Effect of solvent quality and sidechain architecture on conjugated polymer chain conformation in solution

Conjugated polymers (CPs) are solution-processible for various electronic applications, where solution aggregation and dynamics could impact the morphology in the solid state. Various solvents and solvent mixtures have been used to dissolve and process CPs, but few studies have quantified the effect...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 16; no. 13; pp. 6495 - 656
Main Authors Ma, Guorong, Li, Zhaofan, Fang, Lei, Xia, Wenjie, Gu, Xiaodan
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 28.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conjugated polymers (CPs) are solution-processible for various electronic applications, where solution aggregation and dynamics could impact the morphology in the solid state. Various solvents and solvent mixtures have been used to dissolve and process CPs, but few studies have quantified the effect of solvent quality on the solution behavior of CPs. Herein, we performed static light scattering and small-angle X-ray scattering combined with molecular dynamics (MD) simulation to investigate CP solution behaviors with solvents of varying quality, including poly(3-alkylthiophene) (P3ATs) with various sidechain lengths from -C 4 H 9 to -C 12 H 25 , poly[bis(3-dodecyl-2-thienyl)-2,2′-dithiophene-5,5′-diyl] (PQT-12) and poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2- b ]thiophene] (PBTTT-12). We found that chlorobenzene is a better solvent than toluene for various CPs, which was evident from the positive second virial coefficient A 2 ranging from 0.3 to 4.7 × 10 −3 cm 3 mol g −2 towards P3ATs. For P3ATs in non-polar solvents, longer sidechains promote more positive A 2 , indicating a better polymer-solvent interaction, wherein A 2 for toluene increases from −5.9 to 1.4 × 10 −3 cm 3 mol g −2 , and in CB, A 2 ranges from 1.0 to 4.7 × 10 −3 cm 3 mol g −2 when sidechain length increases from -C 6 H 13 to -C 12 H 25 . Moreover, PQT-12 and PBTTT-12 have strong aggregation tendencies in all solutions, with an apparent positive A 2 (∼0.5 × 10 −3 cm 3 mol g −2 ) due to multi-chain aggregates and peculiar chain folding. These solvent-dependent aggregation behaviors can be well correlated to spectroscopy measurement results. Our coarse-grained MD simulation results further suggested that CPs with long, dense, and branched sidechains can achieve enhanced polymer-solvent interaction, and thus enable overall better solution dispersion. This work provides quantitative insights into the solution behavior of conjugated polymers that can guide both the design and process of CPs toward next-generation organic electronics. The solubilization of conjugated polymers can be carefully quantified using static light scattering. Our findings reveal that the architecture of sidechains and backbones significantly influences polymer's conformation and aggregation.
AbstractList Conjugated polymers (CPs) are solution-processible for various electronic applications, where solution aggregation and dynamics could impact the morphology in the solid state. Various solvents and solvent mixtures have been used to dissolve and process CPs, but few studies have quantified the effect of solvent quality on the solution behavior of CPs. Herein, we performed static light scattering and small-angle X-ray scattering combined with molecular dynamics (MD) simulation to investigate CP solution behaviors with solvents of varying quality, including poly(3-alkylthiophene) (P3ATs) with various sidechain lengths from –C4H9 to –C12H25, poly[bis(3-dodecyl-2-thienyl)-2,2′-dithiophene-5,5′-diyl] (PQT-12) and poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT-12). We found that chlorobenzene is a better solvent than toluene for various CPs, which was evident from the positive second virial coefficient A2 ranging from 0.3 to 4.7 × 10−3 cm3 mol g−2 towards P3ATs. For P3ATs in non-polar solvents, longer sidechains promote more positive A2, indicating a better polymer–solvent interaction, wherein A2 for toluene increases from −5.9 to 1.4 × 10−3 cm3 mol g−2, and in CB, A2 ranges from 1.0 to 4.7 × 10−3 cm3 mol g−2 when sidechain length increases from –C6H13 to –C12H25. Moreover, PQT-12 and PBTTT-12 have strong aggregation tendencies in all solutions, with an apparent positive A2 (∼0.5 × 10−3 cm3 mol g−2) due to multi-chain aggregates and peculiar chain folding. These solvent-dependent aggregation behaviors can be well correlated to spectroscopy measurement results. Our coarse-grained MD simulation results further suggested that CPs with long, dense, and branched sidechains can achieve enhanced polymer–solvent interaction, and thus enable overall better solution dispersion. This work provides quantitative insights into the solution behavior of conjugated polymers that can guide both the design and process of CPs toward next-generation organic electronics.
