Financial Crisis Prediction Based on Long-Term and Short-Term Memory Neural Network
Enterprise financial crisis prediction analysis can predict the business process of enterprises, so that enterprises can take corresponding strategies in time. The financial crisis prediction of listed companies can effectively reflect the business situation, so as to give investors reasonable inves...
Saved in:
Published in | Wireless communications and mobile computing Vol. 2022; pp. 1 - 8 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Hindawi
29.05.2022
Hindawi Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Enterprise financial crisis prediction analysis can predict the business process of enterprises, so that enterprises can take corresponding strategies in time. The financial crisis prediction of listed companies can effectively reflect the business situation, so as to give investors reasonable investment advice. In order to supervise the sustainable management ability of enterprises efficiently and accurately, this paper proposed a financial crisis prediction method based on long-term and short-term memory neural network, so as to provide valuable information for decision-makers. Firstly, the data in the enterprise financial system is analyzed and extracted, and the original data is cleaned and dimensionalized by normalization and feature selection. Then, the long-term and short-term memory neural network is used to build the financial early warning model, and the wolf pack algorithm is used to optimize the initial weight and bias parameters, so as to improve the efficiency of parameter optimization. Finally, the financial data of 20 large- and medium-sized enterprises from 2019 to 2021 are verified and analyzed. The experimental results show that compared with other common machine learning methods, the constructed wolf pack-optimized long-term and short-term memory neural network has the highest prediction performance in terms of root mean square error and goodness of fit, with the goodness of fit reaching 94.2%. |
---|---|
AbstractList | Enterprise financial crisis prediction analysis can predict the business process of enterprises, so that enterprises can take corresponding strategies in time. The financial crisis prediction of listed companies can effectively reflect the business situation, so as to give investors reasonable investment advice. In order to supervise the sustainable management ability of enterprises efficiently and accurately, this paper proposed a financial crisis prediction method based on long-term and short-term memory neural network, so as to provide valuable information for decision-makers. Firstly, the data in the enterprise financial system is analyzed and extracted, and the original data is cleaned and dimensionalized by normalization and feature selection. Then, the long-term and short-term memory neural network is used to build the financial early warning model, and the wolf pack algorithm is used to optimize the initial weight and bias parameters, so as to improve the efficiency of parameter optimization. Finally, the financial data of 20 large- and medium-sized enterprises from 2019 to 2021 are verified and analyzed. The experimental results show that compared with other common machine learning methods, the constructed wolf pack-optimized long-term and short-term memory neural network has the highest prediction performance in terms of root mean square error and goodness of fit, with the goodness of fit reaching 94.2%. |
Author | Cai, Yinying Ling, Tang |
Author_xml | – sequence: 1 givenname: Tang orcidid: 0000-0001-6529-1986 surname: Ling fullname: Ling, Tang organization: Chongqing University of EducationChongqing 400047Chinacqu.edu.cn – sequence: 2 givenname: Yinying surname: Cai fullname: Cai, Yinying organization: Chongqing University of EducationChongqing 400047Chinacqu.edu.cn |
BookMark | eNp9kE1PAjEYhBuDiYDe_AFNPOpKP-h296hE1ATRBDw33bYrRWix3Q3h31uyxKOndybzZN5kBqDnvDMAXGN0jzFjI4IIGTFOijFHZ6CPGUVZkXPe-9N5eQEGMa4RQhQR3AeLqXXSKSs3cBJstBF-BKOtaqx38FFGo2ESM---sqUJWyidhouVD01n38zWhwOcmzakhrlp9j58X4LzWm6iuTrdIficPi0nL9ns_fl18jDLFKW8yQxl40obXCmmeEWZ5oQQrGRdqZLqXFUo11jXJZYpSKYmlFFeyqIw1ZgSTYfgpuvdBf_TmtiItW-DSy8FyTklpEScJOquo1TwMQZTi12wWxkOAiNxnE0cZxOn2RJ-2-Er67Tc2__pX02cbWk |
CitedBy_id | crossref_primary_10_3390_su15075882 crossref_primary_10_4018_JOEUC_326519 |
Cites_doi | 10.1109/TIFS.2020.2994740 10.5120/ijca2017913413 10.1007/s00500-021-06490-x 10.1155/2021/5560465 10.1016/j.apacoust.2020.107520 10.1155/2021/6664776 10.3390/s20154314 10.1016/j.compchemeng.2019.03.012 10.3390/app10072483 10.3390/su11061579 10.1016/B978-0-323-88506-5.50086-3 10.11591/ijeecs.v12.i3.pp1037-1044 10.1109/TASLP.2020.3040033 10.1007/s00521-016-2501-7 10.14569/IJACSA.2017.081046 10.1016/j.knosys.2017.03.027 10.1063/5.0050437 10.14710/jtsiskom.2021.13969 10.1142/S146902681750002X 10.2197/ipsjjip.29.321 10.1007/s12553-021-00552-8 10.3390/su8010046 10.1007/s10257-019-00414-x 10.2139/ssrn.2962775 10.1016/j.ipm.2021.102692 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Tang Ling and Yinying Cai. Copyright © 2022 Tang Ling and Yinying Cai. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright © 2022 Tang Ling and Yinying Cai. – notice: Copyright © 2022 Tang Ling and Yinying Cai. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | RHU RHW RHX AAYXX CITATION 7SC 7SP 7XB 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PIMPY PQEST PQQKQ PQUKI PRINS Q9U |
DOI | 10.1155/2022/5728470 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Open Access Journals (Hindawi Publishing) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest Central Korea Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: RHX name: Open Access Journals (Hindawi Publishing) url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-8677 |
Editor | Qu, Zhiguo |
Editor_xml | – sequence: 1 givenname: Zhiguo surname: Qu fullname: Qu, Zhiguo – fullname: Zhiguo Qu |
EndPage | 8 |
ExternalDocumentID | 10_1155_2022_5728470 |
GrantInformation_xml | – fundername: Chongqing Municipal Education Commission grantid: 17SKG216 |
GroupedDBID | .3N .4S .DC .GA 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 4ZD 50Y 50Z 52M 52O 52T 52U 52W 66C 6OB 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAFWJ AAJEY AAONW ABIJN ABPVW ACGFO ADBBV ADIZJ AENEX AEUQT AFBPY AFKRA AIAGR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR ARAPS ARCSS ASPBG ATUGU AVWKF AZBYB AZQEC AZVAB BAFTC BCNDV BENPR BGLVJ BHBCM BNHUX BROTX BRXPI CCPQU CS3 D-E D-F DPXWK DR2 DU5 DWQXO EBS EDO F00 F01 F04 F21 G-S G.N GNP GNUQQ GODZA GROUPED_DOAJ H.T H.X HCIFZ HZ~ I-F IAO ITC ITG ITH IX1 JPC K7- KQQ LAW LITHE LP6 LP7 M0N MK4 MY~ N04 N05 NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PIMPY Q.N QB0 QRW R.K RHU RHW RHX RWI RX1 RYL SUPJJ TUS UB1 W8V W99 WBKPD WIH WLBEL XPP XV2 ~IA ~WT 24P AAYXX CITATION H13 7SC 7SP 7XB 8FD 8FE 8FG ABUWG COVID JQ2 L7M L~C L~D P62 PQEST PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c337t-e354bde1bc5c7b35d72221cafbc93d6cb06d1df91a722b06f235379a88eb432d3 |
IEDL.DBID | RHX |
ISSN | 1530-8669 |
IngestDate | Sun Nov 03 16:22:31 EST 2024 Thu Sep 26 18:41:29 EDT 2024 Sun Jun 02 19:21:11 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-e354bde1bc5c7b35d72221cafbc93d6cb06d1df91a722b06f235379a88eb432d3 |
ORCID | 0000-0001-6529-1986 |
OpenAccessLink | https://dx.doi.org/10.1155/2022/5728470 |
PQID | 2673229072 |
PQPubID | 2034344 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2673229072 crossref_primary_10_1155_2022_5728470 hindawi_primary_10_1155_2022_5728470 |
PublicationCentury | 2000 |
PublicationDate | 2022-05-29 |
PublicationDateYYYYMMDD | 2022-05-29 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Wireless communications and mobile computing |
PublicationYear | 2022 |
Publisher | Hindawi Hindawi Limited |
Publisher_xml | – name: Hindawi – name: Hindawi Limited |
References | 23 24 25 27 28 29 Y. Mao (22) 2022; 7 10 11 J. Venskus (26) 2021; 26 12 13 14 15 M. Z. Uddin (6) 2017; 11 17 18 19 1 2 3 4 5 C. Marcella (16) 2018; 27 7 8 9 20 21 |
References_xml | – ident: 13 doi: 10.1109/TIFS.2020.2994740 – ident: 7 doi: 10.5120/ijca2017913413 – volume: 27 start-page: 5142 issue: 6 year: 2018 ident: 16 article-title: Predicting human eye fixations via an LSTM-based saliency attentive model publication-title: IEEE Transactions on Image Processing contributor: fullname: C. Marcella – ident: 20 doi: 10.1007/s00500-021-06490-x – ident: 27 doi: 10.1155/2021/5560465 – ident: 14 doi: 10.1016/j.apacoust.2020.107520 – ident: 28 doi: 10.1155/2021/6664776 – volume: 11 start-page: 1118 issue: 2 year: 2017 ident: 6 article-title: A robust approach for human activity recognition using 3-D body joint motion features with deep belief network publication-title: Ksii Transactions on Internet & Information Systems contributor: fullname: M. Z. Uddin – ident: 15 doi: 10.3390/s20154314 – ident: 18 doi: 10.1016/j.compchemeng.2019.03.012 – ident: 23 doi: 10.3390/app10072483 – ident: 12 doi: 10.3390/su11061579 – ident: 24 doi: 10.1016/B978-0-323-88506-5.50086-3 – ident: 11 doi: 10.11591/ijeecs.v12.i3.pp1037-1044 – ident: 19 doi: 10.1109/TASLP.2020.3040033 – ident: 4 doi: 10.1007/s00521-016-2501-7 – ident: 17 doi: 10.14569/IJACSA.2017.081046 – ident: 5 doi: 10.1016/j.knosys.2017.03.027 – ident: 25 doi: 10.1063/5.0050437 – ident: 21 doi: 10.14710/jtsiskom.2021.13969 – volume: 26 start-page: 1718 issue: 4 year: 2021 ident: 26 article-title: Unsupervised marine vessel trajectory prediction using LSTM network and wild bootstrapping techniques publication-title: Nonlinear Analysis: Modelling and Control contributor: fullname: J. Venskus – ident: 3 doi: 10.1142/S146902681750002X – ident: 29 doi: 10.2197/ipsjjip.29.321 – ident: 8 doi: 10.1007/s12553-021-00552-8 – ident: 1 doi: 10.3390/su8010046 – ident: 9 doi: 10.1007/s10257-019-00414-x – volume: 7 start-page: 1 issue: 4 year: 2022 ident: 22 article-title: Analysis of road traffic speed in Kunming plateau mountains: a fusion PSO-LSTM algorithm publication-title: International Journal of Urban Sciences contributor: fullname: Y. Mao – ident: 2 doi: 10.2139/ssrn.2962775 – ident: 10 doi: 10.1016/j.ipm.2021.102692 |
SSID | ssj0003021 |
Score | 2.3601 |
Snippet | Enterprise financial crisis prediction analysis can predict the business process of enterprises, so that enterprises can take corresponding strategies in time.... |
SourceID | proquest crossref hindawi |
SourceType | Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Algorithms Big Data Data analysis Decision analysis Decision making Decision trees Deep learning Economic crisis Feature selection Financial analysis Financial management Forecasting Goodness of fit Machine learning Neural networks Optimization Parameters Time series |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NS8MwFA86EfQgfuJ0Sg7zGNYkTdOcRId1iBvCNtit5KN1u3Rzm4j_vUmb-oGgl9KQkMNL3--9l_f6ewC0rRLJTOcC0ZhIFHKDkTABtw-sKNHWRIbu3-H-IOqNw4cJm_gLt5Uvq6wxsQRqM9fujrxDIk4dNzkn14sX5LpGueyqb6GxCbYw4dwFX3Fy_4nENCCeLzVAcRSJuvCdMRfzkw7jDpyDHyZpe-pi4bfZL2wuDU6yD_a8pwhvqqM9ABtZcQh2v_EHHoFhUvNlwK5V1tkKPi1d4sUJG95a-2SgfXmcF89oZBEYysLA4dQ63NWw76ps36Hj57A7DKqC8GMwTu5G3R7yXRKQppSvUUZZqEyGlWaaK8oMtyYfa5krLaiJtAoig00usLQTdpATyigXMo4zFVJi6AloFPMiOwXQBheCa60DIoNQ2dWS5DQSkscszzkmTXBVCypdVGQYaRlEMJY6gaZeoE3Q9lL8Z1mrFnHqNWeVfp3z2d_T52DHbeYy-US0QGO9fM0urIOwVpflV_ABOHu18A priority: 102 providerName: ProQuest |
Title | Financial Crisis Prediction Based on Long-Term and Short-Term Memory Neural Network |
URI | https://dx.doi.org/10.1155/2022/5728470 https://www.proquest.com/docview/2673229072 |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagCAkGxFMUSuWhjJESO47jkZaGgmip-kDdIj8S2iVFbRHi33NuEgR0gCXJKY6HL747f7rLF4Qa4EQy0alwaEik43PjOcK4HA6eokRDivTtt8PdXtAZ-w8TNilEkpabJXzIdpaeE-DtNo4CN98OQ-t_g87kK-BSlxSyqK4TBoEo-9t_Pfsj8-xOLeV9n22E4HVeiQ7RQbEhxDf5GzxCW0l2jPa_yQSeoGFUymLgFvjkbIn7C1tfsZjiJqQhg-HicZ69OCMItFhmBg-nsK_Oza5tpv3AVoYDZujlfd-naBy1R62OU_wMwdGU8pWTUOYrk3hKM80VZYZDZve0TJUW1ARauYHxTCo8CTfASAlllAsZhonyKTH0DFWyeZacIwwcQnCttUuk6ysYLUlKAyF5yNKUe6SKrkug4tdc8yJecwXGYgtoXABaRY0CxT-G1UqI48JBljEJOLVS85xc_G-WS7RnTVu4J6KGKqvFW3IF-4GVqsOaiO7qaKfZ7vUHcG49Pd_f1tdr5BOhAq_M |
link.rule.ids | 315,783,787,866,881,12777,21400,27936,27937,33385,33756,38528,43612,43817,43907,74369,74636,74746 |
linkProvider | Hindawi Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NS8MwFA86EfUgfuJ0ag7zGGyTpmlOosM6dRvCNtit5KN1u3Rzm4j_vUmb-oGgl9KQkMNL3u-9l_fyCwBNo0QiVRlHJMICBUz7iGuPmY8vCVbGRAb27nC3F7aHwcOIjtyB28KVVVaYWAC1nip7Rn6JQ0YsNznDV7MXZF-NstlV94TGKlgLiLHV9qZ4fPeJxMTDji_VQ1EY8qrwnVIb8-NLyiw4ez9M0vrYxsJvk1_YXBiceAdsO08RXpdLuwtW0nwPbH3jD9wH_bjiy4Ato6yTBXya28SLFTa8MfZJQ_PTmebPaGAQGIpcw_7YONxls2urbN-h5ecwM_TKgvADMIxvB602cq8kIEUIW6KU0EDq1JeKKiYJ1cyYfF-JTCpOdKikF2pfZ9wXpsM0MkwoYVxEUSoDgjU5BLV8mqdHAJrggjOllIeFF0gzWuCMhFywiGYZ83EdXFSCSmYlGUZSBBGUJlagiRNoHTSdFP8Z1qhEnDjNWSRf63z8d_c52GgPup2kc997PAGbdmKb1ce8AWrL-Wt6apyFpTwrdsQH0RC40g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3LT8IwGG8UotGD8RlR1B7w2LC167qejCAEFQgRSLgtfWzCZSBgjP-9LXQ-YqKXZU2bHr72e_X79VcAKkaJRKJSjkiEBQqY9hHXHjMfXxKsjIsM7N3hTjdsDYOHER05_NPCwSpzm7gy1Hqq7Bl5FYeMWG5yhqupg0X07po3sxdkX5CylVb3nMYmKDLLglUAxVqj23v6tMvEw4491UNRGPIcBk-pPQHAVcqsqfZ-OKitsc2M3ya_LPXK_TT3wZ6LG-HteqEPwEaSHYLdb2yCR6DfzNkzYN2o7mQBe3NbhrGihzXjrTQ0P-1p9owGxh5DkWnYH5vwe93sWMztO7RsHWaG7hoefgyGzcag3kLuzQSkCGFLlBAaSJ34UlHFJKGamQDAVyKVihMdKumF2tcp94XpMI0UE0oYF1GUyIBgTU5AIZtmySmAJtXgTCnlYeEF0owWOCUhFyyiacp8XALXuaDi2ZoaI16lFJTGVqCxE2gJVJwU_xlWzkUcOz1axF-rfvZ39xXYNtshbt93H8_Bjp3XlvgxL4PCcv6aXJjIYSkv3Zb4ANDjvnU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Financial+Crisis+Prediction+Based+on+Long-Term+and+Short-Term+Memory+Neural+Network&rft.jtitle=Wireless+communications+and+mobile+computing&rft.au=Ling%2C+Tang&rft.au=Cai%2C+Yinying&rft.date=2022-05-29&rft.pub=Hindawi&rft.issn=1530-8669&rft.eissn=1530-8677&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F5728470&rft.externalDocID=10_1155_2022_5728470 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-8669&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-8669&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-8669&client=summon |