Dynamic thermal performance of ultra-light and thermal-insulative aerogel foamed concrete for building energy efficiency
•A new type of high-performance aerogel foamed concrete was prepared.•The delay time of aerogel foamed concrete is twice of polystyrene or concrete.•The heat loss of aerogel foamed concrete was ~1/3 of concrete. A new type of high-performance aerogel foamed concrete was prepared by using aerogel pow...
Saved in:
Published in | Solar energy Vol. 204; pp. 569 - 576 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.07.2020
Pergamon Press Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A new type of high-performance aerogel foamed concrete was prepared.•The delay time of aerogel foamed concrete is twice of polystyrene or concrete.•The heat loss of aerogel foamed concrete was ~1/3 of concrete.
A new type of high-performance aerogel foamed concrete was prepared by using aerogel powder as filling material and chopped glass fiber as reinforcement. By using the aerogel foamed concrete and the other materials (viz. ordinary concrete and EPS) as the insulation, an insulted box was carried out on the thermal performance under a constant outside temperature of 35℃ and initial inside temperature of 25℃. The results indicate that when inside temperature increased to 90% of the stable 35℃, the required time for the aerogel foamed concrete was prolonged to 9 h compared to 5 and 4.5 h for EPS and ordinary concrete. Meanwhile, a 3R2C heat transfer model was established for the insulated box, whose calculated results agreed well with the experimental. By using the model, the predicted time lag of the aerogel foamed concrete insulation box is twice as long as that of the EPS or ordinary concrete box. The heat loss in 48 h of the aerogel foamed insulating concrete box was 59.79 J, approximately 1/3 of that from the ordinary concrete box. The results indicate that the aerogel foamed concrete has better thermal insulating performance from solar radiation or extremely hot weather for applications in low and zero energy buildings. |
---|---|
AbstractList | •A new type of high-performance aerogel foamed concrete was prepared.•The delay time of aerogel foamed concrete is twice of polystyrene or concrete.•The heat loss of aerogel foamed concrete was ~1/3 of concrete.
A new type of high-performance aerogel foamed concrete was prepared by using aerogel powder as filling material and chopped glass fiber as reinforcement. By using the aerogel foamed concrete and the other materials (viz. ordinary concrete and EPS) as the insulation, an insulted box was carried out on the thermal performance under a constant outside temperature of 35℃ and initial inside temperature of 25℃. The results indicate that when inside temperature increased to 90% of the stable 35℃, the required time for the aerogel foamed concrete was prolonged to 9 h compared to 5 and 4.5 h for EPS and ordinary concrete. Meanwhile, a 3R2C heat transfer model was established for the insulated box, whose calculated results agreed well with the experimental. By using the model, the predicted time lag of the aerogel foamed concrete insulation box is twice as long as that of the EPS or ordinary concrete box. The heat loss in 48 h of the aerogel foamed insulating concrete box was 59.79 J, approximately 1/3 of that from the ordinary concrete box. The results indicate that the aerogel foamed concrete has better thermal insulating performance from solar radiation or extremely hot weather for applications in low and zero energy buildings. A new type of high-performance aerogel foamed concrete was prepared by using aerogel powder as filling material and chopped glass fiber as reinforcement. By using the aerogel foamed concrete and the other materials (viz. ordinary concrete and EPS) as the insulation, an insulted box was carried out on the thermal performance under a constant outside temperature of 35℃ and initial inside temperature of 25℃. The results indicate that when inside temperature increased to 90% of the stable 35℃, the required time for the aerogel foamed concrete was prolonged to 9 h compared to 5 and 4.5 h for EPS and ordinary concrete. Meanwhile, a 3R2C heat transfer model was established for the insulated box, whose calculated results agreed well with the experimental. By using the model, the predicted time lag of the aerogel foamed concrete insulation box is twice as long as that of the EPS or ordinary concrete box. The heat loss in 48 h of the aerogel foamed insulating concrete box was 59.79 J, approximately 1/3 of that from the ordinary concrete box. The results indicate that the aerogel foamed concrete has better thermal insulating performance from solar radiation or extremely hot weather for applications in low and zero energy buildings. |
Author | Yang, Wenbing Liu, Yanchen Fu, Ping Yang, Jianming Zhang, Haiying Wu, Huijun |
Author_xml | – sequence: 1 givenname: Haiying surname: Zhang fullname: Zhang, Haiying organization: College of Civil Engineering, Guangzhou University, Guangzhou 510006, China – sequence: 2 givenname: Jianming surname: Yang fullname: Yang, Jianming organization: College of Civil Engineering, Guangzhou University, Guangzhou 510006, China – sequence: 3 givenname: Huijun surname: Wu fullname: Wu, Huijun email: wuhuijun@tsinghua.org.cn organization: College of Civil Engineering, Guangzhou University, Guangzhou 510006, China – sequence: 4 givenname: Ping surname: Fu fullname: Fu, Ping organization: College of Civil Engineering, Guangzhou University, Guangzhou 510006, China – sequence: 5 givenname: Yanchen surname: Liu fullname: Liu, Yanchen organization: College of Civil Engineering, Guangzhou University, Guangzhou 510006, China – sequence: 6 givenname: Wenbing surname: Yang fullname: Yang, Wenbing organization: College of Civil Engineering, Guangzhou University, Guangzhou 510006, China |
BookMark | eNqFkEtPQyEQhYnRxPr4CSYkru8VuLSXxoUxvhMTN5q4IxSGSkOhAtfYfy-1unHjahg45wzzHaDdEAMgdEJJSwmdnC3aHD0ESC0jjLSEt2TKdtCI8p42lI37XTQipBNNvX7dRwc5LwihPRX9CH1er4NaOo3LG6Sl8ngFycZ6ChpwtHjwJanGu_lbwSqYX1njQh68Ku4DsIIU5-CxjWoJBusYdIICtU94NjhvXJjjzffmawzWOu0g6PUR2rPKZzj-qYfo5fbm-eq-eXy6e7i6fGx01_WlAcMJB2OnXIyBMSEEF0Rbw6cCmFVMz6jhms6mdCw61RvG-YQwzTuuOGhju0N0us1dpfg-QC5yEYcU6khZtWQiOBOTqjrfqnSKOSewUrtS14uhru-8pERuUMuF_EEtN6gl4bIyre7xH_cquaVK6399F1sfVAAfrr7mbzhgXAJdpInun4QvmK-hEA |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2021_04_078 crossref_primary_10_3390_gels9120943 crossref_primary_10_46810_tdfd_1256442 crossref_primary_10_1016_j_enbuild_2021_111058 crossref_primary_10_1016_j_buildenv_2021_107799 crossref_primary_10_1016_j_jallcom_2021_161257 crossref_primary_10_1016_j_jobe_2022_104870 crossref_primary_10_1016_j_cjche_2022_10_018 crossref_primary_10_1155_2022_5869037 crossref_primary_10_1016_j_conbuildmat_2022_129485 crossref_primary_10_1016_j_rineng_2024_103615 crossref_primary_10_1080_15567036_2024_2424915 crossref_primary_10_1016_j_jobe_2022_104825 crossref_primary_10_2139_ssrn_4200008 crossref_primary_10_1016_j_conbuildmat_2020_120167 crossref_primary_10_1016_j_enbuild_2024_114744 crossref_primary_10_1016_j_ceramint_2021_05_259 crossref_primary_10_1680_jsmic_23_00017 crossref_primary_10_1016_j_enbuild_2022_112365 crossref_primary_10_1016_j_conbuildmat_2024_137010 crossref_primary_10_1007_s12273_022_0932_x crossref_primary_10_1051_e3sconf_202340601040 crossref_primary_10_1016_j_jclepro_2022_132198 crossref_primary_10_1016_j_enbuild_2020_110452 crossref_primary_10_1007_s10971_023_06261_0 crossref_primary_10_1016_j_csite_2024_105058 crossref_primary_10_1016_j_jcou_2024_102827 crossref_primary_10_1016_j_conbuildmat_2022_130166 crossref_primary_10_2139_ssrn_3987652 crossref_primary_10_1016_j_cscm_2022_e00919 crossref_primary_10_1016_j_jclepro_2022_133939 crossref_primary_10_1016_j_istruc_2024_106813 crossref_primary_10_1016_j_phycom_2021_101487 crossref_primary_10_1016_j_applthermaleng_2021_117230 crossref_primary_10_1088_2053_1591_abeb8a crossref_primary_10_1007_s40999_021_00671_3 crossref_primary_10_1016_j_jobe_2021_103227 crossref_primary_10_1016_j_conbuildmat_2024_139701 crossref_primary_10_1007_s41024_025_00596_7 crossref_primary_10_1016_j_matlet_2023_134217 crossref_primary_10_3390_app13095303 crossref_primary_10_1016_j_buildenv_2021_108004 crossref_primary_10_1016_j_conbuildmat_2022_127706 crossref_primary_10_1016_j_jmat_2024_03_002 crossref_primary_10_1016_j_jobe_2023_106935 crossref_primary_10_1016_j_conbuildmat_2022_129825 crossref_primary_10_1016_j_jobe_2022_105128 |
Cites_doi | 10.1016/j.ijhydene.2016.11.025 10.1016/j.conbuildmat.2014.12.064 10.1016/j.enbuild.2017.08.085 10.1016/j.conbuildmat.2013.10.100 10.1016/j.proeng.2017.09.909 10.1016/j.egypro.2015.11.684 10.1016/j.enbuild.2017.01.010 10.1016/j.enconman.2005.09.011 10.1016/j.carbpol.2016.08.047 10.1016/j.renene.2019.01.120 10.1016/j.matdes.2017.07.056 10.1016/j.buildenv.2014.06.017 10.1016/j.applthermaleng.2015.02.013 10.1016/j.renene.2019.10.083 10.1016/j.jnoncrysol.2017.12.047 10.1016/j.conbuildmat.2019.01.212 10.1016/j.enbuild.2018.06.026 10.1016/j.solener.2004.08.032 10.1166/jnn.2018.15530 10.1016/j.ijheatmasstransfer.2017.01.051 10.1016/j.enbuild.2007.03.007 10.1016/j.ijheatmasstransfer.2017.09.069 10.1016/j.rser.2014.03.017 10.1016/j.apenergy.2017.12.101 |
ContentType | Journal Article |
Copyright | 2020 International Solar Energy Society Copyright Pergamon Press Inc. Jul 1, 2020 |
Copyright_xml | – notice: 2020 International Solar Energy Society – notice: Copyright Pergamon Press Inc. Jul 1, 2020 |
DBID | AAYXX CITATION 7SP 7ST 8FD C1K FR3 KR7 L7M SOI |
DOI | 10.1016/j.solener.2020.04.092 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1471-1257 |
EndPage | 576 |
ExternalDocumentID | 10_1016_j_solener_2020_04_092 S0038092X20304771 |
GroupedDBID | --K --M -ET -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABMAC ABXRA ABYKQ ACDAQ ACGFS ACGOD ACIWK ACRLP ADBBV ADEZE ADHUB AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BKOMP BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA H~9 IHE J1W JARJE KOM LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ RXW SDF SDG SDP SES SPC SPCBC SSM SSR SSZ T5K TAE TN5 WH7 XPP YNT ZMT ~02 ~G- ~KM ~S- 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ NEJ R2- RIG SAC SEW SSH UKR VOH WUQ XOL ZY4 ~A~ 7SP 7ST 8FD C1K EFKBS FR3 KR7 L7M SOI |
ID | FETCH-LOGICAL-c337t-ed404edf9485e22888480cfd498e2fa2cb1d4c1b91583a7d244602c434a4ecdf3 |
IEDL.DBID | .~1 |
ISSN | 0038-092X |
IngestDate | Wed Aug 13 07:38:29 EDT 2025 Thu Apr 24 22:49:35 EDT 2025 Tue Jul 01 00:39:36 EDT 2025 Fri Feb 23 02:47:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Aerogels Foamed concrete Building energy efficiency Thermal performance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-ed404edf9485e22888480cfd498e2fa2cb1d4c1b91583a7d244602c434a4ecdf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2440684286 |
PQPubID | 9393 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2440684286 crossref_citationtrail_10_1016_j_solener_2020_04_092 crossref_primary_10_1016_j_solener_2020_04_092 elsevier_sciencedirect_doi_10_1016_j_solener_2020_04_092 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 2020-07-00 20200701 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Solar energy |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Pergamon Press Inc |
Publisher_xml | – name: Elsevier Ltd – name: Pergamon Press Inc |
References | Tsioulou, Ayegbusi, Lampropoulos (b0155) 2018 Kong, Liu, Zhong (b0070) 2016; 32 Liang, Wu, Zhong (b0105) 2018; 32 Gao, Jelle, Gustavsen, Jacobsen (b0035) 2014; 52 Li, Zhu, Zhao (b0085) 2017; 108 He, Xie (b0045) 2015; 81 Yang, Lu, He, Wu, Xu, Xiao (b0180) 2018; 18 Ni X., Wang B., Shen J., et al.,2010. Nano-silicaResearch on thermal insulation characteristics of aerogel in energy-saving building wall. 7th China Academic Conference on Functional Materials and Their Applications, changsha, hunan, China, 2010. Lv, Wu, Liu (b0110) 2018; 2018 Akos (b0010) 2017; 2017 Chen, Li, Du, Wang, Xia, Yedinak, Lou, Ci (b0015) 2017; 155 Yang, Lin, Wu, Chen, Xu, Huang, Fan, Shen, Gan (b0190) 2020; 148 Ng, Jelle, Sandberg (b0120) 2015; 2015 Yang, Wu, Xu (b0185) 2019; 2019 Wang, Xu (b0175) 2006; 47 Vedenin, Vityaz, Ivanova, Mazalov, Pustovgar, Sudnik (b0165) 2018; 43 Liang Y, Wu H*, Huang G, Yang J, Wang H.,2017. Thermal performance and service life of vacuum insulation panels with aerogel composite cores. Energy and Buildings, 2017a, 154: 606-617. GB 50176-2016.Code for thermal Design of Civil Buildings. China Building Industry Press, Beijing, 2016. Ibrahim, Biwole, Wurtz (b0055) 2014; 2014 Liang, Wu, Huang (b0100) 2017; 2017 Muscio, Akbari (b0115) 2017; 157 Fickler, Milow, Ratke (b0030) 2015; 2015 Reim, Körner, Manara, Korder, Arduini-Schuster, Ebert, Fricke (b0135) 2005; 79 Sierra, Rodríguez, Boschmonart (b0140) 2018; 212 Yang, Wu, Huang (bib201) 2017; 113 Akos (b0005) 2017; 2017 Zhao, Ding, Zhou (b0200) 2017; 20 Pérez, Ortiz, Pout (b0130) 2014; 40 Cuce E., Cuce P.M., Wood C.J., et al.,2014. Toward aerogel based thermal superinsulation in building: A comprehensive review. Renewable & Sustainable Energy Reviews, 2014, 34(6): 273-299. Tan, Ren (b0150) 2009; 23 Li, Wu, Liu, Yang, Fang, Lin (b0075) 2019; 2019 Jia, Li, Liu, Jing (b0065) 2018; 482 Akos (10.1016/j.solener.2020.04.092_b0005) 2017; 2017 Yang (10.1016/j.solener.2020.04.092_b0195) 2015; 19 Reim (10.1016/j.solener.2020.04.092_b0135) 2005; 79 Yang (10.1016/j.solener.2020.04.092_bib201) 2017; 113 Ng (10.1016/j.solener.2020.04.092_b0120) 2015; 2015 Liang (10.1016/j.solener.2020.04.092_b0100) 2017; 2017 Yang (10.1016/j.solener.2020.04.092_b0185) 2019; 2019 Li (10.1016/j.solener.2020.04.092_b0075) 2019; 2019 Li (10.1016/j.solener.2020.04.092_b0085) 2017; 108 Chen (10.1016/j.solener.2020.04.092_b0015) 2017; 155 Akos (10.1016/j.solener.2020.04.092_b0010) 2017; 2017 Sierra (10.1016/j.solener.2020.04.092_b0140) 2018; 212 Yang (10.1016/j.solener.2020.04.092_b0190) 2020; 148 Muscio (10.1016/j.solener.2020.04.092_b0115) 2017; 157 He (10.1016/j.solener.2020.04.092_b0045) 2015; 81 10.1016/j.solener.2020.04.092_b0095 Yang (10.1016/j.solener.2020.04.092_bib202) 2018; 117 Liang (10.1016/j.solener.2020.04.092_b0105) 2018; 32 Gao (10.1016/j.solener.2020.04.092_b0035) 2014; 52 Fickler (10.1016/j.solener.2020.04.092_b0030) 2015; 2015 10.1016/j.solener.2020.04.092_b0125 Tsioulou (10.1016/j.solener.2020.04.092_b0155) 2018 Wang (10.1016/j.solener.2020.04.092_b0175) 2006; 47 Ibrahim (10.1016/j.solener.2020.04.092_b0055) 2014; 2014 Yang (10.1016/j.solener.2020.04.092_b0180) 2018; 18 Pérez (10.1016/j.solener.2020.04.092_b0130) 2014; 40 Lv (10.1016/j.solener.2020.04.092_b0110) 2018; 2018 10.1016/j.solener.2020.04.092_b0020 Jia (10.1016/j.solener.2020.04.092_b0065) 2018; 482 10.1016/j.solener.2020.04.092_b0040 Vedenin (10.1016/j.solener.2020.04.092_b0165) 2018; 43 Kong (10.1016/j.solener.2020.04.092_b0070) 2016; 32 Tan (10.1016/j.solener.2020.04.092_b0150) 2009; 23 Zhao (10.1016/j.solener.2020.04.092_b0200) 2017; 20 |
References_xml | – volume: 43 start-page: 6899 year: 2018 end-page: 6903 ident: b0165 article-title: Experimental investigation of thermal insulating aerogel composites of hydrothermal reactor for biomass-to-hydrogen conversion publication-title: Int. J. Hydrogen Energy – volume: 79 start-page: 131 year: 2005 end-page: 139 ident: b0135 article-title: Silica aerogel granulate material for thermal insulation and daylighting publication-title: Sol. Energy – volume: 2018 start-page: 190 year: 2018 end-page: 198 ident: b0110 article-title: Quantitative research on the influence of particle size and filling thickness on aerogel glazing performance publication-title: Energy Build. – reference: Ni X., Wang B., Shen J., et al.,2010. Nano-silicaResearch on thermal insulation characteristics of aerogel in energy-saving building wall. 7th China Academic Conference on Functional Materials and Their Applications, changsha, hunan, China, 2010. – volume: 113 start-page: 224 year: 2017 end-page: 236 ident: bib201 article-title: Modeling and coupling effect evaluation of thermal conductivity of ternary opacifier/fiber/aerogel composites for super-thermal insulation publication-title: Mater. Des. – volume: 2017 start-page: 506 year: 2017 end-page: 516 ident: b0010 article-title: Investigation of the moisture induced degradation of the thermal properties of aerogel blankets: Measurements, calculations, simulations publication-title: Energy Build. – volume: 2014 start-page: 112 year: 2014 end-page: 122 ident: b0055 article-title: A study on the thermal performance of exterior walls covered with a recently patented silica-aerogel-based insulating coating publication-title: Build. Environ. – volume: 20 start-page: 592 year: 2017 end-page: 597 ident: b0200 article-title: Internal surface temperature response characteristics of composite wall in hot summer and warm winter publication-title: J. Build. Mater. – volume: 2015 start-page: 406 year: 2015 end-page: 411 ident: b0030 article-title: Development of High Performance Aerogel Concrete publication-title: Energy Procedia – volume: 23 start-page: 16 year: 2009 end-page: 19 ident: b0150 article-title: A new calculation model for unsteady heat transfer of building envelope wall publication-title: Refrigeration Air Conditioning: Sichuan – reference: Liang Y, Wu H*, Huang G, Yang J, Wang H.,2017. Thermal performance and service life of vacuum insulation panels with aerogel composite cores. Energy and Buildings, 2017a, 154: 606-617. – volume: 32 start-page: 40 year: 2016 end-page: 46 ident: b0070 article-title: Multi-factor thermal characteristics analysis and optimization of phase change energy storage wall publication-title: Arch. Sci. – volume: 157 start-page: 184 year: 2017 end-page: 194 ident: b0115 article-title: An index for the overall performance of opaque building elements subjected to solar radiation publication-title: Energy Build. – volume: 2019 start-page: 445 year: 2019 end-page: 457 ident: b0185 article-title: Numerical and experimental study on the thermal performance of aerogel insulating panels for building energy efficiency publication-title: Renew. Energy – reference: GB 50176-2016.Code for thermal Design of Civil Buildings. China Building Industry Press, Beijing, 2016. – volume: 52 start-page: 130 year: 2014 end-page: 136 ident: b0035 article-title: Aerogel-incorporated concrete: An experimental study publication-title: Constr. Build. Mater. – volume: 108 start-page: 1982 year: 2017 end-page: 1990 ident: b0085 article-title: theoretical and numerical study on the gas-contributed thermal conductivity in aerogel. publication-title: Heat Mass Transf. – volume: 482 start-page: 192 year: 2018 end-page: 202 ident: b0065 article-title: Preparation and characterization of aerogel/expanded perlite composite as building thermal insulation material publication-title: J. Non-Cryst. Solids – volume: 32 start-page: 2112 year: 2018 end-page: 2117 ident: b0105 article-title: Calculation and Optimization of thermal conductivity of aerogel composite vacuum insulation plate publication-title: Mater. Rev. – volume: 2015 start-page: 307 year: 2015 end-page: 316 ident: b0120 article-title: Experimental investigations of aerogel-incorporated ultra-high performance concrete publication-title: Constr. Build. Mater. – volume: 212 start-page: 1510 year: 2018 end-page: 1521 ident: b0140 article-title: Integrated life cycle assessment and thermodynamic simulation of a public building's envelope renovation: Conventional vs Passivhaus proposal publication-title: Appl. Energy – start-page: 125 year: 2018 end-page: 131 ident: b0155 article-title: Experimental investigation on thermal conductivity and mechanical properties of a novel Aerogel concrete publication-title: High Tech Concrete: Where Technology and Engineering Meet – volume: 2017 start-page: 2 year: 2017 ident: b0005 article-title: Comprehensive thermal transmittance investigations carried out on opaque aerogel insulation blanket publication-title: Mater. Struct. – volume: 40 start-page: 394 year: 2014 end-page: 398 ident: b0130 article-title: A review on buildings energy consumption information publication-title: Energy Build. – volume: 2017 start-page: 2855 year: 2017 end-page: 2862 ident: b0100 article-title: Prediction and optimization of thermal conductivity of vacuum insulation panels with aerogel composite cores publication-title: Procedia Eng. – volume: 148 start-page: 975 year: 2020 end-page: 986 ident: b0190 article-title: Inverse optimization of building thermal resistance and capacitance for minimizing air conditioning loads publication-title: Renew. Energy – volume: 18 start-page: 7896 year: 2018 end-page: 7901 ident: b0180 article-title: Preparation and Characterization of Clay Aerogel Composites Reinforced by Calcium Sulfate Whisker publication-title: j nanosci nanotechnol – volume: 47 start-page: 1927 year: 2006 end-page: 1941 ident: b0175 article-title: Parameter estimation of internal thermal mass of building dynamic models using genetic algorithm publication-title: Energy Conversion Management – reference: Cuce E., Cuce P.M., Wood C.J., et al.,2014. Toward aerogel based thermal superinsulation in building: A comprehensive review. Renewable & Sustainable Energy Reviews, 2014, 34(6): 273-299. – volume: 81 start-page: 28 year: 2015 end-page: 50 ident: b0045 article-title: Advances of thermal conductivity models of nanoscale silica aerogel insulation material publication-title: Appl. Therm. Eng. – volume: 155 start-page: 345 year: 2017 end-page: 353 ident: b0015 article-title: High performance agar/grapheme oxide composite aerogel for methylene blue removal publication-title: Carbohydr. Polym. – volume: 2019 start-page: 529 year: 2019 end-page: 542 ident: b0075 article-title: Preparation and optimization of ultra-light and thermal insulative aerogel foam concrete publication-title: Constr. Build. Mater. – volume: 43 start-page: 6899 issue: 2018 year: 2018 ident: 10.1016/j.solener.2020.04.092_b0165 article-title: Experimental investigation of thermal insulating aerogel composites of hydrothermal reactor for biomass-to-hydrogen conversion publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.11.025 – volume: 2015 start-page: 307 issue: 77 year: 2015 ident: 10.1016/j.solener.2020.04.092_b0120 article-title: Experimental investigations of aerogel-incorporated ultra-high performance concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2014.12.064 – ident: 10.1016/j.solener.2020.04.092_b0095 doi: 10.1016/j.enbuild.2017.08.085 – volume: 52 start-page: 130 year: 2014 ident: 10.1016/j.solener.2020.04.092_b0035 article-title: Aerogel-incorporated concrete: An experimental study publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.10.100 – volume: 2017 start-page: 2855 issue: 205 year: 2017 ident: 10.1016/j.solener.2020.04.092_b0100 article-title: Prediction and optimization of thermal conductivity of vacuum insulation panels with aerogel composite cores publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.09.909 – volume: 32 start-page: 2112 issue: 12 year: 2018 ident: 10.1016/j.solener.2020.04.092_b0105 article-title: Calculation and Optimization of thermal conductivity of aerogel composite vacuum insulation plate publication-title: Mater. Rev. – volume: 2017 start-page: 506 issue: 139 year: 2017 ident: 10.1016/j.solener.2020.04.092_b0010 article-title: Investigation of the moisture induced degradation of the thermal properties of aerogel blankets: Measurements, calculations, simulations publication-title: Energy Build. – ident: 10.1016/j.solener.2020.04.092_b0040 – volume: 2015 start-page: 406 issue: 78 year: 2015 ident: 10.1016/j.solener.2020.04.092_b0030 article-title: Development of High Performance Aerogel Concrete publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.11.684 – volume: 157 start-page: 184 issue: 12 year: 2017 ident: 10.1016/j.solener.2020.04.092_b0115 article-title: An index for the overall performance of opaque building elements subjected to solar radiation publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.01.010 – volume: 47 start-page: 1927 issue: 13-14 year: 2006 ident: 10.1016/j.solener.2020.04.092_b0175 article-title: Parameter estimation of internal thermal mass of building dynamic models using genetic algorithm publication-title: Energy Conversion Management doi: 10.1016/j.enconman.2005.09.011 – volume: 2017 start-page: 2 issue: 50 year: 2017 ident: 10.1016/j.solener.2020.04.092_b0005 article-title: Comprehensive thermal transmittance investigations carried out on opaque aerogel insulation blanket publication-title: Mater. Struct. – volume: 155 start-page: 345 issue: 2017 year: 2017 ident: 10.1016/j.solener.2020.04.092_b0015 article-title: High performance agar/grapheme oxide composite aerogel for methylene blue removal publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2016.08.047 – volume: 23 start-page: 16 issue: 1 year: 2009 ident: 10.1016/j.solener.2020.04.092_b0150 article-title: A new calculation model for unsteady heat transfer of building envelope wall publication-title: Refrigeration Air Conditioning: Sichuan – start-page: 125 year: 2018 ident: 10.1016/j.solener.2020.04.092_b0155 article-title: Experimental investigation on thermal conductivity and mechanical properties of a novel Aerogel concrete – volume: 2019 start-page: 445 issue: 138 year: 2019 ident: 10.1016/j.solener.2020.04.092_b0185 article-title: Numerical and experimental study on the thermal performance of aerogel insulating panels for building energy efficiency publication-title: Renew. Energy doi: 10.1016/j.renene.2019.01.120 – volume: 113 start-page: 224 year: 2017 ident: 10.1016/j.solener.2020.04.092_bib201 article-title: Modeling and coupling effect evaluation of thermal conductivity of ternary opacifier/fiber/aerogel composites for super-thermal insulation publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.07.056 – volume: 2014 start-page: 112 issue: 81 year: 2014 ident: 10.1016/j.solener.2020.04.092_b0055 article-title: A study on the thermal performance of exterior walls covered with a recently patented silica-aerogel-based insulating coating publication-title: Build. Environ. doi: 10.1016/j.buildenv.2014.06.017 – volume: 81 start-page: 28 year: 2015 ident: 10.1016/j.solener.2020.04.092_b0045 article-title: Advances of thermal conductivity models of nanoscale silica aerogel insulation material publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.02.013 – volume: 32 start-page: 40 issue: 8 year: 2016 ident: 10.1016/j.solener.2020.04.092_b0070 article-title: Multi-factor thermal characteristics analysis and optimization of phase change energy storage wall publication-title: Arch. Sci. – volume: 148 start-page: 975 year: 2020 ident: 10.1016/j.solener.2020.04.092_b0190 article-title: Inverse optimization of building thermal resistance and capacitance for minimizing air conditioning loads publication-title: Renew. Energy doi: 10.1016/j.renene.2019.10.083 – volume: 482 start-page: 192 issue: 2018 year: 2018 ident: 10.1016/j.solener.2020.04.092_b0065 article-title: Preparation and characterization of aerogel/expanded perlite composite as building thermal insulation material publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2017.12.047 – volume: 2019 start-page: 529 issue: 205 year: 2019 ident: 10.1016/j.solener.2020.04.092_b0075 article-title: Preparation and optimization of ultra-light and thermal insulative aerogel foam concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.01.212 – ident: 10.1016/j.solener.2020.04.092_b0125 – volume: 2018 start-page: 190 issue: 174 year: 2018 ident: 10.1016/j.solener.2020.04.092_b0110 article-title: Quantitative research on the influence of particle size and filling thickness on aerogel glazing performance publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.06.026 – volume: 79 start-page: 131 issue: 2 year: 2005 ident: 10.1016/j.solener.2020.04.092_b0135 article-title: Silica aerogel granulate material for thermal insulation and daylighting publication-title: Sol. Energy doi: 10.1016/j.solener.2004.08.032 – volume: 18 start-page: 7896 issue: 11 year: 2018 ident: 10.1016/j.solener.2020.04.092_b0180 article-title: Preparation and Characterization of Clay Aerogel Composites Reinforced by Calcium Sulfate Whisker publication-title: j nanosci nanotechnol doi: 10.1166/jnn.2018.15530 – volume: 108 start-page: 1982 issue: 2017 year: 2017 ident: 10.1016/j.solener.2020.04.092_b0085 article-title: theoretical and numerical study on the gas-contributed thermal conductivity in aerogel. Internatioanl Journal of publication-title: Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.01.051 – volume: 40 start-page: 394 issue: 3 year: 2014 ident: 10.1016/j.solener.2020.04.092_b0130 article-title: A review on buildings energy consumption information publication-title: Energy Build. doi: 10.1016/j.enbuild.2007.03.007 – volume: 19 start-page: 1 issue: S2 year: 2015 ident: 10.1016/j.solener.2020.04.092_b0195 article-title: Effects of preparation parameters on SiO2 aerogels by single-factor and orthogonal experiments publication-title: Mater. Res. Innovations – volume: 117 start-page: 729 year: 2018 ident: 10.1016/j.solener.2020.04.092_bib202 article-title: Prediction and optimization of radiative thermal properties of nano TiO2 assembled fibrous insulations publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2017.09.069 – ident: 10.1016/j.solener.2020.04.092_b0020 doi: 10.1016/j.rser.2014.03.017 – volume: 20 start-page: 592 issue: 4 year: 2017 ident: 10.1016/j.solener.2020.04.092_b0200 article-title: Internal surface temperature response characteristics of composite wall in hot summer and warm winter publication-title: J. Build. Mater. – volume: 212 start-page: 1510 issue: 2 year: 2018 ident: 10.1016/j.solener.2020.04.092_b0140 article-title: Integrated life cycle assessment and thermodynamic simulation of a public building's envelope renovation: Conventional vs Passivhaus proposal publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.12.101 |
SSID | ssj0017187 |
Score | 2.5003443 |
Snippet | •A new type of high-performance aerogel foamed concrete was prepared.•The delay time of aerogel foamed concrete is twice of polystyrene or concrete.•The heat... A new type of high-performance aerogel foamed concrete was prepared by using aerogel powder as filling material and chopped glass fiber as reinforcement. By... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 569 |
SubjectTerms | Aerogels Building energy efficiency Concrete Concrete construction Energy efficiency Fillers Foamed concrete Glass fibers Green buildings Heat loss Heat transfer Hot weather Solar energy Solar radiation Temperature requirements Thermal insulation Thermal performance Time lag |
Title | Dynamic thermal performance of ultra-light and thermal-insulative aerogel foamed concrete for building energy efficiency |
URI | https://dx.doi.org/10.1016/j.solener.2020.04.092 https://www.proquest.com/docview/2440684286 |
Volume | 204 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYQXOgBtQVEKEU-9OrE8U6y3mNEiwJVORUpN8u7HleJliQKG4lTf3vHXi8UJITE0SvPPjyz89DMfMPYNxIib0fSC618KcgEVCKkc8TYSxIfLJyOk-d-3Yynt3A9G8122EXXCxPKKpPub3V61NbpyiCd5mA9n4ce30zLQs1UyO7lsY8cIA9S3v_7WOYxJN3b4mZmIc2vZk9dPIMFBbF1AHemMFHJFvFUvWafXmjqaH4uP7KD5DfySftqn9gOLj-zD_-hCR6yh-_tdHkefLo72rx-agrgK8-3dbOxog7ROLdL120TsRw94n9zi5vVH6y5X1mykpxiZXIqG6T1hpdpgDbH2C7IMYJPhM7NI3Z7-eP3xVSkwQqiyrK8EehAAjofkGFQKQqCQcvKOyg0Km9VVQ4dVMOyGI50ZnNHLsBYqgoysICV89kx212ulnjCOBa2gDL3YG0GqK2V2uUSgTY7oAf0GHTHaaqEOh6GX9SmKy9bmMQFE7hgJBjiQo_1H8nWLezGWwS645V5Jj-GTMNbpGcdb036ge8NfbIMKUo9Pn3_nb-w_bBqq3vP2G6z2eJX8mGa8jwK6Tnbm1z9nN78AzCh9Fk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcq9gB7QBsbGgw2P_Bq6jrXxnmc2FA32j4VqW-WE58nUEirEiSe-Ns5Jw4FpAlpj0nsxPGd70N39zvGToiJvB1KL7TyuSAVUIgQzhEjL4l9MHO66Tw3nY3Gl_BnMVz02FlXCxPSKqPsb2V6I63jnX7czf7q6irU-CZaZmqhQnQvDXXk74COb2hjcPrwlOcxIOHbAmcmIc6vFpsynv41ebFlQHcmP1HJFvJU_UtBvRLVjf45_8B2o-HIf7Rr-8h6WO2x98_gBD-x-59te3kejLobGrzaVAXwped3Zb22ogzuOLeV64aJJh-9AQDnFtfLv1hyv7SkJjk5y2RV1kjXa57HDtocm3pBjg36RCjd_Mwuz3_Nz8YidlYQRZKktUAHEtD5AA2DSpEXDFoW3kGmUXmrinzgoBjk2WCoE5s6sgFGUhWQgAUsnE_22Va1rPAL45jZDPLUg7UJoLZWapdKBBrsgD5wwKDbTlNE2PHQ_aI0XX7ZtYlUMIEKRoIhKhyw06dpqxZ3460JuqOVecFAhnTDW1OPOtqaeIJvDf2yDDFKPTr8_zd_Z9vj-XRiJr9nF1_ZTnjSpvoesa16fYfHZNDU-beGYR8Bw0X15w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+thermal+performance+of+ultra-light+and+thermal-insulative+aerogel+foamed+concrete+for+building+energy+efficiency&rft.jtitle=Solar+energy&rft.au=Zhang%2C+Haiying&rft.au=Yang%2C+Jianming&rft.au=Wu%2C+Huijun&rft.au=Fu%2C+Ping&rft.date=2020-07-01&rft.pub=Elsevier+Ltd&rft.issn=0038-092X&rft.eissn=1471-1257&rft.volume=204&rft.spage=569&rft.epage=576&rft_id=info:doi/10.1016%2Fj.solener.2020.04.092&rft.externalDocID=S0038092X20304771 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon |