Guanidinoacetic acid ameliorates hepatic steatosis and inflammation and promotes white adipose tissue browning in middle-aged mice with high-fat-diet-induced obesity

Guanidinoacetic acid (GAA) is a naturally occurring amino acid derivative that plays a critical role in energy metabolism. In recent years, a growing body of evidence has emerged supporting the importance of GAA in metabolic dysfunction. Hence, we aimed to investigate the effects of GAA on hepatic a...

Full description

Saved in:
Bibliographic Details
Published inFood & function Vol. 15; no. 8; pp. 4515 - 4526
Main Authors Su, Yuan, Li, Xinrui, Zhao, Jiamin, Ji, Bingzhen, Zhao, Xiaoyi, Feng, Jinxin, Zhao, Junxing
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 22.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Guanidinoacetic acid (GAA) is a naturally occurring amino acid derivative that plays a critical role in energy metabolism. In recent years, a growing body of evidence has emerged supporting the importance of GAA in metabolic dysfunction. Hence, we aimed to investigate the effects of GAA on hepatic and adipose tissue metabolism, as well as systemic inflammatory responses in obese middle-aged mice models and attempted to explore the underlying mechanism. We found that dietary supplementation of GAA inhibited inguinal white adipose tissue (iWAT) hypertrophy in high-fat diet (HFD)-fed mice. In addition, GAA supplementation observably decreased the levels of some systemic inflammatory factors, including IL-4, TNF-α, IL-1β, and IL-6. Intriguingly, GAA supplementation ameliorated hepatic steatosis and lipid deposition in HFD-fed mice, which was revealed by decreased levels of TG, TC, LDL-C, PPARγ, SREBP-1c, FASN , ACC , FABP1 , and APOB and increased levels of HDL-C in the liver. Moreover, GAA supplementation increased the expression of browning markers and mitochondrial-related genes in the iWAT. Further investigation showed that dietary GAA promoted the browning of the iWAT via activating the AMPK/Sirt1 signaling pathway and might be associated with futile creatine cycling in obese mice. These results indicate that GAA has the potential to be used as an effective ingredient in dietary interventions and thus may play an important role in ameliorating and preventing HFD-induced obesity and related metabolic diseases. This study provides evidence for the ameliorative effect of dietary guanidinoacetic acid on metabolic disorders in HFD-fed mice.
AbstractList Guanidinoacetic acid (GAA) is a naturally occurring amino acid derivative that plays a critical role in energy metabolism. In recent years, a growing body of evidence has emerged supporting the importance of GAA in metabolic dysfunction. Hence, we aimed to investigate the effects of GAA on hepatic and adipose tissue metabolism, as well as systemic inflammatory responses in obese middle-aged mice models and attempted to explore the underlying mechanism. We found that dietary supplementation of GAA inhibited inguinal white adipose tissue (iWAT) hypertrophy in high-fat diet (HFD)-fed mice. In addition, GAA supplementation observably decreased the levels of some systemic inflammatory factors, including IL-4, TNF-α, IL-1β, and IL-6. Intriguingly, GAA supplementation ameliorated hepatic steatosis and lipid deposition in HFD-fed mice, which was revealed by decreased levels of TG, TC, LDL-C, PPARγ, SREBP-1c, FASN, ACC, FABP1, and APOB and increased levels of HDL-C in the liver. Moreover, GAA supplementation increased the expression of browning markers and mitochondrial-related genes in the iWAT. Further investigation showed that dietary GAA promoted the browning of the iWAT via activating the AMPK/Sirt1 signaling pathway and might be associated with futile creatine cycling in obese mice. These results indicate that GAA has the potential to be used as an effective ingredient in dietary interventions and thus may play an important role in ameliorating and preventing HFD-induced obesity and related metabolic diseases.
Guanidinoacetic acid (GAA) is a naturally occurring amino acid derivative that plays a critical role in energy metabolism. In recent years, a growing body of evidence has emerged supporting the importance of GAA in metabolic dysfunction. Hence, we aimed to investigate the effects of GAA on hepatic and adipose tissue metabolism, as well as systemic inflammatory responses in obese middle-aged mice models and attempted to explore the underlying mechanism. We found that dietary supplementation of GAA inhibited inguinal white adipose tissue (iWAT) hypertrophy in high-fat diet (HFD)-fed mice. In addition, GAA supplementation observably decreased the levels of some systemic inflammatory factors, including IL-4, TNF-α, IL-1β, and IL-6. Intriguingly, GAA supplementation ameliorated hepatic steatosis and lipid deposition in HFD-fed mice, which was revealed by decreased levels of TG, TC, LDL-C, PPARγ, SREBP-1c, FASN , ACC , FABP1 , and APOB and increased levels of HDL-C in the liver. Moreover, GAA supplementation increased the expression of browning markers and mitochondrial-related genes in the iWAT. Further investigation showed that dietary GAA promoted the browning of the iWAT via activating the AMPK/Sirt1 signaling pathway and might be associated with futile creatine cycling in obese mice. These results indicate that GAA has the potential to be used as an effective ingredient in dietary interventions and thus may play an important role in ameliorating and preventing HFD-induced obesity and related metabolic diseases. This study provides evidence for the ameliorative effect of dietary guanidinoacetic acid on metabolic disorders in HFD-fed mice.
Guanidinoacetic acid (GAA) is a naturally occurring amino acid derivative that plays a critical role in energy metabolism. In recent years, a growing body of evidence has emerged supporting the importance of GAA in metabolic dysfunction. Hence, we aimed to investigate the effects of GAA on hepatic and adipose tissue metabolism, as well as systemic inflammatory responses in obese middle-aged mice models and attempted to explore the underlying mechanism. We found that dietary supplementation of GAA inhibited inguinal white adipose tissue (iWAT) hypertrophy in high-fat diet (HFD)-fed mice. In addition, GAA supplementation observably decreased the levels of some systemic inflammatory factors, including IL-4, TNF-α, IL-1β, and IL-6. Intriguingly, GAA supplementation ameliorated hepatic steatosis and lipid deposition in HFD-fed mice, which was revealed by decreased levels of TG, TC, LDL-C, PPARγ, SREBP-1c, , , , and and increased levels of HDL-C in the liver. Moreover, GAA supplementation increased the expression of browning markers and mitochondrial-related genes in the iWAT. Further investigation showed that dietary GAA promoted the browning of the iWAT activating the AMPK/Sirt1 signaling pathway and might be associated with futile creatine cycling in obese mice. These results indicate that GAA has the potential to be used as an effective ingredient in dietary interventions and thus may play an important role in ameliorating and preventing HFD-induced obesity and related metabolic diseases.
Guanidinoacetic acid (GAA) is a naturally occurring amino acid derivative that plays a critical role in energy metabolism. In recent years, a growing body of evidence has emerged supporting the importance of GAA in metabolic dysfunction. Hence, we aimed to investigate the effects of GAA on hepatic and adipose tissue metabolism, as well as systemic inflammatory responses in obese middle-aged mice models and attempted to explore the underlying mechanism. We found that dietary supplementation of GAA inhibited inguinal white adipose tissue (iWAT) hypertrophy in high-fat diet (HFD)-fed mice. In addition, GAA supplementation observably decreased the levels of some systemic inflammatory factors, including IL-4, TNF-α, IL-1β, and IL-6. Intriguingly, GAA supplementation ameliorated hepatic steatosis and lipid deposition in HFD-fed mice, which was revealed by decreased levels of TG, TC, LDL-C, PPARγ, SREBP-1c, FASN , ACC , FABP1 , and APOB and increased levels of HDL-C in the liver. Moreover, GAA supplementation increased the expression of browning markers and mitochondrial-related genes in the iWAT. Further investigation showed that dietary GAA promoted the browning of the iWAT via activating the AMPK/Sirt1 signaling pathway and might be associated with futile creatine cycling in obese mice. These results indicate that GAA has the potential to be used as an effective ingredient in dietary interventions and thus may play an important role in ameliorating and preventing HFD-induced obesity and related metabolic diseases.
Guanidinoacetic acid (GAA) is a naturally occurring amino acid derivative that plays a critical role in energy metabolism. In recent years, a growing body of evidence has emerged supporting the importance of GAA in metabolic dysfunction. Hence, we aimed to investigate the effects of GAA on hepatic and adipose tissue metabolism, as well as systemic inflammatory responses in obese middle-aged mice models and attempted to explore the underlying mechanism. We found that dietary supplementation of GAA inhibited inguinal white adipose tissue (iWAT) hypertrophy in high-fat diet (HFD)-fed mice. In addition, GAA supplementation observably decreased the levels of some systemic inflammatory factors, including IL-4, TNF-α, IL-1β, and IL-6. Intriguingly, GAA supplementation ameliorated hepatic steatosis and lipid deposition in HFD-fed mice, which was revealed by decreased levels of TG, TC, LDL-C, PPARγ, SREBP-1c, FASN, ACC, FABP1, and APOB and increased levels of HDL-C in the liver. Moreover, GAA supplementation increased the expression of browning markers and mitochondrial-related genes in the iWAT. Further investigation showed that dietary GAA promoted the browning of the iWAT via activating the AMPK/Sirt1 signaling pathway and might be associated with futile creatine cycling in obese mice. These results indicate that GAA has the potential to be used as an effective ingredient in dietary interventions and thus may play an important role in ameliorating and preventing HFD-induced obesity and related metabolic diseases.Guanidinoacetic acid (GAA) is a naturally occurring amino acid derivative that plays a critical role in energy metabolism. In recent years, a growing body of evidence has emerged supporting the importance of GAA in metabolic dysfunction. Hence, we aimed to investigate the effects of GAA on hepatic and adipose tissue metabolism, as well as systemic inflammatory responses in obese middle-aged mice models and attempted to explore the underlying mechanism. We found that dietary supplementation of GAA inhibited inguinal white adipose tissue (iWAT) hypertrophy in high-fat diet (HFD)-fed mice. In addition, GAA supplementation observably decreased the levels of some systemic inflammatory factors, including IL-4, TNF-α, IL-1β, and IL-6. Intriguingly, GAA supplementation ameliorated hepatic steatosis and lipid deposition in HFD-fed mice, which was revealed by decreased levels of TG, TC, LDL-C, PPARγ, SREBP-1c, FASN, ACC, FABP1, and APOB and increased levels of HDL-C in the liver. Moreover, GAA supplementation increased the expression of browning markers and mitochondrial-related genes in the iWAT. Further investigation showed that dietary GAA promoted the browning of the iWAT via activating the AMPK/Sirt1 signaling pathway and might be associated with futile creatine cycling in obese mice. These results indicate that GAA has the potential to be used as an effective ingredient in dietary interventions and thus may play an important role in ameliorating and preventing HFD-induced obesity and related metabolic diseases.
Author Su, Yuan
Zhao, Jiamin
Ji, Bingzhen
Zhao, Junxing
Zhao, Xiaoyi
Feng, Jinxin
Li, Xinrui
AuthorAffiliation Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding
Shanxi Agricultural University
College of Animal Sciences
AuthorAffiliation_xml – sequence: 0
  name: College of Animal Sciences
– sequence: 0
  name: Shanxi Agricultural University
– sequence: 0
  name: Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding
Author_xml – sequence: 1
  givenname: Yuan
  surname: Su
  fullname: Su, Yuan
– sequence: 2
  givenname: Xinrui
  surname: Li
  fullname: Li, Xinrui
– sequence: 3
  givenname: Jiamin
  surname: Zhao
  fullname: Zhao, Jiamin
– sequence: 4
  givenname: Bingzhen
  surname: Ji
  fullname: Ji, Bingzhen
– sequence: 5
  givenname: Xiaoyi
  surname: Zhao
  fullname: Zhao, Xiaoyi
– sequence: 6
  givenname: Jinxin
  surname: Feng
  fullname: Feng, Jinxin
– sequence: 7
  givenname: Junxing
  surname: Zhao
  fullname: Zhao, Junxing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38567805$$D View this record in MEDLINE/PubMed
BookMark eNptkl9rFDEUxYNUbK198V0J-FKE0WQzfzKPpbZVKfRFwbfhTnJn9y4zyZpkWPqB_J5md9sKxbzkkPM7l4ST1-zIeYeMvZXikxSq_WzV4EW1EHL9gp0sRLko6kr8OnrUZVsfs7MY1yIv1ba61a_YsdJV3WhRnbA_NzM4suQ8GExkOBiyHCYcyQdIGPkKN7AzYkJIPlLk4CwnN4wwTdnxbn-wCX7yO367ooQcLG18RJ4oxhl5H_zWkVvmHJ_I2hELWKLN2iDfUlrxFS1XxQCpsISpIGdnk33fY6R0_4a9HGCMePawn7Kf11c_Lr8Wt3c33y4vbgujVJMKNCX2UMt-AFFpUAKqtlFZyLIZbJaltNo2QmADWOrG2L7stTSiFtrUxqpTdn6Ym1_ze8aYuomiwXEEh36OnRJK1pVuFnVGPzxD134OLt8uU6WSqhJKZ-r9AzX3E9puE2iCcN89FpCBjwfABB9jwOEJkaLbFdx9Udd3-4K_Z1g8gw2lfQUpAI3_j7w7REI0T6P__Rn1F21ztHE
CitedBy_id crossref_primary_10_3390_nu16223828
crossref_primary_10_1016_j_phymed_2025_156609
Cites_doi 10.1016/j.cell.2013.12.012
10.1080/09168451.2020.1793293
10.1016/j.cmet.2022.07.011
10.1093/bib/bbaa165
10.1038/nm.3361
10.1007/s00394-015-1050-7
10.1210/er.2002-0012
10.4103/jehp.jehp_216_20
10.1038/s41586-021-03533-z
10.1016/j.phrs.2021.106020
10.1084/jem.20212491
10.1016/j.jff.2022.104994
10.1016/j.cmet.2012.04.003
10.3390/pharmaceutics14010045
10.1089/met.2018.0062
10.1089/scd.2014.0130
10.1038/s41580-021-00350-0
10.1038/s41586-021-03221-y
10.1002/fsn3.3201
10.1111/acel.13059
10.1016/j.cmet.2015.09.007
10.1016/j.mcna.2017.08.010
10.1016/j.molmet.2014.12.008
10.1038/s41419-018-0904-3
10.1139/apnm-2017-0614
10.1016/j.cmet.2014.09.013
10.1093/advances/nmy055
10.1016/j.cell.2012.06.027
10.1016/j.cell.2015.09.035
10.1093/abbs/gmab151
10.1038/s42255-019-0035-x
10.1016/S2213-8587(21)00045-0
10.1016/j.hep.2003.09.028
10.1038/s41574-019-0176-8
10.1016/j.cmet.2017.08.009
10.1016/j.cmet.2017.03.002
10.1016/j.dsx.2014.09.015
10.1016/j.isci.2019.09.011
10.1016/j.carbpol.2023.121122
10.1006/meth.2001.1262
10.1016/j.lfs.2021.119487
10.1002/oby.22378
10.1093/ajcn/85.1.19
10.1007/s11892-018-1049-6
10.1101/gad.211649.112
10.1097/01.ASN.0000141966.69934.21
10.1016/S0140-6736(14)61744-X
10.1016/j.phrs.2021.105471
10.3390/ani9040193
10.1016/S0022-2836(02)00448-5
10.1210/er.2006-0033
10.7150/ijms.5125
10.1007/s13238-012-2025-6
10.3389/fendo.2019.00137
10.1038/nrendo.2013.204
10.1016/j.metabol.2018.11.014
10.1002/jcp.25756
10.3748/wjg.v22.i38.8497
10.1007/s00726-015-2106-y
10.1016/j.arcmed.2008.09.005
10.1007/s00394-014-0655-6
10.1016/j.lfs.2022.120440
10.1172/JCI10762
10.1039/C9FO02463H
10.1146/annurev-immunol-031210-101322
10.1111/bcpt.13190
10.1016/j.bcp.2022.115012
10.1093/jn/101.8.1085
10.2337/db20-1210
10.1002/ana.1028
10.1038/nature13477
10.1111/j.1474-9726.2009.00490.x
10.1016/j.bbabio.2018.11.007
10.1159/000484945
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7T7
7TO
7U7
8FD
C1K
FR3
H94
P64
7X8
DOI 10.1039/d3fo05201j
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Oncogenes and Growth Factors Abstracts
Technology Research Database
Toxicology Abstracts
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Oncogenes and Growth Factors Abstracts

MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
EISSN 2042-650X
EndPage 4526
ExternalDocumentID 38567805
10_1039_D3FO05201J
d3fo05201j
Genre Journal Article
GroupedDBID ---
-JG
0-7
0R~
4.4
53G
705
7~J
AAEMU
AAHBH
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ACPRK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
P2P
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
AAYXX
AFRZK
AKMSF
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7T7
7TO
7U7
8FD
C1K
FR3
H94
P64
7X8
ID FETCH-LOGICAL-c337t-ec4eba61bfa058a30a59738a3147fd97341d8d700e7ae487cdb4b81c0608c6cd3
ISSN 2042-6496
2042-650X
IngestDate Fri Jul 11 11:58:59 EDT 2025
Mon Jun 30 11:58:21 EDT 2025
Mon Jul 21 06:02:56 EDT 2025
Tue Jul 01 03:03:06 EDT 2025
Thu Apr 24 23:05:16 EDT 2025
Tue Dec 17 20:58:10 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-ec4eba61bfa058a30a59738a3147fd97341d8d700e7ae487cdb4b81c0608c6cd3
Notes Electronic supplementary information (ESI) available. See DOI
https://doi.org/10.1039/d3fo05201j
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0001-9414-9847
PMID 38567805
PQID 3043135038
PQPubID 2047526
PageCount 12
ParticipantIDs rsc_primary_d3fo05201j
pubmed_primary_38567805
crossref_primary_10_1039_D3FO05201J
proquest_journals_3043135038
crossref_citationtrail_10_1039_D3FO05201J
proquest_miscellaneous_3031658726
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-22
PublicationDateYYYYMMDD 2024-04-22
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-22
  day: 22
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Food & function
PublicationTitleAlternate Food Funct
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Ostojic (D3FO05201J/cit27/1) 2023; 11
Xie (D3FO05201J/cit8/1) 2023; 318
Zhang (D3FO05201J/cit53/1) 2021; 277
Ostojic (D3FO05201J/cit22/1) 2015; 54
Cohen (D3FO05201J/cit16/1) 2021; 22
Lee (D3FO05201J/cit28/1) 2015; 24
Kajimura (D3FO05201J/cit60/1) 2015; 22
Miard (D3FO05201J/cit56/1) 2009; 8
Peirce (D3FO05201J/cit14/1) 2014; 510
Sun (D3FO05201J/cit74/1) 2021; 593
Pan (D3FO05201J/cit5/1) 2021; 9
Jezek (D3FO05201J/cit17/1) 2019; 1860
Yuan (D3FO05201J/cit45/1) 2012; 3
Saunders (D3FO05201J/cit11/1) 2018; 102
Kazak (D3FO05201J/cit29/1) 2015; 163
Mancuso (D3FO05201J/cit55/1) 2019; 10
Janani (D3FO05201J/cit48/1) 2015; 9
Qiang (D3FO05201J/cit71/1) 2012; 150
Price (D3FO05201J/cit33/1) 2012; 15
Ostojic (D3FO05201J/cit44/1) 2018; 72
Song (D3FO05201J/cit57/1) 2018; 9
Zhang (D3FO05201J/cit65/1) 2019; 9
Ostojic (D3FO05201J/cit21/1) 2016; 48
Tarnopolsky (D3FO05201J/cit23/1) 2001; 49
Xue (D3FO05201J/cit61/1) 2022; 34
Osna (D3FO05201J/cit42/1) 2016; 22
Cao (D3FO05201J/cit32/1) 2021; 53
Lustig (D3FO05201J/cit38/1) 2022; 199
Tian (D3FO05201J/cit54/1) 2020; 19
Bartelt (D3FO05201J/cit58/1) 2014; 10
Wu (D3FO05201J/cit20/1) 2013; 27
Peng (D3FO05201J/cit31/1) 2021; 70
Polyzos (D3FO05201J/cit40/1) 2019; 92
Andrade (D3FO05201J/cit70/1) 2014; 53
Vázquez-Vela (D3FO05201J/cit15/1) 2008; 39
Huttl (D3FO05201J/cit51/1) 2021; 14
Skat-Rørdam (D3FO05201J/cit49/1) 2019; 124
Sekiya (D3FO05201J/cit50/1) 2003; 38
Boutant (D3FO05201J/cit69/1) 2015; 4
Molina-Tijeras (D3FO05201J/cit7/1) 2021; 167
Bae (D3FO05201J/cit6/1) 2022; 296
Jastreboff (D3FO05201J/cit2/1) 2019; 27
Rodriguez Lanzi (D3FO05201J/cit67/1) 2020; 11
Kazak (D3FO05201J/cit72/1) 2017; 26
Hardie (D3FO05201J/cit66/1) 2014; 20
Kazak (D3FO05201J/cit75/1) 2019; 1
Ginsberg (D3FO05201J/cit46/1) 2000; 106
Li (D3FO05201J/cit4/1) 2021; 22
Yin (D3FO05201J/cit59/1) 2022; 219
Komoto (D3FO05201J/cit25/1) 2002; 320
Harms (D3FO05201J/cit19/1) 2013; 19
Van Pilsum (D3FO05201J/cit24/1) 1971; 101
Bertholet (D3FO05201J/cit18/1) 2017; 25
Rahbani (D3FO05201J/cit73/1) 2021; 590
Panahi (D3FO05201J/cit47/1) 2018; 233
Wisse (D3FO05201J/cit35/1) 2004; 15
Gao (D3FO05201J/cit52/1) 2020; 84
Caballero (D3FO05201J/cit12/1) 2019; 10
Baccari (D3FO05201J/cit41/1) 1947; 23
Kazeminasab (D3FO05201J/cit63/1) 2018; 43
Xie (D3FO05201J/cit68/1) 2022; 90
Roberto (D3FO05201J/cit1/1) 2015; 385
Trujillo (D3FO05201J/cit36/1) 2006; 27
Haberka (D3FO05201J/cit10/1) 2018; 16
Gregor (D3FO05201J/cit37/1) 2011; 29
Ostojic (D3FO05201J/cit43/1) 2013; 10
Desjardins (D3FO05201J/cit34/1) 2018; 18
Chopra (D3FO05201J/cit39/1) 2020; 9
Rosen (D3FO05201J/cit9/1) 2014; 156
Puigserver (D3FO05201J/cit62/1) 2003; 24
Livak (D3FO05201J/cit30/1) 2001; 25
Mudd (D3FO05201J/cit26/1) 2007; 85
Jash (D3FO05201J/cit64/1) 2019; 20
Kang (D3FO05201J/cit13/1) 2022; 175
Bluher (D3FO05201J/cit3/1) 2019; 15
References_xml – volume: 156
  start-page: 20
  year: 2014
  ident: D3FO05201J/cit9/1
  publication-title: Cell
  doi: 10.1016/j.cell.2013.12.012
– volume: 84
  start-page: 2228
  year: 2020
  ident: D3FO05201J/cit52/1
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1080/09168451.2020.1793293
– volume: 34
  start-page: 1325
  year: 2022
  ident: D3FO05201J/cit61/1
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2022.07.011
– volume: 22
  start-page: bbaa165
  year: 2021
  ident: D3FO05201J/cit4/1
  publication-title: Briefings Bioinf.
  doi: 10.1093/bib/bbaa165
– volume: 19
  start-page: 1252
  year: 2013
  ident: D3FO05201J/cit19/1
  publication-title: Nat. Med.
  doi: 10.1038/nm.3361
– volume: 54
  start-page: 1211
  year: 2015
  ident: D3FO05201J/cit22/1
  publication-title: Eur. J. Nutr.
  doi: 10.1007/s00394-015-1050-7
– volume: 24
  start-page: 78
  year: 2003
  ident: D3FO05201J/cit62/1
  publication-title: Endocr. Rev.
  doi: 10.1210/er.2002-0012
– volume: 9
  start-page: 239
  year: 2020
  ident: D3FO05201J/cit39/1
  publication-title: J. Educ. Health Promot.
  doi: 10.4103/jehp.jehp_216_20
– volume: 593
  start-page: 580
  year: 2021
  ident: D3FO05201J/cit74/1
  publication-title: Nature
  doi: 10.1038/s41586-021-03533-z
– volume: 175
  start-page: 106020
  year: 2022
  ident: D3FO05201J/cit13/1
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2021.106020
– volume: 219
  start-page: e20212491
  year: 2022
  ident: D3FO05201J/cit59/1
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20212491
– volume: 90
  start-page: 104994
  year: 2022
  ident: D3FO05201J/cit68/1
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2022.104994
– volume: 15
  start-page: 675
  year: 2012
  ident: D3FO05201J/cit33/1
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.04.003
– volume: 14
  start-page: 45
  year: 2021
  ident: D3FO05201J/cit51/1
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics14010045
– volume: 16
  start-page: 521
  year: 2018
  ident: D3FO05201J/cit10/1
  publication-title: Metab. Syndr. Relat. Disord.
  doi: 10.1089/met.2018.0062
– volume: 24
  start-page: 983
  year: 2015
  ident: D3FO05201J/cit28/1
  publication-title: Stem Cells Dev.
  doi: 10.1089/scd.2014.0130
– volume: 22
  start-page: 393
  year: 2021
  ident: D3FO05201J/cit16/1
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-021-00350-0
– volume: 590
  start-page: 480
  year: 2021
  ident: D3FO05201J/cit73/1
  publication-title: Nature
  doi: 10.1038/s41586-021-03221-y
– volume: 11
  start-page: 1606
  year: 2023
  ident: D3FO05201J/cit27/1
  publication-title: Food Sci. Nutr.
  doi: 10.1002/fsn3.3201
– volume: 19
  start-page: e13059
  year: 2020
  ident: D3FO05201J/cit54/1
  publication-title: Aging Cell
  doi: 10.1111/acel.13059
– volume: 22
  start-page: 546
  year: 2015
  ident: D3FO05201J/cit60/1
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.09.007
– volume: 102
  start-page: 135
  year: 2018
  ident: D3FO05201J/cit11/1
  publication-title: Med. Clin. North Am.
  doi: 10.1016/j.mcna.2017.08.010
– volume: 4
  start-page: 118
  year: 2015
  ident: D3FO05201J/cit69/1
  publication-title: Mol. Metab.
  doi: 10.1016/j.molmet.2014.12.008
– volume: 9
  start-page: 876
  year: 2018
  ident: D3FO05201J/cit57/1
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-018-0904-3
– volume: 43
  start-page: 651
  year: 2018
  ident: D3FO05201J/cit63/1
  publication-title: Appl. Physiol., Nutr., Metab.
  doi: 10.1139/apnm-2017-0614
– volume: 20
  start-page: 939
  year: 2014
  ident: D3FO05201J/cit66/1
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.09.013
– volume: 10
  start-page: S4
  year: 2019
  ident: D3FO05201J/cit12/1
  publication-title: Adv. Nutr.
  doi: 10.1093/advances/nmy055
– volume: 150
  start-page: 620
  year: 2012
  ident: D3FO05201J/cit71/1
  publication-title: Cell
  doi: 10.1016/j.cell.2012.06.027
– volume: 163
  start-page: 643
  year: 2015
  ident: D3FO05201J/cit29/1
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.035
– volume: 53
  start-page: 1713
  year: 2021
  ident: D3FO05201J/cit32/1
  publication-title: Acta Biochim. Biophys. Sin.
  doi: 10.1093/abbs/gmab151
– volume: 1
  start-page: 360
  year: 2019
  ident: D3FO05201J/cit75/1
  publication-title: Nat. Metab.
  doi: 10.1038/s42255-019-0035-x
– volume: 9
  start-page: 373
  year: 2021
  ident: D3FO05201J/cit5/1
  publication-title: Lancet Diabetes Endocrinol.
  doi: 10.1016/S2213-8587(21)00045-0
– volume: 38
  start-page: 1529
  year: 2003
  ident: D3FO05201J/cit50/1
  publication-title: Hepatology
  doi: 10.1016/j.hep.2003.09.028
– volume: 15
  start-page: 288
  year: 2019
  ident: D3FO05201J/cit3/1
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/s41574-019-0176-8
– volume: 26
  start-page: 660
  year: 2017
  ident: D3FO05201J/cit72/1
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.08.009
– volume: 25
  start-page: 811
  year: 2017
  ident: D3FO05201J/cit18/1
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.03.002
– volume: 9
  start-page: 46
  year: 2015
  ident: D3FO05201J/cit48/1
  publication-title: Diabetes Metab. Syndr.
  doi: 10.1016/j.dsx.2014.09.015
– volume: 20
  start-page: 73
  year: 2019
  ident: D3FO05201J/cit64/1
  publication-title: iScience
  doi: 10.1016/j.isci.2019.09.011
– volume: 318
  start-page: 121122
  year: 2023
  ident: D3FO05201J/cit8/1
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2023.121122
– volume: 25
  start-page: 402
  year: 2001
  ident: D3FO05201J/cit30/1
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
– volume: 277
  start-page: 119487
  year: 2021
  ident: D3FO05201J/cit53/1
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2021.119487
– volume: 27
  start-page: 7
  year: 2019
  ident: D3FO05201J/cit2/1
  publication-title: Obesity
  doi: 10.1002/oby.22378
– volume: 85
  start-page: 19
  year: 2007
  ident: D3FO05201J/cit26/1
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/85.1.19
– volume: 18
  start-page: 80
  year: 2018
  ident: D3FO05201J/cit34/1
  publication-title: Curr. Diabetes Rep.
  doi: 10.1007/s11892-018-1049-6
– volume: 27
  start-page: 234
  year: 2013
  ident: D3FO05201J/cit20/1
  publication-title: Genes Dev.
  doi: 10.1101/gad.211649.112
– volume: 15
  start-page: 2792
  year: 2004
  ident: D3FO05201J/cit35/1
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1097/01.ASN.0000141966.69934.21
– volume: 385
  start-page: 2400
  year: 2015
  ident: D3FO05201J/cit1/1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)61744-X
– volume: 167
  start-page: 105471
  year: 2021
  ident: D3FO05201J/cit7/1
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2021.105471
– volume: 9
  start-page: 193
  year: 2019
  ident: D3FO05201J/cit65/1
  publication-title: Animals
  doi: 10.3390/ani9040193
– volume: 320
  start-page: 223
  year: 2002
  ident: D3FO05201J/cit25/1
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(02)00448-5
– volume: 27
  start-page: 762
  year: 2006
  ident: D3FO05201J/cit36/1
  publication-title: Endocr. Rev.
  doi: 10.1210/er.2006-0033
– volume: 10
  start-page: 141
  year: 2013
  ident: D3FO05201J/cit43/1
  publication-title: Int. J. Med. Sci.
  doi: 10.7150/ijms.5125
– volume: 3
  start-page: 173
  year: 2012
  ident: D3FO05201J/cit45/1
  publication-title: Protein Cell
  doi: 10.1007/s13238-012-2025-6
– volume: 10
  start-page: 137
  year: 2019
  ident: D3FO05201J/cit55/1
  publication-title: Front. Endocrinol.
  doi: 10.3389/fendo.2019.00137
– volume: 10
  start-page: 24
  year: 2014
  ident: D3FO05201J/cit58/1
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/nrendo.2013.204
– volume: 92
  start-page: 82
  year: 2019
  ident: D3FO05201J/cit40/1
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2018.11.014
– volume: 233
  start-page: 141
  year: 2018
  ident: D3FO05201J/cit47/1
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.25756
– volume: 22
  start-page: 8497
  year: 2016
  ident: D3FO05201J/cit42/1
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v22.i38.8497
– volume: 48
  start-page: 1867
  year: 2016
  ident: D3FO05201J/cit21/1
  publication-title: Amino Acids
  doi: 10.1007/s00726-015-2106-y
– volume: 39
  start-page: 715
  year: 2008
  ident: D3FO05201J/cit15/1
  publication-title: Arch. Med. Res.
  doi: 10.1016/j.arcmed.2008.09.005
– volume: 53
  start-page: 1503
  year: 2014
  ident: D3FO05201J/cit70/1
  publication-title: Eur. J. Nutr.
  doi: 10.1007/s00394-014-0655-6
– volume: 296
  start-page: 120440
  year: 2022
  ident: D3FO05201J/cit6/1
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2022.120440
– volume: 106
  start-page: 453
  year: 2000
  ident: D3FO05201J/cit46/1
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI10762
– volume: 11
  start-page: 1537
  year: 2020
  ident: D3FO05201J/cit67/1
  publication-title: Food Funct.
  doi: 10.1039/C9FO02463H
– volume: 29
  start-page: 415
  year: 2011
  ident: D3FO05201J/cit37/1
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-031210-101322
– volume: 124
  start-page: 528
  year: 2019
  ident: D3FO05201J/cit49/1
  publication-title: Basic Clin. Pharmacol. Toxicol.
  doi: 10.1111/bcpt.13190
– volume: 23
  start-page: 250
  year: 1947
  ident: D3FO05201J/cit41/1
  publication-title: Boll. – Soc. Ital. Biol. Sper.
– volume: 199
  start-page: 115012
  year: 2022
  ident: D3FO05201J/cit38/1
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2022.115012
– volume: 101
  start-page: 1085
  year: 1971
  ident: D3FO05201J/cit24/1
  publication-title: J. Nutr.
  doi: 10.1093/jn/101.8.1085
– volume: 70
  start-page: 1458
  year: 2021
  ident: D3FO05201J/cit31/1
  publication-title: Diabetes
  doi: 10.2337/db20-1210
– volume: 49
  start-page: 561
  year: 2001
  ident: D3FO05201J/cit23/1
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.1028
– volume: 510
  start-page: 76
  year: 2014
  ident: D3FO05201J/cit14/1
  publication-title: Nature
  doi: 10.1038/nature13477
– volume: 8
  start-page: 449
  year: 2009
  ident: D3FO05201J/cit56/1
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2009.00490.x
– volume: 1860
  start-page: 259
  year: 2019
  ident: D3FO05201J/cit17/1
  publication-title: Biochim. Biophys. Acta, Bioenerg.
  doi: 10.1016/j.bbabio.2018.11.007
– volume: 72
  start-page: 18
  year: 2018
  ident: D3FO05201J/cit44/1
  publication-title: Ann. Nutr. Metab.
  doi: 10.1159/000484945
SSID ssj0000399898
Score 2.3709667
Snippet Guanidinoacetic acid (GAA) is a naturally occurring amino acid derivative that plays a critical role in energy metabolism. In recent years, a growing body of...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4515
SubjectTerms Adipose tissue
Adipose Tissue - metabolism
Adipose Tissue, White - metabolism
Amino acids
Animal models
Animals
Body fat
Browning
Creatine
Diet
Diet, High-Fat - adverse effects
Dietary supplements
Energy metabolism
Fatty liver
Fatty Liver - drug therapy
Fatty Liver - metabolism
Glycine - analogs & derivatives
High density lipoprotein
High fat diet
Hypertrophy
Inflammation
Inflammation - drug therapy
Inflammation - metabolism
Interleukins
Lipids
Metabolic disorders
Metabolism
Mice
Mice, Inbred C57BL
Middle age
Obesity
Obesity - drug therapy
Obesity - metabolism
Signal transduction
SIRT1 protein
Steatosis
Sterol regulatory element-binding protein
Tumor necrosis factor-α
Title Guanidinoacetic acid ameliorates hepatic steatosis and inflammation and promotes white adipose tissue browning in middle-aged mice with high-fat-diet-induced obesity
URI https://www.ncbi.nlm.nih.gov/pubmed/38567805
https://www.proquest.com/docview/3043135038
https://www.proquest.com/docview/3031658726
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXK9sIL4msQGMgIhISqQBLn83FjlKmI8cAm-lbZjqMFdUlVEiHtl_AH-J_c6ziJx4oEvESp7bqRzqnte3PvuYS84GD3eEpIVyYyAwMl5a4IeeZmLCv8ggc8jDDf-eNJfHwWzhfRYjL5YUUttY14LS-35pX8D6rQBrhiluw_IDtMCg1wD_jCFRCG619hDPhWJWw-NZdKC6_KMp_yC7XCvHt0qJ6rtVZkRSibGrVHOrGlAnjQ5SwaoQCMyYPx3_GlwpTn5RrD2BsNylSgpW5SXy60P8OFRSifYiH7zo-LmsduwRs3L1XjgpXfYlRB3dUcsI-_M9RQRrLhdmqHAHxu9V7QWhFCOsxgUVabtrS8292LIsxGH0bO9chDeMLLc5PYZtwYgY5-CSzPZoB5QnGYGV1sqy3yFleW68iiZWqtvWFkupT52KXiX9sjPIYSqzkraowB8r-OO-EQnzh23iC7ARggsILuHnw4fP9l8N_BLFh6E2sX9k_eq9-y7M04wdXzzjUjBo40m77UjD7SnN4mt4wtQg86Yt0hE1XdJc4RYEhfUiMYu6Infb2Ge-Tnb4SjSDhqEY4awtGBcBT4RW3C6YaecFQTjhrC0Y5wtCccfI9ahKNIOIqEo1sJRw3h7pOz2bvTt8euqfPhSsaSxlUyVILHvii4F6WceRysXAY3fpgUOdyGfp7mieephCswsGUuQpH60ou9VMYyZ3tkp6or9ZDQqBBpGgXCkzEP_SwRSSCTNC5ypQpAMXHIqx6NpTQi-FiLZbXUwRgsWx6x2SeN3Nwhz4ex6076Zeuo_R7UpVkavi0ZSlYxVFpyyLOhGxZufBvHK1W3OIb5cPxPgtghDzoyDD_D0ijGYiMO2QN2DM0jqx79qeMxuTn-u_bJTrNp1RM4NjfiqWHwLyiGytI
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guanidinoacetic+acid+ameliorates+hepatic+steatosis+and+inflammation+and+promotes+white+adipose+tissue+browning+in+middle-aged+mice+with+high-fat-diet-induced+obesity&rft.jtitle=Food+%26+function&rft.au=Su%2C+Yuan&rft.au=Li%2C+Xinrui&rft.au=Zhao%2C+Jiamin&rft.au=Ji%2C+Bingzhen&rft.date=2024-04-22&rft.issn=2042-6496&rft.eissn=2042-650X&rft.volume=15&rft.issue=8&rft.spage=4515&rft.epage=4526&rft_id=info:doi/10.1039%2Fd3fo05201j&rft.externalDocID=d3fo05201j
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2042-6496&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2042-6496&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2042-6496&client=summon