Experimental and numerical study on isolated simply-supported bridges subjected to a fault rupture

To investigate the effects of fault crossing on the seismically isolated bridges, shake table testing was conducted on a 1/10 scaled two-span simply-supported bridge model isolated by lead rubber bearings (LRBs). A synthetic fault rupture, consisting of low- and high-frequency simulations, was used...

Full description

Saved in:
Bibliographic Details
Published inSoil dynamics and earthquake engineering (1984) Vol. 127; p. 105819
Main Authors Yi, Jiang, Yang, Huaiyu, Li, Jianzhong
Format Journal Article
LanguageEnglish
Published Barking Elsevier Ltd 01.12.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To investigate the effects of fault crossing on the seismically isolated bridges, shake table testing was conducted on a 1/10 scaled two-span simply-supported bridge model isolated by lead rubber bearings (LRBs). A synthetic fault rupture, consisting of low- and high-frequency simulations, was used to excite the test model from low to high amplitude. Test results revealed that lead rubber bearings are effective in protecting the girders and the piers of the bridge subject to fault rupture, but at the cost of large peak and residual bearing deformation or even the failure of LRBs. The bearings at near fault (NF) span are more susceptible to fault rupture than the crossing fault (CF) span because the participation of longitudinal response compensates the transverse seismic demand of the bearings at CF span. Two numerical models were constructed with differing modeling consideration of LRBs: a sophisticated one using Bouc-wen model and a simplified one using Bilinear model. Both numerical models were able to predict the behavior of test model equally well before the failure of the bearings, validating that the existing nonlinear analytical techniques are adequate to estimate the seismic response of bridges subjected to a fault rupture. [Display omitted] •A 1/10-scale bridge model isolated by lead rubber bearings was tested on shake tables.•Bearings at crossing fault spans have pronounced coupled response in two orthogonal directions.•The bearings at near fault span are more susceptible to fault rupture than the crossing fault span.•Numerical study revealed adequacy of analytical techniques to design bridges crossing a fault.
AbstractList To investigate the effects of fault crossing on the seismically isolated bridges, shake table testing was conducted on a 1/10 scaled two-span simply-supported bridge model isolated by lead rubber bearings (LRBs). A synthetic fault rupture, consisting of low- and high-frequency simulations, was used to excite the test model from low to high amplitude. Test results revealed that lead rubber bearings are effective in protecting the girders and the piers of the bridge subject to fault rupture, but at the cost of large peak and residual bearing deformation or even the failure of LRBs. The bearings at near fault (NF) span are more susceptible to fault rupture than the crossing fault (CF) span because the participation of longitudinal response compensates the transverse seismic demand of the bearings at CF span. Two numerical models were constructed with differing modeling consideration of LRBs: a sophisticated one using Bouc-wen model and a simplified one using Bilinear model. Both numerical models were able to predict the behavior of test model equally well before the failure of the bearings, validating that the existing nonlinear analytical techniques are adequate to estimate the seismic response of bridges subjected to a fault rupture.
To investigate the effects of fault crossing on the seismically isolated bridges, shake table testing was conducted on a 1/10 scaled two-span simply-supported bridge model isolated by lead rubber bearings (LRBs). A synthetic fault rupture, consisting of low- and high-frequency simulations, was used to excite the test model from low to high amplitude. Test results revealed that lead rubber bearings are effective in protecting the girders and the piers of the bridge subject to fault rupture, but at the cost of large peak and residual bearing deformation or even the failure of LRBs. The bearings at near fault (NF) span are more susceptible to fault rupture than the crossing fault (CF) span because the participation of longitudinal response compensates the transverse seismic demand of the bearings at CF span. Two numerical models were constructed with differing modeling consideration of LRBs: a sophisticated one using Bouc-wen model and a simplified one using Bilinear model. Both numerical models were able to predict the behavior of test model equally well before the failure of the bearings, validating that the existing nonlinear analytical techniques are adequate to estimate the seismic response of bridges subjected to a fault rupture. [Display omitted] •A 1/10-scale bridge model isolated by lead rubber bearings was tested on shake tables.•Bearings at crossing fault spans have pronounced coupled response in two orthogonal directions.•The bearings at near fault span are more susceptible to fault rupture than the crossing fault span.•Numerical study revealed adequacy of analytical techniques to design bridges crossing a fault.
ArticleNumber 105819
Author Yi, Jiang
Yang, Huaiyu
Li, Jianzhong
Author_xml – sequence: 1
  givenname: Jiang
  surname: Yi
  fullname: Yi, Jiang
  email: jiangyi@gzhu.edu.cn
  organization: College of Civil Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
– sequence: 2
  givenname: Huaiyu
  surname: Yang
  fullname: Yang, Huaiyu
  email: yhy20060507@sina.com
  organization: State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai, 200092, China
– sequence: 3
  givenname: Jianzhong
  surname: Li
  fullname: Li, Jianzhong
  email: lijianzh@tongji.edu.cn
  organization: State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai, 200092, China
BookMark eNqFkE1LJDEQhoO44OjuT1gIeO4xlUx3uvEgMqgrCF4U9hbS6WpJ05O0-RDn32-G8bQXT0W9vE8VPOfk1HmHhPwGtgYGzdW0jt7Ow96tOYOuZHUL3QlZQSu7Smzg7ylZMd7ISvIGzsh5jBNjIKFtVqS_-1ww2B26pGeq3UBd3pXAlC2mPOypd9RGP-uEA412t8z7KuZl8eEQ9MEObxhpzP2E5pAkTzUddZ4TDXlJOeBP8mPUc8RfX_OCvN7fvWz_VE_PD4_b26fKCCFThRq42TQdbnoz8rqVAiTD2siWQ8d7acZRdKPkojeGb6BpCwaNqDsjeW04Exfk8nh3Cf49Y0xq8jm48lJxAZzztm5kaV0fWyb4GAOOytikk_UuBW1nBUwdpKpJfUlVB6nqKLXQ9X_0UuTpsP-WuzlyWAR8WAwqGovO4GBD8aYGb7-58A_Ig5f0
CitedBy_id crossref_primary_10_1038_s41598_024_54558_z
crossref_primary_10_1016_j_soildyn_2023_107818
crossref_primary_10_1155_2020_8810874
crossref_primary_10_1016_j_istruc_2022_08_123
crossref_primary_10_1016_j_soildyn_2023_108308
crossref_primary_10_1016_j_istruc_2021_07_019
crossref_primary_10_1016_j_istruc_2023_105039
crossref_primary_10_1186_s43251_021_00035_w
crossref_primary_10_1016_j_soildyn_2023_108412
crossref_primary_10_1016_j_engstruct_2019_110105
crossref_primary_10_1520_JTE20190797
crossref_primary_10_1016_j_engstruct_2023_117283
crossref_primary_10_1007_s10518_023_01763_2
crossref_primary_10_1038_s41598_024_77135_w
crossref_primary_10_1016_j_engstruct_2025_119889
crossref_primary_10_1016_j_engstruct_2024_117447
crossref_primary_10_3390_app10020624
crossref_primary_10_1016_j_istruc_2022_12_015
crossref_primary_10_1016_j_soildyn_2024_108712
crossref_primary_10_1016_j_soildyn_2023_108388
crossref_primary_10_3390_app14020852
crossref_primary_10_1007_s11771_022_5046_1
crossref_primary_10_1007_s10518_020_00958_1
crossref_primary_10_1007_s11629_023_8143_1
crossref_primary_10_1016_j_soildyn_2021_106881
crossref_primary_10_1016_j_soildyn_2024_109011
crossref_primary_10_1080_15732479_2024_2423039
crossref_primary_10_3390_ma16051792
crossref_primary_10_1016_j_istruc_2021_11_022
crossref_primary_10_1155_2020_9231382
Cites_doi 10.1061/JMCEA3.0002106
10.1002/eqe.4290140405
10.1061/(ASCE)1084-0702(2008)13:4(398)
10.1002/stc.99
10.1016/j.soildyn.2015.01.019
10.1061/(ASCE)1084-0702(2009)14:3(203)
10.1142/9789812811707_0018
10.1080/13632460902859169
10.1016/j.soildyn.2016.10.001
10.1785/gssrl.70.1.59
10.1061/(ASCE)BE.1943-5592.0000478
10.1016/j.soildyn.2013.10.012
10.1002/eqe.391
10.1007/s11803-013-0170-4
10.1061/JSDEAG.0002957
10.1785/0120020100
10.1016/j.engstruct.2010.03.008
10.1061/(ASCE)1084-0702(2009)14:3(216)
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Dec 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 2019
DBID AAYXX
CITATION
7ST
7TG
7UA
8FD
C1K
FR3
KL.
KR7
SOI
DOI 10.1016/j.soildyn.2019.105819
DatabaseName CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Engineering Research Database
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-341X
ExternalDocumentID 10_1016_j_soildyn_2019_105819
S0267726118311813
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
TN5
WUQ
Y6R
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7ST
7TG
7UA
8FD
C1K
EFKBS
FR3
KL.
KR7
SOI
ID FETCH-LOGICAL-c337t-ea12c469e4bcf25873170e5c782192b7cff39f723bcc24168c3316359c725c203
IEDL.DBID .~1
ISSN 0267-7261
IngestDate Wed Aug 13 06:41:08 EDT 2025
Tue Jul 01 03:37:55 EDT 2025
Thu Apr 24 22:55:53 EDT 2025
Fri Feb 23 02:47:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Isolated simply-supported bridge
Fault rupture
Shake table test
Lead rubber bearing
Seismic performance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-ea12c469e4bcf25873170e5c782192b7cff39f723bcc24168c3316359c725c203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2312228567
PQPubID 2045399
ParticipantIDs proquest_journals_2312228567
crossref_citationtrail_10_1016_j_soildyn_2019_105819
crossref_primary_10_1016_j_soildyn_2019_105819
elsevier_sciencedirect_doi_10_1016_j_soildyn_2019_105819
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Soil dynamics and earthquake engineering (1984)
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Ghasemi, Cooper, Imbsen (bib6) 2000
Lee, Hong (bib25) 2010; 32
Mavroeidis, Papageorgiou (bib2) 2003; 93
Saiidi, Vosooghi, Choi (bib11) 2013; 19
Mavroeidis, Dong, Papageorgiou (bib18) 2004; 33
Vaez, Sharbatdar, Amiri (bib17) 2013; 12
European Committee for Standardization (bib28) 2005
Oettle, Bray, Dreger (bib3) 2015; 72
Kent, Park (bib27) 1971; 97
Goel, Chopra (bib8) 2009; 14
Wen (bib22) 1976; 102
PEER (bib20)
Yang, Mavroeidis, Ucak (bib13) 2017; 92
Robinson, Tucker (bib15) 1976; 4
Yen (bib4) 2002; 65
Mavronicola, Komodromos (bib26) 2012
Narasimhan, Nagarajaiah, Johnson (bib24) 2006; 13
Goel, Chopra (bib9) 2008; 13
Ministry of Transport of P. R. China (bib16) 2011
Erdik (bib5) 2001
Goel, Chopra (bib1) 2009; 14
Mazzoni, McKenna, Scott (bib21) 2006
Park, Wen, Ang (bib23) 1986; 14
Moncarz, Krawinkler (bib14) 1981; vol. 50
Kawashima, Takahashi, Ge (bib7) 2009; 13
Somerville, Irikura, Graves (bib19) 1999; 70
Rodriguez, Qu, Goel (bib10) 2012
Ucak, Mavroeidis, Tsopelas (bib12) 2014; 57
Vaez (10.1016/j.soildyn.2019.105819_bib17) 2013; 12
Ministry of Transport of P. R. China (10.1016/j.soildyn.2019.105819_bib16) 2011
Park (10.1016/j.soildyn.2019.105819_bib23) 1986; 14
Lee (10.1016/j.soildyn.2019.105819_bib25) 2010; 32
Oettle (10.1016/j.soildyn.2019.105819_bib3) 2015; 72
Goel (10.1016/j.soildyn.2019.105819_bib9) 2008; 13
Ucak (10.1016/j.soildyn.2019.105819_bib12) 2014; 57
Saiidi (10.1016/j.soildyn.2019.105819_bib11) 2013; 19
European Committee for Standardization (10.1016/j.soildyn.2019.105819_bib28) 2005
Somerville (10.1016/j.soildyn.2019.105819_bib19) 1999; 70
Ghasemi (10.1016/j.soildyn.2019.105819_bib6) 2000
Narasimhan (10.1016/j.soildyn.2019.105819_bib24) 2006; 13
Mavronicola (10.1016/j.soildyn.2019.105819_bib26) 2012
PEER (10.1016/j.soildyn.2019.105819_bib20)
Erdik (10.1016/j.soildyn.2019.105819_bib5) 2001
Moncarz (10.1016/j.soildyn.2019.105819_bib14) 1981; vol. 50
Goel (10.1016/j.soildyn.2019.105819_bib1) 2009; 14
Yang (10.1016/j.soildyn.2019.105819_bib13) 2017; 92
Mazzoni (10.1016/j.soildyn.2019.105819_bib21) 2006
Goel (10.1016/j.soildyn.2019.105819_bib8) 2009; 14
Mavroeidis (10.1016/j.soildyn.2019.105819_bib2) 2003; 93
Mavroeidis (10.1016/j.soildyn.2019.105819_bib18) 2004; 33
Yen (10.1016/j.soildyn.2019.105819_bib4) 2002; 65
Kawashima (10.1016/j.soildyn.2019.105819_bib7) 2009; 13
Robinson (10.1016/j.soildyn.2019.105819_bib15) 1976; 4
Kent (10.1016/j.soildyn.2019.105819_bib27) 1971; 97
Rodriguez (10.1016/j.soildyn.2019.105819_bib10) 2012
Wen (10.1016/j.soildyn.2019.105819_bib22) 1976; 102
References_xml – start-page: 149
  year: 2001
  end-page: 186
  ident: bib5
  article-title: Report on 1999 Kocaeli and düzce (Turkey) earthquakes
  publication-title: Struct Control Civ Inf Eng
– volume: vol. 50
  year: 1981
  ident: bib14
  publication-title: Theory and application of experimental model analysis in earthquake engineering
– volume: 14
  start-page: 216
  year: 2009
  end-page: 224
  ident: bib8
  article-title: Nonlinear analysis of ordinary bridges crossing fault-rupture zones
  publication-title: J Bridge Eng
– volume: 70
  start-page: 59
  year: 1999
  end-page: 80
  ident: bib19
  article-title: Characterizing crustal earthquake slip models for the prediction of strong ground motion
  publication-title: Seismol Res Lett
– year: 2005
  ident: bib28
  article-title: EN-1337-3: structural bearings-Part 3: elastomeric bearings, Brussels, Belgium
– volume: 57
  start-page: 164
  year: 2014
  end-page: 178
  ident: bib12
  article-title: Behavior of a seismically isolated bridge crossing a fault rupture zone
  publication-title: Soil Dyn Earthq Eng
– ident: bib20
– year: 2000
  ident: bib6
  article-title: The November 1999 Duzce earthquake: post-earthquake investigation of the structures in the TEM
– volume: 97
  start-page: 1969
  year: 1971
  end-page: 1990
  ident: bib27
  article-title: Flexural members with confined concrete
  publication-title: J Struct Div
– volume: 65
  year: 2002
  ident: bib4
  article-title: Lessons learned about bridges from earthquake in Taiwan
  publication-title: Public Roads
– volume: 14
  start-page: 203
  year: 2009
  end-page: 215
  ident: bib1
  article-title: Linear analysis of ordinary bridges crossing fault-rupture zones
  publication-title: J Bridge Eng
– volume: 32
  start-page: 2074
  year: 2010
  end-page: 2086
  ident: bib25
  article-title: Statistics of inelastic responses of hysteretic systems under bidirectional seismic excitations
  publication-title: Eng Struct
– start-page: 516
  year: 2012
  end-page: 526
  ident: bib10
  article-title: Seismic demand evaluation for a three-span curved bridge crossing fault-rupture zones
  publication-title: Struct Congr
– volume: 102
  start-page: 249
  year: 1976
  end-page: 263
  ident: bib22
  article-title: Method for random vibration of hysteretic systems
  publication-title: J Eng Mech Div
– year: 2011
  ident: bib16
  article-title: Lead rubber bearing isolator for highway bridges (JTT822-2011)
– year: 2006
  ident: bib21
  article-title: The open system for earthquake engineering simulation (OpenSEES) user command-language manual
– volume: 33
  start-page: 1023
  year: 2004
  end-page: 1049
  ident: bib18
  article-title: Near-fault ground motions, and the response of elastic and inelastic single-degree-of-freedom (SDOF) systems
  publication-title: Earthq Eng Struct Dyn
– volume: 72
  start-page: 37
  year: 2015
  end-page: 47
  ident: bib3
  article-title: Dynamic effects of surface fault rupture interaction with structures
  publication-title: Soil Dyn Earthq Eng
– volume: 4
  start-page: 251
  year: 1976
  end-page: 259
  ident: bib15
  article-title: A lead-rubber shear damper
  publication-title: Bull N Z Natl Soc Earthq Eng
– volume: 13
  start-page: 573
  year: 2006
  end-page: 588
  ident: bib24
  article-title: “Smart” base isolated benchmark building. Part I: problem definition
  publication-title: Struct Control Health Monit
– volume: 93
  start-page: 1099
  year: 2003
  end-page: 1131
  ident: bib2
  article-title: A mathematical representation of near-fault ground motions
  publication-title: Bull Seismol Soc Am
– volume: 13
  start-page: 965
  year: 2009
  end-page: 996
  ident: bib7
  article-title: Reconnaissance report on damage of bridges in 2008 Wenchuan, China, earthquake
  publication-title: J Earthq Eng
– year: 2012
  ident: bib26
  article-title: The effect of non-linear parameters on the modeling of multi-storey seismically isolated buildings
– volume: 12
  start-page: 267
  year: 2013
  end-page: 278
  ident: bib17
  article-title: Dominant pulse simulation of near fault ground motions
  publication-title: Earthq Eng Eng Vib
– volume: 14
  start-page: 543
  year: 1986
  end-page: 557
  ident: bib23
  article-title: Random vibration of hysteretic systems under bi-directional ground motions
  publication-title: Earthq Eng Struct Dyn
– volume: 13
  start-page: 398
  year: 2008
  end-page: 408
  ident: bib9
  article-title: Role of shear keys in seismic behavior of bridges crossing fault-rupture zones
  publication-title: J Bridge Eng
– volume: 19
  year: 2013
  ident: bib11
  article-title: Shake table studies and analysis of a two-span RC bridge model subjected to a fault rupture
  publication-title: J Bridge Eng
– volume: 92
  start-page: 183
  year: 2017
  end-page: 191
  ident: bib13
  article-title: Effect of ground motion filtering on the dynamic response of a seismically isolated bridge with and without fault crossing considerations
  publication-title: Soil Dyn Earthq Eng
– volume: 102
  start-page: 249
  issue: 2
  year: 1976
  ident: 10.1016/j.soildyn.2019.105819_bib22
  article-title: Method for random vibration of hysteretic systems
  publication-title: J Eng Mech Div
  doi: 10.1061/JMCEA3.0002106
– volume: 14
  start-page: 543
  issue: 4
  year: 1986
  ident: 10.1016/j.soildyn.2019.105819_bib23
  article-title: Random vibration of hysteretic systems under bi-directional ground motions
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.4290140405
– volume: 13
  start-page: 398
  issue: 4
  year: 2008
  ident: 10.1016/j.soildyn.2019.105819_bib9
  article-title: Role of shear keys in seismic behavior of bridges crossing fault-rupture zones
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)1084-0702(2008)13:4(398)
– volume: 13
  start-page: 573
  issue: 2–3
  year: 2006
  ident: 10.1016/j.soildyn.2019.105819_bib24
  article-title: “Smart” base isolated benchmark building. Part I: problem definition
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.99
– volume: vol. 50
  year: 1981
  ident: 10.1016/j.soildyn.2019.105819_bib14
– volume: 72
  start-page: 37
  year: 2015
  ident: 10.1016/j.soildyn.2019.105819_bib3
  article-title: Dynamic effects of surface fault rupture interaction with structures
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2015.01.019
– year: 2006
  ident: 10.1016/j.soildyn.2019.105819_bib21
– volume: 14
  start-page: 203
  issue: 3
  year: 2009
  ident: 10.1016/j.soildyn.2019.105819_bib1
  article-title: Linear analysis of ordinary bridges crossing fault-rupture zones
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)1084-0702(2009)14:3(203)
– volume: 4
  start-page: 251
  year: 1976
  ident: 10.1016/j.soildyn.2019.105819_bib15
  article-title: A lead-rubber shear damper
  publication-title: Bull N Z Natl Soc Earthq Eng
– start-page: 149
  year: 2001
  ident: 10.1016/j.soildyn.2019.105819_bib5
  article-title: Report on 1999 Kocaeli and düzce (Turkey) earthquakes
  publication-title: Struct Control Civ Inf Eng
  doi: 10.1142/9789812811707_0018
– volume: 13
  start-page: 965
  issue: 7
  year: 2009
  ident: 10.1016/j.soildyn.2019.105819_bib7
  article-title: Reconnaissance report on damage of bridges in 2008 Wenchuan, China, earthquake
  publication-title: J Earthq Eng
  doi: 10.1080/13632460902859169
– volume: 92
  start-page: 183
  year: 2017
  ident: 10.1016/j.soildyn.2019.105819_bib13
  article-title: Effect of ground motion filtering on the dynamic response of a seismically isolated bridge with and without fault crossing considerations
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2016.10.001
– volume: 65
  issue: 4
  year: 2002
  ident: 10.1016/j.soildyn.2019.105819_bib4
  article-title: Lessons learned about bridges from earthquake in Taiwan
  publication-title: Public Roads
– year: 2005
  ident: 10.1016/j.soildyn.2019.105819_bib28
– volume: 70
  start-page: 59
  issue: 1
  year: 1999
  ident: 10.1016/j.soildyn.2019.105819_bib19
  article-title: Characterizing crustal earthquake slip models for the prediction of strong ground motion
  publication-title: Seismol Res Lett
  doi: 10.1785/gssrl.70.1.59
– volume: 19
  issue: 8
  year: 2013
  ident: 10.1016/j.soildyn.2019.105819_bib11
  article-title: Shake table studies and analysis of a two-span RC bridge model subjected to a fault rupture
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)BE.1943-5592.0000478
– volume: 57
  start-page: 164
  year: 2014
  ident: 10.1016/j.soildyn.2019.105819_bib12
  article-title: Behavior of a seismically isolated bridge crossing a fault rupture zone
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2013.10.012
– year: 2011
  ident: 10.1016/j.soildyn.2019.105819_bib16
– volume: 33
  start-page: 1023
  issue: 9
  year: 2004
  ident: 10.1016/j.soildyn.2019.105819_bib18
  article-title: Near-fault ground motions, and the response of elastic and inelastic single-degree-of-freedom (SDOF) systems
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.391
– year: 2000
  ident: 10.1016/j.soildyn.2019.105819_bib6
– volume: 12
  start-page: 267
  issue: 2
  year: 2013
  ident: 10.1016/j.soildyn.2019.105819_bib17
  article-title: Dominant pulse simulation of near fault ground motions
  publication-title: Earthq Eng Eng Vib
  doi: 10.1007/s11803-013-0170-4
– volume: 97
  start-page: 1969
  year: 1971
  ident: 10.1016/j.soildyn.2019.105819_bib27
  article-title: Flexural members with confined concrete
  publication-title: J Struct Div
  doi: 10.1061/JSDEAG.0002957
– ident: 10.1016/j.soildyn.2019.105819_bib20
– volume: 93
  start-page: 1099
  issue: 3
  year: 2003
  ident: 10.1016/j.soildyn.2019.105819_bib2
  article-title: A mathematical representation of near-fault ground motions
  publication-title: Bull Seismol Soc Am
  doi: 10.1785/0120020100
– volume: 32
  start-page: 2074
  issue: 8
  year: 2010
  ident: 10.1016/j.soildyn.2019.105819_bib25
  article-title: Statistics of inelastic responses of hysteretic systems under bidirectional seismic excitations
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2010.03.008
– volume: 14
  start-page: 216
  issue: 3
  year: 2009
  ident: 10.1016/j.soildyn.2019.105819_bib8
  article-title: Nonlinear analysis of ordinary bridges crossing fault-rupture zones
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)1084-0702(2009)14:3(216)
– start-page: 516
  year: 2012
  ident: 10.1016/j.soildyn.2019.105819_bib10
  article-title: Seismic demand evaluation for a three-span curved bridge crossing fault-rupture zones
  publication-title: Struct Congr
– year: 2012
  ident: 10.1016/j.soildyn.2019.105819_bib26
SSID ssj0017186
Score 2.3964434
Snippet To investigate the effects of fault crossing on the seismically isolated bridges, shake table testing was conducted on a 1/10 scaled two-span simply-supported...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105819
SubjectTerms Bearings
Bridge piers
Bridges
Computer simulation
Fault lines
Fault rupture
Girders
Isolated simply-supported bridge
Lead rubber bearing
Mathematical models
Model testing
Nonlinear analysis
Numerical models
Piers
Rubber
Rupture
Rupturing
Seismic performance
Seismic response
Shake table test
Title Experimental and numerical study on isolated simply-supported bridges subjected to a fault rupture
URI https://dx.doi.org/10.1016/j.soildyn.2019.105819
https://www.proquest.com/docview/2312228567
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT1wfSw5es4-2SdrjIsqq4EUFbyFJG9ildovbHvbib3emTX0hLHhsyJQymc58k0y-IeQycSIBNyfYOJUZi4ROmeFWMwMZS-ocx6CF1RYPYvoc3b3wlw1y1d2FwbJK7_tbn954az8y9NoclrPZ8BF7J0lIAMAo8fYkMn5GkUQrH7x_lnmMwfeKdp9FMpz9dYtnOEe-3DxdIQ3qOMGOtzES7vwdn3556ib83OyRXY8b6aT9tH2ykRUHZOcbm-AhMdff2PqpLlJa1O15TE4bFlm6KOgMbA3gZUqXs9cyX7FlXTbU5in1hA90WRvcm4GRakE1dbrOK_pWl3jUcESeb66frqbMt1BgNgxlxTI9DixkwFlkrAt4LAEujDJuARcAtDPSOhcmTgahsRZiuYhBDBAaT6wMuA1G4THZLBZFdkKo0SKWkZYwPcQsJ3ZpYkQmeGi5tlz2SNQpTlnPL45tLnLVFZLNlde3Qn2rVt89MvgUK1uCjXUCcbcq6oelKAgC60TPu1VU_lddKgC4uAvGhTz9_5vPyDY-tXUu52SzequzC0Arlek35tgnW5Pb--nDB9K76xs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3R3QPtARVoVT4KPnB1l01iOzmiFWhht3spSNws24mlRSEbscmBf8_MxqG0qoTUq5OJovF45o09fgNwlnmZoZuTfJyrgifS5NwKZ7jFjCX3XlDQomqLhZzeJTf34n4LJv1dGCqrDL6_8-kbbx1GRkGbo3q5HP2i3kkKEwA0Sro9GX-AIbFTiQEML65n08XrYQK6X9lttShOAr8v8oweiDK3zJ-JCXWcUdPblDh3_h2i_nLWmwh09Rl2AnRkF93f7cJWUe3BpzeEgvtgL98Q9jNT5axquyOZkm2IZNmqYks0N0SYOVsvH-vyma_besNunrPA-cDWraXtGRxpVswwb9qyYU9tTacNX-Du6vJ2MuWhiwJ3cawaXphx5DAJLhLrfCRShYjhvBAOoQGiO6uc93HmVRRb5zCcyxTFEKSJzKlIuOg8_gqDalUV34BZI1OVGIWvx5TopD7PrCykiJ0wTqgDSHrFaRcoxqnTRan7WrIHHfStSd-60_cB_HgVqzuOjfcE0n5W9B_GojEOvCd63M-iDqt1rRHj0kaYkOrw_798CtvT259zPb9ezI7gIz3pyl6OYdA8tcV3BC-NPQnG-QLiMu3M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+and+numerical+study+on+isolated+simply-supported+bridges+subjected+to+a+fault+rupture&rft.jtitle=Soil+dynamics+and+earthquake+engineering+%281984%29&rft.au=Yi%2C+Jiang&rft.au=Yang%2C+Huaiyu&rft.au=Li%2C+Jianzhong&rft.date=2019-12-01&rft.pub=Elsevier+Ltd&rft.issn=0267-7261&rft.eissn=1879-341X&rft.volume=127&rft_id=info:doi/10.1016%2Fj.soildyn.2019.105819&rft.externalDocID=S0267726118311813
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0267-7261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0267-7261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0267-7261&client=summon