Simulation of large photovoltaic arrays

•First study of the effects of non-identical module characteristics.•Five-parameter model optimised in the maximum-power-point region.•Effects of manufacturing tolerances and temperature inhomogeneity modelled.•Equal module current and equal string voltage constraints applied.•Real temperature distr...

Full description

Saved in:
Bibliographic Details
Published inSolar energy Vol. 161; pp. 163 - 179
Main Authors Abdin, Z., Webb, C.J., Gray, E.MacA
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.02.2018
Pergamon Press Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •First study of the effects of non-identical module characteristics.•Five-parameter model optimised in the maximum-power-point region.•Effects of manufacturing tolerances and temperature inhomogeneity modelled.•Equal module current and equal string voltage constraints applied.•Real temperature distribution across a 298-kW array predicted from string data. Large photovoltaic arrays are becoming common as the world moves to replace fossil-fuelled electricity generators. As the array size and project cost increase, it becomes increasingly important to know accurately what the array’s performance will be before it is built. Large arrays inevitably contain modules with a spread of performance characteristics such as short-circuit current and open-circuit voltage, and suffer from temperature differences between modules. In this first study of these problems, a model has been developed that accurately predicts the behaviour of a photovoltaic array subject to variability between modules and inhomogeneity of cell temperature across the array. The model was applied to a real rooftop array consisting of 912 modules (298 kW nominal peak power). Based on measured string currents, the predicted average string temperature was compared the temperature measured by a radiometric survey using a drone-mounted IR camera and matched very well. The five-parameter model of cell I-V characteristics was fitted to manufacturer’s data, with highest weighting given to the region around the maximum-power point (MPP) where a real array should operate via active MPP tracking. The model was used to explore separately the effects of a spread in module characteristics arising in the manufacturing process and of temperature inhomogeneity across the array. The current in each module of a string was constrained to be the same, and the voltage of every parallel-connected string was also constrained to be the same. These constraints lead to greater power loss than is predicted based on an average module at an average temperature. Compared to a hypothetical array assembled from identical average modules at the same average temperature, variability caused a loss of power of about 2%, depending on the detailed form of the distribution function chosen to represent the spread of characteristics in the manufacturer’s tolerance band. As a rule of thumb, de-rating the maximum power to the lower end of the manufacturer’s tolerance band is recommended to account for module variability during the design phase. The effect of temperature inhomogeneity is more serious, because temperature affects Voc strongly, causing parallel-connected strings to be pulled away from their ideal operating points to obey the constraint of equal voltage. A modest 10 °C temperature gradient across the studied array was predicted to cause about a 4% loss of power at the MPP. Much higher real temperature differences could be expected in summer and were observed. The study confirmed that temperature inhomogeneity poses a serious design problem for large arrays, requiring careful thermal design to achieve not only acceptably low average array temperature, but also the least possible temperature spread.
AbstractList Large photovoltaic arrays are becoming common as the world moves to replace fossil-fuelled electricity generators. As the array size and project cost increase, it becomes increasingly important to know accurately what the array's performance will be before it is built. Large arrays inevitably contain modules with a spread of performance characteristics such as short-circuit current and open-circuit voltage, and suffer from temperature differences between modules. In this first study of these problems, a model has been developed that accurately predicts the behaviour of a photovoltaic array subject to variability between modules and inhomogeneity of cell temperature across the array. The model was applied to a real rooftop array consisting of 912 modules (298 kW nominal peak power). Based on measured string currents, the predicted average string temperature was com- pared the temperature measured by a radiometric survey using a drone-mounted IR camera and matched very well. The five-parameter model of cell characteristics was fitted to manufacturer's data, with highest weighting given to the region around the maximum-power point (MPP) where a real array should operate via active MPP tracking. The model was used to explore separately the effects of a spread in module characteristics arising in the manufacturing process and of temperature inhomogeneity across the array. The current in each module of a string was constrained to be the same, and the voltage of every parallel-connected string was also constrained to be the same. These constraints lead to greater power loss than is predicted based on an average module at an average temperature. Compared to a hypothetical array assembled from identical average modules at the same average temperature, variability caused a loss of power of about 2%, depending on the detailed form of the distribution function chosen to represent the spread of characteristics in the manufacturer's tolerance band. As a rule of thumb, de-rating the maximum power to the lower end of the manufacturer's tolerance band is re- commended to account for module variability during the design phase. The effect of temperature inhomogeneity is more serious, because temperature affects V0c strongly, causing parallel-connected strings to be pulled away from their ideal operating points to obey the constraint of equal voltage. A modest 10 °C temperature gradient across the studied array was predicted to cause about a 4% loss of power at the MPP. Much higher real temperature differences could be expected in summer and were observed. The study confirmed that temperature inhomogeneity poses a serious design problem for large arrays, requiring careful thermal design to achieve not only acceptably low average array temperature, but also the least possible temperature spread.
•First study of the effects of non-identical module characteristics.•Five-parameter model optimised in the maximum-power-point region.•Effects of manufacturing tolerances and temperature inhomogeneity modelled.•Equal module current and equal string voltage constraints applied.•Real temperature distribution across a 298-kW array predicted from string data. Large photovoltaic arrays are becoming common as the world moves to replace fossil-fuelled electricity generators. As the array size and project cost increase, it becomes increasingly important to know accurately what the array’s performance will be before it is built. Large arrays inevitably contain modules with a spread of performance characteristics such as short-circuit current and open-circuit voltage, and suffer from temperature differences between modules. In this first study of these problems, a model has been developed that accurately predicts the behaviour of a photovoltaic array subject to variability between modules and inhomogeneity of cell temperature across the array. The model was applied to a real rooftop array consisting of 912 modules (298 kW nominal peak power). Based on measured string currents, the predicted average string temperature was compared the temperature measured by a radiometric survey using a drone-mounted IR camera and matched very well. The five-parameter model of cell I-V characteristics was fitted to manufacturer’s data, with highest weighting given to the region around the maximum-power point (MPP) where a real array should operate via active MPP tracking. The model was used to explore separately the effects of a spread in module characteristics arising in the manufacturing process and of temperature inhomogeneity across the array. The current in each module of a string was constrained to be the same, and the voltage of every parallel-connected string was also constrained to be the same. These constraints lead to greater power loss than is predicted based on an average module at an average temperature. Compared to a hypothetical array assembled from identical average modules at the same average temperature, variability caused a loss of power of about 2%, depending on the detailed form of the distribution function chosen to represent the spread of characteristics in the manufacturer’s tolerance band. As a rule of thumb, de-rating the maximum power to the lower end of the manufacturer’s tolerance band is recommended to account for module variability during the design phase. The effect of temperature inhomogeneity is more serious, because temperature affects Voc strongly, causing parallel-connected strings to be pulled away from their ideal operating points to obey the constraint of equal voltage. A modest 10 °C temperature gradient across the studied array was predicted to cause about a 4% loss of power at the MPP. Much higher real temperature differences could be expected in summer and were observed. The study confirmed that temperature inhomogeneity poses a serious design problem for large arrays, requiring careful thermal design to achieve not only acceptably low average array temperature, but also the least possible temperature spread.
Author Gray, E.MacA
Abdin, Z.
Webb, C.J.
Author_xml – sequence: 1
  givenname: Z.
  surname: Abdin
  fullname: Abdin, Z.
– sequence: 2
  givenname: C.J.
  surname: Webb
  fullname: Webb, C.J.
– sequence: 3
  givenname: E.MacA
  surname: Gray
  fullname: Gray, E.MacA
  email: e.gray@griffith.edu.au
BookMark eNqFkE1LAzEURYNUsK3-BGHAhasZk8xMksGFSPELCi5UcBfSfGiG6WRMMoX-e1PblZuu3uLdcx_vzMCkd70G4BLBAkFEbtoiuE732hcYIlogXMCyOgFTVFGUI1zTCZhCWLIcNvjzDMxCaGEKIkan4PrNrsdOROv6zJmsE_5LZ8O3i27juiiszIT3YhvOwakRXdAXhzkHH48P74vnfPn69LK4X-ayLGnM1YrIWq6gqVDFoMCEMmLwiklimGhqKYhkjCCFlcCsIaWBhuqaKaab2hBFyzm42vcO3v2MOkTeutH36SRPzzWQYEaalKr3KeldCF4bPni7Fn7LEeQ7J7zlByc7jHKEeXKSuNt_nLTx7_nohe2O0nd7WicBG5u2QVrdS62s1zJy5eyRhl_ORIKO
CitedBy_id crossref_primary_10_31202_ecjse_459080
crossref_primary_10_1016_j_apenergy_2020_115562
crossref_primary_10_1016_j_apenergy_2020_114872
crossref_primary_10_1016_j_solmat_2019_02_036
crossref_primary_10_1002_aesr_202000039
crossref_primary_10_1016_j_enconman_2019_06_068
crossref_primary_10_3390_en11061353
Cites_doi 10.1016/j.renene.2007.01.001
10.1142/p276
10.1109/TPEL.2009.2013862
10.1016/j.solmat.2012.05.028
10.1063/1.1721579
10.1016/j.apenergy.2017.01.013
10.1016/j.solmat.2010.04.003
10.1049/el:19840281
10.1016/0038-092X(63)90006-9
10.1016/j.apenergy.2016.11.038
10.1016/j.apenergy.2017.04.075
10.1016/j.apenergy.2017.05.034
10.1109/ISIE.2007.4374981
10.1007/BF00901283
10.1016/S0038-092X(96)00137-5
10.1109/T-ED.1987.22920
10.1016/j.solener.2008.10.020
10.1016/j.solener.2010.10.022
10.1016/0038-092X(82)90302-4
10.1109/TSTE.2013.2282168
10.1016/0038-092X(80)90320-5
10.1016/j.solener.2005.06.010
10.1016/j.apenergy.2016.03.055
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Pergamon Press Inc. Feb 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Pergamon Press Inc. Feb 2018
DBID AAYXX
CITATION
7SP
7ST
8FD
C1K
FR3
KR7
L7M
SOI
DOI 10.1016/j.solener.2017.12.034
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1471-1257
EndPage 179
ExternalDocumentID 10_1016_j_solener_2017_12_034
S0038092X17311167
GroupedDBID --K
--M
-ET
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACGOD
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
AZFZN
BELTK
BKOJK
BKOMP
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MAGPM
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SAC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SSR
SSZ
T5K
TAE
TN5
UKR
VOH
WH7
WUQ
XOL
XPP
YNT
ZMT
ZY4
~02
~A~
~G-
~KM
~S-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SP
7ST
8FD
C1K
EFKBS
FR3
KR7
L7M
SOI
ID FETCH-LOGICAL-c337t-db6c5cb0f41480a26786f2b8c6f8a95ca6c8861d2da28963f0f7e58d8e95f6d73
IEDL.DBID .~1
ISSN 0038-092X
IngestDate Wed Aug 13 06:49:21 EDT 2025
Tue Jul 01 01:08:49 EDT 2025
Thu Apr 24 23:11:53 EDT 2025
Fri Feb 23 02:28:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Array model
Tolerance
Photovoltaic
Temperature
MPP
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-db6c5cb0f41480a26786f2b8c6f8a95ca6c8861d2da28963f0f7e58d8e95f6d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2019062869
PQPubID 9393
PageCount 17
ParticipantIDs proquest_journals_2019062869
crossref_primary_10_1016_j_solener_2017_12_034
crossref_citationtrail_10_1016_j_solener_2017_12_034
elsevier_sciencedirect_doi_10_1016_j_solener_2017_12_034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2018
2018-02-00
20180201
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: February 2018
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Solar energy
PublicationYear 2018
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References Batzelis, Routsolias, Papathanassiou (b0010) 2014; 5
Pfann, Van Roosbroeck (b0110) 1954; 25
Kim, Jeon, Cho, Kim, Ahn (b0075) 2009; 83
Carrero, Amador, Arnaltes (b0035) 2007; 32
King, D.L., Boyson, W.E., Kratochvil, J.A., 2004. Photovoltaic Array Performance Model. Department of Energy, United States.
Lee, Kuo, Weng, Huang, Peng (b0090) 2017; 200
Tian, Mancilla-David, Ellis, Jenkins, Muljadi (b0130) 2012
Brano, Orioli, Ciulla (b0030) 2012; 105
Zhu, Fu, Long, Li (b0140) 2011; 85
Brandemuehl, Beckman (b0020) 1980; 24
Lappalainen, Valkealahti (b0085) 2017; 190
Mayer, Johannes N., Simon, P., Philipps, Noha Saad Hussein, Schlegl, Thomas, Senkpiel, Charlotte, 2015. Current and future cost of photovoltaics, Long-term Scenarios for Market Development, System Prices and LCOE of Utility-Scale PV Systems (Fraunhofer ISE, Study on behalf of Agora Energiewende, Freiburg, 2015).
Sera, Dezso, Teodorescu, Remus, Pedro, Rodriguez, 2007. PV panel model based on datasheet values. Conference PV panel model based on datasheet values. IEEE. pp. 2392–6.
Chen, Zhicong, Wu, Lijun, Cheng, Shuying, Lin, Peijie, Wu, Yue, Lin, Wencheng, 2017. Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics. Appl. Energy.
Farhat, Barambones, Sbita (b0070) 2017; 185
Erbs, Klein, Duffie (b0065) 1982; 28
Nelson, Jenny, 2003. The Physics of Solar Cells, World Scientific.
Sjerps-Koomen, Alsema, Turkenburg (b0125) 1996; 57
Villalva, Rafael, Ernesto (b0135) 2009; 24
De Vos, Pauwels (b0055) 1981; 25
Ashcroft, Neil W., Mermin, N. David, 1976. Solid State Physics.
Phang, Chan, Phillips (b0115) 1984; 20
Brano, Orioli, Ciulla, Di Gangi (b0025) 2010; 94
De Soto, Klein, Beckman (b0050) 2006; 80
Belhaouas, Cheikh, Agathoklis, Oularbi, Amrouche, Sedraoui (b0015) 2017; 187
Dongue, Njomo, Tamba, Ebengai (b0060) 2012; 2
Liu, Benjamin Y.H., Jordan, Richard C., 1963. The long-term average performance of flat-plate solar-energy collectors: with design data for the US, its outlying possessions and Canada. Solar Energy 7, 53–74.
Chan, Phang (b0040) 1987; 34
Chan (10.1016/j.solener.2017.12.034_b0040) 1987; 34
Tian (10.1016/j.solener.2017.12.034_b0130) 2012
Brano (10.1016/j.solener.2017.12.034_b0030) 2012; 105
Carrero (10.1016/j.solener.2017.12.034_b0035) 2007; 32
De Soto (10.1016/j.solener.2017.12.034_b0050) 2006; 80
Belhaouas (10.1016/j.solener.2017.12.034_b0015) 2017; 187
De Vos (10.1016/j.solener.2017.12.034_b0055) 1981; 25
Erbs (10.1016/j.solener.2017.12.034_b0065) 1982; 28
Lappalainen (10.1016/j.solener.2017.12.034_b0085) 2017; 190
10.1016/j.solener.2017.12.034_b0080
10.1016/j.solener.2017.12.034_b0005
10.1016/j.solener.2017.12.034_b0105
Dongue (10.1016/j.solener.2017.12.034_b0060) 2012; 2
10.1016/j.solener.2017.12.034_b0045
10.1016/j.solener.2017.12.034_b0100
Brano (10.1016/j.solener.2017.12.034_b0025) 2010; 94
10.1016/j.solener.2017.12.034_b0120
Phang (10.1016/j.solener.2017.12.034_b0115) 1984; 20
Farhat (10.1016/j.solener.2017.12.034_b0070) 2017; 185
Villalva (10.1016/j.solener.2017.12.034_b0135) 2009; 24
Batzelis (10.1016/j.solener.2017.12.034_b0010) 2014; 5
Lee (10.1016/j.solener.2017.12.034_b0090) 2017; 200
Sjerps-Koomen (10.1016/j.solener.2017.12.034_b0125) 1996; 57
10.1016/j.solener.2017.12.034_b0095
Kim (10.1016/j.solener.2017.12.034_b0075) 2009; 83
Brandemuehl (10.1016/j.solener.2017.12.034_b0020) 1980; 24
Pfann (10.1016/j.solener.2017.12.034_b0110) 1954; 25
Zhu (10.1016/j.solener.2017.12.034_b0140) 2011; 85
References_xml – volume: 187
  start-page: 326
  year: 2017
  end-page: 337
  ident: b0015
  article-title: PV array power output maximization under partial shading using new shifted PV array arrangements
  publication-title: Appl. Energy
– volume: 34
  start-page: 286
  year: 1987
  end-page: 293
  ident: b0040
  article-title: Analytical methods for the extraction of solar-cell single-and double-diode model parameters from IV characteristics
  publication-title: IEEE Trans. Electron Devices
– reference: Mayer, Johannes N., Simon, P., Philipps, Noha Saad Hussein, Schlegl, Thomas, Senkpiel, Charlotte, 2015. Current and future cost of photovoltaics, Long-term Scenarios for Market Development, System Prices and LCOE of Utility-Scale PV Systems (Fraunhofer ISE, Study on behalf of Agora Energiewende, Freiburg, 2015).
– volume: 185
  start-page: 1185
  year: 2017
  end-page: 1198
  ident: b0070
  article-title: A new maximum power point method based on a sliding mode approach for solar energy harvesting
  publication-title: Appl. Energy
– volume: 24
  start-page: 1198
  year: 2009
  end-page: 1208
  ident: b0135
  article-title: Comprehensive approach to modeling and simulation of photovoltaic arrays
  publication-title: IEEE Trans. Power Electron.
– volume: 94
  start-page: 1358
  year: 2010
  end-page: 1370
  ident: b0025
  article-title: An improved five-parameter model for photovoltaic modules
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 85
  start-page: 393
  year: 2011
  end-page: 403
  ident: b0140
  article-title: Sensitivity analysis and more accurate solution of photovoltaic solar cell parameters
  publication-title: Sol. Energy
– volume: 105
  start-page: 27
  year: 2012
  end-page: 39
  ident: b0030
  article-title: On the experimental validation of an improved five-parameter model for silicon photovoltaic modules
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 2
  start-page: 612
  year: 2012
  end-page: 619
  ident: b0060
  article-title: Modeling of electrical response of illuminated crystalline photovoltaic modules using four-and five-parameter models
  publication-title: Int. J. Emerg. Technol. Adv. Eng.
– reference: Liu, Benjamin Y.H., Jordan, Richard C., 1963. The long-term average performance of flat-plate solar-energy collectors: with design data for the US, its outlying possessions and Canada. Solar Energy 7, 53–74.
– volume: 80
  start-page: 78
  year: 2006
  end-page: 88
  ident: b0050
  article-title: Improvement and validation of a model for photovoltaic array performance
  publication-title: Sol. Energy
– reference: Nelson, Jenny, 2003. The Physics of Solar Cells, World Scientific.
– volume: 5
  start-page: 301
  year: 2014
  end-page: 312
  ident: b0010
  article-title: An explicit PV string model based on the Lambert function and simplified MPP expressions for operation under partial shading
  publication-title: IEEE Trans. Sustainable Energy
– volume: 25
  start-page: 119
  year: 1981
  end-page: 125
  ident: b0055
  article-title: On the thermodynamic limit of photovoltaic energy conversion
  publication-title: Appl. Phys.
– start-page: 5500
  year: 2012
  end-page: 54601
  ident: b0130
  article-title: A detailed performance model for photovoltaic systems
  publication-title: Solar Energy J.
– volume: 57
  start-page: 421
  year: 1996
  end-page: 432
  ident: b0125
  article-title: A simple model for PV module reflection losses under field conditions
  publication-title: Sol. Energy
– volume: 190
  start-page: 902
  year: 2017
  end-page: 910
  ident: b0085
  article-title: Output power variation of different PV array configurations during irradiance transitions caused by moving clouds
  publication-title: Appl. Energy
– reference: Sera, Dezso, Teodorescu, Remus, Pedro, Rodriguez, 2007. PV panel model based on datasheet values. Conference PV panel model based on datasheet values. IEEE. pp. 2392–6.
– reference: Ashcroft, Neil W., Mermin, N. David, 1976. Solid State Physics.
– volume: 28
  start-page: 293
  year: 1982
  end-page: 302
  ident: b0065
  article-title: Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation
  publication-title: Sol. Energy
– volume: 200
  start-page: 370
  year: 2017
  end-page: 382
  ident: b0090
  article-title: Dynamic modeling and entity validation of a photovoltaic system
  publication-title: Appl. Energy
– volume: 24
  start-page: 511
  year: 1980
  end-page: 513
  ident: b0020
  article-title: Transmission of diffuse radiation through CPC and flat plate collector glazings
  publication-title: Sol. Energy
– volume: 25
  start-page: 1422
  year: 1954
  end-page: 1434
  ident: b0110
  article-title: Radioactive and photoelectric p-n junction power sources
  publication-title: J. Appl. Phys.
– reference: Chen, Zhicong, Wu, Lijun, Cheng, Shuying, Lin, Peijie, Wu, Yue, Lin, Wencheng, 2017. Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics. Appl. Energy.
– volume: 20
  start-page: 406
  year: 1984
  end-page: 408
  ident: b0115
  article-title: Accurate analytical method for the extraction of solar cell model parameters
  publication-title: Electron. Lett.
– volume: 83
  start-page: 664
  year: 2009
  end-page: 678
  ident: b0075
  article-title: Modeling and simulation of a grid-connected PV generation system for electromagnetic transient analysis
  publication-title: Sol. Energy
– reference: King, D.L., Boyson, W.E., Kratochvil, J.A., 2004. Photovoltaic Array Performance Model. Department of Energy, United States.
– volume: 32
  start-page: 2579
  year: 2007
  end-page: 2589
  ident: b0035
  article-title: A single procedure for helping PV designers to select silicon PV modules and evaluate the loss resistances
  publication-title: Renewable Energy
– volume: 32
  start-page: 2579
  year: 2007
  ident: 10.1016/j.solener.2017.12.034_b0035
  article-title: A single procedure for helping PV designers to select silicon PV modules and evaluate the loss resistances
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2007.01.001
– ident: 10.1016/j.solener.2017.12.034_b0105
  doi: 10.1142/p276
– start-page: 5500
  year: 2012
  ident: 10.1016/j.solener.2017.12.034_b0130
  article-title: A detailed performance model for photovoltaic systems
  publication-title: Solar Energy J.
– volume: 24
  start-page: 1198
  issue: 5
  year: 2009
  ident: 10.1016/j.solener.2017.12.034_b0135
  article-title: Comprehensive approach to modeling and simulation of photovoltaic arrays
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2009.2013862
– volume: 105
  start-page: 27
  year: 2012
  ident: 10.1016/j.solener.2017.12.034_b0030
  article-title: On the experimental validation of an improved five-parameter model for silicon photovoltaic modules
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2012.05.028
– volume: 25
  start-page: 1422
  year: 1954
  ident: 10.1016/j.solener.2017.12.034_b0110
  article-title: Radioactive and photoelectric p-n junction power sources
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1721579
– volume: 190
  start-page: 902
  year: 2017
  ident: 10.1016/j.solener.2017.12.034_b0085
  article-title: Output power variation of different PV array configurations during irradiance transitions caused by moving clouds
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.01.013
– volume: 94
  start-page: 1358
  year: 2010
  ident: 10.1016/j.solener.2017.12.034_b0025
  article-title: An improved five-parameter model for photovoltaic modules
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2010.04.003
– volume: 20
  start-page: 406
  issue: 10
  year: 1984
  ident: 10.1016/j.solener.2017.12.034_b0115
  article-title: Accurate analytical method for the extraction of solar cell model parameters
  publication-title: Electron. Lett.
  doi: 10.1049/el:19840281
– ident: 10.1016/j.solener.2017.12.034_b0095
  doi: 10.1016/0038-092X(63)90006-9
– ident: 10.1016/j.solener.2017.12.034_b0080
– volume: 187
  start-page: 326
  year: 2017
  ident: 10.1016/j.solener.2017.12.034_b0015
  article-title: PV array power output maximization under partial shading using new shifted PV array arrangements
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.11.038
– volume: 200
  start-page: 370
  year: 2017
  ident: 10.1016/j.solener.2017.12.034_b0090
  article-title: Dynamic modeling and entity validation of a photovoltaic system
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.04.075
– ident: 10.1016/j.solener.2017.12.034_b0045
  doi: 10.1016/j.apenergy.2017.05.034
– ident: 10.1016/j.solener.2017.12.034_b0120
  doi: 10.1109/ISIE.2007.4374981
– volume: 25
  start-page: 119
  year: 1981
  ident: 10.1016/j.solener.2017.12.034_b0055
  article-title: On the thermodynamic limit of photovoltaic energy conversion
  publication-title: Appl. Phys.
  doi: 10.1007/BF00901283
– ident: 10.1016/j.solener.2017.12.034_b0100
– volume: 57
  start-page: 421
  year: 1996
  ident: 10.1016/j.solener.2017.12.034_b0125
  article-title: A simple model for PV module reflection losses under field conditions
  publication-title: Sol. Energy
  doi: 10.1016/S0038-092X(96)00137-5
– volume: 34
  start-page: 286
  year: 1987
  ident: 10.1016/j.solener.2017.12.034_b0040
  article-title: Analytical methods for the extraction of solar-cell single-and double-diode model parameters from IV characteristics
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/T-ED.1987.22920
– volume: 2
  start-page: 612
  year: 2012
  ident: 10.1016/j.solener.2017.12.034_b0060
  article-title: Modeling of electrical response of illuminated crystalline photovoltaic modules using four-and five-parameter models
  publication-title: Int. J. Emerg. Technol. Adv. Eng.
– volume: 83
  start-page: 664
  year: 2009
  ident: 10.1016/j.solener.2017.12.034_b0075
  article-title: Modeling and simulation of a grid-connected PV generation system for electromagnetic transient analysis
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2008.10.020
– volume: 85
  start-page: 393
  issue: 2
  year: 2011
  ident: 10.1016/j.solener.2017.12.034_b0140
  article-title: Sensitivity analysis and more accurate solution of photovoltaic solar cell parameters
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2010.10.022
– volume: 28
  start-page: 293
  year: 1982
  ident: 10.1016/j.solener.2017.12.034_b0065
  article-title: Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation
  publication-title: Sol. Energy
  doi: 10.1016/0038-092X(82)90302-4
– volume: 5
  start-page: 301
  year: 2014
  ident: 10.1016/j.solener.2017.12.034_b0010
  article-title: An explicit PV string model based on the Lambert function and simplified MPP expressions for operation under partial shading
  publication-title: IEEE Trans. Sustainable Energy
  doi: 10.1109/TSTE.2013.2282168
– volume: 24
  start-page: 511
  year: 1980
  ident: 10.1016/j.solener.2017.12.034_b0020
  article-title: Transmission of diffuse radiation through CPC and flat plate collector glazings
  publication-title: Sol. Energy
  doi: 10.1016/0038-092X(80)90320-5
– ident: 10.1016/j.solener.2017.12.034_b0005
– volume: 80
  start-page: 78
  year: 2006
  ident: 10.1016/j.solener.2017.12.034_b0050
  article-title: Improvement and validation of a model for photovoltaic array performance
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2005.06.010
– volume: 185
  start-page: 1185
  issue: 2
  year: 2017
  ident: 10.1016/j.solener.2017.12.034_b0070
  article-title: A new maximum power point method based on a sliding mode approach for solar energy harvesting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.03.055
SSID ssj0017187
Score 2.2563236
Snippet •First study of the effects of non-identical module characteristics.•Five-parameter model optimised in the maximum-power-point region.•Effects of manufacturing...
Large photovoltaic arrays are becoming common as the world moves to replace fossil-fuelled electricity generators. As the array size and project cost increase,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 163
SubjectTerms Array model
Arrays
Computer simulation
Constraints
Distribution functions
Electricity pricing
Fossil fuels
Generators
Inhomogeneity
Manufacturing industry
Mathematical models
Modules
MPP
Open circuit voltage
Photovoltaic
Photovoltaic cells
Photovoltaics
Power loss
Short circuits
Short-circuit current
Solar energy
Strings
Temperature
Temperature effects
Temperature gradients
Temperature requirements
Thermal design
Tolerance
Voltage
Title Simulation of large photovoltaic arrays
URI https://dx.doi.org/10.1016/j.solener.2017.12.034
https://www.proquest.com/docview/2019062869
Volume 161
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELUqWGBAfIpCqTIgMaVNYse-jFVFVUB0gUrZLMdJRKrSVm0YWPjt-BqnfEioEmMSXZScnXe--L07Qq5pqM26M9VuhBIfhqScRCXg6lAnQihfAUNx8uOID8fsPg7jBunXWhikVVrsrzB9jdb2TNd6s7soCtT4UvCiIPYF9XE3ARXsTOAs73xsaB6-wd6qbibFbf4g_lLxdCcmiZ1icWdkeIn1X0HK_opPv5B6HX4Gh-TArhudXvVoR6SRzY7J_rdqgifk5ql4tc24nHnuTJHj7Sxe5uXcQFCpCu2o5VK9r07JeHD73B-6tg-CqykVpZsmHF3n5czkLp4KTHzheZCA5jmoKNSKawDup0GqTPrEae7lIgshhSwKc54KekZ2ZvNZdk4cFmiUpnpaQcZSL1IQCmUgBhSPQCuvSVj99lLbIuHYq2IqazbYRFqnSXSa9ANpnNYknY3ZoqqSsc0AatfKH8MtDZJvM23VQyHt97bC61hwGXh08f87X5I9cwQVJ7tFdsrlW3Zllhxl0l7PqTbZ7d09DEef0HTV9w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhVLgRxAnEIT23GcAwfEorK0F4rUm3GcRBSVtmqDEBd-ih_E0zhlkVAlJK6xbCXPkzee5M0MwD4NtDl3JtqNMMWHoSgnVrFwdaDjMFS-EgyTk-sNXrtjV62gNQXvZS4Myiot9xecPmJre6Vq0az2223M8aXCi0jLD6mPfxOssvI6fX0xcdvw-PLMbPIBIRfnzdOaa1sLuJrSMHeTmOPdeBkz4YCniKFsnpFYaJ4JFQVacS0E9xOSKBORcJp5WZgGIhFpFGQ8CalZdxpmmaELbJtw9DbWlfiG7ItCnRR1BaT1mTZUfTRRcwerSaOkLBx9hqTsN4f4wzWM_N3FEizag6pzUmCxDFNpdwUWvpQvXIXD2_aT7f7l9DKng6Jyp__Qy3uG83LV1o4aDNTrcA3u_gWddZjp9rrpBjiMaMyF9bQSKUu8SIkgVIbThOKR0MrbBFY-vdS2Kjk2x-jIUn72KC1oEkGTPpEGtE04Gk_rF2U5Jk0QJbTym31J4zomTa2UWyHtCz7EcazwLHi09feV92Cu1qzfyJvLxvU2zJsRUQjCKzCTD57THXPeyePdkX05cP_fBv0BrwsSHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+of+large+photovoltaic+arrays&rft.jtitle=Solar+energy&rft.au=Abdin%2C+Z.&rft.au=Webb%2C+C.J.&rft.au=Gray%2C+E.MacA&rft.date=2018-02-01&rft.issn=0038-092X&rft.volume=161&rft.spage=163&rft.epage=179&rft_id=info:doi/10.1016%2Fj.solener.2017.12.034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_solener_2017_12_034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon