Dynamic thermal performance of ultra-light and thermal-insulative aerogel foamed concrete for building energy efficiency

•A new type of high-performance aerogel foamed concrete was prepared.•The delay time of aerogel foamed concrete is twice of polystyrene or concrete.•The heat loss of aerogel foamed concrete was ~1/3 of concrete. A new type of high-performance aerogel foamed concrete was prepared by using aerogel pow...

Full description

Saved in:
Bibliographic Details
Published inSolar energy Vol. 204; pp. 569 - 576
Main Authors Zhang, Haiying, Yang, Jianming, Wu, Huijun, Fu, Ping, Liu, Yanchen, Yang, Wenbing
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.07.2020
Pergamon Press Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A new type of high-performance aerogel foamed concrete was prepared.•The delay time of aerogel foamed concrete is twice of polystyrene or concrete.•The heat loss of aerogel foamed concrete was ~1/3 of concrete. A new type of high-performance aerogel foamed concrete was prepared by using aerogel powder as filling material and chopped glass fiber as reinforcement. By using the aerogel foamed concrete and the other materials (viz. ordinary concrete and EPS) as the insulation, an insulted box was carried out on the thermal performance under a constant outside temperature of 35℃ and initial inside temperature of 25℃. The results indicate that when inside temperature increased to 90% of the stable 35℃, the required time for the aerogel foamed concrete was prolonged to 9 h compared to 5 and 4.5 h for EPS and ordinary concrete. Meanwhile, a 3R2C heat transfer model was established for the insulated box, whose calculated results agreed well with the experimental. By using the model, the predicted time lag of the aerogel foamed concrete insulation box is twice as long as that of the EPS or ordinary concrete box. The heat loss in 48 h of the aerogel foamed insulating concrete box was 59.79 J, approximately 1/3 of that from the ordinary concrete box. The results indicate that the aerogel foamed concrete has better thermal insulating performance from solar radiation or extremely hot weather for applications in low and zero energy buildings.
AbstractList •A new type of high-performance aerogel foamed concrete was prepared.•The delay time of aerogel foamed concrete is twice of polystyrene or concrete.•The heat loss of aerogel foamed concrete was ~1/3 of concrete. A new type of high-performance aerogel foamed concrete was prepared by using aerogel powder as filling material and chopped glass fiber as reinforcement. By using the aerogel foamed concrete and the other materials (viz. ordinary concrete and EPS) as the insulation, an insulted box was carried out on the thermal performance under a constant outside temperature of 35℃ and initial inside temperature of 25℃. The results indicate that when inside temperature increased to 90% of the stable 35℃, the required time for the aerogel foamed concrete was prolonged to 9 h compared to 5 and 4.5 h for EPS and ordinary concrete. Meanwhile, a 3R2C heat transfer model was established for the insulated box, whose calculated results agreed well with the experimental. By using the model, the predicted time lag of the aerogel foamed concrete insulation box is twice as long as that of the EPS or ordinary concrete box. The heat loss in 48 h of the aerogel foamed insulating concrete box was 59.79 J, approximately 1/3 of that from the ordinary concrete box. The results indicate that the aerogel foamed concrete has better thermal insulating performance from solar radiation or extremely hot weather for applications in low and zero energy buildings.
A new type of high-performance aerogel foamed concrete was prepared by using aerogel powder as filling material and chopped glass fiber as reinforcement. By using the aerogel foamed concrete and the other materials (viz. ordinary concrete and EPS) as the insulation, an insulted box was carried out on the thermal performance under a constant outside temperature of 35℃ and initial inside temperature of 25℃. The results indicate that when inside temperature increased to 90% of the stable 35℃, the required time for the aerogel foamed concrete was prolonged to 9 h compared to 5 and 4.5 h for EPS and ordinary concrete. Meanwhile, a 3R2C heat transfer model was established for the insulated box, whose calculated results agreed well with the experimental. By using the model, the predicted time lag of the aerogel foamed concrete insulation box is twice as long as that of the EPS or ordinary concrete box. The heat loss in 48 h of the aerogel foamed insulating concrete box was 59.79 J, approximately 1/3 of that from the ordinary concrete box. The results indicate that the aerogel foamed concrete has better thermal insulating performance from solar radiation or extremely hot weather for applications in low and zero energy buildings.
Author Yang, Wenbing
Liu, Yanchen
Fu, Ping
Yang, Jianming
Zhang, Haiying
Wu, Huijun
Author_xml – sequence: 1
  givenname: Haiying
  surname: Zhang
  fullname: Zhang, Haiying
  organization: College of Civil Engineering, Guangzhou University, Guangzhou 510006, China
– sequence: 2
  givenname: Jianming
  surname: Yang
  fullname: Yang, Jianming
  organization: College of Civil Engineering, Guangzhou University, Guangzhou 510006, China
– sequence: 3
  givenname: Huijun
  surname: Wu
  fullname: Wu, Huijun
  email: wuhuijun@tsinghua.org.cn
  organization: College of Civil Engineering, Guangzhou University, Guangzhou 510006, China
– sequence: 4
  givenname: Ping
  surname: Fu
  fullname: Fu, Ping
  organization: College of Civil Engineering, Guangzhou University, Guangzhou 510006, China
– sequence: 5
  givenname: Yanchen
  surname: Liu
  fullname: Liu, Yanchen
  organization: College of Civil Engineering, Guangzhou University, Guangzhou 510006, China
– sequence: 6
  givenname: Wenbing
  surname: Yang
  fullname: Yang, Wenbing
  organization: College of Civil Engineering, Guangzhou University, Guangzhou 510006, China
BookMark eNqFkEtPQyEQhYnRxPr4CSYkru8VuLSXxoUxvhMTN5q4IxSGSkOhAtfYfy-1unHjahg45wzzHaDdEAMgdEJJSwmdnC3aHD0ESC0jjLSEt2TKdtCI8p42lI37XTQipBNNvX7dRwc5LwihPRX9CH1er4NaOo3LG6Sl8ngFycZ6ChpwtHjwJanGu_lbwSqYX1njQh68Ku4DsIIU5-CxjWoJBusYdIICtU94NjhvXJjjzffmawzWOu0g6PUR2rPKZzj-qYfo5fbm-eq-eXy6e7i6fGx01_WlAcMJB2OnXIyBMSEEF0Rbw6cCmFVMz6jhms6mdCw61RvG-YQwzTuuOGhju0N0us1dpfg-QC5yEYcU6khZtWQiOBOTqjrfqnSKOSewUrtS14uhru-8pERuUMuF_EEtN6gl4bIyre7xH_cquaVK6399F1sfVAAfrr7mbzhgXAJdpInun4QvmK-hEA
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2021_04_078
crossref_primary_10_3390_gels9120943
crossref_primary_10_46810_tdfd_1256442
crossref_primary_10_1016_j_enbuild_2021_111058
crossref_primary_10_1016_j_buildenv_2021_107799
crossref_primary_10_1016_j_jallcom_2021_161257
crossref_primary_10_1016_j_jobe_2022_104870
crossref_primary_10_1016_j_cjche_2022_10_018
crossref_primary_10_1155_2022_5869037
crossref_primary_10_1016_j_conbuildmat_2022_129485
crossref_primary_10_1016_j_rineng_2024_103615
crossref_primary_10_1080_15567036_2024_2424915
crossref_primary_10_1016_j_jobe_2022_104825
crossref_primary_10_2139_ssrn_4200008
crossref_primary_10_1016_j_conbuildmat_2020_120167
crossref_primary_10_1016_j_enbuild_2024_114744
crossref_primary_10_1016_j_ceramint_2021_05_259
crossref_primary_10_1680_jsmic_23_00017
crossref_primary_10_1016_j_enbuild_2022_112365
crossref_primary_10_1016_j_conbuildmat_2024_137010
crossref_primary_10_1007_s12273_022_0932_x
crossref_primary_10_1051_e3sconf_202340601040
crossref_primary_10_1016_j_jclepro_2022_132198
crossref_primary_10_1016_j_enbuild_2020_110452
crossref_primary_10_1007_s10971_023_06261_0
crossref_primary_10_1016_j_csite_2024_105058
crossref_primary_10_1016_j_jcou_2024_102827
crossref_primary_10_1016_j_conbuildmat_2022_130166
crossref_primary_10_2139_ssrn_3987652
crossref_primary_10_1016_j_cscm_2022_e00919
crossref_primary_10_1016_j_jclepro_2022_133939
crossref_primary_10_1016_j_istruc_2024_106813
crossref_primary_10_1016_j_phycom_2021_101487
crossref_primary_10_1016_j_applthermaleng_2021_117230
crossref_primary_10_1088_2053_1591_abeb8a
crossref_primary_10_1007_s40999_021_00671_3
crossref_primary_10_1016_j_jobe_2021_103227
crossref_primary_10_1016_j_conbuildmat_2024_139701
crossref_primary_10_1007_s41024_025_00596_7
crossref_primary_10_1016_j_matlet_2023_134217
crossref_primary_10_3390_app13095303
crossref_primary_10_1016_j_buildenv_2021_108004
crossref_primary_10_1016_j_conbuildmat_2022_127706
crossref_primary_10_1016_j_jmat_2024_03_002
crossref_primary_10_1016_j_jobe_2023_106935
crossref_primary_10_1016_j_conbuildmat_2022_129825
crossref_primary_10_1016_j_jobe_2022_105128
Cites_doi 10.1016/j.ijhydene.2016.11.025
10.1016/j.conbuildmat.2014.12.064
10.1016/j.enbuild.2017.08.085
10.1016/j.conbuildmat.2013.10.100
10.1016/j.proeng.2017.09.909
10.1016/j.egypro.2015.11.684
10.1016/j.enbuild.2017.01.010
10.1016/j.enconman.2005.09.011
10.1016/j.carbpol.2016.08.047
10.1016/j.renene.2019.01.120
10.1016/j.matdes.2017.07.056
10.1016/j.buildenv.2014.06.017
10.1016/j.applthermaleng.2015.02.013
10.1016/j.renene.2019.10.083
10.1016/j.jnoncrysol.2017.12.047
10.1016/j.conbuildmat.2019.01.212
10.1016/j.enbuild.2018.06.026
10.1016/j.solener.2004.08.032
10.1166/jnn.2018.15530
10.1016/j.ijheatmasstransfer.2017.01.051
10.1016/j.enbuild.2007.03.007
10.1016/j.ijheatmasstransfer.2017.09.069
10.1016/j.rser.2014.03.017
10.1016/j.apenergy.2017.12.101
ContentType Journal Article
Copyright 2020 International Solar Energy Society
Copyright Pergamon Press Inc. Jul 1, 2020
Copyright_xml – notice: 2020 International Solar Energy Society
– notice: Copyright Pergamon Press Inc. Jul 1, 2020
DBID AAYXX
CITATION
7SP
7ST
8FD
C1K
FR3
KR7
L7M
SOI
DOI 10.1016/j.solener.2020.04.092
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1471-1257
EndPage 576
ExternalDocumentID 10_1016_j_solener_2020_04_092
S0038092X20304771
GroupedDBID --K
--M
-ET
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACGOD
ACIWK
ACRLP
ADBBV
ADEZE
ADHUB
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BKOMP
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SSR
SSZ
T5K
TAE
TN5
WH7
XPP
YNT
ZMT
~02
~G-
~KM
~S-
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
NEJ
R2-
RIG
SAC
SEW
SSH
UKR
VOH
WUQ
XOL
ZY4
~A~
7SP
7ST
8FD
C1K
EFKBS
FR3
KR7
L7M
SOI
ID FETCH-LOGICAL-c337t-ed404edf9485e22888480cfd498e2fa2cb1d4c1b91583a7d244602c434a4ecdf3
IEDL.DBID .~1
ISSN 0038-092X
IngestDate Wed Aug 13 07:38:29 EDT 2025
Thu Apr 24 22:49:35 EDT 2025
Tue Jul 01 00:39:36 EDT 2025
Fri Feb 23 02:47:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Aerogels
Foamed concrete
Building energy efficiency
Thermal performance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-ed404edf9485e22888480cfd498e2fa2cb1d4c1b91583a7d244602c434a4ecdf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2440684286
PQPubID 9393
PageCount 8
ParticipantIDs proquest_journals_2440684286
crossref_citationtrail_10_1016_j_solener_2020_04_092
crossref_primary_10_1016_j_solener_2020_04_092
elsevier_sciencedirect_doi_10_1016_j_solener_2020_04_092
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
2020-07-00
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Solar energy
PublicationYear 2020
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References Tsioulou, Ayegbusi, Lampropoulos (b0155) 2018
Kong, Liu, Zhong (b0070) 2016; 32
Liang, Wu, Zhong (b0105) 2018; 32
Gao, Jelle, Gustavsen, Jacobsen (b0035) 2014; 52
Li, Zhu, Zhao (b0085) 2017; 108
He, Xie (b0045) 2015; 81
Yang, Lu, He, Wu, Xu, Xiao (b0180) 2018; 18
Ni X., Wang B., Shen J., et al.,2010. Nano-silicaResearch on thermal insulation characteristics of aerogel in energy-saving building wall. 7th China Academic Conference on Functional Materials and Their Applications, changsha, hunan, China, 2010.
Lv, Wu, Liu (b0110) 2018; 2018
Akos (b0010) 2017; 2017
Chen, Li, Du, Wang, Xia, Yedinak, Lou, Ci (b0015) 2017; 155
Yang, Lin, Wu, Chen, Xu, Huang, Fan, Shen, Gan (b0190) 2020; 148
Ng, Jelle, Sandberg (b0120) 2015; 2015
Yang, Wu, Xu (b0185) 2019; 2019
Wang, Xu (b0175) 2006; 47
Vedenin, Vityaz, Ivanova, Mazalov, Pustovgar, Sudnik (b0165) 2018; 43
Liang Y, Wu H*, Huang G, Yang J, Wang H.,2017. Thermal performance and service life of vacuum insulation panels with aerogel composite cores. Energy and Buildings, 2017a, 154: 606-617.
GB 50176-2016.Code for thermal Design of Civil Buildings. China Building Industry Press, Beijing, 2016.
Ibrahim, Biwole, Wurtz (b0055) 2014; 2014
Liang, Wu, Huang (b0100) 2017; 2017
Muscio, Akbari (b0115) 2017; 157
Fickler, Milow, Ratke (b0030) 2015; 2015
Reim, Körner, Manara, Korder, Arduini-Schuster, Ebert, Fricke (b0135) 2005; 79
Sierra, Rodríguez, Boschmonart (b0140) 2018; 212
Yang, Wu, Huang (bib201) 2017; 113
Akos (b0005) 2017; 2017
Zhao, Ding, Zhou (b0200) 2017; 20
Pérez, Ortiz, Pout (b0130) 2014; 40
Cuce E., Cuce P.M., Wood C.J., et al.,2014. Toward aerogel based thermal superinsulation in building: A comprehensive review. Renewable & Sustainable Energy Reviews, 2014, 34(6): 273-299.
Tan, Ren (b0150) 2009; 23
Li, Wu, Liu, Yang, Fang, Lin (b0075) 2019; 2019
Jia, Li, Liu, Jing (b0065) 2018; 482
Akos (10.1016/j.solener.2020.04.092_b0005) 2017; 2017
Yang (10.1016/j.solener.2020.04.092_b0195) 2015; 19
Reim (10.1016/j.solener.2020.04.092_b0135) 2005; 79
Yang (10.1016/j.solener.2020.04.092_bib201) 2017; 113
Ng (10.1016/j.solener.2020.04.092_b0120) 2015; 2015
Liang (10.1016/j.solener.2020.04.092_b0100) 2017; 2017
Yang (10.1016/j.solener.2020.04.092_b0185) 2019; 2019
Li (10.1016/j.solener.2020.04.092_b0075) 2019; 2019
Li (10.1016/j.solener.2020.04.092_b0085) 2017; 108
Chen (10.1016/j.solener.2020.04.092_b0015) 2017; 155
Akos (10.1016/j.solener.2020.04.092_b0010) 2017; 2017
Sierra (10.1016/j.solener.2020.04.092_b0140) 2018; 212
Yang (10.1016/j.solener.2020.04.092_b0190) 2020; 148
Muscio (10.1016/j.solener.2020.04.092_b0115) 2017; 157
He (10.1016/j.solener.2020.04.092_b0045) 2015; 81
10.1016/j.solener.2020.04.092_b0095
Yang (10.1016/j.solener.2020.04.092_bib202) 2018; 117
Liang (10.1016/j.solener.2020.04.092_b0105) 2018; 32
Gao (10.1016/j.solener.2020.04.092_b0035) 2014; 52
Fickler (10.1016/j.solener.2020.04.092_b0030) 2015; 2015
10.1016/j.solener.2020.04.092_b0125
Tsioulou (10.1016/j.solener.2020.04.092_b0155) 2018
Wang (10.1016/j.solener.2020.04.092_b0175) 2006; 47
Ibrahim (10.1016/j.solener.2020.04.092_b0055) 2014; 2014
Yang (10.1016/j.solener.2020.04.092_b0180) 2018; 18
Pérez (10.1016/j.solener.2020.04.092_b0130) 2014; 40
Lv (10.1016/j.solener.2020.04.092_b0110) 2018; 2018
10.1016/j.solener.2020.04.092_b0020
Jia (10.1016/j.solener.2020.04.092_b0065) 2018; 482
10.1016/j.solener.2020.04.092_b0040
Vedenin (10.1016/j.solener.2020.04.092_b0165) 2018; 43
Kong (10.1016/j.solener.2020.04.092_b0070) 2016; 32
Tan (10.1016/j.solener.2020.04.092_b0150) 2009; 23
Zhao (10.1016/j.solener.2020.04.092_b0200) 2017; 20
References_xml – volume: 43
  start-page: 6899
  year: 2018
  end-page: 6903
  ident: b0165
  article-title: Experimental investigation of thermal insulating aerogel composites of hydrothermal reactor for biomass-to-hydrogen conversion
  publication-title: Int. J. Hydrogen Energy
– volume: 79
  start-page: 131
  year: 2005
  end-page: 139
  ident: b0135
  article-title: Silica aerogel granulate material for thermal insulation and daylighting
  publication-title: Sol. Energy
– volume: 2018
  start-page: 190
  year: 2018
  end-page: 198
  ident: b0110
  article-title: Quantitative research on the influence of particle size and filling thickness on aerogel glazing performance
  publication-title: Energy Build.
– reference: Ni X., Wang B., Shen J., et al.,2010. Nano-silicaResearch on thermal insulation characteristics of aerogel in energy-saving building wall. 7th China Academic Conference on Functional Materials and Their Applications, changsha, hunan, China, 2010.
– volume: 113
  start-page: 224
  year: 2017
  end-page: 236
  ident: bib201
  article-title: Modeling and coupling effect evaluation of thermal conductivity of ternary opacifier/fiber/aerogel composites for super-thermal insulation
  publication-title: Mater. Des.
– volume: 2017
  start-page: 506
  year: 2017
  end-page: 516
  ident: b0010
  article-title: Investigation of the moisture induced degradation of the thermal properties of aerogel blankets: Measurements, calculations, simulations
  publication-title: Energy Build.
– volume: 2014
  start-page: 112
  year: 2014
  end-page: 122
  ident: b0055
  article-title: A study on the thermal performance of exterior walls covered with a recently patented silica-aerogel-based insulating coating
  publication-title: Build. Environ.
– volume: 20
  start-page: 592
  year: 2017
  end-page: 597
  ident: b0200
  article-title: Internal surface temperature response characteristics of composite wall in hot summer and warm winter
  publication-title: J. Build. Mater.
– volume: 2015
  start-page: 406
  year: 2015
  end-page: 411
  ident: b0030
  article-title: Development of High Performance Aerogel Concrete
  publication-title: Energy Procedia
– volume: 23
  start-page: 16
  year: 2009
  end-page: 19
  ident: b0150
  article-title: A new calculation model for unsteady heat transfer of building envelope wall
  publication-title: Refrigeration Air Conditioning: Sichuan
– reference: Liang Y, Wu H*, Huang G, Yang J, Wang H.,2017. Thermal performance and service life of vacuum insulation panels with aerogel composite cores. Energy and Buildings, 2017a, 154: 606-617.
– volume: 32
  start-page: 40
  year: 2016
  end-page: 46
  ident: b0070
  article-title: Multi-factor thermal characteristics analysis and optimization of phase change energy storage wall
  publication-title: Arch. Sci.
– volume: 157
  start-page: 184
  year: 2017
  end-page: 194
  ident: b0115
  article-title: An index for the overall performance of opaque building elements subjected to solar radiation
  publication-title: Energy Build.
– volume: 2019
  start-page: 445
  year: 2019
  end-page: 457
  ident: b0185
  article-title: Numerical and experimental study on the thermal performance of aerogel insulating panels for building energy efficiency
  publication-title: Renew. Energy
– reference: GB 50176-2016.Code for thermal Design of Civil Buildings. China Building Industry Press, Beijing, 2016.
– volume: 52
  start-page: 130
  year: 2014
  end-page: 136
  ident: b0035
  article-title: Aerogel-incorporated concrete: An experimental study
  publication-title: Constr. Build. Mater.
– volume: 108
  start-page: 1982
  year: 2017
  end-page: 1990
  ident: b0085
  article-title: theoretical and numerical study on the gas-contributed thermal conductivity in aerogel.
  publication-title: Heat Mass Transf.
– volume: 482
  start-page: 192
  year: 2018
  end-page: 202
  ident: b0065
  article-title: Preparation and characterization of aerogel/expanded perlite composite as building thermal insulation material
  publication-title: J. Non-Cryst. Solids
– volume: 32
  start-page: 2112
  year: 2018
  end-page: 2117
  ident: b0105
  article-title: Calculation and Optimization of thermal conductivity of aerogel composite vacuum insulation plate
  publication-title: Mater. Rev.
– volume: 2015
  start-page: 307
  year: 2015
  end-page: 316
  ident: b0120
  article-title: Experimental investigations of aerogel-incorporated ultra-high performance concrete
  publication-title: Constr. Build. Mater.
– volume: 212
  start-page: 1510
  year: 2018
  end-page: 1521
  ident: b0140
  article-title: Integrated life cycle assessment and thermodynamic simulation of a public building's envelope renovation: Conventional vs Passivhaus proposal
  publication-title: Appl. Energy
– start-page: 125
  year: 2018
  end-page: 131
  ident: b0155
  article-title: Experimental investigation on thermal conductivity and mechanical properties of a novel Aerogel concrete
  publication-title: High Tech Concrete: Where Technology and Engineering Meet
– volume: 2017
  start-page: 2
  year: 2017
  ident: b0005
  article-title: Comprehensive thermal transmittance investigations carried out on opaque aerogel insulation blanket
  publication-title: Mater. Struct.
– volume: 40
  start-page: 394
  year: 2014
  end-page: 398
  ident: b0130
  article-title: A review on buildings energy consumption information
  publication-title: Energy Build.
– volume: 2017
  start-page: 2855
  year: 2017
  end-page: 2862
  ident: b0100
  article-title: Prediction and optimization of thermal conductivity of vacuum insulation panels with aerogel composite cores
  publication-title: Procedia Eng.
– volume: 148
  start-page: 975
  year: 2020
  end-page: 986
  ident: b0190
  article-title: Inverse optimization of building thermal resistance and capacitance for minimizing air conditioning loads
  publication-title: Renew. Energy
– volume: 18
  start-page: 7896
  year: 2018
  end-page: 7901
  ident: b0180
  article-title: Preparation and Characterization of Clay Aerogel Composites Reinforced by Calcium Sulfate Whisker
  publication-title: j nanosci nanotechnol
– volume: 47
  start-page: 1927
  year: 2006
  end-page: 1941
  ident: b0175
  article-title: Parameter estimation of internal thermal mass of building dynamic models using genetic algorithm
  publication-title: Energy Conversion Management
– reference: Cuce E., Cuce P.M., Wood C.J., et al.,2014. Toward aerogel based thermal superinsulation in building: A comprehensive review. Renewable & Sustainable Energy Reviews, 2014, 34(6): 273-299.
– volume: 81
  start-page: 28
  year: 2015
  end-page: 50
  ident: b0045
  article-title: Advances of thermal conductivity models of nanoscale silica aerogel insulation material
  publication-title: Appl. Therm. Eng.
– volume: 155
  start-page: 345
  year: 2017
  end-page: 353
  ident: b0015
  article-title: High performance agar/grapheme oxide composite aerogel for methylene blue removal
  publication-title: Carbohydr. Polym.
– volume: 2019
  start-page: 529
  year: 2019
  end-page: 542
  ident: b0075
  article-title: Preparation and optimization of ultra-light and thermal insulative aerogel foam concrete
  publication-title: Constr. Build. Mater.
– volume: 43
  start-page: 6899
  issue: 2018
  year: 2018
  ident: 10.1016/j.solener.2020.04.092_b0165
  article-title: Experimental investigation of thermal insulating aerogel composites of hydrothermal reactor for biomass-to-hydrogen conversion
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.11.025
– volume: 2015
  start-page: 307
  issue: 77
  year: 2015
  ident: 10.1016/j.solener.2020.04.092_b0120
  article-title: Experimental investigations of aerogel-incorporated ultra-high performance concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2014.12.064
– ident: 10.1016/j.solener.2020.04.092_b0095
  doi: 10.1016/j.enbuild.2017.08.085
– volume: 52
  start-page: 130
  year: 2014
  ident: 10.1016/j.solener.2020.04.092_b0035
  article-title: Aerogel-incorporated concrete: An experimental study
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.10.100
– volume: 2017
  start-page: 2855
  issue: 205
  year: 2017
  ident: 10.1016/j.solener.2020.04.092_b0100
  article-title: Prediction and optimization of thermal conductivity of vacuum insulation panels with aerogel composite cores
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.09.909
– volume: 32
  start-page: 2112
  issue: 12
  year: 2018
  ident: 10.1016/j.solener.2020.04.092_b0105
  article-title: Calculation and Optimization of thermal conductivity of aerogel composite vacuum insulation plate
  publication-title: Mater. Rev.
– volume: 2017
  start-page: 506
  issue: 139
  year: 2017
  ident: 10.1016/j.solener.2020.04.092_b0010
  article-title: Investigation of the moisture induced degradation of the thermal properties of aerogel blankets: Measurements, calculations, simulations
  publication-title: Energy Build.
– ident: 10.1016/j.solener.2020.04.092_b0040
– volume: 2015
  start-page: 406
  issue: 78
  year: 2015
  ident: 10.1016/j.solener.2020.04.092_b0030
  article-title: Development of High Performance Aerogel Concrete
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.11.684
– volume: 157
  start-page: 184
  issue: 12
  year: 2017
  ident: 10.1016/j.solener.2020.04.092_b0115
  article-title: An index for the overall performance of opaque building elements subjected to solar radiation
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.01.010
– volume: 47
  start-page: 1927
  issue: 13-14
  year: 2006
  ident: 10.1016/j.solener.2020.04.092_b0175
  article-title: Parameter estimation of internal thermal mass of building dynamic models using genetic algorithm
  publication-title: Energy Conversion Management
  doi: 10.1016/j.enconman.2005.09.011
– volume: 2017
  start-page: 2
  issue: 50
  year: 2017
  ident: 10.1016/j.solener.2020.04.092_b0005
  article-title: Comprehensive thermal transmittance investigations carried out on opaque aerogel insulation blanket
  publication-title: Mater. Struct.
– volume: 155
  start-page: 345
  issue: 2017
  year: 2017
  ident: 10.1016/j.solener.2020.04.092_b0015
  article-title: High performance agar/grapheme oxide composite aerogel for methylene blue removal
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2016.08.047
– volume: 23
  start-page: 16
  issue: 1
  year: 2009
  ident: 10.1016/j.solener.2020.04.092_b0150
  article-title: A new calculation model for unsteady heat transfer of building envelope wall
  publication-title: Refrigeration Air Conditioning: Sichuan
– start-page: 125
  year: 2018
  ident: 10.1016/j.solener.2020.04.092_b0155
  article-title: Experimental investigation on thermal conductivity and mechanical properties of a novel Aerogel concrete
– volume: 2019
  start-page: 445
  issue: 138
  year: 2019
  ident: 10.1016/j.solener.2020.04.092_b0185
  article-title: Numerical and experimental study on the thermal performance of aerogel insulating panels for building energy efficiency
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.01.120
– volume: 113
  start-page: 224
  year: 2017
  ident: 10.1016/j.solener.2020.04.092_bib201
  article-title: Modeling and coupling effect evaluation of thermal conductivity of ternary opacifier/fiber/aerogel composites for super-thermal insulation
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.07.056
– volume: 2014
  start-page: 112
  issue: 81
  year: 2014
  ident: 10.1016/j.solener.2020.04.092_b0055
  article-title: A study on the thermal performance of exterior walls covered with a recently patented silica-aerogel-based insulating coating
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2014.06.017
– volume: 81
  start-page: 28
  year: 2015
  ident: 10.1016/j.solener.2020.04.092_b0045
  article-title: Advances of thermal conductivity models of nanoscale silica aerogel insulation material
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.02.013
– volume: 32
  start-page: 40
  issue: 8
  year: 2016
  ident: 10.1016/j.solener.2020.04.092_b0070
  article-title: Multi-factor thermal characteristics analysis and optimization of phase change energy storage wall
  publication-title: Arch. Sci.
– volume: 148
  start-page: 975
  year: 2020
  ident: 10.1016/j.solener.2020.04.092_b0190
  article-title: Inverse optimization of building thermal resistance and capacitance for minimizing air conditioning loads
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.10.083
– volume: 482
  start-page: 192
  issue: 2018
  year: 2018
  ident: 10.1016/j.solener.2020.04.092_b0065
  article-title: Preparation and characterization of aerogel/expanded perlite composite as building thermal insulation material
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2017.12.047
– volume: 2019
  start-page: 529
  issue: 205
  year: 2019
  ident: 10.1016/j.solener.2020.04.092_b0075
  article-title: Preparation and optimization of ultra-light and thermal insulative aerogel foam concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.01.212
– ident: 10.1016/j.solener.2020.04.092_b0125
– volume: 2018
  start-page: 190
  issue: 174
  year: 2018
  ident: 10.1016/j.solener.2020.04.092_b0110
  article-title: Quantitative research on the influence of particle size and filling thickness on aerogel glazing performance
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.06.026
– volume: 79
  start-page: 131
  issue: 2
  year: 2005
  ident: 10.1016/j.solener.2020.04.092_b0135
  article-title: Silica aerogel granulate material for thermal insulation and daylighting
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2004.08.032
– volume: 18
  start-page: 7896
  issue: 11
  year: 2018
  ident: 10.1016/j.solener.2020.04.092_b0180
  article-title: Preparation and Characterization of Clay Aerogel Composites Reinforced by Calcium Sulfate Whisker
  publication-title: j nanosci nanotechnol
  doi: 10.1166/jnn.2018.15530
– volume: 108
  start-page: 1982
  issue: 2017
  year: 2017
  ident: 10.1016/j.solener.2020.04.092_b0085
  article-title: theoretical and numerical study on the gas-contributed thermal conductivity in aerogel. Internatioanl Journal of
  publication-title: Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.01.051
– volume: 40
  start-page: 394
  issue: 3
  year: 2014
  ident: 10.1016/j.solener.2020.04.092_b0130
  article-title: A review on buildings energy consumption information
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2007.03.007
– volume: 19
  start-page: 1
  issue: S2
  year: 2015
  ident: 10.1016/j.solener.2020.04.092_b0195
  article-title: Effects of preparation parameters on SiO2 aerogels by single-factor and orthogonal experiments
  publication-title: Mater. Res. Innovations
– volume: 117
  start-page: 729
  year: 2018
  ident: 10.1016/j.solener.2020.04.092_bib202
  article-title: Prediction and optimization of radiative thermal properties of nano TiO2 assembled fibrous insulations
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2017.09.069
– ident: 10.1016/j.solener.2020.04.092_b0020
  doi: 10.1016/j.rser.2014.03.017
– volume: 20
  start-page: 592
  issue: 4
  year: 2017
  ident: 10.1016/j.solener.2020.04.092_b0200
  article-title: Internal surface temperature response characteristics of composite wall in hot summer and warm winter
  publication-title: J. Build. Mater.
– volume: 212
  start-page: 1510
  issue: 2
  year: 2018
  ident: 10.1016/j.solener.2020.04.092_b0140
  article-title: Integrated life cycle assessment and thermodynamic simulation of a public building's envelope renovation: Conventional vs Passivhaus proposal
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.12.101
SSID ssj0017187
Score 2.5003443
Snippet •A new type of high-performance aerogel foamed concrete was prepared.•The delay time of aerogel foamed concrete is twice of polystyrene or concrete.•The heat...
A new type of high-performance aerogel foamed concrete was prepared by using aerogel powder as filling material and chopped glass fiber as reinforcement. By...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 569
SubjectTerms Aerogels
Building energy efficiency
Concrete
Concrete construction
Energy efficiency
Fillers
Foamed concrete
Glass fibers
Green buildings
Heat loss
Heat transfer
Hot weather
Solar energy
Solar radiation
Temperature requirements
Thermal insulation
Thermal performance
Time lag
Title Dynamic thermal performance of ultra-light and thermal-insulative aerogel foamed concrete for building energy efficiency
URI https://dx.doi.org/10.1016/j.solener.2020.04.092
https://www.proquest.com/docview/2440684286
Volume 204
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYQXOgBtQVEKEU-9OrE8U6y3mNEiwJVORUpN8u7HleJliQKG4lTf3vHXi8UJITE0SvPPjyz89DMfMPYNxIib0fSC618KcgEVCKkc8TYSxIfLJyOk-d-3Yynt3A9G8122EXXCxPKKpPub3V61NbpyiCd5mA9n4ce30zLQs1UyO7lsY8cIA9S3v_7WOYxJN3b4mZmIc2vZk9dPIMFBbF1AHemMFHJFvFUvWafXmjqaH4uP7KD5DfySftqn9gOLj-zD_-hCR6yh-_tdHkefLo72rx-agrgK8-3dbOxog7ROLdL120TsRw94n9zi5vVH6y5X1mykpxiZXIqG6T1hpdpgDbH2C7IMYJPhM7NI3Z7-eP3xVSkwQqiyrK8EehAAjofkGFQKQqCQcvKOyg0Km9VVQ4dVMOyGI50ZnNHLsBYqgoysICV89kx212ulnjCOBa2gDL3YG0GqK2V2uUSgTY7oAf0GHTHaaqEOh6GX9SmKy9bmMQFE7hgJBjiQo_1H8nWLezGWwS645V5Jj-GTMNbpGcdb036ge8NfbIMKUo9Pn3_nb-w_bBqq3vP2G6z2eJX8mGa8jwK6Tnbm1z9nN78AzCh9Fk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcq9gB7QBsbGgw2P_Bq6jrXxnmc2FA32j4VqW-WE58nUEirEiSe-Ns5Jw4FpAlpj0nsxPGd70N39zvGToiJvB1KL7TyuSAVUIgQzhEjL4l9MHO66Tw3nY3Gl_BnMVz02FlXCxPSKqPsb2V6I63jnX7czf7q6irU-CZaZmqhQnQvDXXk74COb2hjcPrwlOcxIOHbAmcmIc6vFpsynv41ebFlQHcmP1HJFvJU_UtBvRLVjf45_8B2o-HIf7Rr-8h6WO2x98_gBD-x-59te3kejLobGrzaVAXwped3Zb22ogzuOLeV64aJJh-9AQDnFtfLv1hyv7SkJjk5y2RV1kjXa57HDtocm3pBjg36RCjd_Mwuz3_Nz8YidlYQRZKktUAHEtD5AA2DSpEXDFoW3kGmUXmrinzgoBjk2WCoE5s6sgFGUhWQgAUsnE_22Va1rPAL45jZDPLUg7UJoLZWapdKBBrsgD5wwKDbTlNE2PHQ_aI0XX7ZtYlUMIEKRoIhKhyw06dpqxZ3460JuqOVecFAhnTDW1OPOtqaeIJvDf2yDDFKPTr8_zd_Z9vj-XRiJr9nF1_ZTnjSpvoesa16fYfHZNDU-beGYR8Bw0X15w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+thermal+performance+of+ultra-light+and+thermal-insulative+aerogel+foamed+concrete+for+building+energy+efficiency&rft.jtitle=Solar+energy&rft.au=Zhang%2C+Haiying&rft.au=Yang%2C+Jianming&rft.au=Wu%2C+Huijun&rft.au=Fu%2C+Ping&rft.date=2020-07-01&rft.pub=Elsevier+Ltd&rft.issn=0038-092X&rft.eissn=1471-1257&rft.volume=204&rft.spage=569&rft.epage=576&rft_id=info:doi/10.1016%2Fj.solener.2020.04.092&rft.externalDocID=S0038092X20304771
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon