynamics
  publication-title: J. Comput. Phys.
– volume: 70
  start-page: 1120
  year: 1993
  ident: bib12
  article-title: Instability of metastable solid solutions and the crystal to glass transition
  publication-title: Phys. Rev. Lett.
– volume: 59
  start-page: 2987
  year: 1987
  ident: bib15
  article-title: Solid-state amorphization of Zr 3 Al: evidence of an elastic instability and first-order phase transformation
  publication-title: Phys. Rev. Lett.
– volume: 334
  start-page: 50
  year: 1988
  ident: bib26
  article-title: Entropy and enthalpy catastrophe as a stability limit for crystalline material
  publication-title: Nature
– start-page: 855
  year: 1995
  ident: bib28
  article-title: Configurationally frozen defects, random strains and landau theory of crystals to glass transition
  publication-title: Mater Sci Forum, Trans Tech Publ
– start-page: 1
  year: 1999
  end-page: 135
  ident: bib4
  article-title: Physics of Crystal-To-Glass Transformations, Solid State Physics
– volume: 356
  start-page: 133
  issue: 6365
  year: 1992
  ident: 10.1016/j.jallcom.2020.156841_bib25
  article-title: Defect-induced melting and solid-state amorphization
  publication-title: Nature
  doi: 10.1038/356133a0
– volume: 57
  start-page: 2295
  issue: 18
  year: 1986
  ident: 10.1016/j.jallcom.2020.156841_bib2
  article-title: Calorimetric study of amorphization in planar, binary, multilayer, thin-film diffusion couples of Ni and Zr
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.57.2295
– volume: 51
  start-page: 415
  issue: 5
  year: 1983
  ident: 10.1016/j.jallcom.2020.156841_bib11
  article-title: Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.51.415
– volume: 112
  start-page: 378
  year: 2016
  ident: 10.1016/j.jallcom.2020.156841_bib20
  article-title: Interdiffusion cross crystal-amorphous interface: an atomistic simulation
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.04.032
– volume: 310
  start-page: 661
  issue: 5748
  year: 2005
  ident: 10.1016/j.jallcom.2020.156841_bib21
  article-title: Ordered liquid aluminum at the interface with sapphire
  publication-title: Science
  doi: 10.1126/science.1118611
– volume: 5
  start-page: 286
  issue: 2
  year: 1990
  ident: 10.1016/j.jallcom.2020.156841_bib24
  article-title: Thermodynamic parallels between solid-state amorphization and melting
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1990.0286
– volume: 44
  start-page: 101
  issue: 1
  year: 1991
  ident: 10.1016/j.jallcom.2020.156841_bib3
  article-title: Tracer diffusion and thermal stability in amorphous Co-Zr and their relevance for solid-state amorphization
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.44.101
– volume: 30
  start-page: 81
  issue: 2
  year: 1986
  ident: 10.1016/j.jallcom.2020.156841_bib1
  article-title: Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/0079-6425(86)90005-8
– volume: 765
  start-page: 771
  year: 2018
  ident: 10.1016/j.jallcom.2020.156841_bib7
  article-title: Effects of Zr on the amorphization of Cu-Ni-Zr alloys prepared by mechanical alloying
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.04.259
– volume: 43
  start-page: 219
  issue: 2
  year: 1948
  ident: 10.1016/j.jallcom.2020.156841_bib27
  article-title: The nature of the glassy state and the behavior of liquids at low temperatures
  publication-title: Chem. Rev.
  doi: 10.1021/cr60135a002
– volume: 117
  start-page: 1
  issue: 1
  year: 1995
  ident: 10.1016/j.jallcom.2020.156841_bib17
  article-title: Fast parallel algorithms for short-range molecular dynamics
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 13
  start-page: 277
  issue: 3
  year: 1992
  ident: 10.1016/j.jallcom.2020.156841_bib23
  article-title: The Al-Zr (aluminum-zirconium) system
  publication-title: J. Phase Equil.
  doi: 10.1007/BF02667556
– volume: 109
  start-page: 103507
  issue: 10
  year: 2011
  ident: 10.1016/j.jallcom.2020.156841_bib13
  article-title: A mean-field model for amorphization in crystalline solid solutions
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3583671
– volume: 42
  start-page: 5481
  issue: 9
  year: 1990
  ident: 10.1016/j.jallcom.2020.156841_bib6
  article-title: Amorphization along interfaces and grain boundaries in polycrystalline multilayers: an X-ray-diffraction study of Ni/Ti multilayers
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.42.5481
– volume: 22
  start-page: L94
  issue: 2A
  year: 1983
  ident: 10.1016/j.jallcom.2020.156841_bib8
  article-title: Electron irradiation induced amorphization at dislocations in NiTi
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.22.L94
– volume: 29
  start-page: 6443
  issue: 12
  year: 1984
  ident: 10.1016/j.jallcom.2020.156841_bib19
  article-title: Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.29.6443
– volume: 47
  start-page: 7700
  issue: 13
  year: 1993
  ident: 10.1016/j.jallcom.2020.156841_bib14
  article-title: Elastic instability of crystals caused by static atom displacement: a mechanism for solid-state amorphization
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.7700
– volume: 102
  issue: 24
  year: 2009
  ident: 10.1016/j.jallcom.2020.156841_bib18
  article-title: Atomic level structure in multicomponent bulk metallic glass
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.245501
– start-page: 1
  year: 1999
  ident: 10.1016/j.jallcom.2020.156841_bib4
– volume: 334
  start-page: 50
  issue: 6177
  year: 1988
  ident: 10.1016/j.jallcom.2020.156841_bib26
  article-title: Entropy and enthalpy catastrophe as a stability limit for crystalline material
  publication-title: Nature
  doi: 10.1038/334050a0
– volume: 70
  start-page: 1120
  issue: 8
  year: 1993
  ident: 10.1016/j.jallcom.2020.156841_bib12
  article-title: Instability of metastable solid solutions and the crystal to glass transition
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.70.1120
– volume: 19
  start-page: 1737
  issue: 11
  year: 2011
  ident: 10.1016/j.jallcom.2020.156841_bib22
  article-title: Re-investigation of phase equilibria in the system Al–Cu and structural analysis of the high-temperature phase η1-Al1− δCu
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2011.07.007
– start-page: 855
  year: 1995
  ident: 10.1016/j.jallcom.2020.156841_bib28
  article-title: Configurationally frozen defects, random strains and landau theory of crystals to glass transition
  publication-title: Mater Sci Forum, Trans Tech Publ
  doi: 10.4028/www.scientific.net/MSF.179-181.855
– volume: 66
  start-page: 411
  issue: 1–3
  year: 1994
  ident: 10.1016/j.jallcom.2020.156841_bib9
  article-title: Irradiation-induced phase transformations in zirconium alloys
  publication-title: Surf. Coating. Technol.
  doi: 10.1016/0257-8972(94)90041-8
– volume: 244
  start-page: 227
  issue: 3
  year: 1997
  ident: 10.1016/j.jallcom.2020.156841_bib10
  article-title: Amorphization of intermetallic compounds under irradiation—a review
  publication-title: J. Nucl. Mater.
  doi: 10.1016/S0022-3115(96)00740-4
– volume: 39
  start-page: 1693
  issue: 7
  year: 1991
  ident: 10.1016/j.jallcom.2020.156841_bib5
  article-title: Transformation characteristics of hydrogen-induced amorphization of the ordered Zr3Al phase
  publication-title: Acta Metall. Mater.
  doi: 10.1016/0956-7151(91)90258-3
– volume: 62
  start-page: 13979
  issue: 21
  year: 2000
  ident: 10.1016/j.jallcom.2020.156841_bib16
  article-title: Defect-induced topological order-to-disorder transitions in two-dimensional binary substitutional solid solutions: a molecular dynamics study
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.62.13979
– volume: 59
  start-page: 2987
  issue: 26
  year: 1987
  ident: 10.1016/j.jallcom.2020.156841_bib15
  article-title: Solid-state amorphization of Zr 3 Al: evidence of an elastic instability and first-order phase transformation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.59.2987
SSID ssj0001931
Score 2.3460193
Snippet Crystalline materials undergo phase transitions to disordered state at the melting point when being heated; but the transition can also occur from crystal to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 156841
SubjectTerms Amorphization
Amorphous alloys
Amorphous materials
Concentration gradient
Crystal defects
Crystal structure
Crystal-amorphous interface
Crystallinity
Hydrogen permeation
Melting points
Metallic glass
Metallic glasses
Molecular dynamics
Molecular dynamics simulation
Non-equilibrium transition
Phase transitions
Thermodynamic properties
Title From first to second order nonequilibrium phase transition in crystal-amorphous interface: Effects of spatial and kinetic constraints
URI https://dx.doi.org/10.1016/j.jallcom.2020.156841
https://www.proquest.com/docview/2461031749
Volume 850
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB1BECocKgitCgS0B67Oh3c3znJDEVEoKpcWidtqvfEKpwlOY-fAhRv_mxl7HWglhNSr5VmNPfbMG_vtG4AzRN1OJJYHIY9UIKyZBEogkFOx64XWRoNqFsGPm_74Vny_k3cbMKz3whCt0uf-KqeX2dof6fi72VmkaednV4X0zw9LGMcFpdqErZCrvmzA1sXV9fhmnZARo5SD8_D8gAxeN_J0pu2pmc2INxIibmpjMzMQvfdK1D_JuqxAoz347KEju6i824eN5KEJn4b1xLYm7L4RF2zCdknutPkBPI-W2Zy5FIEeKzKWUw88YaXoJsPuP_mzSkvm_2rOFvdY1VhBBazkcrH0gdnlI0LIWWDmGQYlW-WMNCaWztjknFXqxznLHMuJnI0OGlz8N_qBbjJL8JOmUBT5F7gdXf4ajgM_fiGwnEdF4CSPJeI9GavERs5ZIUNheIKIKyJNGNPF3kRMEmdl5GIb867qiljR3taB6yPu-QoNuohvwBzJA3OHmbe0MIpa4xD7eDlRiCfMIYj6jmvrtcnJuZmuSWhT7QOlKVC6CtQhtNdmi0qc4yODQR1O_ddTprGAfGTaqsOv_WueaxLjw6wYCXX0_ysfw05IRBn6riNb0CiWq-QEkU4Rn8Jm-6l36p_nFzAb_o4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB7xEAIOKyggXgs-cE1bYpvUe0PVVuV5ASRuluPGIqUlpUkPXLjxv3fGSZZlJYTENbKtScaZ-Sb5_A3AEaJuJxLLg5BHKhDWDAIlEMip2B2H1kadshfB1fVJ_06c38v7OejWZ2GIVlnF_jKm-2hdXWlVT7M1SdPWTVuF9M8PUxjHBaWah0UheUS8vubrO88DEYpvm4ejAxr-foynNWwOzWhErJEQUVMTS5mOOP4sQf0Xqn3-6a3Bjwo4stPStnWYS54asNyt-7U1YPUfacEGLHlqp8034K03zcbMpQjzWJGxnCrgAfOSmwxr_-R5lnre_2zMJg-Y01hB6cszuVj6xOz0BQHkKDDjDF2SzXJGChNTZ2zyi5XaxznLHMuJmo0GGlz8Ee1AM5kl8Ek9KIp8E-56v2-7_aBqvhBYzqMicJLHEtGejFViI-eskKEwPEG8FZEijGljZSIGibMycrGNeVu1RazoZGvHnSDq2YIFuoltYI7EgbnDuOtnGEWFcYhVvBwoRBNmB0T9xLWtlMnJuJGuKWhDXTlKk6N06agdaP6dNimlOb6a0KndqT_sMY3p46up-7X7dfWS55qk-DAmRkLtfn_lQ1ju315d6suz64s9WAmJMkNfeOQ-LBTTWfITMU8RH_g9_QdbqP9Z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+first+to+second+order+nonequilibrium+phase+transition+in+crystal-amorphous+interface%3A+Effects+of+spatial+and+kinetic+constraints&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Zhu%2C+Yiying&rft.au=Wang%2C+Hao&rft.au=Wu%2C+Lingkang&rft.au=Li%2C+Mo&rft.date=2021-01-05&rft.pub=Elsevier+BV&rft.issn=0925-8388&rft.eissn=1873-4669&rft.volume=850&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jallcom.2020.156841&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon