Financial Crisis Prediction Based on Long-Term and Short-Term Memory Neural Network

Enterprise financial crisis prediction analysis can predict the business process of enterprises, so that enterprises can take corresponding strategies in time. The financial crisis prediction of listed companies can effectively reflect the business situation, so as to give investors reasonable inves...

Full description

Saved in:
Bibliographic Details
Published inWireless communications and mobile computing Vol. 2022; pp. 1 - 8
Main Authors Ling, Tang, Cai, Yinying
Format Journal Article
LanguageEnglish
Published Oxford Hindawi 29.05.2022
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Enterprise financial crisis prediction analysis can predict the business process of enterprises, so that enterprises can take corresponding strategies in time. The financial crisis prediction of listed companies can effectively reflect the business situation, so as to give investors reasonable investment advice. In order to supervise the sustainable management ability of enterprises efficiently and accurately, this paper proposed a financial crisis prediction method based on long-term and short-term memory neural network, so as to provide valuable information for decision-makers. Firstly, the data in the enterprise financial system is analyzed and extracted, and the original data is cleaned and dimensionalized by normalization and feature selection. Then, the long-term and short-term memory neural network is used to build the financial early warning model, and the wolf pack algorithm is used to optimize the initial weight and bias parameters, so as to improve the efficiency of parameter optimization. Finally, the financial data of 20 large- and medium-sized enterprises from 2019 to 2021 are verified and analyzed. The experimental results show that compared with other common machine learning methods, the constructed wolf pack-optimized long-term and short-term memory neural network has the highest prediction performance in terms of root mean square error and goodness of fit, with the goodness of fit reaching 94.2%.
AbstractList Enterprise financial crisis prediction analysis can predict the business process of enterprises, so that enterprises can take corresponding strategies in time. The financial crisis prediction of listed companies can effectively reflect the business situation, so as to give investors reasonable investment advice. In order to supervise the sustainable management ability of enterprises efficiently and accurately, this paper proposed a financial crisis prediction method based on long-term and short-term memory neural network, so as to provide valuable information for decision-makers. Firstly, the data in the enterprise financial system is analyzed and extracted, and the original data is cleaned and dimensionalized by normalization and feature selection. Then, the long-term and short-term memory neural network is used to build the financial early warning model, and the wolf pack algorithm is used to optimize the initial weight and bias parameters, so as to improve the efficiency of parameter optimization. Finally, the financial data of 20 large- and medium-sized enterprises from 2019 to 2021 are verified and analyzed. The experimental results show that compared with other common machine learning methods, the constructed wolf pack-optimized long-term and short-term memory neural network has the highest prediction performance in terms of root mean square error and goodness of fit, with the goodness of fit reaching 94.2%.
Author Cai, Yinying
Ling, Tang
Author_xml – sequence: 1
  givenname: Tang
  orcidid: 0000-0001-6529-1986
  surname: Ling
  fullname: Ling, Tang
  organization: Chongqing University of EducationChongqing 400047Chinacqu.edu.cn
– sequence: 2
  givenname: Yinying
  surname: Cai
  fullname: Cai, Yinying
  organization: Chongqing University of EducationChongqing 400047Chinacqu.edu.cn
BookMark eNp9kE1PAjEYhBuDiYDe_AFNPOpKP-h296hE1ATRBDw33bYrRWix3Q3h31uyxKOndybzZN5kBqDnvDMAXGN0jzFjI4IIGTFOijFHZ6CPGUVZkXPe-9N5eQEGMa4RQhQR3AeLqXXSKSs3cBJstBF-BKOtaqx38FFGo2ESM---sqUJWyidhouVD01n38zWhwOcmzakhrlp9j58X4LzWm6iuTrdIficPi0nL9ns_fl18jDLFKW8yQxl40obXCmmeEWZ5oQQrGRdqZLqXFUo11jXJZYpSKYmlFFeyqIw1ZgSTYfgpuvdBf_TmtiItW-DSy8FyTklpEScJOquo1TwMQZTi12wWxkOAiNxnE0cZxOn2RJ-2-Er67Tc2__pX02cbWk
CitedBy_id crossref_primary_10_3390_su15075882
crossref_primary_10_4018_JOEUC_326519
Cites_doi 10.1109/TIFS.2020.2994740
10.5120/ijca2017913413
10.1007/s00500-021-06490-x
10.1155/2021/5560465
10.1016/j.apacoust.2020.107520
10.1155/2021/6664776
10.3390/s20154314
10.1016/j.compchemeng.2019.03.012
10.3390/app10072483
10.3390/su11061579
10.1016/B978-0-323-88506-5.50086-3
10.11591/ijeecs.v12.i3.pp1037-1044
10.1109/TASLP.2020.3040033
10.1007/s00521-016-2501-7
10.14569/IJACSA.2017.081046
10.1016/j.knosys.2017.03.027
10.1063/5.0050437
10.14710/jtsiskom.2021.13969
10.1142/S146902681750002X
10.2197/ipsjjip.29.321
10.1007/s12553-021-00552-8
10.3390/su8010046
10.1007/s10257-019-00414-x
10.2139/ssrn.2962775
10.1016/j.ipm.2021.102692
ContentType Journal Article
Copyright Copyright © 2022 Tang Ling and Yinying Cai.
Copyright © 2022 Tang Ling and Yinying Cai. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright © 2022 Tang Ling and Yinying Cai.
– notice: Copyright © 2022 Tang Ling and Yinying Cai. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
7XB
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1155/2022/5728470
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Open Access Journals (Hindawi Publishing)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: RHX
  name: Open Access Journals (Hindawi Publishing)
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-8677
Editor Qu, Zhiguo
Editor_xml – sequence: 1
  givenname: Zhiguo
  surname: Qu
  fullname: Qu, Zhiguo
– fullname: Zhiguo Qu
EndPage 8
ExternalDocumentID 10_1155_2022_5728470
GrantInformation_xml – fundername: Chongqing Municipal Education Commission
  grantid: 17SKG216
GroupedDBID .3N
.4S
.DC
.GA
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
4ZD
50Y
50Z
52M
52O
52T
52U
52W
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAFWJ
AAJEY
AAONW
ABIJN
ABPVW
ACGFO
ADBBV
ADIZJ
AENEX
AEUQT
AFBPY
AFKRA
AIAGR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ARCSS
ASPBG
ATUGU
AVWKF
AZBYB
AZQEC
AZVAB
BAFTC
BCNDV
BENPR
BGLVJ
BHBCM
BNHUX
BROTX
BRXPI
CCPQU
CS3
D-E
D-F
DPXWK
DR2
DU5
DWQXO
EBS
EDO
F00
F01
F04
F21
G-S
G.N
GNP
GNUQQ
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HZ~
I-F
IAO
ITC
ITG
ITH
IX1
JPC
K7-
KQQ
LAW
LITHE
LP6
LP7
M0N
MK4
MY~
N04
N05
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PIMPY
Q.N
QB0
QRW
R.K
RHU
RHW
RHX
RWI
RX1
RYL
SUPJJ
TUS
UB1
W8V
W99
WBKPD
WIH
WLBEL
XPP
XV2
~IA
~WT
24P
AAYXX
CITATION
H13
7SC
7SP
7XB
8FD
8FE
8FG
ABUWG
COVID
JQ2
L7M
L~C
L~D
P62
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c337t-e354bde1bc5c7b35d72221cafbc93d6cb06d1df91a722b06f235379a88eb432d3
IEDL.DBID RHX
ISSN 1530-8669
IngestDate Sun Nov 03 16:22:31 EST 2024
Thu Sep 26 18:41:29 EDT 2024
Sun Jun 02 19:21:11 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-e354bde1bc5c7b35d72221cafbc93d6cb06d1df91a722b06f235379a88eb432d3
ORCID 0000-0001-6529-1986
OpenAccessLink https://dx.doi.org/10.1155/2022/5728470
PQID 2673229072
PQPubID 2034344
PageCount 8
ParticipantIDs proquest_journals_2673229072
crossref_primary_10_1155_2022_5728470
hindawi_primary_10_1155_2022_5728470
PublicationCentury 2000
PublicationDate 2022-05-29
PublicationDateYYYYMMDD 2022-05-29
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-29
  day: 29
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Wireless communications and mobile computing
PublicationYear 2022
Publisher Hindawi
Hindawi Limited
Publisher_xml – name: Hindawi
– name: Hindawi Limited
References 23
24
25
27
28
29
Y. Mao (22) 2022; 7
10
11
J. Venskus (26) 2021; 26
12
13
14
15
M. Z. Uddin (6) 2017; 11
17
18
19
1
2
3
4
5
C. Marcella (16) 2018; 27
7
8
9
20
21
References_xml – ident: 13
  doi: 10.1109/TIFS.2020.2994740
– ident: 7
  doi: 10.5120/ijca2017913413
– volume: 27
  start-page: 5142
  issue: 6
  year: 2018
  ident: 16
  article-title: Predicting human eye fixations via an LSTM-based saliency attentive model
  publication-title: IEEE Transactions on Image Processing
  contributor:
    fullname: C. Marcella
– ident: 20
  doi: 10.1007/s00500-021-06490-x
– ident: 27
  doi: 10.1155/2021/5560465
– ident: 14
  doi: 10.1016/j.apacoust.2020.107520
– ident: 28
  doi: 10.1155/2021/6664776
– volume: 11
  start-page: 1118
  issue: 2
  year: 2017
  ident: 6
  article-title: A robust approach for human activity recognition using 3-D body joint motion features with deep belief network
  publication-title: Ksii Transactions on Internet & Information Systems
  contributor:
    fullname: M. Z. Uddin
– ident: 15
  doi: 10.3390/s20154314
– ident: 18
  doi: 10.1016/j.compchemeng.2019.03.012
– ident: 23
  doi: 10.3390/app10072483
– ident: 12
  doi: 10.3390/su11061579
– ident: 24
  doi: 10.1016/B978-0-323-88506-5.50086-3
– ident: 11
  doi: 10.11591/ijeecs.v12.i3.pp1037-1044
– ident: 19
  doi: 10.1109/TASLP.2020.3040033
– ident: 4
  doi: 10.1007/s00521-016-2501-7
– ident: 17
  doi: 10.14569/IJACSA.2017.081046
– ident: 5
  doi: 10.1016/j.knosys.2017.03.027
– ident: 25
  doi: 10.1063/5.0050437
– ident: 21
  doi: 10.14710/jtsiskom.2021.13969
– volume: 26
  start-page: 1718
  issue: 4
  year: 2021
  ident: 26
  article-title: Unsupervised marine vessel trajectory prediction using LSTM network and wild bootstrapping techniques
  publication-title: Nonlinear Analysis: Modelling and Control
  contributor:
    fullname: J. Venskus
– ident: 3
  doi: 10.1142/S146902681750002X
– ident: 29
  doi: 10.2197/ipsjjip.29.321
– ident: 8
  doi: 10.1007/s12553-021-00552-8
– ident: 1
  doi: 10.3390/su8010046
– ident: 9
  doi: 10.1007/s10257-019-00414-x
– volume: 7
  start-page: 1
  issue: 4
  year: 2022
  ident: 22
  article-title: Analysis of road traffic speed in Kunming plateau mountains: a fusion PSO-LSTM algorithm
  publication-title: International Journal of Urban Sciences
  contributor:
    fullname: Y. Mao
– ident: 2
  doi: 10.2139/ssrn.2962775
– ident: 10
  doi: 10.1016/j.ipm.2021.102692
SSID ssj0003021
Score 2.3601
Snippet Enterprise financial crisis prediction analysis can predict the business process of enterprises, so that enterprises can take corresponding strategies in time....
SourceID proquest
crossref
hindawi
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Accuracy
Algorithms
Big Data
Data analysis
Decision analysis
Decision making
Decision trees
Deep learning
Economic crisis
Feature selection
Financial analysis
Financial management
Forecasting
Goodness of fit
Machine learning
Neural networks
Optimization
Parameters
Time series
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NS8MwFA86EfQgfuJ0Sg7zGNYkTdOcRId1iBvCNtit5KN1u3Rzm4j_vUmb-oGgl9KQkMNL3--9l_f6ewC0rRLJTOcC0ZhIFHKDkTABtw-sKNHWRIbu3-H-IOqNw4cJm_gLt5Uvq6wxsQRqM9fujrxDIk4dNzkn14sX5LpGueyqb6GxCbYw4dwFX3Fy_4nENCCeLzVAcRSJuvCdMRfzkw7jDpyDHyZpe-pi4bfZL2wuDU6yD_a8pwhvqqM9ABtZcQh2v_EHHoFhUvNlwK5V1tkKPi1d4sUJG95a-2SgfXmcF89oZBEYysLA4dQ63NWw76ps36Hj57A7DKqC8GMwTu5G3R7yXRKQppSvUUZZqEyGlWaaK8oMtyYfa5krLaiJtAoig00usLQTdpATyigXMo4zFVJi6AloFPMiOwXQBheCa60DIoNQ2dWS5DQSkscszzkmTXBVCypdVGQYaRlEMJY6gaZeoE3Q9lL8Z1mrFnHqNWeVfp3z2d_T52DHbeYy-US0QGO9fM0urIOwVpflV_ABOHu18A
  priority: 102
  providerName: ProQuest
Title Financial Crisis Prediction Based on Long-Term and Short-Term Memory Neural Network
URI https://dx.doi.org/10.1155/2022/5728470
https://www.proquest.com/docview/2673229072
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagCAkGxFMUSuWhjJESO47jkZaGgmip-kDdIj8S2iVFbRHi33NuEgR0gCXJKY6HL747f7rLF4Qa4EQy0alwaEik43PjOcK4HA6eokRDivTtt8PdXtAZ-w8TNilEkpabJXzIdpaeE-DtNo4CN98OQ-t_g87kK-BSlxSyqK4TBoEo-9t_Pfsj8-xOLeV9n22E4HVeiQ7RQbEhxDf5GzxCW0l2jPa_yQSeoGFUymLgFvjkbIn7C1tfsZjiJqQhg-HicZ69OCMItFhmBg-nsK_Oza5tpv3AVoYDZujlfd-naBy1R62OU_wMwdGU8pWTUOYrk3hKM80VZYZDZve0TJUW1ARauYHxTCo8CTfASAlllAsZhonyKTH0DFWyeZacIwwcQnCttUuk6ysYLUlKAyF5yNKUe6SKrkug4tdc8yJecwXGYgtoXABaRY0CxT-G1UqI48JBljEJOLVS85xc_G-WS7RnTVu4J6KGKqvFW3IF-4GVqsOaiO7qaKfZ7vUHcG49Pd_f1tdr5BOhAq_M
link.rule.ids 315,783,787,866,881,12777,21400,27936,27937,33385,33756,38528,43612,43817,43907,74369,74636,74746
linkProvider Hindawi Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NS8MwFA86EfUgfuJ0ag7zGGyTpmlOosM6dRvCNtit5KN1u3Rzm4j_vUmb-oGgl9KQkMNL3u-9l_fyCwBNo0QiVRlHJMICBUz7iGuPmY8vCVbGRAb27nC3F7aHwcOIjtyB28KVVVaYWAC1nip7Rn6JQ0YsNznDV7MXZF-NstlV94TGKlgLiLHV9qZ4fPeJxMTDji_VQ1EY8qrwnVIb8-NLyiw4ez9M0vrYxsJvk1_YXBiceAdsO08RXpdLuwtW0nwPbH3jD9wH_bjiy4Ato6yTBXya28SLFTa8MfZJQ_PTmebPaGAQGIpcw_7YONxls2urbN-h5ecwM_TKgvADMIxvB602cq8kIEUIW6KU0EDq1JeKKiYJ1cyYfF-JTCpOdKikF2pfZ9wXpsM0MkwoYVxEUSoDgjU5BLV8mqdHAJrggjOllIeFF0gzWuCMhFywiGYZ83EdXFSCSmYlGUZSBBGUJlagiRNoHTSdFP8Z1qhEnDjNWSRf63z8d_c52GgPup2kc997PAGbdmKb1ce8AWrL-Wt6apyFpTwrdsQH0RC40g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3LT8IwGG8UotGD8RlR1B7w2LC167qejCAEFQgRSLgtfWzCZSBgjP-9LXQ-YqKXZU2bHr72e_X79VcAKkaJRKJSjkiEBQqY9hHXHjMfXxKsjIsM7N3hTjdsDYOHER05_NPCwSpzm7gy1Hqq7Bl5FYeMWG5yhqupg0X07po3sxdkX5CylVb3nMYmKDLLglUAxVqj23v6tMvEw4491UNRGPIcBk-pPQHAVcqsqfZ-OKitsc2M3ya_LPXK_TT3wZ6LG-HteqEPwEaSHYLdb2yCR6DfzNkzYN2o7mQBe3NbhrGihzXjrTQ0P-1p9owGxh5DkWnYH5vwe93sWMztO7RsHWaG7hoefgyGzcag3kLuzQSkCGFLlBAaSJ34UlHFJKGamQDAVyKVihMdKumF2tcp94XpMI0UE0oYF1GUyIBgTU5AIZtmySmAJtXgTCnlYeEF0owWOCUhFyyiacp8XALXuaDi2ZoaI16lFJTGVqCxE2gJVJwU_xlWzkUcOz1axF-rfvZ39xXYNtshbt93H8_Bjp3XlvgxL4PCcv6aXJjIYSkv3Zb4ANDjvnU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Financial+Crisis+Prediction+Based+on+Long-Term+and+Short-Term+Memory+Neural+Network&rft.jtitle=Wireless+communications+and+mobile+computing&rft.au=Ling%2C+Tang&rft.au=Cai%2C+Yinying&rft.date=2022-05-29&rft.pub=Hindawi&rft.issn=1530-8669&rft.eissn=1530-8677&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F5728470&rft.externalDocID=10_1155_2022_5728470
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-8669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-8669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-8669&client=summon