Simulation of large photovoltaic arrays
•First study of the effects of non-identical module characteristics.•Five-parameter model optimised in the maximum-power-point region.•Effects of manufacturing tolerances and temperature inhomogeneity modelled.•Equal module current and equal string voltage constraints applied.•Real temperature distr...
Saved in:
Published in | Solar energy Vol. 161; pp. 163 - 179 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.02.2018
Pergamon Press Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •First study of the effects of non-identical module characteristics.•Five-parameter model optimised in the maximum-power-point region.•Effects of manufacturing tolerances and temperature inhomogeneity modelled.•Equal module current and equal string voltage constraints applied.•Real temperature distribution across a 298-kW array predicted from string data.
Large photovoltaic arrays are becoming common as the world moves to replace fossil-fuelled electricity generators. As the array size and project cost increase, it becomes increasingly important to know accurately what the array’s performance will be before it is built. Large arrays inevitably contain modules with a spread of performance characteristics such as short-circuit current and open-circuit voltage, and suffer from temperature differences between modules. In this first study of these problems, a model has been developed that accurately predicts the behaviour of a photovoltaic array subject to variability between modules and inhomogeneity of cell temperature across the array. The model was applied to a real rooftop array consisting of 912 modules (298 kW nominal peak power). Based on measured string currents, the predicted average string temperature was compared the temperature measured by a radiometric survey using a drone-mounted IR camera and matched very well.
The five-parameter model of cell I-V characteristics was fitted to manufacturer’s data, with highest weighting given to the region around the maximum-power point (MPP) where a real array should operate via active MPP tracking. The model was used to explore separately the effects of a spread in module characteristics arising in the manufacturing process and of temperature inhomogeneity across the array. The current in each module of a string was constrained to be the same, and the voltage of every parallel-connected string was also constrained to be the same. These constraints lead to greater power loss than is predicted based on an average module at an average temperature. Compared to a hypothetical array assembled from identical average modules at the same average temperature, variability caused a loss of power of about 2%, depending on the detailed form of the distribution function chosen to represent the spread of characteristics in the manufacturer’s tolerance band. As a rule of thumb, de-rating the maximum power to the lower end of the manufacturer’s tolerance band is recommended to account for module variability during the design phase. The effect of temperature inhomogeneity is more serious, because temperature affects Voc strongly, causing parallel-connected strings to be pulled away from their ideal operating points to obey the constraint of equal voltage. A modest 10 °C temperature gradient across the studied array was predicted to cause about a 4% loss of power at the MPP. Much higher real temperature differences could be expected in summer and were observed. The study confirmed that temperature inhomogeneity poses a serious design problem for large arrays, requiring careful thermal design to achieve not only acceptably low average array temperature, but also the least possible temperature spread. |
---|---|
AbstractList | Large photovoltaic arrays are becoming common as the world moves to replace fossil-fuelled electricity generators. As the array size and project cost increase, it becomes increasingly important to know accurately what the array's performance will be before it is built. Large arrays inevitably contain modules with a spread of performance characteristics such as short-circuit current and open-circuit voltage, and suffer from temperature differences between modules. In this first study of these problems, a model has been developed that accurately predicts the behaviour of a photovoltaic array subject to variability between modules and inhomogeneity of cell temperature across the array. The model was applied to a real rooftop array consisting of 912 modules (298 kW nominal peak power). Based on measured string currents, the predicted average string temperature was com- pared the temperature measured by a radiometric survey using a drone-mounted IR camera and matched very well. The five-parameter model of cell characteristics was fitted to manufacturer's data, with highest weighting given to the region around the maximum-power point (MPP) where a real array should operate via active MPP tracking. The model was used to explore separately the effects of a spread in module characteristics arising in the manufacturing process and of temperature inhomogeneity across the array. The current in each module of a string was constrained to be the same, and the voltage of every parallel-connected string was also constrained to be the same. These constraints lead to greater power loss than is predicted based on an average module at an average temperature. Compared to a hypothetical array assembled from identical average modules at the same average temperature, variability caused a loss of power of about 2%, depending on the detailed form of the distribution function chosen to represent the spread of characteristics in the manufacturer's tolerance band. As a rule of thumb, de-rating the maximum power to the lower end of the manufacturer's tolerance band is re- commended to account for module variability during the design phase. The effect of temperature inhomogeneity is more serious, because temperature affects V0c strongly, causing parallel-connected strings to be pulled away from their ideal operating points to obey the constraint of equal voltage. A modest 10 °C temperature gradient across the studied array was predicted to cause about a 4% loss of power at the MPP. Much higher real temperature differences could be expected in summer and were observed. The study confirmed that temperature inhomogeneity poses a serious design problem for large arrays, requiring careful thermal design to achieve not only acceptably low average array temperature, but also the least possible temperature spread. •First study of the effects of non-identical module characteristics.•Five-parameter model optimised in the maximum-power-point region.•Effects of manufacturing tolerances and temperature inhomogeneity modelled.•Equal module current and equal string voltage constraints applied.•Real temperature distribution across a 298-kW array predicted from string data. Large photovoltaic arrays are becoming common as the world moves to replace fossil-fuelled electricity generators. As the array size and project cost increase, it becomes increasingly important to know accurately what the array’s performance will be before it is built. Large arrays inevitably contain modules with a spread of performance characteristics such as short-circuit current and open-circuit voltage, and suffer from temperature differences between modules. In this first study of these problems, a model has been developed that accurately predicts the behaviour of a photovoltaic array subject to variability between modules and inhomogeneity of cell temperature across the array. The model was applied to a real rooftop array consisting of 912 modules (298 kW nominal peak power). Based on measured string currents, the predicted average string temperature was compared the temperature measured by a radiometric survey using a drone-mounted IR camera and matched very well. The five-parameter model of cell I-V characteristics was fitted to manufacturer’s data, with highest weighting given to the region around the maximum-power point (MPP) where a real array should operate via active MPP tracking. The model was used to explore separately the effects of a spread in module characteristics arising in the manufacturing process and of temperature inhomogeneity across the array. The current in each module of a string was constrained to be the same, and the voltage of every parallel-connected string was also constrained to be the same. These constraints lead to greater power loss than is predicted based on an average module at an average temperature. Compared to a hypothetical array assembled from identical average modules at the same average temperature, variability caused a loss of power of about 2%, depending on the detailed form of the distribution function chosen to represent the spread of characteristics in the manufacturer’s tolerance band. As a rule of thumb, de-rating the maximum power to the lower end of the manufacturer’s tolerance band is recommended to account for module variability during the design phase. The effect of temperature inhomogeneity is more serious, because temperature affects Voc strongly, causing parallel-connected strings to be pulled away from their ideal operating points to obey the constraint of equal voltage. A modest 10 °C temperature gradient across the studied array was predicted to cause about a 4% loss of power at the MPP. Much higher real temperature differences could be expected in summer and were observed. The study confirmed that temperature inhomogeneity poses a serious design problem for large arrays, requiring careful thermal design to achieve not only acceptably low average array temperature, but also the least possible temperature spread. |
Author | Gray, E.MacA Abdin, Z. Webb, C.J. |
Author_xml | – sequence: 1 givenname: Z. surname: Abdin fullname: Abdin, Z. – sequence: 2 givenname: C.J. surname: Webb fullname: Webb, C.J. – sequence: 3 givenname: E.MacA surname: Gray fullname: Gray, E.MacA email: e.gray@griffith.edu.au |
BookMark | eNqFkE1LAzEURYNUsK3-BGHAhasZk8xMksGFSPELCi5UcBfSfGiG6WRMMoX-e1PblZuu3uLdcx_vzMCkd70G4BLBAkFEbtoiuE732hcYIlogXMCyOgFTVFGUI1zTCZhCWLIcNvjzDMxCaGEKIkan4PrNrsdOROv6zJmsE_5LZ8O3i27juiiszIT3YhvOwakRXdAXhzkHH48P74vnfPn69LK4X-ayLGnM1YrIWq6gqVDFoMCEMmLwiklimGhqKYhkjCCFlcCsIaWBhuqaKaab2hBFyzm42vcO3v2MOkTeutH36SRPzzWQYEaalKr3KeldCF4bPni7Fn7LEeQ7J7zlByc7jHKEeXKSuNt_nLTx7_nohe2O0nd7WicBG5u2QVrdS62s1zJy5eyRhl_ORIKO |
CitedBy_id | crossref_primary_10_31202_ecjse_459080 crossref_primary_10_1016_j_apenergy_2020_115562 crossref_primary_10_1016_j_apenergy_2020_114872 crossref_primary_10_1016_j_solmat_2019_02_036 crossref_primary_10_1002_aesr_202000039 crossref_primary_10_1016_j_enconman_2019_06_068 crossref_primary_10_3390_en11061353 |
Cites_doi | 10.1016/j.renene.2007.01.001 10.1142/p276 10.1109/TPEL.2009.2013862 10.1016/j.solmat.2012.05.028 10.1063/1.1721579 10.1016/j.apenergy.2017.01.013 10.1016/j.solmat.2010.04.003 10.1049/el:19840281 10.1016/0038-092X(63)90006-9 10.1016/j.apenergy.2016.11.038 10.1016/j.apenergy.2017.04.075 10.1016/j.apenergy.2017.05.034 10.1109/ISIE.2007.4374981 10.1007/BF00901283 10.1016/S0038-092X(96)00137-5 10.1109/T-ED.1987.22920 10.1016/j.solener.2008.10.020 10.1016/j.solener.2010.10.022 10.1016/0038-092X(82)90302-4 10.1109/TSTE.2013.2282168 10.1016/0038-092X(80)90320-5 10.1016/j.solener.2005.06.010 10.1016/j.apenergy.2016.03.055 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Pergamon Press Inc. Feb 2018 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Pergamon Press Inc. Feb 2018 |
DBID | AAYXX CITATION 7SP 7ST 8FD C1K FR3 KR7 L7M SOI |
DOI | 10.1016/j.solener.2017.12.034 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1471-1257 |
EndPage | 179 |
ExternalDocumentID | 10_1016_j_solener_2017_12_034 S0038092X17311167 |
GroupedDBID | --K --M -ET -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABTAH ABXDB ABXRA ABYKQ ACDAQ ACGFS ACGOD ACIWK ACNNM ACRLP ADBBV ADEZE ADHUB ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR AZFZN BELTK BKOJK BKOMP BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ H~9 IHE J1W JARJE KOM LY6 M41 MAGPM MO0 N9A NEJ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SAC SDF SDG SDP SES SEW SPC SPCBC SSM SSR SSZ T5K TAE TN5 UKR VOH WH7 WUQ XOL XPP YNT ZMT ZY4 ~02 ~A~ ~G- ~KM ~S- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SP 7ST 8FD C1K EFKBS FR3 KR7 L7M SOI |
ID | FETCH-LOGICAL-c337t-db6c5cb0f41480a26786f2b8c6f8a95ca6c8861d2da28963f0f7e58d8e95f6d73 |
IEDL.DBID | .~1 |
ISSN | 0038-092X |
IngestDate | Wed Aug 13 06:49:21 EDT 2025 Tue Jul 01 01:08:49 EDT 2025 Thu Apr 24 23:11:53 EDT 2025 Fri Feb 23 02:28:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Array model Tolerance Photovoltaic Temperature MPP |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-db6c5cb0f41480a26786f2b8c6f8a95ca6c8861d2da28963f0f7e58d8e95f6d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2019062869 |
PQPubID | 9393 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2019062869 crossref_primary_10_1016_j_solener_2017_12_034 crossref_citationtrail_10_1016_j_solener_2017_12_034 elsevier_sciencedirect_doi_10_1016_j_solener_2017_12_034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2018 2018-02-00 20180201 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: February 2018 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Solar energy |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Pergamon Press Inc |
Publisher_xml | – name: Elsevier Ltd – name: Pergamon Press Inc |
References | Batzelis, Routsolias, Papathanassiou (b0010) 2014; 5 Pfann, Van Roosbroeck (b0110) 1954; 25 Kim, Jeon, Cho, Kim, Ahn (b0075) 2009; 83 Carrero, Amador, Arnaltes (b0035) 2007; 32 King, D.L., Boyson, W.E., Kratochvil, J.A., 2004. Photovoltaic Array Performance Model. Department of Energy, United States. Lee, Kuo, Weng, Huang, Peng (b0090) 2017; 200 Tian, Mancilla-David, Ellis, Jenkins, Muljadi (b0130) 2012 Brano, Orioli, Ciulla (b0030) 2012; 105 Zhu, Fu, Long, Li (b0140) 2011; 85 Brandemuehl, Beckman (b0020) 1980; 24 Lappalainen, Valkealahti (b0085) 2017; 190 Mayer, Johannes N., Simon, P., Philipps, Noha Saad Hussein, Schlegl, Thomas, Senkpiel, Charlotte, 2015. Current and future cost of photovoltaics, Long-term Scenarios for Market Development, System Prices and LCOE of Utility-Scale PV Systems (Fraunhofer ISE, Study on behalf of Agora Energiewende, Freiburg, 2015). Sera, Dezso, Teodorescu, Remus, Pedro, Rodriguez, 2007. PV panel model based on datasheet values. Conference PV panel model based on datasheet values. IEEE. pp. 2392–6. Chen, Zhicong, Wu, Lijun, Cheng, Shuying, Lin, Peijie, Wu, Yue, Lin, Wencheng, 2017. Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics. Appl. Energy. Farhat, Barambones, Sbita (b0070) 2017; 185 Erbs, Klein, Duffie (b0065) 1982; 28 Nelson, Jenny, 2003. The Physics of Solar Cells, World Scientific. Sjerps-Koomen, Alsema, Turkenburg (b0125) 1996; 57 Villalva, Rafael, Ernesto (b0135) 2009; 24 De Vos, Pauwels (b0055) 1981; 25 Ashcroft, Neil W., Mermin, N. David, 1976. Solid State Physics. Phang, Chan, Phillips (b0115) 1984; 20 Brano, Orioli, Ciulla, Di Gangi (b0025) 2010; 94 De Soto, Klein, Beckman (b0050) 2006; 80 Belhaouas, Cheikh, Agathoklis, Oularbi, Amrouche, Sedraoui (b0015) 2017; 187 Dongue, Njomo, Tamba, Ebengai (b0060) 2012; 2 Liu, Benjamin Y.H., Jordan, Richard C., 1963. The long-term average performance of flat-plate solar-energy collectors: with design data for the US, its outlying possessions and Canada. Solar Energy 7, 53–74. Chan, Phang (b0040) 1987; 34 Chan (10.1016/j.solener.2017.12.034_b0040) 1987; 34 Tian (10.1016/j.solener.2017.12.034_b0130) 2012 Brano (10.1016/j.solener.2017.12.034_b0030) 2012; 105 Carrero (10.1016/j.solener.2017.12.034_b0035) 2007; 32 De Soto (10.1016/j.solener.2017.12.034_b0050) 2006; 80 Belhaouas (10.1016/j.solener.2017.12.034_b0015) 2017; 187 De Vos (10.1016/j.solener.2017.12.034_b0055) 1981; 25 Erbs (10.1016/j.solener.2017.12.034_b0065) 1982; 28 Lappalainen (10.1016/j.solener.2017.12.034_b0085) 2017; 190 10.1016/j.solener.2017.12.034_b0080 10.1016/j.solener.2017.12.034_b0005 10.1016/j.solener.2017.12.034_b0105 Dongue (10.1016/j.solener.2017.12.034_b0060) 2012; 2 10.1016/j.solener.2017.12.034_b0045 10.1016/j.solener.2017.12.034_b0100 Brano (10.1016/j.solener.2017.12.034_b0025) 2010; 94 10.1016/j.solener.2017.12.034_b0120 Phang (10.1016/j.solener.2017.12.034_b0115) 1984; 20 Farhat (10.1016/j.solener.2017.12.034_b0070) 2017; 185 Villalva (10.1016/j.solener.2017.12.034_b0135) 2009; 24 Batzelis (10.1016/j.solener.2017.12.034_b0010) 2014; 5 Lee (10.1016/j.solener.2017.12.034_b0090) 2017; 200 Sjerps-Koomen (10.1016/j.solener.2017.12.034_b0125) 1996; 57 10.1016/j.solener.2017.12.034_b0095 Kim (10.1016/j.solener.2017.12.034_b0075) 2009; 83 Brandemuehl (10.1016/j.solener.2017.12.034_b0020) 1980; 24 Pfann (10.1016/j.solener.2017.12.034_b0110) 1954; 25 Zhu (10.1016/j.solener.2017.12.034_b0140) 2011; 85 |
References_xml | – volume: 187 start-page: 326 year: 2017 end-page: 337 ident: b0015 article-title: PV array power output maximization under partial shading using new shifted PV array arrangements publication-title: Appl. Energy – volume: 34 start-page: 286 year: 1987 end-page: 293 ident: b0040 article-title: Analytical methods for the extraction of solar-cell single-and double-diode model parameters from IV characteristics publication-title: IEEE Trans. Electron Devices – reference: Mayer, Johannes N., Simon, P., Philipps, Noha Saad Hussein, Schlegl, Thomas, Senkpiel, Charlotte, 2015. Current and future cost of photovoltaics, Long-term Scenarios for Market Development, System Prices and LCOE of Utility-Scale PV Systems (Fraunhofer ISE, Study on behalf of Agora Energiewende, Freiburg, 2015). – volume: 185 start-page: 1185 year: 2017 end-page: 1198 ident: b0070 article-title: A new maximum power point method based on a sliding mode approach for solar energy harvesting publication-title: Appl. Energy – volume: 24 start-page: 1198 year: 2009 end-page: 1208 ident: b0135 article-title: Comprehensive approach to modeling and simulation of photovoltaic arrays publication-title: IEEE Trans. Power Electron. – volume: 94 start-page: 1358 year: 2010 end-page: 1370 ident: b0025 article-title: An improved five-parameter model for photovoltaic modules publication-title: Sol. Energy Mater. Sol. Cells – volume: 85 start-page: 393 year: 2011 end-page: 403 ident: b0140 article-title: Sensitivity analysis and more accurate solution of photovoltaic solar cell parameters publication-title: Sol. Energy – volume: 105 start-page: 27 year: 2012 end-page: 39 ident: b0030 article-title: On the experimental validation of an improved five-parameter model for silicon photovoltaic modules publication-title: Sol. Energy Mater. Sol. Cells – volume: 2 start-page: 612 year: 2012 end-page: 619 ident: b0060 article-title: Modeling of electrical response of illuminated crystalline photovoltaic modules using four-and five-parameter models publication-title: Int. J. Emerg. Technol. Adv. Eng. – reference: Liu, Benjamin Y.H., Jordan, Richard C., 1963. The long-term average performance of flat-plate solar-energy collectors: with design data for the US, its outlying possessions and Canada. Solar Energy 7, 53–74. – volume: 80 start-page: 78 year: 2006 end-page: 88 ident: b0050 article-title: Improvement and validation of a model for photovoltaic array performance publication-title: Sol. Energy – reference: Nelson, Jenny, 2003. The Physics of Solar Cells, World Scientific. – volume: 5 start-page: 301 year: 2014 end-page: 312 ident: b0010 article-title: An explicit PV string model based on the Lambert function and simplified MPP expressions for operation under partial shading publication-title: IEEE Trans. Sustainable Energy – volume: 25 start-page: 119 year: 1981 end-page: 125 ident: b0055 article-title: On the thermodynamic limit of photovoltaic energy conversion publication-title: Appl. Phys. – start-page: 5500 year: 2012 end-page: 54601 ident: b0130 article-title: A detailed performance model for photovoltaic systems publication-title: Solar Energy J. – volume: 57 start-page: 421 year: 1996 end-page: 432 ident: b0125 article-title: A simple model for PV module reflection losses under field conditions publication-title: Sol. Energy – volume: 190 start-page: 902 year: 2017 end-page: 910 ident: b0085 article-title: Output power variation of different PV array configurations during irradiance transitions caused by moving clouds publication-title: Appl. Energy – reference: Sera, Dezso, Teodorescu, Remus, Pedro, Rodriguez, 2007. PV panel model based on datasheet values. Conference PV panel model based on datasheet values. IEEE. pp. 2392–6. – reference: Ashcroft, Neil W., Mermin, N. David, 1976. Solid State Physics. – volume: 28 start-page: 293 year: 1982 end-page: 302 ident: b0065 article-title: Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation publication-title: Sol. Energy – volume: 200 start-page: 370 year: 2017 end-page: 382 ident: b0090 article-title: Dynamic modeling and entity validation of a photovoltaic system publication-title: Appl. Energy – volume: 24 start-page: 511 year: 1980 end-page: 513 ident: b0020 article-title: Transmission of diffuse radiation through CPC and flat plate collector glazings publication-title: Sol. Energy – volume: 25 start-page: 1422 year: 1954 end-page: 1434 ident: b0110 article-title: Radioactive and photoelectric p-n junction power sources publication-title: J. Appl. Phys. – reference: Chen, Zhicong, Wu, Lijun, Cheng, Shuying, Lin, Peijie, Wu, Yue, Lin, Wencheng, 2017. Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics. Appl. Energy. – volume: 20 start-page: 406 year: 1984 end-page: 408 ident: b0115 article-title: Accurate analytical method for the extraction of solar cell model parameters publication-title: Electron. Lett. – volume: 83 start-page: 664 year: 2009 end-page: 678 ident: b0075 article-title: Modeling and simulation of a grid-connected PV generation system for electromagnetic transient analysis publication-title: Sol. Energy – reference: King, D.L., Boyson, W.E., Kratochvil, J.A., 2004. Photovoltaic Array Performance Model. Department of Energy, United States. – volume: 32 start-page: 2579 year: 2007 end-page: 2589 ident: b0035 article-title: A single procedure for helping PV designers to select silicon PV modules and evaluate the loss resistances publication-title: Renewable Energy – volume: 32 start-page: 2579 year: 2007 ident: 10.1016/j.solener.2017.12.034_b0035 article-title: A single procedure for helping PV designers to select silicon PV modules and evaluate the loss resistances publication-title: Renewable Energy doi: 10.1016/j.renene.2007.01.001 – ident: 10.1016/j.solener.2017.12.034_b0105 doi: 10.1142/p276 – start-page: 5500 year: 2012 ident: 10.1016/j.solener.2017.12.034_b0130 article-title: A detailed performance model for photovoltaic systems publication-title: Solar Energy J. – volume: 24 start-page: 1198 issue: 5 year: 2009 ident: 10.1016/j.solener.2017.12.034_b0135 article-title: Comprehensive approach to modeling and simulation of photovoltaic arrays publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2009.2013862 – volume: 105 start-page: 27 year: 2012 ident: 10.1016/j.solener.2017.12.034_b0030 article-title: On the experimental validation of an improved five-parameter model for silicon photovoltaic modules publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2012.05.028 – volume: 25 start-page: 1422 year: 1954 ident: 10.1016/j.solener.2017.12.034_b0110 article-title: Radioactive and photoelectric p-n junction power sources publication-title: J. Appl. Phys. doi: 10.1063/1.1721579 – volume: 190 start-page: 902 year: 2017 ident: 10.1016/j.solener.2017.12.034_b0085 article-title: Output power variation of different PV array configurations during irradiance transitions caused by moving clouds publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.01.013 – volume: 94 start-page: 1358 year: 2010 ident: 10.1016/j.solener.2017.12.034_b0025 article-title: An improved five-parameter model for photovoltaic modules publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2010.04.003 – volume: 20 start-page: 406 issue: 10 year: 1984 ident: 10.1016/j.solener.2017.12.034_b0115 article-title: Accurate analytical method for the extraction of solar cell model parameters publication-title: Electron. Lett. doi: 10.1049/el:19840281 – ident: 10.1016/j.solener.2017.12.034_b0095 doi: 10.1016/0038-092X(63)90006-9 – ident: 10.1016/j.solener.2017.12.034_b0080 – volume: 187 start-page: 326 year: 2017 ident: 10.1016/j.solener.2017.12.034_b0015 article-title: PV array power output maximization under partial shading using new shifted PV array arrangements publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.11.038 – volume: 200 start-page: 370 year: 2017 ident: 10.1016/j.solener.2017.12.034_b0090 article-title: Dynamic modeling and entity validation of a photovoltaic system publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.04.075 – ident: 10.1016/j.solener.2017.12.034_b0045 doi: 10.1016/j.apenergy.2017.05.034 – ident: 10.1016/j.solener.2017.12.034_b0120 doi: 10.1109/ISIE.2007.4374981 – volume: 25 start-page: 119 year: 1981 ident: 10.1016/j.solener.2017.12.034_b0055 article-title: On the thermodynamic limit of photovoltaic energy conversion publication-title: Appl. Phys. doi: 10.1007/BF00901283 – ident: 10.1016/j.solener.2017.12.034_b0100 – volume: 57 start-page: 421 year: 1996 ident: 10.1016/j.solener.2017.12.034_b0125 article-title: A simple model for PV module reflection losses under field conditions publication-title: Sol. Energy doi: 10.1016/S0038-092X(96)00137-5 – volume: 34 start-page: 286 year: 1987 ident: 10.1016/j.solener.2017.12.034_b0040 article-title: Analytical methods for the extraction of solar-cell single-and double-diode model parameters from IV characteristics publication-title: IEEE Trans. Electron Devices doi: 10.1109/T-ED.1987.22920 – volume: 2 start-page: 612 year: 2012 ident: 10.1016/j.solener.2017.12.034_b0060 article-title: Modeling of electrical response of illuminated crystalline photovoltaic modules using four-and five-parameter models publication-title: Int. J. Emerg. Technol. Adv. Eng. – volume: 83 start-page: 664 year: 2009 ident: 10.1016/j.solener.2017.12.034_b0075 article-title: Modeling and simulation of a grid-connected PV generation system for electromagnetic transient analysis publication-title: Sol. Energy doi: 10.1016/j.solener.2008.10.020 – volume: 85 start-page: 393 issue: 2 year: 2011 ident: 10.1016/j.solener.2017.12.034_b0140 article-title: Sensitivity analysis and more accurate solution of photovoltaic solar cell parameters publication-title: Sol. Energy doi: 10.1016/j.solener.2010.10.022 – volume: 28 start-page: 293 year: 1982 ident: 10.1016/j.solener.2017.12.034_b0065 article-title: Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation publication-title: Sol. Energy doi: 10.1016/0038-092X(82)90302-4 – volume: 5 start-page: 301 year: 2014 ident: 10.1016/j.solener.2017.12.034_b0010 article-title: An explicit PV string model based on the Lambert function and simplified MPP expressions for operation under partial shading publication-title: IEEE Trans. Sustainable Energy doi: 10.1109/TSTE.2013.2282168 – volume: 24 start-page: 511 year: 1980 ident: 10.1016/j.solener.2017.12.034_b0020 article-title: Transmission of diffuse radiation through CPC and flat plate collector glazings publication-title: Sol. Energy doi: 10.1016/0038-092X(80)90320-5 – ident: 10.1016/j.solener.2017.12.034_b0005 – volume: 80 start-page: 78 year: 2006 ident: 10.1016/j.solener.2017.12.034_b0050 article-title: Improvement and validation of a model for photovoltaic array performance publication-title: Sol. Energy doi: 10.1016/j.solener.2005.06.010 – volume: 185 start-page: 1185 issue: 2 year: 2017 ident: 10.1016/j.solener.2017.12.034_b0070 article-title: A new maximum power point method based on a sliding mode approach for solar energy harvesting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.03.055 |
SSID | ssj0017187 |
Score | 2.2563236 |
Snippet | •First study of the effects of non-identical module characteristics.•Five-parameter model optimised in the maximum-power-point region.•Effects of manufacturing... Large photovoltaic arrays are becoming common as the world moves to replace fossil-fuelled electricity generators. As the array size and project cost increase,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 163 |
SubjectTerms | Array model Arrays Computer simulation Constraints Distribution functions Electricity pricing Fossil fuels Generators Inhomogeneity Manufacturing industry Mathematical models Modules MPP Open circuit voltage Photovoltaic Photovoltaic cells Photovoltaics Power loss Short circuits Short-circuit current Solar energy Strings Temperature Temperature effects Temperature gradients Temperature requirements Thermal design Tolerance Voltage |
Title | Simulation of large photovoltaic arrays |
URI | https://dx.doi.org/10.1016/j.solener.2017.12.034 https://www.proquest.com/docview/2019062869 |
Volume | 161 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELUqWGBAfIpCqTIgMaVNYse-jFVFVUB0gUrZLMdJRKrSVm0YWPjt-BqnfEioEmMSXZScnXe--L07Qq5pqM26M9VuhBIfhqScRCXg6lAnQihfAUNx8uOID8fsPg7jBunXWhikVVrsrzB9jdb2TNd6s7soCtT4UvCiIPYF9XE3ARXsTOAs73xsaB6-wd6qbibFbf4g_lLxdCcmiZ1icWdkeIn1X0HK_opPv5B6HX4Gh-TArhudXvVoR6SRzY7J_rdqgifk5ql4tc24nHnuTJHj7Sxe5uXcQFCpCu2o5VK9r07JeHD73B-6tg-CqykVpZsmHF3n5czkLp4KTHzheZCA5jmoKNSKawDup0GqTPrEae7lIgshhSwKc54KekZ2ZvNZdk4cFmiUpnpaQcZSL1IQCmUgBhSPQCuvSVj99lLbIuHYq2IqazbYRFqnSXSa9ANpnNYknY3ZoqqSsc0AatfKH8MtDZJvM23VQyHt97bC61hwGXh08f87X5I9cwQVJ7tFdsrlW3Zllhxl0l7PqTbZ7d09DEef0HTV9w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhVLgRxAnEIT23GcAwfEorK0F4rUm3GcRBSVtmqDEBd-ih_E0zhlkVAlJK6xbCXPkzee5M0MwD4NtDl3JtqNMMWHoSgnVrFwdaDjMFS-EgyTk-sNXrtjV62gNQXvZS4Myiot9xecPmJre6Vq0az2223M8aXCi0jLD6mPfxOssvI6fX0xcdvw-PLMbPIBIRfnzdOaa1sLuJrSMHeTmOPdeBkz4YCniKFsnpFYaJ4JFQVacS0E9xOSKBORcJp5WZgGIhFpFGQ8CalZdxpmmaELbJtw9DbWlfiG7ItCnRR1BaT1mTZUfTRRcwerSaOkLBx9hqTsN4f4wzWM_N3FEizag6pzUmCxDFNpdwUWvpQvXIXD2_aT7f7l9DKng6Jyp__Qy3uG83LV1o4aDNTrcA3u_gWddZjp9rrpBjiMaMyF9bQSKUu8SIkgVIbThOKR0MrbBFY-vdS2Kjk2x-jIUn72KC1oEkGTPpEGtE04Gk_rF2U5Jk0QJbTym31J4zomTa2UWyHtCz7EcazwLHi09feV92Cu1qzfyJvLxvU2zJsRUQjCKzCTD57THXPeyePdkX05cP_fBv0BrwsSHA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+of+large+photovoltaic+arrays&rft.jtitle=Solar+energy&rft.au=Abdin%2C+Z.&rft.au=Webb%2C+C.J.&rft.au=Gray%2C+E.MacA&rft.date=2018-02-01&rft.issn=0038-092X&rft.volume=161&rft.spage=163&rft.epage=179&rft_id=info:doi/10.1016%2Fj.solener.2017.12.034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_solener_2017_12_034 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon |