Guanidinoacetic acid ameliorates hepatic steatosis and inflammation and promotes white adipose tissue browning in middle-aged mice with high-fat-diet-induced obesity
Guanidinoacetic acid (GAA) is a naturally occurring amino acid derivative that plays a critical role in energy metabolism. In recent years, a growing body of evidence has emerged supporting the importance of GAA in metabolic dysfunction. Hence, we aimed to investigate the effects of GAA on hepatic a...
Saved in:
Published in | Food & function Vol. 15; no. 8; pp. 4515 - 4526 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
22.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Guanidinoacetic acid (GAA) is a naturally occurring amino acid derivative that plays a critical role in energy metabolism. In recent years, a growing body of evidence has emerged supporting the importance of GAA in metabolic dysfunction. Hence, we aimed to investigate the effects of GAA on hepatic and adipose tissue metabolism, as well as systemic inflammatory responses in obese middle-aged mice models and attempted to explore the underlying mechanism. We found that dietary supplementation of GAA inhibited inguinal white adipose tissue (iWAT) hypertrophy in high-fat diet (HFD)-fed mice. In addition, GAA supplementation observably decreased the levels of some systemic inflammatory factors, including IL-4, TNF-α, IL-1β, and IL-6. Intriguingly, GAA supplementation ameliorated hepatic steatosis and lipid deposition in HFD-fed mice, which was revealed by decreased levels of TG, TC, LDL-C, PPARγ, SREBP-1c,
FASN
,
ACC
,
FABP1
, and
APOB
and increased levels of HDL-C in the liver. Moreover, GAA supplementation increased the expression of browning markers and mitochondrial-related genes in the iWAT. Further investigation showed that dietary GAA promoted the browning of the iWAT
via
activating the AMPK/Sirt1 signaling pathway and might be associated with futile creatine cycling in obese mice. These results indicate that GAA has the potential to be used as an effective ingredient in dietary interventions and thus may play an important role in ameliorating and preventing HFD-induced obesity and related metabolic diseases.
This study provides evidence for the ameliorative effect of dietary guanidinoacetic acid on metabolic disorders in HFD-fed mice. |
---|---|
AbstractList | Guanidinoacetic acid (GAA) is a naturally occurring amino acid derivative that plays a critical role in energy metabolism. In recent years, a growing body of evidence has emerged supporting the importance of GAA in metabolic dysfunction. Hence, we aimed to investigate the effects of GAA on hepatic and adipose tissue metabolism, as well as systemic inflammatory responses in obese middle-aged mice models and attempted to explore the underlying mechanism. We found that dietary supplementation of GAA inhibited inguinal white adipose tissue (iWAT) hypertrophy in high-fat diet (HFD)-fed mice. In addition, GAA supplementation observably decreased the levels of some systemic inflammatory factors, including IL-4, TNF-α, IL-1β, and IL-6. Intriguingly, GAA supplementation ameliorated hepatic steatosis and lipid deposition in HFD-fed mice, which was revealed by decreased levels of TG, TC, LDL-C, PPARγ, SREBP-1c, FASN, ACC, FABP1, and APOB and increased levels of HDL-C in the liver. Moreover, GAA supplementation increased the expression of browning markers and mitochondrial-related genes in the iWAT. Further investigation showed that dietary GAA promoted the browning of the iWAT via activating the AMPK/Sirt1 signaling pathway and might be associated with futile creatine cycling in obese mice. These results indicate that GAA has the potential to be used as an effective ingredient in dietary interventions and thus may play an important role in ameliorating and preventing HFD-induced obesity and related metabolic diseases. Guanidinoacetic acid (GAA) is a naturally occurring amino acid derivative that plays a critical role in energy metabolism. In recent years, a growing body of evidence has emerged supporting the importance of GAA in metabolic dysfunction. Hence, we aimed to investigate the effects of GAA on hepatic and adipose tissue metabolism, as well as systemic inflammatory responses in obese middle-aged mice models and attempted to explore the underlying mechanism. We found that dietary supplementation of GAA inhibited inguinal white adipose tissue (iWAT) hypertrophy in high-fat diet (HFD)-fed mice. In addition, GAA supplementation observably decreased the levels of some systemic inflammatory factors, including IL-4, TNF-α, IL-1β, and IL-6. Intriguingly, GAA supplementation ameliorated hepatic steatosis and lipid deposition in HFD-fed mice, which was revealed by decreased levels of TG, TC, LDL-C, PPARγ, SREBP-1c, FASN , ACC , FABP1 , and APOB and increased levels of HDL-C in the liver. Moreover, GAA supplementation increased the expression of browning markers and mitochondrial-related genes in the iWAT. Further investigation showed that dietary GAA promoted the browning of the iWAT via activating the AMPK/Sirt1 signaling pathway and might be associated with futile creatine cycling in obese mice. These results indicate that GAA has the potential to be used as an effective ingredient in dietary interventions and thus may play an important role in ameliorating and preventing HFD-induced obesity and related metabolic diseases. This study provides evidence for the ameliorative effect of dietary guanidinoacetic acid on metabolic disorders in HFD-fed mice. Guanidinoacetic acid (GAA) is a naturally occurring amino acid derivative that plays a critical role in energy metabolism. In recent years, a growing body of evidence has emerged supporting the importance of GAA in metabolic dysfunction. Hence, we aimed to investigate the effects of GAA on hepatic and adipose tissue metabolism, as well as systemic inflammatory responses in obese middle-aged mice models and attempted to explore the underlying mechanism. We found that dietary supplementation of GAA inhibited inguinal white adipose tissue (iWAT) hypertrophy in high-fat diet (HFD)-fed mice. In addition, GAA supplementation observably decreased the levels of some systemic inflammatory factors, including IL-4, TNF-α, IL-1β, and IL-6. Intriguingly, GAA supplementation ameliorated hepatic steatosis and lipid deposition in HFD-fed mice, which was revealed by decreased levels of TG, TC, LDL-C, PPARγ, SREBP-1c, , , , and and increased levels of HDL-C in the liver. Moreover, GAA supplementation increased the expression of browning markers and mitochondrial-related genes in the iWAT. Further investigation showed that dietary GAA promoted the browning of the iWAT activating the AMPK/Sirt1 signaling pathway and might be associated with futile creatine cycling in obese mice. These results indicate that GAA has the potential to be used as an effective ingredient in dietary interventions and thus may play an important role in ameliorating and preventing HFD-induced obesity and related metabolic diseases. Guanidinoacetic acid (GAA) is a naturally occurring amino acid derivative that plays a critical role in energy metabolism. In recent years, a growing body of evidence has emerged supporting the importance of GAA in metabolic dysfunction. Hence, we aimed to investigate the effects of GAA on hepatic and adipose tissue metabolism, as well as systemic inflammatory responses in obese middle-aged mice models and attempted to explore the underlying mechanism. We found that dietary supplementation of GAA inhibited inguinal white adipose tissue (iWAT) hypertrophy in high-fat diet (HFD)-fed mice. In addition, GAA supplementation observably decreased the levels of some systemic inflammatory factors, including IL-4, TNF-α, IL-1β, and IL-6. Intriguingly, GAA supplementation ameliorated hepatic steatosis and lipid deposition in HFD-fed mice, which was revealed by decreased levels of TG, TC, LDL-C, PPARγ, SREBP-1c, FASN , ACC , FABP1 , and APOB and increased levels of HDL-C in the liver. Moreover, GAA supplementation increased the expression of browning markers and mitochondrial-related genes in the iWAT. Further investigation showed that dietary GAA promoted the browning of the iWAT via activating the AMPK/Sirt1 signaling pathway and might be associated with futile creatine cycling in obese mice. These results indicate that GAA has the potential to be used as an effective ingredient in dietary interventions and thus may play an important role in ameliorating and preventing HFD-induced obesity and related metabolic diseases. Guanidinoacetic acid (GAA) is a naturally occurring amino acid derivative that plays a critical role in energy metabolism. In recent years, a growing body of evidence has emerged supporting the importance of GAA in metabolic dysfunction. Hence, we aimed to investigate the effects of GAA on hepatic and adipose tissue metabolism, as well as systemic inflammatory responses in obese middle-aged mice models and attempted to explore the underlying mechanism. We found that dietary supplementation of GAA inhibited inguinal white adipose tissue (iWAT) hypertrophy in high-fat diet (HFD)-fed mice. In addition, GAA supplementation observably decreased the levels of some systemic inflammatory factors, including IL-4, TNF-α, IL-1β, and IL-6. Intriguingly, GAA supplementation ameliorated hepatic steatosis and lipid deposition in HFD-fed mice, which was revealed by decreased levels of TG, TC, LDL-C, PPARγ, SREBP-1c, FASN, ACC, FABP1, and APOB and increased levels of HDL-C in the liver. Moreover, GAA supplementation increased the expression of browning markers and mitochondrial-related genes in the iWAT. Further investigation showed that dietary GAA promoted the browning of the iWAT via activating the AMPK/Sirt1 signaling pathway and might be associated with futile creatine cycling in obese mice. These results indicate that GAA has the potential to be used as an effective ingredient in dietary interventions and thus may play an important role in ameliorating and preventing HFD-induced obesity and related metabolic diseases.Guanidinoacetic acid (GAA) is a naturally occurring amino acid derivative that plays a critical role in energy metabolism. In recent years, a growing body of evidence has emerged supporting the importance of GAA in metabolic dysfunction. Hence, we aimed to investigate the effects of GAA on hepatic and adipose tissue metabolism, as well as systemic inflammatory responses in obese middle-aged mice models and attempted to explore the underlying mechanism. We found that dietary supplementation of GAA inhibited inguinal white adipose tissue (iWAT) hypertrophy in high-fat diet (HFD)-fed mice. In addition, GAA supplementation observably decreased the levels of some systemic inflammatory factors, including IL-4, TNF-α, IL-1β, and IL-6. Intriguingly, GAA supplementation ameliorated hepatic steatosis and lipid deposition in HFD-fed mice, which was revealed by decreased levels of TG, TC, LDL-C, PPARγ, SREBP-1c, FASN, ACC, FABP1, and APOB and increased levels of HDL-C in the liver. Moreover, GAA supplementation increased the expression of browning markers and mitochondrial-related genes in the iWAT. Further investigation showed that dietary GAA promoted the browning of the iWAT via activating the AMPK/Sirt1 signaling pathway and might be associated with futile creatine cycling in obese mice. These results indicate that GAA has the potential to be used as an effective ingredient in dietary interventions and thus may play an important role in ameliorating and preventing HFD-induced obesity and related metabolic diseases. |
Author | Su, Yuan Zhao, Jiamin Ji, Bingzhen Zhao, Junxing Zhao, Xiaoyi Feng, Jinxin Li, Xinrui |
AuthorAffiliation | Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding Shanxi Agricultural University College of Animal Sciences |
AuthorAffiliation_xml | – sequence: 0 name: College of Animal Sciences – sequence: 0 name: Shanxi Agricultural University – sequence: 0 name: Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding |
Author_xml | – sequence: 1 givenname: Yuan surname: Su fullname: Su, Yuan – sequence: 2 givenname: Xinrui surname: Li fullname: Li, Xinrui – sequence: 3 givenname: Jiamin surname: Zhao fullname: Zhao, Jiamin – sequence: 4 givenname: Bingzhen surname: Ji fullname: Ji, Bingzhen – sequence: 5 givenname: Xiaoyi surname: Zhao fullname: Zhao, Xiaoyi – sequence: 6 givenname: Jinxin surname: Feng fullname: Feng, Jinxin – sequence: 7 givenname: Junxing surname: Zhao fullname: Zhao, Junxing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38567805$$D View this record in MEDLINE/PubMed |
BookMark | eNptkl9rFDEUxYNUbK198V0J-FKE0WQzfzKPpbZVKfRFwbfhTnJn9y4zyZpkWPqB_J5md9sKxbzkkPM7l4ST1-zIeYeMvZXikxSq_WzV4EW1EHL9gp0sRLko6kr8OnrUZVsfs7MY1yIv1ba61a_YsdJV3WhRnbA_NzM4suQ8GExkOBiyHCYcyQdIGPkKN7AzYkJIPlLk4CwnN4wwTdnxbn-wCX7yO367ooQcLG18RJ4oxhl5H_zWkVvmHJ_I2hELWKLN2iDfUlrxFS1XxQCpsISpIGdnk33fY6R0_4a9HGCMePawn7Kf11c_Lr8Wt3c33y4vbgujVJMKNCX2UMt-AFFpUAKqtlFZyLIZbJaltNo2QmADWOrG2L7stTSiFtrUxqpTdn6Ym1_ze8aYuomiwXEEh36OnRJK1pVuFnVGPzxD134OLt8uU6WSqhJKZ-r9AzX3E9puE2iCcN89FpCBjwfABB9jwOEJkaLbFdx9Udd3-4K_Z1g8gw2lfQUpAI3_j7w7REI0T6P__Rn1F21ztHE |
CitedBy_id | crossref_primary_10_3390_nu16223828 crossref_primary_10_1016_j_phymed_2025_156609 |
Cites_doi | 10.1016/j.cell.2013.12.012 10.1080/09168451.2020.1793293 10.1016/j.cmet.2022.07.011 10.1093/bib/bbaa165 10.1038/nm.3361 10.1007/s00394-015-1050-7 10.1210/er.2002-0012 10.4103/jehp.jehp_216_20 10.1038/s41586-021-03533-z 10.1016/j.phrs.2021.106020 10.1084/jem.20212491 10.1016/j.jff.2022.104994 10.1016/j.cmet.2012.04.003 10.3390/pharmaceutics14010045 10.1089/met.2018.0062 10.1089/scd.2014.0130 10.1038/s41580-021-00350-0 10.1038/s41586-021-03221-y 10.1002/fsn3.3201 10.1111/acel.13059 10.1016/j.cmet.2015.09.007 10.1016/j.mcna.2017.08.010 10.1016/j.molmet.2014.12.008 10.1038/s41419-018-0904-3 10.1139/apnm-2017-0614 10.1016/j.cmet.2014.09.013 10.1093/advances/nmy055 10.1016/j.cell.2012.06.027 10.1016/j.cell.2015.09.035 10.1093/abbs/gmab151 10.1038/s42255-019-0035-x 10.1016/S2213-8587(21)00045-0 10.1016/j.hep.2003.09.028 10.1038/s41574-019-0176-8 10.1016/j.cmet.2017.08.009 10.1016/j.cmet.2017.03.002 10.1016/j.dsx.2014.09.015 10.1016/j.isci.2019.09.011 10.1016/j.carbpol.2023.121122 10.1006/meth.2001.1262 10.1016/j.lfs.2021.119487 10.1002/oby.22378 10.1093/ajcn/85.1.19 10.1007/s11892-018-1049-6 10.1101/gad.211649.112 10.1097/01.ASN.0000141966.69934.21 10.1016/S0140-6736(14)61744-X 10.1016/j.phrs.2021.105471 10.3390/ani9040193 10.1016/S0022-2836(02)00448-5 10.1210/er.2006-0033 10.7150/ijms.5125 10.1007/s13238-012-2025-6 10.3389/fendo.2019.00137 10.1038/nrendo.2013.204 10.1016/j.metabol.2018.11.014 10.1002/jcp.25756 10.3748/wjg.v22.i38.8497 10.1007/s00726-015-2106-y 10.1016/j.arcmed.2008.09.005 10.1007/s00394-014-0655-6 10.1016/j.lfs.2022.120440 10.1172/JCI10762 10.1039/C9FO02463H 10.1146/annurev-immunol-031210-101322 10.1111/bcpt.13190 10.1016/j.bcp.2022.115012 10.1093/jn/101.8.1085 10.2337/db20-1210 10.1002/ana.1028 10.1038/nature13477 10.1111/j.1474-9726.2009.00490.x 10.1016/j.bbabio.2018.11.007 10.1159/000484945 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7T7 7TO 7U7 8FD C1K FR3 H94 P64 7X8 |
DOI | 10.1039/d3fo05201j |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Oncogenes and Growth Factors Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Oncogenes and Growth Factors Abstracts Technology Research Database Toxicology Abstracts AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Oncogenes and Growth Factors Abstracts MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition |
EISSN | 2042-650X |
EndPage | 4526 |
ExternalDocumentID | 38567805 10_1039_D3FO05201J d3fo05201j |
Genre | Journal Article |
GroupedDBID | --- -JG 0-7 0R~ 4.4 53G 705 7~J AAEMU AAHBH AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ACPRK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K EBS ECGLT EE0 EF- GGIMP H13 HZ~ H~N J3I O-G O9- P2P RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY SKF SKH SKJ SKM SKR SKZ SLC SLF AAYXX AFRZK AKMSF CITATION CGR CUY CVF ECM EIF NPM 7T5 7T7 7TO 7U7 8FD C1K FR3 H94 P64 7X8 |
ID | FETCH-LOGICAL-c337t-ec4eba61bfa058a30a59738a3147fd97341d8d700e7ae487cdb4b81c0608c6cd3 |
ISSN | 2042-6496 2042-650X |
IngestDate | Fri Jul 11 11:58:59 EDT 2025 Mon Jun 30 11:58:21 EDT 2025 Mon Jul 21 06:02:56 EDT 2025 Tue Jul 01 03:03:06 EDT 2025 Thu Apr 24 23:05:16 EDT 2025 Tue Dec 17 20:58:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-ec4eba61bfa058a30a59738a3147fd97341d8d700e7ae487cdb4b81c0608c6cd3 |
Notes | Electronic supplementary information (ESI) available. See DOI https://doi.org/10.1039/d3fo05201j ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0001-9414-9847 |
PMID | 38567805 |
PQID | 3043135038 |
PQPubID | 2047526 |
PageCount | 12 |
ParticipantIDs | rsc_primary_d3fo05201j pubmed_primary_38567805 crossref_primary_10_1039_D3FO05201J proquest_journals_3043135038 crossref_citationtrail_10_1039_D3FO05201J proquest_miscellaneous_3031658726 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-22 |
PublicationDateYYYYMMDD | 2024-04-22 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Food & function |
PublicationTitleAlternate | Food Funct |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Ostojic (D3FO05201J/cit27/1) 2023; 11 Xie (D3FO05201J/cit8/1) 2023; 318 Zhang (D3FO05201J/cit53/1) 2021; 277 Ostojic (D3FO05201J/cit22/1) 2015; 54 Cohen (D3FO05201J/cit16/1) 2021; 22 Lee (D3FO05201J/cit28/1) 2015; 24 Kajimura (D3FO05201J/cit60/1) 2015; 22 Miard (D3FO05201J/cit56/1) 2009; 8 Peirce (D3FO05201J/cit14/1) 2014; 510 Sun (D3FO05201J/cit74/1) 2021; 593 Pan (D3FO05201J/cit5/1) 2021; 9 Jezek (D3FO05201J/cit17/1) 2019; 1860 Yuan (D3FO05201J/cit45/1) 2012; 3 Saunders (D3FO05201J/cit11/1) 2018; 102 Kazak (D3FO05201J/cit29/1) 2015; 163 Mancuso (D3FO05201J/cit55/1) 2019; 10 Janani (D3FO05201J/cit48/1) 2015; 9 Qiang (D3FO05201J/cit71/1) 2012; 150 Price (D3FO05201J/cit33/1) 2012; 15 Ostojic (D3FO05201J/cit44/1) 2018; 72 Song (D3FO05201J/cit57/1) 2018; 9 Zhang (D3FO05201J/cit65/1) 2019; 9 Ostojic (D3FO05201J/cit21/1) 2016; 48 Tarnopolsky (D3FO05201J/cit23/1) 2001; 49 Xue (D3FO05201J/cit61/1) 2022; 34 Osna (D3FO05201J/cit42/1) 2016; 22 Cao (D3FO05201J/cit32/1) 2021; 53 Lustig (D3FO05201J/cit38/1) 2022; 199 Tian (D3FO05201J/cit54/1) 2020; 19 Bartelt (D3FO05201J/cit58/1) 2014; 10 Wu (D3FO05201J/cit20/1) 2013; 27 Peng (D3FO05201J/cit31/1) 2021; 70 Polyzos (D3FO05201J/cit40/1) 2019; 92 Andrade (D3FO05201J/cit70/1) 2014; 53 Vázquez-Vela (D3FO05201J/cit15/1) 2008; 39 Huttl (D3FO05201J/cit51/1) 2021; 14 Skat-Rørdam (D3FO05201J/cit49/1) 2019; 124 Sekiya (D3FO05201J/cit50/1) 2003; 38 Boutant (D3FO05201J/cit69/1) 2015; 4 Molina-Tijeras (D3FO05201J/cit7/1) 2021; 167 Bae (D3FO05201J/cit6/1) 2022; 296 Jastreboff (D3FO05201J/cit2/1) 2019; 27 Rodriguez Lanzi (D3FO05201J/cit67/1) 2020; 11 Kazak (D3FO05201J/cit72/1) 2017; 26 Hardie (D3FO05201J/cit66/1) 2014; 20 Kazak (D3FO05201J/cit75/1) 2019; 1 Ginsberg (D3FO05201J/cit46/1) 2000; 106 Li (D3FO05201J/cit4/1) 2021; 22 Yin (D3FO05201J/cit59/1) 2022; 219 Komoto (D3FO05201J/cit25/1) 2002; 320 Harms (D3FO05201J/cit19/1) 2013; 19 Van Pilsum (D3FO05201J/cit24/1) 1971; 101 Bertholet (D3FO05201J/cit18/1) 2017; 25 Rahbani (D3FO05201J/cit73/1) 2021; 590 Panahi (D3FO05201J/cit47/1) 2018; 233 Wisse (D3FO05201J/cit35/1) 2004; 15 Gao (D3FO05201J/cit52/1) 2020; 84 Caballero (D3FO05201J/cit12/1) 2019; 10 Baccari (D3FO05201J/cit41/1) 1947; 23 Kazeminasab (D3FO05201J/cit63/1) 2018; 43 Xie (D3FO05201J/cit68/1) 2022; 90 Roberto (D3FO05201J/cit1/1) 2015; 385 Trujillo (D3FO05201J/cit36/1) 2006; 27 Haberka (D3FO05201J/cit10/1) 2018; 16 Gregor (D3FO05201J/cit37/1) 2011; 29 Ostojic (D3FO05201J/cit43/1) 2013; 10 Desjardins (D3FO05201J/cit34/1) 2018; 18 Chopra (D3FO05201J/cit39/1) 2020; 9 Rosen (D3FO05201J/cit9/1) 2014; 156 Puigserver (D3FO05201J/cit62/1) 2003; 24 Livak (D3FO05201J/cit30/1) 2001; 25 Mudd (D3FO05201J/cit26/1) 2007; 85 Jash (D3FO05201J/cit64/1) 2019; 20 Kang (D3FO05201J/cit13/1) 2022; 175 Bluher (D3FO05201J/cit3/1) 2019; 15 |
References_xml | – volume: 156 start-page: 20 year: 2014 ident: D3FO05201J/cit9/1 publication-title: Cell doi: 10.1016/j.cell.2013.12.012 – volume: 84 start-page: 2228 year: 2020 ident: D3FO05201J/cit52/1 publication-title: Biosci. Biotechnol. Biochem. doi: 10.1080/09168451.2020.1793293 – volume: 34 start-page: 1325 year: 2022 ident: D3FO05201J/cit61/1 publication-title: Cell Metab. doi: 10.1016/j.cmet.2022.07.011 – volume: 22 start-page: bbaa165 year: 2021 ident: D3FO05201J/cit4/1 publication-title: Briefings Bioinf. doi: 10.1093/bib/bbaa165 – volume: 19 start-page: 1252 year: 2013 ident: D3FO05201J/cit19/1 publication-title: Nat. Med. doi: 10.1038/nm.3361 – volume: 54 start-page: 1211 year: 2015 ident: D3FO05201J/cit22/1 publication-title: Eur. J. Nutr. doi: 10.1007/s00394-015-1050-7 – volume: 24 start-page: 78 year: 2003 ident: D3FO05201J/cit62/1 publication-title: Endocr. Rev. doi: 10.1210/er.2002-0012 – volume: 9 start-page: 239 year: 2020 ident: D3FO05201J/cit39/1 publication-title: J. Educ. Health Promot. doi: 10.4103/jehp.jehp_216_20 – volume: 593 start-page: 580 year: 2021 ident: D3FO05201J/cit74/1 publication-title: Nature doi: 10.1038/s41586-021-03533-z – volume: 175 start-page: 106020 year: 2022 ident: D3FO05201J/cit13/1 publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2021.106020 – volume: 219 start-page: e20212491 year: 2022 ident: D3FO05201J/cit59/1 publication-title: J. Exp. Med. doi: 10.1084/jem.20212491 – volume: 90 start-page: 104994 year: 2022 ident: D3FO05201J/cit68/1 publication-title: J. Funct. Foods doi: 10.1016/j.jff.2022.104994 – volume: 15 start-page: 675 year: 2012 ident: D3FO05201J/cit33/1 publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.04.003 – volume: 14 start-page: 45 year: 2021 ident: D3FO05201J/cit51/1 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics14010045 – volume: 16 start-page: 521 year: 2018 ident: D3FO05201J/cit10/1 publication-title: Metab. Syndr. Relat. Disord. doi: 10.1089/met.2018.0062 – volume: 24 start-page: 983 year: 2015 ident: D3FO05201J/cit28/1 publication-title: Stem Cells Dev. doi: 10.1089/scd.2014.0130 – volume: 22 start-page: 393 year: 2021 ident: D3FO05201J/cit16/1 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-021-00350-0 – volume: 590 start-page: 480 year: 2021 ident: D3FO05201J/cit73/1 publication-title: Nature doi: 10.1038/s41586-021-03221-y – volume: 11 start-page: 1606 year: 2023 ident: D3FO05201J/cit27/1 publication-title: Food Sci. Nutr. doi: 10.1002/fsn3.3201 – volume: 19 start-page: e13059 year: 2020 ident: D3FO05201J/cit54/1 publication-title: Aging Cell doi: 10.1111/acel.13059 – volume: 22 start-page: 546 year: 2015 ident: D3FO05201J/cit60/1 publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.09.007 – volume: 102 start-page: 135 year: 2018 ident: D3FO05201J/cit11/1 publication-title: Med. Clin. North Am. doi: 10.1016/j.mcna.2017.08.010 – volume: 4 start-page: 118 year: 2015 ident: D3FO05201J/cit69/1 publication-title: Mol. Metab. doi: 10.1016/j.molmet.2014.12.008 – volume: 9 start-page: 876 year: 2018 ident: D3FO05201J/cit57/1 publication-title: Cell Death Dis. doi: 10.1038/s41419-018-0904-3 – volume: 43 start-page: 651 year: 2018 ident: D3FO05201J/cit63/1 publication-title: Appl. Physiol., Nutr., Metab. doi: 10.1139/apnm-2017-0614 – volume: 20 start-page: 939 year: 2014 ident: D3FO05201J/cit66/1 publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.09.013 – volume: 10 start-page: S4 year: 2019 ident: D3FO05201J/cit12/1 publication-title: Adv. Nutr. doi: 10.1093/advances/nmy055 – volume: 150 start-page: 620 year: 2012 ident: D3FO05201J/cit71/1 publication-title: Cell doi: 10.1016/j.cell.2012.06.027 – volume: 163 start-page: 643 year: 2015 ident: D3FO05201J/cit29/1 publication-title: Cell doi: 10.1016/j.cell.2015.09.035 – volume: 53 start-page: 1713 year: 2021 ident: D3FO05201J/cit32/1 publication-title: Acta Biochim. Biophys. Sin. doi: 10.1093/abbs/gmab151 – volume: 1 start-page: 360 year: 2019 ident: D3FO05201J/cit75/1 publication-title: Nat. Metab. doi: 10.1038/s42255-019-0035-x – volume: 9 start-page: 373 year: 2021 ident: D3FO05201J/cit5/1 publication-title: Lancet Diabetes Endocrinol. doi: 10.1016/S2213-8587(21)00045-0 – volume: 38 start-page: 1529 year: 2003 ident: D3FO05201J/cit50/1 publication-title: Hepatology doi: 10.1016/j.hep.2003.09.028 – volume: 15 start-page: 288 year: 2019 ident: D3FO05201J/cit3/1 publication-title: Nat. Rev. Endocrinol. doi: 10.1038/s41574-019-0176-8 – volume: 26 start-page: 660 year: 2017 ident: D3FO05201J/cit72/1 publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.08.009 – volume: 25 start-page: 811 year: 2017 ident: D3FO05201J/cit18/1 publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.03.002 – volume: 9 start-page: 46 year: 2015 ident: D3FO05201J/cit48/1 publication-title: Diabetes Metab. Syndr. doi: 10.1016/j.dsx.2014.09.015 – volume: 20 start-page: 73 year: 2019 ident: D3FO05201J/cit64/1 publication-title: iScience doi: 10.1016/j.isci.2019.09.011 – volume: 318 start-page: 121122 year: 2023 ident: D3FO05201J/cit8/1 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2023.121122 – volume: 25 start-page: 402 year: 2001 ident: D3FO05201J/cit30/1 publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 277 start-page: 119487 year: 2021 ident: D3FO05201J/cit53/1 publication-title: Life Sci. doi: 10.1016/j.lfs.2021.119487 – volume: 27 start-page: 7 year: 2019 ident: D3FO05201J/cit2/1 publication-title: Obesity doi: 10.1002/oby.22378 – volume: 85 start-page: 19 year: 2007 ident: D3FO05201J/cit26/1 publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/85.1.19 – volume: 18 start-page: 80 year: 2018 ident: D3FO05201J/cit34/1 publication-title: Curr. Diabetes Rep. doi: 10.1007/s11892-018-1049-6 – volume: 27 start-page: 234 year: 2013 ident: D3FO05201J/cit20/1 publication-title: Genes Dev. doi: 10.1101/gad.211649.112 – volume: 15 start-page: 2792 year: 2004 ident: D3FO05201J/cit35/1 publication-title: J. Am. Soc. Nephrol. doi: 10.1097/01.ASN.0000141966.69934.21 – volume: 385 start-page: 2400 year: 2015 ident: D3FO05201J/cit1/1 publication-title: Lancet doi: 10.1016/S0140-6736(14)61744-X – volume: 167 start-page: 105471 year: 2021 ident: D3FO05201J/cit7/1 publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2021.105471 – volume: 9 start-page: 193 year: 2019 ident: D3FO05201J/cit65/1 publication-title: Animals doi: 10.3390/ani9040193 – volume: 320 start-page: 223 year: 2002 ident: D3FO05201J/cit25/1 publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(02)00448-5 – volume: 27 start-page: 762 year: 2006 ident: D3FO05201J/cit36/1 publication-title: Endocr. Rev. doi: 10.1210/er.2006-0033 – volume: 10 start-page: 141 year: 2013 ident: D3FO05201J/cit43/1 publication-title: Int. J. Med. Sci. doi: 10.7150/ijms.5125 – volume: 3 start-page: 173 year: 2012 ident: D3FO05201J/cit45/1 publication-title: Protein Cell doi: 10.1007/s13238-012-2025-6 – volume: 10 start-page: 137 year: 2019 ident: D3FO05201J/cit55/1 publication-title: Front. Endocrinol. doi: 10.3389/fendo.2019.00137 – volume: 10 start-page: 24 year: 2014 ident: D3FO05201J/cit58/1 publication-title: Nat. Rev. Endocrinol. doi: 10.1038/nrendo.2013.204 – volume: 92 start-page: 82 year: 2019 ident: D3FO05201J/cit40/1 publication-title: Metabolism doi: 10.1016/j.metabol.2018.11.014 – volume: 233 start-page: 141 year: 2018 ident: D3FO05201J/cit47/1 publication-title: J. Cell. Physiol. doi: 10.1002/jcp.25756 – volume: 22 start-page: 8497 year: 2016 ident: D3FO05201J/cit42/1 publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v22.i38.8497 – volume: 48 start-page: 1867 year: 2016 ident: D3FO05201J/cit21/1 publication-title: Amino Acids doi: 10.1007/s00726-015-2106-y – volume: 39 start-page: 715 year: 2008 ident: D3FO05201J/cit15/1 publication-title: Arch. Med. Res. doi: 10.1016/j.arcmed.2008.09.005 – volume: 53 start-page: 1503 year: 2014 ident: D3FO05201J/cit70/1 publication-title: Eur. J. Nutr. doi: 10.1007/s00394-014-0655-6 – volume: 296 start-page: 120440 year: 2022 ident: D3FO05201J/cit6/1 publication-title: Life Sci. doi: 10.1016/j.lfs.2022.120440 – volume: 106 start-page: 453 year: 2000 ident: D3FO05201J/cit46/1 publication-title: J. Clin. Invest. doi: 10.1172/JCI10762 – volume: 11 start-page: 1537 year: 2020 ident: D3FO05201J/cit67/1 publication-title: Food Funct. doi: 10.1039/C9FO02463H – volume: 29 start-page: 415 year: 2011 ident: D3FO05201J/cit37/1 publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-031210-101322 – volume: 124 start-page: 528 year: 2019 ident: D3FO05201J/cit49/1 publication-title: Basic Clin. Pharmacol. Toxicol. doi: 10.1111/bcpt.13190 – volume: 23 start-page: 250 year: 1947 ident: D3FO05201J/cit41/1 publication-title: Boll. – Soc. Ital. Biol. Sper. – volume: 199 start-page: 115012 year: 2022 ident: D3FO05201J/cit38/1 publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2022.115012 – volume: 101 start-page: 1085 year: 1971 ident: D3FO05201J/cit24/1 publication-title: J. Nutr. doi: 10.1093/jn/101.8.1085 – volume: 70 start-page: 1458 year: 2021 ident: D3FO05201J/cit31/1 publication-title: Diabetes doi: 10.2337/db20-1210 – volume: 49 start-page: 561 year: 2001 ident: D3FO05201J/cit23/1 publication-title: Ann. Neurol. doi: 10.1002/ana.1028 – volume: 510 start-page: 76 year: 2014 ident: D3FO05201J/cit14/1 publication-title: Nature doi: 10.1038/nature13477 – volume: 8 start-page: 449 year: 2009 ident: D3FO05201J/cit56/1 publication-title: Aging Cell doi: 10.1111/j.1474-9726.2009.00490.x – volume: 1860 start-page: 259 year: 2019 ident: D3FO05201J/cit17/1 publication-title: Biochim. Biophys. Acta, Bioenerg. doi: 10.1016/j.bbabio.2018.11.007 – volume: 72 start-page: 18 year: 2018 ident: D3FO05201J/cit44/1 publication-title: Ann. Nutr. Metab. doi: 10.1159/000484945 |
SSID | ssj0000399898 |
Score | 2.3709667 |
Snippet | Guanidinoacetic acid (GAA) is a naturally occurring amino acid derivative that plays a critical role in energy metabolism. In recent years, a growing body of... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4515 |
SubjectTerms | Adipose tissue Adipose Tissue - metabolism Adipose Tissue, White - metabolism Amino acids Animal models Animals Body fat Browning Creatine Diet Diet, High-Fat - adverse effects Dietary supplements Energy metabolism Fatty liver Fatty Liver - drug therapy Fatty Liver - metabolism Glycine - analogs & derivatives High density lipoprotein High fat diet Hypertrophy Inflammation Inflammation - drug therapy Inflammation - metabolism Interleukins Lipids Metabolic disorders Metabolism Mice Mice, Inbred C57BL Middle age Obesity Obesity - drug therapy Obesity - metabolism Signal transduction SIRT1 protein Steatosis Sterol regulatory element-binding protein Tumor necrosis factor-α |
Title | Guanidinoacetic acid ameliorates hepatic steatosis and inflammation and promotes white adipose tissue browning in middle-aged mice with high-fat-diet-induced obesity |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38567805 https://www.proquest.com/docview/3043135038 https://www.proquest.com/docview/3031658726 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXK9sIL4msQGMgIhISqQBLn83FjlKmI8cAm-lbZjqMFdUlVEiHtl_AH-J_c6ziJx4oEvESp7bqRzqnte3PvuYS84GD3eEpIVyYyAwMl5a4IeeZmLCv8ggc8jDDf-eNJfHwWzhfRYjL5YUUttY14LS-35pX8D6rQBrhiluw_IDtMCg1wD_jCFRCG619hDPhWJWw-NZdKC6_KMp_yC7XCvHt0qJ6rtVZkRSibGrVHOrGlAnjQ5SwaoQCMyYPx3_GlwpTn5RrD2BsNylSgpW5SXy60P8OFRSifYiH7zo-LmsduwRs3L1XjgpXfYlRB3dUcsI-_M9RQRrLhdmqHAHxu9V7QWhFCOsxgUVabtrS8292LIsxGH0bO9chDeMLLc5PYZtwYgY5-CSzPZoB5QnGYGV1sqy3yFleW68iiZWqtvWFkupT52KXiX9sjPIYSqzkraowB8r-OO-EQnzh23iC7ARggsILuHnw4fP9l8N_BLFh6E2sX9k_eq9-y7M04wdXzzjUjBo40m77UjD7SnN4mt4wtQg86Yt0hE1XdJc4RYEhfUiMYu6Infb2Ge-Tnb4SjSDhqEY4awtGBcBT4RW3C6YaecFQTjhrC0Y5wtCccfI9ahKNIOIqEo1sJRw3h7pOz2bvTt8euqfPhSsaSxlUyVILHvii4F6WceRysXAY3fpgUOdyGfp7mieephCswsGUuQpH60ou9VMYyZ3tkp6or9ZDQqBBpGgXCkzEP_SwRSSCTNC5ypQpAMXHIqx6NpTQi-FiLZbXUwRgsWx6x2SeN3Nwhz4ex6076Zeuo_R7UpVkavi0ZSlYxVFpyyLOhGxZufBvHK1W3OIb5cPxPgtghDzoyDD_D0ijGYiMO2QN2DM0jqx79qeMxuTn-u_bJTrNp1RM4NjfiqWHwLyiGytI |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guanidinoacetic+acid+ameliorates+hepatic+steatosis+and+inflammation+and+promotes+white+adipose+tissue+browning+in+middle-aged+mice+with+high-fat-diet-induced+obesity&rft.jtitle=Food+%26+function&rft.au=Su%2C+Yuan&rft.au=Li%2C+Xinrui&rft.au=Zhao%2C+Jiamin&rft.au=Ji%2C+Bingzhen&rft.date=2024-04-22&rft.issn=2042-6496&rft.eissn=2042-650X&rft.volume=15&rft.issue=8&rft.spage=4515&rft.epage=4526&rft_id=info:doi/10.1039%2Fd3fo05201j&rft.externalDocID=d3fo05201j |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2042-6496&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2042-6496&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2042-6496&client=summon |