Conjugated polymers (CPs) are solution-processible for various electronic applications, where solution aggregation and dynamics could impact the morphology in the solid state. Various solvents and solvent mixtures have been used to dissolve and process CPs, but few studies have quantified the effect of solvent quality on the solution behavior of CPs. Herein, we performed static light scattering and small-angle X-ray scattering combined with molecular dynamics (MD) simulation to investigate CP solution behaviors with solvents of varying quality, including poly(3-alkylthiophene) (P3ATs) with various sidechain lengths from -C H to -C H , poly[bis(3-dodecyl-2-thienyl)-2,2'-dithiophene-5,5'-diyl] (PQT-12) and poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2- ]thiophene] (PBTTT-12). We found that chlorobenzene is a better solvent than toluene for various CPs, which was evident from the positive second virial coefficient ranging from 0.3 to 4.7 × 10 cm mol g towards P3ATs. For P3ATs in non-polar solvents, longer sidechains promote more positive , indicating a better polymer-solvent interaction, wherein for toluene increases from -5.9 to 1.4 × 10 cm mol g , and in CB, ranges from 1.0 to 4.7 × 10 cm mol g when sidechain length increases from -C H to -C H . Moreover, PQT-12 and PBTTT-12 have strong aggregation tendencies in all solutions, with an apparent positive (∼0.5 × 10 cm mol g ) due to multi-chain aggregates and peculiar chain folding. These solvent-dependent aggregation behaviors can be well correlated to spectroscopy measurement results. Our coarse-grained MD simulation results further suggested that CPs with long, dense, and branched sidechains can achieve enhanced polymer-solvent interaction, and thus enable overall better solution dispersion. This work provides quantitative insights into the solution behavior of conjugated polymers that can guide both the design and process of CPs toward next-generation organic electronics.
Conjugated polymers (CPs) are solution-processible for various electronic applications, where solution aggregation and dynamics could impact the morphology in the solid state. Various solvents and solvent mixtures have been used to dissolve and process CPs, but few studies have quantified the effect of solvent quality on the solution behavior of CPs. Herein, we performed static light scattering and small-angle X-ray scattering combined with molecular dynamics (MD) simulation to investigate CP solution behaviors with solvents of varying quality, including poly(3-alkylthiophene) (P3ATs) with various sidechain lengths from -C 4 H 9 to -C 12 H 25 , poly[bis(3-dodecyl-2-thienyl)-2,2′-dithiophene-5,5′-diyl] (PQT-12) and poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2- b ]thiophene] (PBTTT-12). We found that chlorobenzene is a better solvent than toluene for various CPs, which was evident from the positive second virial coefficient A 2 ranging from 0.3 to 4.7 × 10 −3 cm 3 mol g −2 towards P3ATs. For P3ATs in non-polar solvents, longer sidechains promote more positive A 2 , indicating a better polymer-solvent interaction, wherein A 2 for toluene increases from −5.9 to 1.4 × 10 −3 cm 3 mol g −2 , and in CB, A 2 ranges from 1.0 to 4.7 × 10 −3 cm 3 mol g −2 when sidechain length increases from -C 6 H 13 to -C 12 H 25 . Moreover, PQT-12 and PBTTT-12 have strong aggregation tendencies in all solutions, with an apparent positive A 2 (∼0.5 × 10 −3 cm 3 mol g −2 ) due to multi-chain aggregates and peculiar chain folding. These solvent-dependent aggregation behaviors can be well correlated to spectroscopy measurement results. Our coarse-grained MD simulation results further suggested that CPs with long, dense, and branched sidechains can achieve enhanced polymer-solvent interaction, and thus enable overall better solution dispersion. This work provides quantitative insights into the solution behavior of conjugated polymers that can guide both the design and process of CPs toward next-generation organic electronics. The solubilization of conjugated polymers can be carefully quantified using static light scattering. Our findings reveal that the architecture of sidechains and backbones significantly influences polymer's conformation and aggregation.
Conjugated polymers (CPs) are solution-processible for various electronic applications, where solution aggregation and dynamics could impact the morphology in the solid state. Various solvents and solvent mixtures have been used to dissolve and process CPs, but few studies have quantified the effect of solvent quality on the solution behavior of CPs. Herein, we performed static light scattering and small-angle X-ray scattering combined with molecular dynamics (MD) simulation to investigate CP solution behaviors with solvents of varying quality, including poly(3-alkylthiophene) (P3ATs) with various sidechain lengths from -C4H9 to -C12H25, poly[bis(3-dodecyl-2-thienyl)-2,2'-dithiophene-5,5'-diyl] (PQT-12) and poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT-12). We found that chlorobenzene is a better solvent than toluene for various CPs, which was evident from the positive second virial coefficient A2 ranging from 0.3 to 4.7 × 10-3 cm3 mol g-2 towards P3ATs. For P3ATs in non-polar solvents, longer sidechains promote more positive A2, indicating a better polymer-solvent interaction, wherein A2 for toluene increases from -5.9 to 1.4 × 10-3 cm3 mol g-2, and in CB, A2 ranges from 1.0 to 4.7 × 10-3 cm3 mol g-2 when sidechain length increases from -C6H13 to -C12H25. Moreover, PQT-12 and PBTTT-12 have strong aggregation tendencies in all solutions, with an apparent positive A2 (∼0.5 × 10-3 cm3 mol g-2) due to multi-chain aggregates and peculiar chain folding. These solvent-dependent aggregation behaviors can be well correlated to spectroscopy measurement results. Our coarse-grained MD simulation results further suggested that CPs with long, dense, and branched sidechains can achieve enhanced polymer-solvent interaction, and thus enable overall better solution dispersion. This work provides quantitative insights into the solution behavior of conjugated polymers that can guide both the design and process of CPs toward next-generation organic electronics.Conjugated polymers (CPs) are solution-processible for various electronic applications, where solution aggregation and dynamics could impact the morphology in the solid state. Various solvents and solvent mixtures have been used to dissolve and process CPs, but few studies have quantified the effect of solvent quality on the solution behavior of CPs. Herein, we performed static light scattering and small-angle X-ray scattering combined with molecular dynamics (MD) simulation to investigate CP solution behaviors with solvents of varying quality, including poly(3-alkylthiophene) (P3ATs) with various sidechain lengths from -C4H9 to -C12H25, poly[bis(3-dodecyl-2-thienyl)-2,2'-dithiophene-5,5'-diyl] (PQT-12) and poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT-12). We found that chlorobenzene is a better solvent than toluene for various CPs, which was evident from the positive second virial coefficient A2 ranging from 0.3 to 4.7 × 10-3 cm3 mol g-2 towards P3ATs. For P3ATs in non-polar solvents, longer sidechains promote more positive A2, indicating a better polymer-solvent interaction, wherein A2 for toluene increases from -5.9 to 1.4 × 10-3 cm3 mol g-2, and in CB, A2 ranges from 1.0 to 4.7 × 10-3 cm3 mol g-2 when sidechain length increases from -C6H13 to -C12H25. Moreover, PQT-12 and PBTTT-12 have strong aggregation tendencies in all solutions, with an apparent positive A2 (∼0.5 × 10-3 cm3 mol g-2) due to multi-chain aggregates and peculiar chain folding. These solvent-dependent aggregation behaviors can be well correlated to spectroscopy measurement results. Our coarse-grained MD simulation results further suggested that CPs with long, dense, and branched sidechains can achieve enhanced polymer-solvent interaction, and thus enable overall better solution dispersion. This work provides quantitative insights into the solution behavior of conjugated polymers that can guide both the design and process of CPs toward next-generation organic electronics.
Conjugated polymers (CPs) are solution-processible for various electronic applications, where solution aggregation and dynamics could impact the morphology in the solid state. Various solvents and solvent mixtures have been used to dissolve and process CPs, but few studies have quantified the effect of solvent quality on the solution behavior of CPs. Herein, we performed static light scattering and small-angle X-ray scattering combined with molecular dynamics (MD) simulation to investigate CP solution behaviors with solvents of varying quality, including poly(3-alkylthiophene) (P3ATs) with various sidechain lengths from –C 4 H 9 to –C 12 H 25 , poly[bis(3-dodecyl-2-thienyl)-2,2′-dithiophene-5,5′-diyl] (PQT-12) and poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2- b ]thiophene] (PBTTT-12). We found that chlorobenzene is a better solvent than toluene for various CPs, which was evident from the positive second virial coefficient A 2 ranging from 0.3 to 4.7 × 10 −3 cm 3 mol g −2 towards P3ATs. For P3ATs in non-polar solvents, longer sidechains promote more positive A 2 , indicating a better polymer–solvent interaction, wherein A 2 for toluene increases from −5.9 to 1.4 × 10 −3 cm 3 mol g −2 , and in CB, A 2 ranges from 1.0 to 4.7 × 10 −3 cm 3 mol g −2 when sidechain length increases from –C 6 H 13 to –C 12 H 25 . Moreover, PQT-12 and PBTTT-12 have strong aggregation tendencies in all solutions, with an apparent positive A 2 (∼0.5 × 10 −3 cm 3 mol g −2 ) due to multi-chain aggregates and peculiar chain folding. These solvent-dependent aggregation behaviors can be well correlated to spectroscopy measurement results. Our coarse-grained MD simulation results further suggested that CPs with long, dense, and branched sidechains can achieve enhanced polymer–solvent interaction, and thus enable overall better solution dispersion. This work provides quantitative insights into the solution behavior of conjugated polymers that can guide both the design and process of CPs toward next-generation organic electronics.
Author Gu, Xiaodan
Xia, Wenjie
Fang, Lei
Ma, Guorong
Li, Zhaofan
AuthorAffiliation Department of Chemistry
The University of Southern Mississippi
Iowa State University
Department of Aerospace Engineering
Texas A&M University
School of Polymer Science and Engineering
AuthorAffiliation_xml – sequence: 0
  name: Department of Aerospace Engineering
– sequence: 0
  name: School of Polymer Science and Engineering
– sequence: 0
  name: Department of Chemistry
– sequence: 0
  name: Iowa State University
– sequence: 0
  name: The University of Southern Mississippi
– sequence: 0
  name: Texas A&M University
Author_xml – sequence: 1
  givenname: Guorong
  surname: Ma
  fullname: Ma, Guorong
– sequence: 2
  givenname: Zhaofan
  surname: Li
  fullname: Li, Zhaofan
– sequence: 3
  givenname: Lei
  surname: Fang
  fullname: Fang, Lei
– sequence: 4
  givenname: Wenjie
  surname: Xia
  fullname: Xia, Wenjie
– sequence: 5
  givenname: Xiaodan
  surname: Gu
  fullname: Gu, Xiaodan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38465951$$D View this record in MEDLINE/PubMed
BookMark eNpt0c1LBCEUAHCJou9L90LoEsGWo-PMeIytrSAKos7iOs9ymdFNnWD_-9y2D4hOPvXn4z3fDlp33gFCBwU5KwgT5y1zgfCaFmYNbVNSkhFjNV3_iatyC-3EOCOkEqxim2iLNWXFBS-2kb0yBnTC3uDou3dwCb8NqrNpgZVrcbQt6FdlHVZBv9qU6RAAe4e1d7PhRSVo8dx3ix4CXsF8YXzoVbJZ5X1OOyzjPbRhVBdh_2vdRc-Tq6fxzeju4fp2fHE30rnqNALNiqYpgIsmNySUKdrplDYcjNKcNPmAcsPptDKKCiYEVSW0nCiiqgxLynbRySrvPPi3AWKSvY0auk458EOUVHBOq1LUPNPjP3Tmh-BydZIRwmrGeFNndfSlhmkPrZwH26uwkN-fmAFZAR18jAGM1DZ99p-Csp0siFzOSV6y-8fPOU3yk9M_T76z_osPVzhE_eN-h84-APuhnbA
CitedBy_id crossref_primary_10_1021_acs_macromol_4c01496
crossref_primary_10_1557_s43579_024_00654_0
crossref_primary_10_1039_D4CC03217A
crossref_primary_10_1002_pol_20230689
Cites_doi 10.1002/pen.760351008
10.1021/acs.jpclett.8b01738
10.1007/s10118-021-2555-6
10.1021/la803339f
10.1016/j.carbon.2020.12.006
10.1021/acs.macromol.0c00579
10.1039/c4sm00960f
10.1016/B978-0-12-819768-4.00014-2
10.1002/(Sici)1521-4095(199912)11:18<1491::Aid-Adma1491>3.0.Co;2-O
10.1038/nmat1612
10.1002/polb.1987.090250508
10.1039/d2cc01430k
10.1002/macp.201100284
10.1016/j.polymer.2021.123429
10.1021/acs.chemmater.2c02141
10.1002/adma.202209896
10.1039/c6sm02631a
10.1016/j.solmat.2012.01.005
10.1039/d2tc00761d
10.1021/acsami.8b07643
10.1002/adma.202203055
10.1021/acs.macromol.7b00582
10.1016/j.polymer.2019.121986
10.1021/acs.macromol.2c02259
10.1002/adfm.202002221
10.1021/acs.jpclett.2c03600
10.1021/acsapm.1c01511
10.1038/s41563-022-01244-y
10.1021/ma9903106
10.1063/1.478288
10.1038/ncomms6293
10.1039/c2ce26666k
10.1002/adfm.201303794
10.1016/j.polymer.2006.12.003
10.1002/marc.202200533
10.1016/j.colsurfa.2011.03.003
10.1021/acs.macromol.0c02086
10.1002/polb.23153
10.1039/c7sm02493b
10.1021/ma400597j
10.1021/nn401323f
10.1201/9781420006834
10.1021/acs.langmuir.9b02604
10.1201/9780429190520
10.1021/acs.macromol.1c02449
10.1002/polb.23022
10.1039/c7tc04823h
10.1038/s41467-023-39832-4
10.1063/1.4788616
10.1021/acs.langmuir.1c01545
10.1021/acs.chemmater.5b00635
10.1002/adfm.202306576
10.1038/natrevmats.2017.86
10.1021/acs.macromol.2c01701
10.1002/pol.20230689
10.1021/ma4011523
10.1021/acs.macromol.0c02544
10.1021/la0612769
10.1039/c8sm02517g
10.1021/acs.macromol.0c01646
10.1146/annurev.physchem.54.011002.103811
10.1021/acs.macromol.0c02436
10.1021/acs.chemrev.7b00482
10.1016/j.eurpolymj.2018.09.049
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/d3nr05721f
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 656
ExternalDocumentID 38465951
10_1039_D3NR05721F
d3nr05721f
Genre Journal Article
GroupedDBID ---
-JG
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c337t-ec31881e59821f9af1dbb285efac5089af25f52b6fa293992a4ed50a0a6dbb423
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 17:01:57 EDT 2025
Sun Jun 29 15:53:46 EDT 2025
Thu Apr 03 07:04:41 EDT 2025
Thu Apr 24 23:06:18 EDT 2025
Tue Jul 01 00:42:14 EDT 2025
Tue Dec 17 20:58:16 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-ec31881e59821f9af1dbb285efac5089af25f52b6fa293992a4ed50a0a6dbb423
Notes https://doi.org/10.1039/d3nr05721f
Electronic supplementary information (ESI) available: Sample preparation, dn/dc measurement, HSP calculation, DSC measurements, scattering, and spectroscopy measurements of the samples in solution and solid states. Additional coarse grain modelling data. See DOI
Xiaodan Gu received his PhD from the Department of Polymer Science and Engineering at the University of Massachusetts Amherst in 2014. Subsequently, he did a post-doctoral study at Stanford University and SLAC National Accelerator Laboratory. Since 2017, he has been a Nina Bell Suggs Endowed Associate Professor from the School of Polymer Science and Engineering at the University of Southern Mississippi. His current research interest revolves around various fundamental polymer physics phenomena related to conjugated polymers and their derivative devices. His group studies the structure, dynamics, and morphology of conjugated polymers and aims to link their molecular structures to their macroscopic properties through advanced metrology with an emphasis on scattering techniques.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8551-8794
0000-0002-1123-3673
0000-0003-4757-5664
0000-0001-7870-0128
PMID 38465951
PQID 3003733587
PQPubID 2047485
PageCount 12
ParticipantIDs crossref_citationtrail_10_1039_D3NR05721F
pubmed_primary_38465951
rsc_primary_d3nr05721f
crossref_primary_10_1039_D3NR05721F
proquest_miscellaneous_2955264975
proquest_journals_3003733587
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-28
PublicationDateYYYYMMDD 2024-03-28
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-28
  day: 28
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Chang (D3NR05721F/cit19/1) 2013; 7
Xu (D3NR05721F/cit7/1) 2023; 14
Wang (D3NR05721F/cit9/1) 2013; 46
Zhang (D3NR05721F/cit31/2) 2021; 217
Wang (D3NR05721F/cit30/1) 2023
Zhu (D3NR05721F/cit1/2) 2022; 21
Opoku (D3NR05721F/cit17/1) 2018; 6
Yi (D3NR05721F/cit37/1) 2018; 14
Duong (D3NR05721F/cit24/1) 2012; 50
Kleinhenz (D3NR05721F/cit13/1) 2015; 27
Ibanez (D3NR05721F/cit3/2) 2018; 118
Reynolds (D3NR05721F/cit4/1) 2019
Reid (D3NR05721F/cit40/1) 2018; 9
Arkin (D3NR05721F/cit41/3) 2013; 138
Emerson (D3NR05721F/cit23/2) 2013; 46
Xue (D3NR05721F/cit36/1) 2011; 380
Moris (D3NR05721F/cit15/2) 2021; 54
Liu (D3NR05721F/cit28/1) 2019
Xu (D3NR05721F/cit35/1) 2022; 34
Traiphol (D3NR05721F/cit10/2) 2007; 48
Yu (D3NR05721F/cit3/1) 2023; 35
Morgan (D3NR05721F/cit15/4) 2017; 13
Swager (D3NR05721F/cit6/1) 2017; 50
Zhang (D3NR05721F/cit30/4) 2020; 30
Liu (D3NR05721F/cit39/2) 2014; 5
Heffner (D3NR05721F/cit14/3) 2004; 35
Zhao (D3NR05721F/cit30/2) 2022; 43
Li (D3NR05721F/cit31/1) 2023
Jeon (D3NR05721F/cit17/2) 2018; 10
Scharsich (D3NR05721F/cit17/4) 2012; 50
Xi (D3NR05721F/cit11/1) 2019; 15
Zhao (D3NR05721F/cit26/1) 2021; 54
McCulloch (D3NR05721F/cit33/1) 2006; 5
Kukhta (D3NR05721F/cit5/1) 2022; 58
Machui (D3NR05721F/cit25/1) 2012; 100
Schwartz (D3NR05721F/cit14/2) 2003; 54
Kwok (D3NR05721F/cit21/1) 2022; 55
Zhang (D3NR05721F/cit15/1) 2021; 39
Ma (D3NR05721F/cit8/1) 2022; 10
Khasbaatar (D3NR05721F/cit34/1) 2023; 35
Rivnay (D3NR05721F/cit2/1) 2018; 3
Nguyen (D3NR05721F/cit12/1) 1999; 110
Sehgal (D3NR05721F/cit38/2) 1999; 32
Hansen (D3NR05721F/cit22/1) 2007
Li (D3NR05721F/cit29/1) 2020; 53
Zeng (D3NR05721F/cit1/1) 2023; 14
Li (D3NR05721F/cit14/1) 2009; 25
Russo (D3NR05721F/cit38/1) 2021
Li (D3NR05721F/cit10/3) 2006; 22
Li (D3NR05721F/cit16/1) 2020; 36
Da Pian (D3NR05721F/cit15/3) 2018; 109
Newbloom (D3NR05721F/cit18/1) 2014; 10
Neu (D3NR05721F/cit23/1) 2023; 56
Liu (D3NR05721F/cit27/1) 2020; 53
Cao (D3NR05721F/cit39/1) 2022; 4
Machui (D3NR05721F/cit25/2) 2011; 212
Wu (D3NR05721F/cit10/1) 2022; 55
Leclerc (D3NR05721F/cit32/1) 1999; 11
Rughooputh (D3NR05721F/cit32/2) 2003; 25
Liao (D3NR05721F/cit41/1) 2021; 174
Cao (D3NR05721F/cit30/3) 2020; 53
Liao (D3NR05721F/cit41/2) 2021; 37
Keum (D3NR05721F/cit17/3) 2013; 15
Lee (D3NR05721F/cit20/1) 2014; 24
References_xml – issn: 2019
  publication-title: Conjugated Polymers: Properties, Processing, and Applications
  doi: Reynolds Thompson Skotheim
– issn: 2021
  volume-title: Characterization of polymers by dynamic light scattering
  end-page: 441-498
  publication-title: Molecular Characterization of Polymers
  doi: Russo Streletzky Gorman Huberty Zhang
– issn: 2007
  publication-title: Hansen solubility parameters: a user's handbook
  doi: Hansen
– volume: 35
  start-page: 860
  issue: 10
  year: 2004
  ident: D3NR05721F/cit14/3
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.760351008
– volume: 9
  start-page: 4802
  issue: 16
  year: 2018
  ident: D3NR05721F/cit40/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b01738
– volume: 39
  start-page: 796
  issue: 7
  year: 2021
  ident: D3NR05721F/cit15/1
  publication-title: Chin. J. Polym. Sci.
  doi: 10.1007/s10118-021-2555-6
– volume: 25
  start-page: 4668
  issue: 8
  year: 2009
  ident: D3NR05721F/cit14/1
  publication-title: Langmuir
  doi: 10.1021/la803339f
– volume: 174
  start-page: 148
  year: 2021
  ident: D3NR05721F/cit41/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.12.006
– volume: 53
  start-page: 4264
  issue: 11
  year: 2020
  ident: D3NR05721F/cit29/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.0c00579
– volume: 10
  start-page: 8945
  issue: 44
  year: 2014
  ident: D3NR05721F/cit18/1
  publication-title: Soft Matter
  doi: 10.1039/c4sm00960f
– start-page: 441
  volume-title: Molecular Characterization of Polymers
  year: 2021
  ident: D3NR05721F/cit38/1
  doi: 10.1016/B978-0-12-819768-4.00014-2
– volume: 11
  start-page: 1491
  issue: 18
  year: 1999
  ident: D3NR05721F/cit32/1
  publication-title: Adv. Mater.
  doi: 10.1002/(Sici)1521-4095(199912)11:18<1491::Aid-Adma1491>3.0.Co;2-O
– volume: 5
  start-page: 328
  issue: 4
  year: 2006
  ident: D3NR05721F/cit33/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1612
– volume: 25
  start-page: 1071
  issue: 5
  year: 2003
  ident: D3NR05721F/cit32/2
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
  doi: 10.1002/polb.1987.090250508
– volume: 58
  start-page: 6982
  issue: 50
  year: 2022
  ident: D3NR05721F/cit5/1
  publication-title: Chem. Commun.
  doi: 10.1039/d2cc01430k
– volume: 212
  start-page: 2159
  issue: 19
  year: 2011
  ident: D3NR05721F/cit25/2
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.201100284
– volume: 217
  start-page: 123429
  year: 2021
  ident: D3NR05721F/cit31/2
  publication-title: Polymer
  doi: 10.1016/j.polymer.2021.123429
– volume: 35
  start-page: 2713
  issue: 7
  year: 2023
  ident: D3NR05721F/cit34/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.2c02141
– volume: 35
  start-page: e2209896
  issue: 17
  year: 2023
  ident: D3NR05721F/cit3/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202209896
– volume: 13
  start-page: 2773
  issue: 15
  year: 2017
  ident: D3NR05721F/cit15/4
  publication-title: Soft Matter
  doi: 10.1039/c6sm02631a
– volume: 100
  start-page: 138
  year: 2012
  ident: D3NR05721F/cit25/1
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2012.01.005
– volume: 10
  start-page: 13896
  issue: 37
  year: 2022
  ident: D3NR05721F/cit8/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/d2tc00761d
– volume: 10
  start-page: 29824
  issue: 35
  year: 2018
  ident: D3NR05721F/cit17/2
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b07643
– volume: 34
  start-page: e2203055
  issue: 32
  year: 2022
  ident: D3NR05721F/cit35/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202203055
– volume: 50
  start-page: 4867
  issue: 13
  year: 2017
  ident: D3NR05721F/cit6/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.7b00582
– start-page: 185
  year: 2019
  ident: D3NR05721F/cit28/1
  publication-title: Polymer
  doi: 10.1016/j.polymer.2019.121986
– volume: 56
  start-page: 2092
  issue: 5
  year: 2023
  ident: D3NR05721F/cit23/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.2c02259
– volume: 30
  start-page: 2002221
  issue: 27
  year: 2020
  ident: D3NR05721F/cit30/4
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202002221
– volume: 14
  start-page: 927
  issue: 4
  year: 2023
  ident: D3NR05721F/cit7/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.2c03600
– volume: 4
  start-page: 3023
  issue: 5
  year: 2022
  ident: D3NR05721F/cit39/1
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.1c01511
– volume: 21
  start-page: 656
  issue: 6
  year: 2022
  ident: D3NR05721F/cit1/2
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-022-01244-y
– volume: 32
  start-page: 7807
  issue: 23
  year: 1999
  ident: D3NR05721F/cit38/2
  publication-title: Macromolecules
  doi: 10.1021/ma9903106
– volume: 110
  start-page: 4068
  issue: 8
  year: 1999
  ident: D3NR05721F/cit12/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478288
– volume: 5
  start-page: 5293
  year: 2014
  ident: D3NR05721F/cit39/2
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6293
– volume: 15
  start-page: 1114
  issue: 6
  year: 2013
  ident: D3NR05721F/cit17/3
  publication-title: CrystEngComm
  doi: 10.1039/c2ce26666k
– volume: 24
  start-page: 3524
  issue: 23
  year: 2014
  ident: D3NR05721F/cit20/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201303794
– volume: 48
  start-page: 813
  issue: 3
  year: 2007
  ident: D3NR05721F/cit10/2
  publication-title: Polymer
  doi: 10.1016/j.polymer.2006.12.003
– volume: 43
  start-page: e2200533
  issue: 24
  year: 2022
  ident: D3NR05721F/cit30/2
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.202200533
– volume: 380
  start-page: 334
  issue: 1–3
  year: 2011
  ident: D3NR05721F/cit36/1
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2011.03.003
– volume: 53
  start-page: 11142
  issue: 24
  year: 2020
  ident: D3NR05721F/cit30/3
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.0c02086
– volume: 50
  start-page: 1405
  issue: 20
  year: 2012
  ident: D3NR05721F/cit24/1
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
  doi: 10.1002/polb.23153
– volume: 14
  start-page: 1270
  issue: 7
  year: 2018
  ident: D3NR05721F/cit37/1
  publication-title: Soft Matter
  doi: 10.1039/c7sm02493b
– volume: 46
  start-page: 6533
  issue: 16
  year: 2013
  ident: D3NR05721F/cit23/2
  publication-title: Macromolecules
  doi: 10.1021/ma400597j
– volume: 7
  start-page: 5402
  issue: 6
  year: 2013
  ident: D3NR05721F/cit19/1
  publication-title: ACS Nano
  doi: 10.1021/nn401323f
– volume-title: Hansen solubility parameters: a user's handbook
  year: 2007
  ident: D3NR05721F/cit22/1
  doi: 10.1201/9781420006834
– volume: 36
  start-page: 141
  issue: 1
  year: 2020
  ident: D3NR05721F/cit16/1
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.9b02604
– volume-title: Conjugated Polymers: Properties, Processing, and Applications
  year: 2019
  ident: D3NR05721F/cit4/1
  doi: 10.1201/9780429190520
– volume: 55
  start-page: 4353
  issue: 11
  year: 2022
  ident: D3NR05721F/cit21/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.1c02449
– volume: 50
  start-page: 442
  issue: 6
  year: 2012
  ident: D3NR05721F/cit17/4
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
  doi: 10.1002/polb.23022
– volume: 6
  start-page: 661
  issue: 3
  year: 2018
  ident: D3NR05721F/cit17/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c7tc04823h
– volume: 14
  start-page: 4148
  issue: 1
  year: 2023
  ident: D3NR05721F/cit1/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39832-4
– volume: 138
  start-page: 054904
  issue: 5
  year: 2013
  ident: D3NR05721F/cit41/3
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4788616
– volume: 37
  start-page: 8627
  issue: 28
  year: 2021
  ident: D3NR05721F/cit41/2
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.1c01545
– volume: 27
  start-page: 2687
  issue: 7
  year: 2015
  ident: D3NR05721F/cit13/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b00635
– start-page: 2306576
  year: 2023
  ident: D3NR05721F/cit30/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202306576
– volume: 3
  start-page: 1
  issue: 2
  year: 2018
  ident: D3NR05721F/cit2/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.86
– volume: 55
  start-page: 8609
  issue: 19
  year: 2022
  ident: D3NR05721F/cit10/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.2c01701
– year: 2023
  ident: D3NR05721F/cit31/1
  publication-title: J. Polym. Sci.
  doi: 10.1002/pol.20230689
– volume: 46
  start-page: 6217
  issue: 15
  year: 2013
  ident: D3NR05721F/cit9/1
  publication-title: Macromolecules
  doi: 10.1021/ma4011523
– volume: 54
  start-page: 2477
  issue: 5
  year: 2021
  ident: D3NR05721F/cit15/2
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.0c02544
– volume: 22
  start-page: 11009
  issue: 26
  year: 2006
  ident: D3NR05721F/cit10/3
  publication-title: Langmuir
  doi: 10.1021/la0612769
– volume: 15
  start-page: 1799
  issue: 8
  year: 2019
  ident: D3NR05721F/cit11/1
  publication-title: Soft Matter
  doi: 10.1039/c8sm02517g
– volume: 53
  start-page: 8255
  issue: 19
  year: 2020
  ident: D3NR05721F/cit27/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.0c01646
– volume: 54
  start-page: 141
  year: 2003
  ident: D3NR05721F/cit14/2
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.54.011002.103811
– volume: 54
  start-page: 2143
  issue: 5
  year: 2021
  ident: D3NR05721F/cit26/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.0c02436
– volume: 118
  start-page: 4731
  issue: 9
  year: 2018
  ident: D3NR05721F/cit3/2
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00482
– volume: 109
  start-page: 222
  year: 2018
  ident: D3NR05721F/cit15/3
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2018.09.049
SSID ssj0069363
Score 2.4680614
Snippet Conjugated polymers (CPs) are solution-processible for various electronic applications, where solution aggregation and dynamics could impact the morphology in...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6495
SubjectTerms Behavior
Chlorobenzene
Molecular conformation
Molecular dynamics
Polymers
Solvents
Toluene
Virial coefficients
X-ray scattering
Title Effect of solvent quality and sidechain architecture on conjugated polymer chain conformation in solution
URI https://www.ncbi.nlm.nih.gov/pubmed/38465951
https://www.proquest.com/docview/3003733587
https://www.proquest.com/docview/2955264975
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagvcAB8SqkFGQEF1SlJHacxMcCXSpYFgntqisukePYdCuaoH0c4Nczju0kVfdQuES7juU85sv4m_F4BqHXiSQ0ZbwKk4STMNERC0VMRSg512A_55wJ4-_4MklPZ8mnOZv3xTjb3SXr8kj-2bqv5H-kCm0gV7NL9h8k2w0KDfAb5AtHkDAcbyRjl3oY-B5cxwQuuj2SNqeSKcQpz8HyP7yyWtCYwPP6YmP8Z5Up0vD7Ui0PbUc40e1mNJ4Qf_tDCgv6uFmBZAdBs61zfWNyIfzoAnzaKIHv56LRPf5Gzjk9VgvfNLfBumeqvliooQuCJCYGiwy0JjFhiZTaGjxHakubV7XpEFJ0oDjTxNbavKbRI2oSola0XgKzJLHu5y2_Vj_5Woxm43ExPZlPb6NdAvYCKLzd48_vPp75STnltC2q192Vz1RL-dt-7Kvc5JrBAfRj6cvCtPRjeh_dc3YDPrYgeIBuqfohujvIJvkILSwccKOxgwN2cMAAB9zBAQ_hgJsa93DADg7YdhzCAcN_D4fHaDY6mb4_DV0ljVDCw65DJUF157Ey2RpjzYWOq7IkOVNaSGDo0ECYZqRMtQD6xzkRiapYJCKRQkdg3Htop25q9RThUmVggsaSigyotI5zLmGKUBERgtMykwF6499hIV2aeVPt5GfRhjtQXnygk2_t-x4F6FXX95dNrrK114EXReE-vlVBTeIkSlmeBehldxpUo1nvErVqNquCcMaA7_OMBeiJFWF3GQq8m4F1EaA9kGnX3GNh_wbDPkN3-s_hAO2slxv1HDjqunzh8PcXA3mU9Q
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+solvent+quality+and+sidechain+architecture+on+conjugated+polymer+chain+conformation+in+solution&rft.jtitle=Nanoscale&rft.au=Ma%2C+Guorong&rft.au=Li%2C+Zhaofan&rft.au=Fang%2C+Lei&rft.au=Xia%2C+Wenjie&rft.date=2024-03-28&rft.issn=2040-3372&rft.eissn=2040-3372&rft.volume=16&rft.issue=13&rft.spage=6495&rft_id=info:doi/10.1039%2Fd3nr05721f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon