ORACLE: Occlusion-Resilient and Self-Calibrating mmWave Radar Network for People Tracking
Millimeter wave (mmWave) radar sensors are emerging as valid alternatives to cameras for the pervasive contactless monitoring of people in indoor spaces. However, commercial mmWave radars feature a limited range (up to 6-8 m) and are subject to occlusion, which may constitute a significant drawback...
Saved in:
Published in | IEEE sensors journal Vol. 24; no. 3; p. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Millimeter wave (mmWave) radar sensors are emerging as valid alternatives to cameras for the pervasive contactless monitoring of people in indoor spaces. However, commercial mmWave radars feature a limited range (up to 6-8 m) and are subject to occlusion, which may constitute a significant drawback in large, crowded rooms characterized by a challenging multipath environment. Thus, covering large indoor spaces requires multiple radars with known relative position and orientation and algorithms to combine their outputs. In this work, we present ORACLE, an autonomous system that ( i ) integrates automatic relative position and orientation estimation from multiple radar devices by exploiting the trajectories of people moving freely in the radars' common fields of view, and ( ii ) fuses the tracking information from multiple radars to obtain a unified tracking among all sensors. Our implementation and experimental evaluation of ORACLE results in median errors of 0.12 m and 0.03° for radars location and orientation estimates, respectively. Fused tracking improves the mean target tracking accuracy by 27%, and the mean tracking error is 23 cm in the most challenging case of 3 moving targets. Finally, ORACLE does not show significant performance reduction when the fusion rate is reduced to up to 1/5 of the frame rate of the single radar sensors, thus being amenable to a lightweight implementation on a resource-constrained fusion center. |
---|---|
AbstractList | Millimeter wave (mmWave) radar sensors are emerging as valid alternatives to cameras for the pervasive contactless monitoring of people in indoor spaces. However, commercial mmWave radars feature a limited range (up to 6-8 m) and are subject to occlusion, which may constitute a significant drawback in large, crowded rooms characterized by a challenging multipath environment. Thus, covering large indoor spaces requires multiple radars with known relative position and orientation and algorithms to combine their outputs. In this work, we present ORACLE, an autonomous system that ( i ) integrates automatic relative position and orientation estimation from multiple radar devices by exploiting the trajectories of people moving freely in the radars' common fields of view, and ( ii ) fuses the tracking information from multiple radars to obtain a unified tracking among all sensors. Our implementation and experimental evaluation of ORACLE results in median errors of 0.12 m and 0.03° for radars location and orientation estimates, respectively. Fused tracking improves the mean target tracking accuracy by 27%, and the mean tracking error is 23 cm in the most challenging case of 3 moving targets. Finally, ORACLE does not show significant performance reduction when the fusion rate is reduced to up to 1/5 of the frame rate of the single radar sensors, thus being amenable to a lightweight implementation on a resource-constrained fusion center. Millimeter-wave (mmWave) radar sensors are emerging as valid alternatives to cameras for the pervasive contactless monitoring of people in indoor spaces. However, commercial mmWave radars feature a limited range (up to 6–8 m) and are subject to occlusion, which may constitute a significant drawback in large, crowded rooms characterized by a challenging multipath environment. Thus, covering large indoor spaces requires multiple radars with known relative position and orientation and algorithms to combine their outputs. In this work, we present ORACLE, an autonomous system that: 1) integrates automatic relative position and orientation estimation from multiple radar devices by exploiting the trajectories of people moving freely in the radars’ common fields of view and 2) fuses the tracking information from multiple radars to obtain a unified tracking among all sensors. Our implementation and experimental evaluation of ORACLE results in median errors of 0.12 m and 0.03° for radar location and orientation estimates, respectively. Fused tracking improves the mean target tracking accuracy by 27% and the mean tracking error is 23 cm in the most challenging case of three moving targets. Finally, ORACLE does not show significant performance reduction when the fusion rate is reduced to up to 1/5 of the frame rate of the single radar sensors, thus being amenable to a lightweight implementation on a resource-constrained fusion center (FC). |
Author | Rossi, Michele Pegoraro, Jacopo Casari, Paolo Shastri, Anish Canil, Marco |
Author_xml | – sequence: 1 givenname: Marco orcidid: 0000-0001-8037-7497 surname: Canil fullname: Canil, Marco organization: Department of Information Engineering, University of Padova, Padova, Italy – sequence: 2 givenname: Jacopo surname: Pegoraro fullname: Pegoraro, Jacopo organization: Department of Information Engineering, University of Padova, Padova, Italy – sequence: 3 givenname: Anish surname: Shastri fullname: Shastri, Anish organization: Department of Information Engineering and Computer Science, University of Trento, Povo, Italy – sequence: 4 givenname: Paolo orcidid: 0000-0002-6401-1660 surname: Casari fullname: Casari, Paolo organization: Department of Information Engineering and Computer Science, University of Trento, Povo, Italy – sequence: 5 givenname: Michele orcidid: 0000-0003-1121-324X surname: Rossi fullname: Rossi, Michele organization: Department of Information Engineering, University of Padova, Padova, Italy |
BookMark | eNp9kE1PAjEURRujiYD-ABMXTVwPtvMobd0Rgl8hYACjriad8sYUhil2Bo3_3pnAwrhw9d7innuT0ybHhS-QkAvOupwzff04H026MYuhCwAa-vqItLgQKuKyp46bH1jUA_l6StpluWKMaylki7xNZ4PheHRDp9bmu9L5Ipph6XKHRUVNsaRzzLNoaHKXBlO54p1uNi_mE-nMLE2gE6y-fFjTzAf6hH6bI10EY9d18IycZCYv8fxwO-T5drQY3kfj6d3DcDCOLICsIlxaLXk_VShSAESdxYopUMiMMtZCtkQlAQWzAkUv5plMuUi5TCWmmRAWOuRq37sN_mOHZZWs_C4U9WQS69qIElr36xTfp2zwZRkwS7bBbUz4TjhLGoNJYzBpDCYHgzUj_zDWVbUEX1TBuPxf8nJPOkT8tQS9WPUF_ABx1oBV |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1109_OJSP_2024_3444709 |
Cites_doi | 10.1109/TITS.2005.858784 10.1109/MSP.2016.2628914 10.1109/ACCESS.2017.2667720 10.1109/COMST.2022.3177305 10.3390/s20061599 10.1109/RadarConf2147009.2021.9454972 10.1145/3563357.3564078 10.1109/IRS.2012.6233325 10.1109/DCOSS.2019.00028 10.1002/nav.20053 10.1109/MCS.2009.934469 10.23919/EuRAD50154.2022.9784533 10.1109/RWS.2007.351749 10.1109/ACCESS.2021.3083980 10.1109/JSTSP.2021.3138632 10.1109/7.625124 10.2307/1271436 10.1109/RadarConf2248738.2022.9764173 10.1145/3565474.3569068 10.1109/62.821657 10.1109/RADAR.2016.7485236 10.1109/ICASSP.2019.8682406 10.1609/aaai.v34i01.5430 10.1109/MAES.2019.2933971 10.1115/1.3662552 10.1109/MC.2019.2913626 10.1109/GLOBECOM46510.2021.9685213 10.1109/WCL.2013.120513.130760 10.1109/JBHI.2023.3237077 10.1109/JSEN.2021.3117707 10.1109/RadarConf2043947.2020.9266697 10.1145/3349624.3356768 10.1109/INFOCOMWKSHPS51825.2021.9484562 10.1109/TAC.1979.1102177 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2023.3339369 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 1 |
ExternalDocumentID | 10_1109_JSEN_2023_3339369 10342865 |
Genre | orig-research |
GrantInformation_xml | – fundername: Horizon 2020 Framework Programme grantid: 861222 funderid: 10.13039/100010661 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS ESBDL F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c337t-edc9716b8e5b33ee9f280838e0a8acc3fde873e50c5e5421f7b15b17b7ebf55c3 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:12:37 EDT 2025 Tue Jul 01 04:27:22 EDT 2025 Thu Apr 24 23:03:25 EDT 2025 Wed Aug 27 02:24:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-edc9716b8e5b33ee9f280838e0a8acc3fde873e50c5e5421f7b15b17b7ebf55c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8037-7497 0000-0002-6401-1660 0000-0003-1121-324X 0000-0002-9352-5417 0000-0003-3555-5666 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10342865 |
PQID | 2920285996 |
PQPubID | 75733 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2920285996 ieee_primary_10342865 crossref_primary_10_1109_JSEN_2023_3339369 crossref_citationtrail_10_1109_JSEN_2023_3339369 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref14 Ester (ref30) ref36 ref31 ref11 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 Chernyak (ref15) 1998 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Sorkine-Hornung (ref33) 2017; 1 Bernardin (ref37); 90 |
References_xml | – ident: ref21 doi: 10.1109/TITS.2005.858784 – ident: ref27 doi: 10.1109/MSP.2016.2628914 – ident: ref28 doi: 10.1109/ACCESS.2017.2667720 – ident: ref3 doi: 10.1109/COMST.2022.3177305 – ident: ref17 doi: 10.3390/s20061599 – ident: ref24 doi: 10.1109/RadarConf2147009.2021.9454972 – ident: ref12 doi: 10.1145/3563357.3564078 – ident: ref19 doi: 10.1109/IRS.2012.6233325 – ident: ref5 doi: 10.1109/DCOSS.2019.00028 – ident: ref34 doi: 10.1002/nav.20053 – volume: 1 start-page: 1 issue: 1 year: 2017 ident: ref33 article-title: Least-squares rigid motion using SVD publication-title: Computing – ident: ref32 doi: 10.1109/MCS.2009.934469 – ident: ref22 doi: 10.23919/EuRAD50154.2022.9784533 – volume: 90 start-page: 1 issue: 91 volume-title: Proc. 6th IEEE Int. Workshop Vis. Surveill. ident: ref37 article-title: Multiple object tracking performance metrics and evaluation in a smart room environment – ident: ref20 doi: 10.1109/RWS.2007.351749 – ident: ref4 doi: 10.1109/ACCESS.2021.3083980 – ident: ref6 doi: 10.1109/JSTSP.2021.3138632 – start-page: 1 volume-title: Proc. ACM Conf. Knowl. Discovery Data Mining (KDD) ident: ref30 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise – ident: ref35 doi: 10.1109/7.625124 – ident: ref36 doi: 10.2307/1271436 – ident: ref13 doi: 10.1109/RadarConf2248738.2022.9764173 – ident: ref14 doi: 10.1145/3565474.3569068 – ident: ref29 doi: 10.1109/62.821657 – ident: ref16 doi: 10.1109/RADAR.2016.7485236 – ident: ref23 doi: 10.1109/ICASSP.2019.8682406 – ident: ref25 doi: 10.1609/aaai.v34i01.5430 – ident: ref1 doi: 10.1109/MAES.2019.2933971 – volume-title: Fundamentals of Multisite Radar Systems: Multistatic Radars and Multistatic Radar Systems year: 1998 ident: ref15 – ident: ref31 doi: 10.1115/1.3662552 – ident: ref2 doi: 10.1109/MC.2019.2913626 – ident: ref9 doi: 10.1109/GLOBECOM46510.2021.9685213 – ident: ref18 doi: 10.1109/WCL.2013.120513.130760 – ident: ref8 doi: 10.1109/JBHI.2023.3237077 – ident: ref11 doi: 10.1109/JSEN.2021.3117707 – ident: ref26 doi: 10.1109/RadarConf2043947.2020.9266697 – ident: ref7 doi: 10.1145/3349624.3356768 – ident: ref10 doi: 10.1109/INFOCOMWKSHPS51825.2021.9484562 – ident: ref38 doi: 10.1109/TAC.1979.1102177 |
SSID | ssj0019757 |
Score | 2.4000947 |
Snippet | Millimeter wave (mmWave) radar sensors are emerging as valid alternatives to cameras for the pervasive contactless monitoring of people in indoor spaces.... Millimeter-wave (mmWave) radar sensors are emerging as valid alternatives to cameras for the pervasive contactless monitoring of people in indoor spaces.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Indoor sensing Millimeter wave communication Millimeter waves mmWave radar network Moving targets Occlusion Orientation people tracking Radar Radar equipment radar fusion Radar networks Radar tracking self calibration Sensor fusion Sensors Spaceborne radar Target tracking Tracking errors |
Title | ORACLE: Occlusion-Resilient and Self-Calibrating mmWave Radar Network for People Tracking |
URI | https://ieeexplore.ieee.org/document/10342865 https://www.proquest.com/docview/2920285996 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BaxQxFA62F_WgtVa62koOnoSMmU2yyXgrZUspupWtxfU05CVvtLidSrsr6K9vXma21IribRgSCPO9TF6S930fY69kU0F0zVBAhU5oAC-8dF7QO1saF5Ui7vD7yejwVB_NzKwnq2cuDCLm4jMs6DHf5ceLsKSjsjTDlSYm5RpbSzu3jqx1c2VQ2SzrmWawFFrZWX-FWcrqzdHJeFKQT3ihlCIHu98Woeyq8sevOK8vB4_ZZDWyrqzkW7FcQBF-3RFt_O-hb7BHfabJ97rQeMLuYbvJHt7SH9xk93sL9K8_n7LPx9O9_Xfjt_w4hPmSztDEFK_O5sSX5L6N_ATnjSAqF1DQtF_4-fkn_wP51Ed_ySddOTlPOTD_kKvSeVoGAx3Eb7HTg_HH_UPR-y6IoJRdCIyBhKXAoQGlEKtm6FKm5lB650NQTURnFRoZDBo9LBsLpYHSgkVojAnqGVtvL1rcZjx9a-8QHAQXdAALUWEc6ZEGL4exqQZMroCoQy9KTt4Y8zpvTmRVE3Y1YVf32A3Y65su3ztFjn813iIsbjXsYBiwnRXcdT9pr2oy7iI9v2r0_C_dXrAHqYnuqrZ32Pricom7KSlZwMscjNcant3A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PTxQxFG4UD-gBFSEuoPbgyaRjZ9tuO94IWbLiMpgF4nqa9McbNS4DgV0S-evt68wS1Gi8TSZt0szX9r1p3_d9hLzmdeGCqfvMFWCYdM4yy41l-E7nygQhkDt8WA5Gp_JgqqYdWT1xYQAgFZ9Bho_pLj-c-wUelcUVLiQyKe-TBzHwq7yla91eGhQ6CXvGNcyZFHraXWLmvHh7cDwsM3QKz4QQ6GH3SxhKvip_bMYpwuw_JuVybG1hyfdsMXeZv_lNtvG_B_-ErHW5Jt1tJ8dTcg-adfLojgLhOlntTNC__nhGPh9NdvfGw3f0yPvZAk_R2ASuvs2QMUltE-gxzGqGZC6H06b5Qs_OPtlroBMb7CUt24JyGrNg-jHVpdMYCD0exW-Q0_3hyd6Idc4LzAuh5wyCR2kpZ0A5IQCKum9irmaAW2O9F3UAowUo7hUo2c9r7XLlcu00uFopLzbJSnPewHNC47e2Bpxx3njpnXZBQBjIgXSW90Nd9AhfAlH5TpYc3TFmVfo94UWF2FWIXdVh1yNvbrtctJoc_2q8gVjcadjC0CM7S7irbtleVWjdhYp-xWDrL91ekdXRyeG4Gr8vP2yTh7G5bGu4d8jK_HIBL2KKMncv08T8CdWW4Qk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ORACLE%3A+Occlusion-Resilient+and+Self-Calibrating+mmWave+Radar+Network+for+People+Tracking&rft.jtitle=IEEE+sensors+journal&rft.au=Canil%2C+Marco&rft.au=Pegoraro%2C+Jacopo&rft.au=Shastri%2C+Anish&rft.au=Casari%2C+Paolo&rft.date=2024-02-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=24&rft.issue=3&rft.spage=3157&rft.epage=3171&rft_id=info:doi/10.1109%2FJSEN.2023.3339369&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2023_3339369 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |