DDoD: Dual Denial of Decision Attacks on Human-AI Teams

Artificial intelligence (AI) systems have been increasingly used to make decision-making processes faster, more accurate, and more efficient. However, such systems are also at constant risk of being attacked. While the majority of attacks targeting AI-based applications aim to manipulate classifiers...

Full description

Saved in:
Bibliographic Details
Published inIEEE pervasive computing Vol. 22; no. 1; pp. 1 - 8
Main Authors Tag, Benjamin, van Berkel, Niels, Verma, Sunny, Zhao, Benjamin Zi Hao, Berkovsky, Shlomo, Kaafar, Dali, Kostakos, Vassilis, Ohrimenko, Olga
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1536-1268
1558-2590
DOI10.1109/MPRV.2022.3218773

Cover

Abstract Artificial intelligence (AI) systems have been increasingly used to make decision-making processes faster, more accurate, and more efficient. However, such systems are also at constant risk of being attacked. While the majority of attacks targeting AI-based applications aim to manipulate classifiers or training data and alter the output of an AI model, recently proposed sponge attacks against AI models aim to impede the classifier's execution by consuming substantial resources. In this work, we propose dual denial of decision (DDoD) attacks against collaborative human-AI teams. We discuss how such attacks aim to deplete both computational and human resources, and significantly impair decision-making capabilities. We describe DDoD on human and computational resources and present potential risk scenarios in a series of exemplary domains.
AbstractList Artificial intelligence (AI) systems have been increasingly used to make decision-making processes faster, more accurate, and more efficient. However, such systems are also at constant risk of being attacked. While the majority of attacks targeting AI-based applications aim to manipulate classifiers or training data and alter the output of an AI model, recently proposed sponge attacks against AI models aim to impede the classifier's execution by consuming substantial resources. In this work, we propose dual denial of decision (DDoD) attacks against collaborative human-AI teams. We discuss how such attacks aim to deplete both computational and human resources, and significantly impair decision-making capabilities. We describe DDoD on human and computational resources and present potential risk scenarios in a series of exemplary domains.
Author Ohrimenko, Olga
Tag, Benjamin
Zhao, Benjamin Zi Hao
Kaafar, Dali
Kostakos, Vassilis
Verma, Sunny
van Berkel, Niels
Berkovsky, Shlomo
Author_xml – sequence: 1
  givenname: Benjamin
  orcidid: 0000-0002-7831-2632
  surname: Tag
  fullname: Tag, Benjamin
  organization: University of Melbourne, Parkville, VIC, Australia
– sequence: 2
  givenname: Niels
  orcidid: 0000-0001-5106-7692
  surname: van Berkel
  fullname: van Berkel, Niels
  organization: Aalborg University, Aalborg, Denmark
– sequence: 3
  givenname: Sunny
  surname: Verma
  fullname: Verma, Sunny
  organization: Macquarie University, Macquarie Park, NSW, Australia
– sequence: 4
  givenname: Benjamin Zi Hao
  orcidid: 0000-0002-2774-2675
  surname: Zhao
  fullname: Zhao, Benjamin Zi Hao
  organization: Macquarie University, Macquarie Park, NSW, Australia
– sequence: 5
  givenname: Shlomo
  orcidid: 0000-0003-2638-4121
  surname: Berkovsky
  fullname: Berkovsky, Shlomo
  organization: Macquarie University, Macquarie Park, NSW, Australia
– sequence: 6
  givenname: Dali
  orcidid: 0000-0003-2714-0276
  surname: Kaafar
  fullname: Kaafar, Dali
  organization: Macquarie University, Macquarie Park, NSW, Australia
– sequence: 7
  givenname: Vassilis
  orcidid: 0000-0003-2804-6038
  surname: Kostakos
  fullname: Kostakos, Vassilis
  organization: University of Melbourne, Parkville, VIC, Australia
– sequence: 8
  givenname: Olga
  orcidid: 0000-0002-9735-0538
  surname: Ohrimenko
  fullname: Ohrimenko, Olga
  organization: University of Melbourne, Parkville, VIC, Australia
BookMark eNp9kL1OwzAUhS1UJNrCAyAxRGJO8E8cO2xVA7RSEQgVVstxbcmljYvtDLw9jtoBMTDdM5xzz73fBIw612kArhEsEIL13fPr20eBIcYFwYgzRs7AGFHKc0xrOBo0qXKEK34BJiFsIUS8rusxYE3jmvus6eUua3Rn03AmKWWDdV02i1Gqz5Aluej3sstny2yt5T5cgnMjd0FfneYUvD8-rOeLfPXytJzPVrkihMXcII0ZQy1tlSxhCzWHjFSy4rhtq5aVCkO9UYrxklOWbqJaIQKRMaqkG2wMmYLb496Dd1-9DlFsXe-7VCkwqzEilNRVcqGjS3kXgtdGHLzdS_8tEBQDHzHwEQMfceKTMuxPRtkoY_o6eml3_yZvjkmrtf7VBGlJKCQ_a99yHg
CODEN IPCECF
CitedBy_id crossref_primary_10_3233_JIFS_233440
Cites_doi 10.1109/EuroSP51992.2021.00024
10.1016/0959-4752(94)90003-5
10.1145/3422156
10.1002/9781119644682
10.1007/s11023-019-09513-7
10.1145/3173574.3174223
10.1007/s40747-020-00212-w
10.1145/3432945
10.1145/3442188.3445923
10.1109/SP.2017.41
10.1145/3359313
10.1016/j.intcom.2008.10.011
10.1016/S0959-4752(01)00016-0
10.3389/fpsyg.2020.01755
10.1007/978-3-030-32361-5_10
10.1109/SP46214.2022.9833641
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/MPRV.2022.3218773
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2590
EndPage 8
ExternalDocumentID 10_1109_MPRV_2022_3218773
10054350
Genre orig-research
GroupedDBID -D7
-DT
-~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABHFT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AFOGA
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
KZ1
LAI
LMP
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c337t-f1e2771b5bca40b0e80736a682bb6b74c20edcc7848570185ec1301ffc45d2ff3
IEDL.DBID RIE
ISSN 1536-1268
IngestDate Mon Jun 30 04:27:12 EDT 2025
Tue Jul 01 03:09:04 EDT 2025
Thu Apr 24 22:51:20 EDT 2025
Wed Aug 27 02:25:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-f1e2771b5bca40b0e80736a682bb6b74c20edcc7848570185ec1301ffc45d2ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5106-7692
0000-0003-2714-0276
0000-0003-2638-4121
0000-0002-7831-2632
0000-0003-2804-6038
0000-0002-2774-2675
0000-0002-9735-0538
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10054350
PQID 2792135396
PQPubID 75734
PageCount 8
ParticipantIDs proquest_journals_2792135396
crossref_citationtrail_10_1109_MPRV_2022_3218773
crossref_primary_10_1109_MPRV_2022_3218773
ieee_primary_10054350
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE pervasive computing
PublicationTitleAbbrev MPRV
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref20
Goodfellow (ref3) 2015
Chen (ref5) 2017
ref11
ref10
ref21
ref2
ref1
ref16
ref18
ref8
ref7
ref9
Biggio (ref4) 2012
Balasubramanian (ref17) 2018
ref6
Dongen (ref19) 2000; 20
References_xml – ident: ref1
  doi: 10.1109/EuroSP51992.2021.00024
– ident: ref2
  doi: 10.1016/0959-4752(94)90003-5
– ident: ref10
  doi: 10.1145/3422156
– ident: ref6
  doi: 10.1002/9781119644682
– year: 2017
  ident: ref5
  article-title: Targeted backdoor attacks on deep learning systems using data poisoning
– ident: ref15
  doi: 10.1007/s11023-019-09513-7
– volume: 20
  start-page: 391
  issue: 215
  volume-title: Princ. Pract. Sleep Med.
  year: 2000
  ident: ref19
  article-title: Circadian rhythms in fatigue, alertness and performance
– ident: ref12
  doi: 10.1145/3173574.3174223
– ident: ref18
  doi: 10.1007/s40747-020-00212-w
– ident: ref9
  doi: 10.1145/3432945
– ident: ref20
  doi: 10.1145/3442188.3445923
– year: 2015
  ident: ref3
  article-title: Explaining and harnessing adversarial examples
– year: 2018
  ident: ref17
  article-title: Insurance 2030–the impact of ai on the future of insurance
– ident: ref7
  doi: 10.1109/SP.2017.41
– ident: ref11
  doi: 10.1145/3359313
– ident: ref21
  doi: 10.1016/j.intcom.2008.10.011
– ident: ref14
  doi: 10.1016/S0959-4752(01)00016-0
– ident: ref13
  doi: 10.3389/fpsyg.2020.01755
– ident: ref16
  doi: 10.1007/978-3-030-32361-5_10
– ident: ref8
  doi: 10.1109/SP46214.2022.9833641
– start-page: 1467
  volume-title: Proc. 29th Int. Conf. Int. Conf. Mach. Learn.
  year: 2012
  ident: ref4
  article-title: Poisoning attacks against support vector machines
SSID ssj0018999
Score 2.3893406
Snippet Artificial intelligence (AI) systems have been increasingly used to make decision-making processes faster, more accurate, and more efficient. However, such...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial intelligence
Classifiers
Collaboration
Data models
Decision making
Predictive models
Task analysis
Teams
Training
Training data
Uncertainty
Title DDoD: Dual Denial of Decision Attacks on Human-AI Teams
URI https://ieeexplore.ieee.org/document/10054350
https://www.proquest.com/docview/2792135396
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA66kx78nDid0oMnIbVr06T1NqxjChsim-xWkjS5OFdx7cVfb96kk6ko3kJJIORN-n4_D0IXIS0kp1pjlqYckyjhOFE0wJIJTaQMuebQ7zwa0-GU3M_iWdOsbnthlFK2-Ez5MLS5_KKUNYTKzAs3BkYEHvqmuWeuWeszZWAch9SBowKxDE2aFGYvSK9GD49PxhUMQz8yGo2x6IsSsqwqP37FVr8MdtF4tTNXVvLs15Xw5fs30MZ_b30P7TSWptd3V2MfbajFAdpewx88RCzLyuzay2ozL4Oqu7lXajNytDtev6qgA98zQxvrx_07b6L4y7KNpoPbyc0QN0wKWEYRq7DuqZCxnoiF5CQQgUrMy6acJqEQVDAiw0AVUrKEAN69UeFKGt3W01qSuAi1jo5Qa1Eu1DHyWJESGZuvSZRAzjWNIVtTKM4KY8sUpIOC1dHmsoEZB7aLeW7djSDNQRo5SCNvpNFBl59LXh3Gxl-T23C6axPdwXZQdyXAvHmGyxzQEYHYI6Unvyw7RVtAIO-CKl3Uqt5qdWbMjEqc2-v1AfP1ypg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-iB_Xg58Tp1B48Ca1tmiatt2Edm25DZJPdSpImF-cqrr3415vXdmMqirdQXiDkJX1feb8fQpeYppJTrW0WRdwmfsjtUFHXlkxoIiXmmkO_82BIu2NyPwkmdbN62QujlCofnykHhmUtP81kAakyc8ONg-FDhL5hDD8JqnatZdHAhA5RBY8K1DI0rIuYnhtdDx6fnk0wiLHjG5vGmP_FDJW8Kj9-xqWF6eyi4WJt1cOSF6fIhSM_vsE2_nvxe2in9jWtdnU49tGamh2g7RUEwkPE4jiLb6y4MHIxvLubWpk2o4p4x2rnOfTgW2ZYZvvtds8aKf46b6Bx525027VrLgVb-j7Lbe0pzJgnAiE5cYWrQnO3KachFoIKRiR2VSolCwkg3hsjrqSxbp7WkgQp1to_QuuzbKaOkcXSiMjAfA39EKquUQD1mlRxlhpvJiVN5C62NpE10DjwXUyTMuBwowS0kYA2klobTXS1nPJWoWz8JdyA3V0RrDa2iVoLBSb1RZwngI8I1B4RPfll2gXa7I4G_aTfGz6coi2gk69SLC20nr8X6sw4Hbk4L4_aJ8KOzeU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DDoD%3A+Dual+Denial+of+Decision+Attacks+on+Human-AI+Teams&rft.jtitle=IEEE+pervasive+computing&rft.au=Tag%2C+Benjamin&rft.au=van+Berkel%2C+Niels&rft.au=Verma%2C+Sunny&rft.au=Zhao%2C+Benjamin+Zi+Hao&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=1536-1268&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FMPRV.2022.3218773&rft.externalDocID=10054350
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1268&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1268&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1268&client=summon