Effect of cooling channel position on heat transfer characteristics and thermoelectric performance of air-cooled PV/T system
•Three dimensional numerical models of air-cooled PV/T systems were established.•Effect of cooling channel position on heat transfer and thermoelectric performance.•Effects of internal and external parameters under two design positions.•Comparisons were made to determine the merits of two cooling ch...
Saved in:
Published in | Solar energy Vol. 180; pp. 489 - 500 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.03.2019
Pergamon Press Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Three dimensional numerical models of air-cooled PV/T systems were established.•Effect of cooling channel position on heat transfer and thermoelectric performance.•Effects of internal and external parameters under two design positions.•Comparisons were made to determine the merits of two cooling channel positions.
An investigation on the effect of cooling channel position on heat transfer characteristics and thermoelectric performance of air-cooled PV/T systems has been conducted numerically. Two design positions, cooling channels above PV panel (case1) and below PV panel (case2), were considered. It is found that the effect of internal radiation in the cooling channel on the system performance is greater for case1 in comparison to case2, while an opposite behavior is presented for the cooling effect on PV panels. Except for the effect of air inlet temperature, the magnitude and variation trend of the convective Nusselt number on PV panels are almost the same for two case systems. A maximum total exergy efficiency is obtained at the air inlet temperature of 298.15 K for case1 system and 295.65 K for case2 system. From the perspective of the amount of supplied energy, the case1 system is preferred. Detailed analysis focusing on the quality of energy should be carried out to determine the merits of case1 and case2 systems. |
---|---|
AbstractList | •Three dimensional numerical models of air-cooled PV/T systems were established.•Effect of cooling channel position on heat transfer and thermoelectric performance.•Effects of internal and external parameters under two design positions.•Comparisons were made to determine the merits of two cooling channel positions.
An investigation on the effect of cooling channel position on heat transfer characteristics and thermoelectric performance of air-cooled PV/T systems has been conducted numerically. Two design positions, cooling channels above PV panel (case1) and below PV panel (case2), were considered. It is found that the effect of internal radiation in the cooling channel on the system performance is greater for case1 in comparison to case2, while an opposite behavior is presented for the cooling effect on PV panels. Except for the effect of air inlet temperature, the magnitude and variation trend of the convective Nusselt number on PV panels are almost the same for two case systems. A maximum total exergy efficiency is obtained at the air inlet temperature of 298.15 K for case1 system and 295.65 K for case2 system. From the perspective of the amount of supplied energy, the case1 system is preferred. Detailed analysis focusing on the quality of energy should be carried out to determine the merits of case1 and case2 systems. An investigation on the effect of cooling channel position on heat transfer characteristics and thermoelectric performance of air-cooled PV/T systems has been conducted numerically. Two design positions, cooling channels above PV panel (case1) and below PV panel (case2), were considered. It is found that the effect of internal radiation in the cooling channel on the system performance is greater for case1 in comparison to case2, while an opposite behavior is presented for the cooling effect on PV panels. Except for the effect of air inlet temperature, the magnitude and variation trend of the convective Nusselt number on PV panels are almost the same for two case systems. A maximum total exergy efficiency is obtained at the air inlet temperature of 298.15 K for case1 system and 295.65 K for case2 system. From the perspective of the amount of supplied energy, the case1 system is preferred. Detailed analysis focusing on the quality of energy should be carried out to determine the merits of case1 and case2 systems. |
Author | Shen, Zu-Guo Wang, Ting Wu, Shuang-Ying Xiao, Lan |
Author_xml | – sequence: 1 givenname: Shuang-Ying surname: Wu fullname: Wu, Shuang-Ying email: shuangyingwu@cqu.edu.cn organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China – sequence: 2 givenname: Ting surname: Wang fullname: Wang, Ting organization: School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China – sequence: 3 givenname: Lan surname: Xiao fullname: Xiao, Lan email: xiaolannancy@cqu.edu.cn organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China – sequence: 4 givenname: Zu-Guo surname: Shen fullname: Shen, Zu-Guo organization: College of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China |
BookMark | eNqFkE1r3DAQhkVJoZu0P6Eg6NnOjGyvbXooJSRtIdAe0tKb0Meoq8UrbSUlEOiPr8zmlEtAMAe97zPMc87OQgzE2HuEFgG3l_s2x4UCpVYAzi1gC333im2wH7FBMYxnbAPQTQ3M4vcbdp7zHgBHnMYN-3ftHJnCo-MmxsWHP9zsVAi08GPMvvgYeH07UoWXpEJ2lNZEUqZQ8rl4k7kKlpcdpUOkpcKSN_xIycV0UMHQylY-NSufLP_x6_KO58dc6PCWvXZqyfTuaV6wnzfXd1dfm9vvX75dfb5tTNeNpbEaJtRkZ9CD6WAaRNdbqwc7WAVaK9O7XkxmC7PryVmhFToh9LydUZDQU3fBPpy4xxT_3lMuch_vU6grpRA4dYAAQ019PKVMijknctL4olYD9XC_SAS56pZ7-aRbrroloKy6a3t41j4mf1Dp8cXep1OPqoAHX3-z8VS1WZ-qS2mjf4HwH1hxopc |
CitedBy_id | crossref_primary_10_1007_s11356_020_11008_3 crossref_primary_10_1093_ijlct_ctac053 crossref_primary_10_1007_s10765_024_03409_0 crossref_primary_10_1016_j_renene_2024_121371 crossref_primary_10_1016_j_solener_2020_08_083 crossref_primary_10_1049_iet_rpg_2019_1042 crossref_primary_10_1016_j_rineng_2024_102225 crossref_primary_10_2339_politeknik_1163785 crossref_primary_10_1016_j_applthermaleng_2024_123109 crossref_primary_10_1051_mattech_2024004 crossref_primary_10_1016_j_energy_2019_07_179 crossref_primary_10_1016_j_jobe_2024_109021 crossref_primary_10_1016_j_solener_2021_08_005 crossref_primary_10_1016_j_enconman_2021_114967 crossref_primary_10_1016_j_matpr_2020_09_739 crossref_primary_10_1016_j_apenergy_2024_124125 crossref_primary_10_1080_13467581_2022_2085716 crossref_primary_10_3390_en15051836 crossref_primary_10_1016_j_applthermaleng_2024_124599 crossref_primary_10_1016_j_csite_2022_102650 crossref_primary_10_1007_s10973_020_09752_2 crossref_primary_10_2139_ssrn_4129893 crossref_primary_10_1016_j_solener_2023_111829 crossref_primary_10_1155_2024_5180627 crossref_primary_10_1016_j_egyr_2022_11_053 crossref_primary_10_1016_j_renene_2021_09_063 crossref_primary_10_1016_j_jclepro_2024_142612 crossref_primary_10_3390_su141912298 crossref_primary_10_1016_j_psep_2024_07_109 crossref_primary_10_1016_j_apenergy_2021_117778 crossref_primary_10_1115_1_4049426 crossref_primary_10_1016_j_energy_2020_116959 crossref_primary_10_1002_ente_202301614 crossref_primary_10_1177_1420326X231164282 crossref_primary_10_1016_j_renene_2022_01_116 crossref_primary_10_2298_TSCI230116084A crossref_primary_10_1016_j_enconman_2021_114320 crossref_primary_10_1016_j_tsep_2023_101720 crossref_primary_10_1016_j_energy_2022_124058 crossref_primary_10_1016_j_icheatmasstransfer_2024_108135 crossref_primary_10_1016_j_renene_2020_12_008 crossref_primary_10_2139_ssrn_3925447 crossref_primary_10_1016_j_applthermaleng_2023_121690 crossref_primary_10_1016_j_applthermaleng_2025_126261 crossref_primary_10_1016_j_jclepro_2023_139871 crossref_primary_10_1016_j_applthermaleng_2022_118774 crossref_primary_10_1016_j_energy_2020_117255 crossref_primary_10_1016_j_ijhydene_2021_04_205 crossref_primary_10_1016_j_applthermaleng_2022_119184 crossref_primary_10_1016_j_solener_2019_09_053 crossref_primary_10_1007_s40095_020_00353_1 crossref_primary_10_1016_j_seta_2021_101844 crossref_primary_10_1016_j_solener_2019_12_077 crossref_primary_10_1016_j_solener_2024_112456 crossref_primary_10_1016_j_enconman_2020_113660 crossref_primary_10_1016_j_apenergy_2024_124509 crossref_primary_10_1016_j_solener_2021_10_086 crossref_primary_10_1016_j_tsep_2023_101735 crossref_primary_10_21597_jist_676800 crossref_primary_10_1177_0958305X211065575 crossref_primary_10_1016_j_renene_2022_04_155 crossref_primary_10_1007_s40095_022_00491_8 crossref_primary_10_1016_j_csite_2019_100520 crossref_primary_10_1109_ACCESS_2023_3277728 crossref_primary_10_3390_en16124666 crossref_primary_10_1016_j_enbenv_2023_11_002 crossref_primary_10_1016_j_enconman_2019_112229 crossref_primary_10_1007_s11630_024_2014_0 crossref_primary_10_1016_j_enbenv_2024_02_008 crossref_primary_10_1016_j_energy_2024_130467 crossref_primary_10_1016_j_jobe_2023_108261 crossref_primary_10_21597_jist_656173 crossref_primary_10_1016_j_enbenv_2023_11_007 crossref_primary_10_1016_j_csite_2021_101232 crossref_primary_10_1016_j_rser_2020_110341 crossref_primary_10_1016_j_solener_2024_112445 crossref_primary_10_3390_en18010038 crossref_primary_10_1016_j_solener_2020_01_015 |
Cites_doi | 10.1016/j.enbuild.2011.05.007 10.1016/j.enconman.2014.07.077 10.1016/S0196-8904(99)00136-3 10.1016/j.solener.2008.10.008 10.1080/15435075.2013.840833 10.1016/j.solmat.2006.06.061 10.1016/j.renene.2015.08.061 10.1115/1.4003145 10.2298/TSCI16S4071R 10.1016/j.rser.2006.10.001 10.1016/j.egypro.2015.07.819 10.1016/j.apenergy.2012.03.061 10.1016/j.apenergy.2011.04.044 10.1115/1.2770750 10.1016/j.expthermflusci.2017.02.012 10.1016/j.rser.2016.08.056 10.1016/j.solmat.2005.03.002 10.1016/S0038-092X(00)00153-5 10.1109/WiSPNET.2017.8300012 10.1016/j.solener.2010.07.010 10.1016/j.enconman.2016.04.095 10.1016/j.solener.2008.05.012 10.1016/S0960-1481(98)00263-8 |
ContentType | Journal Article |
Copyright | 2019 International Solar Energy Society Copyright Pergamon Press Inc. Mar 1, 2019 |
Copyright_xml | – notice: 2019 International Solar Energy Society – notice: Copyright Pergamon Press Inc. Mar 1, 2019 |
DBID | AAYXX CITATION 7SP 7ST 8FD C1K FR3 KR7 L7M SOI |
DOI | 10.1016/j.solener.2019.01.043 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1471-1257 |
EndPage | 500 |
ExternalDocumentID | 10_1016_j_solener_2019_01_043 S0038092X19300544 |
GroupedDBID | --K --M -ET -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABMAC ABXRA ABYKQ ACDAQ ACGFS ACGOD ACIWK ACRLP ADBBV ADEZE ADHUB AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BKOMP BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA H~9 IHE J1W JARJE KOM LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ RXW SDF SDG SDP SES SPC SPCBC SSM SSR SSZ T5K TAE TN5 WH7 XPP YNT ZMT ~02 ~G- ~KM ~S- 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ NEJ R2- SAC SEW SSH UKR VOH WUQ XOL ZY4 ~A~ 7SP 7ST 8FD C1K EFKBS FR3 KR7 L7M SOI |
ID | FETCH-LOGICAL-c337t-db081bed90b5c3085234ddb5d5da0bbac4f428c609f4efd2ba1f22b96912e2b83 |
IEDL.DBID | .~1 |
ISSN | 0038-092X |
IngestDate | Wed Aug 13 10:44:19 EDT 2025 Tue Jul 01 01:08:55 EDT 2025 Thu Apr 24 23:11:09 EDT 2025 Fri Feb 23 02:28:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Variable heat flux Air-cooled PV/T system Heat transfer characteristics Cooling channel position Thermoelectric performance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-db081bed90b5c3085234ddb5d5da0bbac4f428c609f4efd2ba1f22b96912e2b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2218301005 |
PQPubID | 9393 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2218301005 crossref_citationtrail_10_1016_j_solener_2019_01_043 crossref_primary_10_1016_j_solener_2019_01_043 elsevier_sciencedirect_doi_10_1016_j_solener_2019_01_043 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 2019-03-00 20190301 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Solar energy |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Pergamon Press Inc |
Publisher_xml | – name: Elsevier Ltd – name: Pergamon Press Inc |
References | Shan, Tang, Cao, Fang (b0125) 2014; 87 Barnwal, Tiwari (b0010) 2008; 82 Candanedo, Brien, Athienitis (b0015) 2009 Shahsavar, Ameri (b0120) 2010; 84 Huang, Lin, Hung, Sun (b0055) 2014; 70 Kern, Rissell (b0075) 1978 Jong, Zondag (b0060) 2001 Nobusawa (b0095) 1980 Hegazy (b0045) 2000; 41 Wu, Guo, Xiao (b0150) 2015; 12 Othman, Hamid, Tabook, Sopian, Rosian, Ibarahim (b0100) 2016; 86 Liao, Athienitis, Candanedo, Park, Poissant, Collins (b0090) 2007; 129 Skoplaki, Palyvos (b0130) 2009; 83 Kumar, Rosen (b0085) 2011; 88 Sarhaddi, Farahat, Ajam, Behzadmehr (b0115) 2010; 1 Kamthania, Nayak, Tiwari (b0065) 2011; 43 Fluent Inc., FLUENT 6.3 User's Guide; 2006. Candanedo, Diarra, Athienities, Harrison (b0020) 2008 Hepbasli (b0050) 2008; 12 Su, Jia, Huang, Alva, Tang, Fang (b0135) 2016; 120 Garg, Adhikari (b0035) 1999; 16 Khelifa, Touafek, Ben Moussa, Tabet, Ben cheikh Ei hocine, Haloui (b0080) 2015; 74 Sainthiya, H., Beniwal, N.S., 2017. Different types of cooling systems used in photovoltaic module solar system. In: 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), IEEE, Chennai, India. Ranganathan, Elumalai, Priyadharshini (b0105) 2016; 20 Tiwari, Sodha, Chandra, Joshi (b0145) 2006; 90 Tiwari, Sodha (b0140) 2007; 91 Guo, Lin, Bilbao, White, Sproul (b0040) 2017; 67 Candanedo, Athienitis, Park (b0025) 2011; 133 Amori, Al-Najjar (b0005) 2012; 98 Kasaeian, Khanjari, Golzari, Mahian, Wongwises (b0070) 2017; 85 Wu (10.1016/j.solener.2019.01.043_b0150) 2015; 12 Kasaeian (10.1016/j.solener.2019.01.043_b0070) 2017; 85 Othman (10.1016/j.solener.2019.01.043_b0100) 2016; 86 Nobusawa (10.1016/j.solener.2019.01.043_b0095) 1980 Hepbasli (10.1016/j.solener.2019.01.043_b0050) 2008; 12 Tiwari (10.1016/j.solener.2019.01.043_b0145) 2006; 90 Kamthania (10.1016/j.solener.2019.01.043_b0065) 2011; 43 Sarhaddi (10.1016/j.solener.2019.01.043_b0115) 2010; 1 10.1016/j.solener.2019.01.043_b0110 10.1016/j.solener.2019.01.043_b0030 Tiwari (10.1016/j.solener.2019.01.043_b0140) 2007; 91 Amori (10.1016/j.solener.2019.01.043_b0005) 2012; 98 Jong (10.1016/j.solener.2019.01.043_b0060) 2001 Barnwal (10.1016/j.solener.2019.01.043_b0010) 2008; 82 Candanedo (10.1016/j.solener.2019.01.043_b0015) 2009 Hegazy (10.1016/j.solener.2019.01.043_b0045) 2000; 41 Garg (10.1016/j.solener.2019.01.043_b0035) 1999; 16 Ranganathan (10.1016/j.solener.2019.01.043_b0105) 2016; 20 Shahsavar (10.1016/j.solener.2019.01.043_b0120) 2010; 84 Skoplaki (10.1016/j.solener.2019.01.043_b0130) 2009; 83 Guo (10.1016/j.solener.2019.01.043_b0040) 2017; 67 Su (10.1016/j.solener.2019.01.043_b0135) 2016; 120 Candanedo (10.1016/j.solener.2019.01.043_b0020) 2008 Kern (10.1016/j.solener.2019.01.043_b0075) 1978 Huang (10.1016/j.solener.2019.01.043_b0055) 2014; 70 Shan (10.1016/j.solener.2019.01.043_b0125) 2014; 87 Kumar (10.1016/j.solener.2019.01.043_b0085) 2011; 88 Candanedo (10.1016/j.solener.2019.01.043_b0025) 2011; 133 Khelifa (10.1016/j.solener.2019.01.043_b0080) 2015; 74 Liao (10.1016/j.solener.2019.01.043_b0090) 2007; 129 |
References_xml | – year: 2001 ident: b0060 article-title: System studies on combined PV/Thermal panels publication-title: 9 – volume: 83 start-page: 614 year: 2009 end-page: 624 ident: b0130 article-title: On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations publication-title: Sol. Energy – volume: 16 start-page: 725 year: 1999 end-page: 730 ident: b0035 article-title: System performance studies on a photovoltaic/thermal (PV/T) air heating collector publication-title: Renew. Energy – volume: 88 start-page: 3603 year: 2011 end-page: 3614 ident: b0085 article-title: A critical review of photovoltaic–thermal solar collectors for air heating publication-title: Appl. Energy – volume: 120 start-page: 13 year: 2016 end-page: 24 ident: b0135 article-title: Dynamic performance analysis of photovoltaic–thermal solar collector with dual channels for different fluids publication-title: Energy Convers. Manage. – volume: 129 start-page: 61 year: 2007 end-page: 62 ident: b0090 article-title: Numerical and experimental study of heat transfer in a BIPV-thermal system publication-title: J. Sol. Energy Eng. – volume: 1 start-page: 1 year: 2010 end-page: 13 ident: b0115 article-title: Exergy efficiency of a solar photovoltaic array based on exergy destructions publication-title: Proc. Inst. Mech. Eng. Part A: J. Power & Energy – volume: 91 start-page: 17 year: 2007 end-page: 28 ident: b0140 article-title: Parametric study of various configurations of hybrid PV/thermal air collector: experimental validation of theoretical model publication-title: Sol. Energy Mater. Sol. Cells – year: 2008 ident: b0020 article-title: Numerical modelling of heat transfer in photovoltaic-thermal air based system publication-title: 3rd Canadian Solar Buildings Conference, Glasgow – year: 2009 ident: b0015 article-title: Development of an air-based open loop building-integrated photovoltaic/thermal system model publication-title: Eleventh International IBPSA Conference, Glasgow, Scotland – volume: 98 start-page: 384 year: 2012 end-page: 395 ident: b0005 article-title: Analysis of thermal and electrical performance of a hybrid (PV/T) air based solar collector for Iraq publication-title: Appl. Energy – volume: 90 start-page: 175 year: 2006 end-page: 189 ident: b0145 article-title: Performance evaluation of photovoltaic thermal solar air collector for composite climate of India publication-title: Sol. Energy Mater. Sol. Cells – volume: 12 start-page: 379 year: 2015 end-page: 397 ident: b0150 article-title: A review on the methodology for calculating heat and exergy losses of a conventional solar PV/T system publication-title: Int. J. Green Energy – volume: 133 start-page: 021002 year: 2011 ident: b0025 article-title: Convective heat transfer coefficients in a building-integrated photovoltaic/thermal system publication-title: J. Sol. Energy Eng. – reference: Sainthiya, H., Beniwal, N.S., 2017. Different types of cooling systems used in photovoltaic module solar system. In: 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), IEEE, Chennai, India. – reference: Fluent Inc., FLUENT 6.3 User's Guide; 2006. – volume: 43 start-page: 2274 year: 2011 end-page: 2281 ident: b0065 article-title: Performance evaluation of a hybrid photovoltaic thermal double pass facade for space heating publication-title: Energy Build. – year: 1980 ident: b0095 article-title: Exergy analyses – volume: 20 start-page: 1071 year: 2016 end-page: 1081 ident: b0105 article-title: Numerical model and experimental validation of the heat transfer in air-cooled solar photovoltaic panel publication-title: Therm. Sci. – volume: 12 start-page: 593 year: 2008 end-page: 661 ident: b0050 article-title: A key review on exergetic analysis and assessment of renewable energy resource for a sustainable future publication-title: Renew. Sustain. Energy Rev. – volume: 70 start-page: 443 year: 2014 end-page: 448 ident: b0055 article-title: Performance evaluation of solar photovoltaic/thermal systems publication-title: Sol. Energy – volume: 74 start-page: 835 year: 2015 end-page: 843 ident: b0080 article-title: Analysis of a hybrid solar collector photovoltaic thermal (PV/T) publication-title: Energy Procedia – year: 1978 ident: b0075 article-title: Combined photovoltaic and thermal hybrid collector systems publication-title: 13 – volume: 84 start-page: 1938 year: 2010 end-page: 1958 ident: b0120 article-title: Experimental investigation and modeling of a direct-coupled PV/T air collector publication-title: Sol. Energy – volume: 82 start-page: 1131 year: 2008 end-page: 1144 ident: b0010 article-title: Grape drying by using hybrid photovoltaic-thermal (PV/T) greenhouse dryer: an experimental study publication-title: Sol. Energy – volume: 85 start-page: 13 year: 2017 end-page: 21 ident: b0070 article-title: Effects of forced convection on the performance of a photovoltaic thermal system: an experimental study publication-title: Exp. Therm Fluid Sci. – volume: 86 start-page: 716 year: 2016 end-page: 722 ident: b0100 article-title: Performance analysis of PV/T Combi with water and air heating system: an experimental study publication-title: Renew. Energy – volume: 41 start-page: 861 year: 2000 end-page: 881 ident: b0045 article-title: Comparative study of the performances of four photovoltaic/thermal solar air collectors publication-title: Energy Convers. Manage. – volume: 87 start-page: 778 year: 2014 end-page: 786 ident: b0125 article-title: Comparative simulation analyses on dynamic performances of photovoltaic–thermal solar collectors with different configurations publication-title: Energy Convers. Manage. – volume: 67 start-page: 1 year: 2017 end-page: 14 ident: b0040 article-title: A review of photovoltaic thermal (PV/T) heat utilization with low temperature desiccant cooling and dehumidification publication-title: Renew. Sustain. Energy Rev. – volume: 43 start-page: 2274 year: 2011 ident: 10.1016/j.solener.2019.01.043_b0065 article-title: Performance evaluation of a hybrid photovoltaic thermal double pass facade for space heating publication-title: Energy Build. doi: 10.1016/j.enbuild.2011.05.007 – volume: 87 start-page: 778 issue: 87 year: 2014 ident: 10.1016/j.solener.2019.01.043_b0125 article-title: Comparative simulation analyses on dynamic performances of photovoltaic–thermal solar collectors with different configurations publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2014.07.077 – volume: 41 start-page: 861 issue: 8 year: 2000 ident: 10.1016/j.solener.2019.01.043_b0045 article-title: Comparative study of the performances of four photovoltaic/thermal solar air collectors publication-title: Energy Convers. Manage. doi: 10.1016/S0196-8904(99)00136-3 – volume: 83 start-page: 614 issue: 5 year: 2009 ident: 10.1016/j.solener.2019.01.043_b0130 article-title: On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations publication-title: Sol. Energy doi: 10.1016/j.solener.2008.10.008 – volume: 12 start-page: 379 issue: 4 year: 2015 ident: 10.1016/j.solener.2019.01.043_b0150 article-title: A review on the methodology for calculating heat and exergy losses of a conventional solar PV/T system publication-title: Int. J. Green Energy doi: 10.1080/15435075.2013.840833 – year: 1978 ident: 10.1016/j.solener.2019.01.043_b0075 article-title: Combined photovoltaic and thermal hybrid collector systems – volume: 91 start-page: 17 issue: 1 year: 2007 ident: 10.1016/j.solener.2019.01.043_b0140 article-title: Parametric study of various configurations of hybrid PV/thermal air collector: experimental validation of theoretical model publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2006.06.061 – volume: 86 start-page: 716 issue: 1 year: 2016 ident: 10.1016/j.solener.2019.01.043_b0100 article-title: Performance analysis of PV/T Combi with water and air heating system: an experimental study publication-title: Renew. Energy doi: 10.1016/j.renene.2015.08.061 – volume: 133 start-page: 021002 issue: 2 year: 2011 ident: 10.1016/j.solener.2019.01.043_b0025 article-title: Convective heat transfer coefficients in a building-integrated photovoltaic/thermal system publication-title: J. Sol. Energy Eng. doi: 10.1115/1.4003145 – volume: 20 start-page: 1071 issue: suppl.4 year: 2016 ident: 10.1016/j.solener.2019.01.043_b0105 article-title: Numerical model and experimental validation of the heat transfer in air-cooled solar photovoltaic panel publication-title: Therm. Sci. doi: 10.2298/TSCI16S4071R – volume: 12 start-page: 593 issue: 3 year: 2008 ident: 10.1016/j.solener.2019.01.043_b0050 article-title: A key review on exergetic analysis and assessment of renewable energy resource for a sustainable future publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2006.10.001 – volume: 74 start-page: 835 year: 2015 ident: 10.1016/j.solener.2019.01.043_b0080 article-title: Analysis of a hybrid solar collector photovoltaic thermal (PV/T) publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.07.819 – year: 2001 ident: 10.1016/j.solener.2019.01.043_b0060 article-title: System studies on combined PV/Thermal panels – volume: 98 start-page: 384 issue: 5 year: 2012 ident: 10.1016/j.solener.2019.01.043_b0005 article-title: Analysis of thermal and electrical performance of a hybrid (PV/T) air based solar collector for Iraq publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.03.061 – volume: 88 start-page: 3603 issue: 11 year: 2011 ident: 10.1016/j.solener.2019.01.043_b0085 article-title: A critical review of photovoltaic–thermal solar collectors for air heating publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.04.044 – volume: 129 start-page: 61 issue: 4 year: 2007 ident: 10.1016/j.solener.2019.01.043_b0090 article-title: Numerical and experimental study of heat transfer in a BIPV-thermal system publication-title: J. Sol. Energy Eng. doi: 10.1115/1.2770750 – ident: 10.1016/j.solener.2019.01.043_b0030 – volume: 85 start-page: 13 year: 2017 ident: 10.1016/j.solener.2019.01.043_b0070 article-title: Effects of forced convection on the performance of a photovoltaic thermal system: an experimental study publication-title: Exp. Therm Fluid Sci. doi: 10.1016/j.expthermflusci.2017.02.012 – year: 1980 ident: 10.1016/j.solener.2019.01.043_b0095 – volume: 67 start-page: 1 year: 2017 ident: 10.1016/j.solener.2019.01.043_b0040 article-title: A review of photovoltaic thermal (PV/T) heat utilization with low temperature desiccant cooling and dehumidification publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.08.056 – volume: 90 start-page: 175 issue: 2 year: 2006 ident: 10.1016/j.solener.2019.01.043_b0145 article-title: Performance evaluation of photovoltaic thermal solar air collector for composite climate of India publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2005.03.002 – year: 2008 ident: 10.1016/j.solener.2019.01.043_b0020 article-title: Numerical modelling of heat transfer in photovoltaic-thermal air based system – volume: 70 start-page: 443 issue: 5 year: 2014 ident: 10.1016/j.solener.2019.01.043_b0055 article-title: Performance evaluation of solar photovoltaic/thermal systems publication-title: Sol. Energy doi: 10.1016/S0038-092X(00)00153-5 – ident: 10.1016/j.solener.2019.01.043_b0110 doi: 10.1109/WiSPNET.2017.8300012 – volume: 84 start-page: 1938 issue: 11 year: 2010 ident: 10.1016/j.solener.2019.01.043_b0120 article-title: Experimental investigation and modeling of a direct-coupled PV/T air collector publication-title: Sol. Energy doi: 10.1016/j.solener.2010.07.010 – volume: 120 start-page: 13 year: 2016 ident: 10.1016/j.solener.2019.01.043_b0135 article-title: Dynamic performance analysis of photovoltaic–thermal solar collector with dual channels for different fluids publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2016.04.095 – volume: 82 start-page: 1131 issue: 12 year: 2008 ident: 10.1016/j.solener.2019.01.043_b0010 article-title: Grape drying by using hybrid photovoltaic-thermal (PV/T) greenhouse dryer: an experimental study publication-title: Sol. Energy doi: 10.1016/j.solener.2008.05.012 – volume: 16 start-page: 725 issue: 1–4 year: 1999 ident: 10.1016/j.solener.2019.01.043_b0035 article-title: System performance studies on a photovoltaic/thermal (PV/T) air heating collector publication-title: Renew. Energy doi: 10.1016/S0960-1481(98)00263-8 – volume: 1 start-page: 1 issue: A6 year: 2010 ident: 10.1016/j.solener.2019.01.043_b0115 article-title: Exergy efficiency of a solar photovoltaic array based on exergy destructions publication-title: Proc. Inst. Mech. Eng. Part A: J. Power & Energy – year: 2009 ident: 10.1016/j.solener.2019.01.043_b0015 article-title: Development of an air-based open loop building-integrated photovoltaic/thermal system model |
SSID | ssj0017187 |
Score | 2.5316339 |
Snippet | •Three dimensional numerical models of air-cooled PV/T systems were established.•Effect of cooling channel position on heat transfer and thermoelectric... An investigation on the effect of cooling channel position on heat transfer characteristics and thermoelectric performance of air-cooled PV/T systems has been... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 489 |
SubjectTerms | Aerodynamics Air intakes Air temperature Air-cooled PV/T system Cooling Cooling channel position Cooling effects Exergy Fluid flow Heat transfer Heat transfer characteristics Inlet temperature Panels Photovoltaic cells Solar cells Solar energy Thermoelectric cooling Thermoelectric performance Variable heat flux |
Title | Effect of cooling channel position on heat transfer characteristics and thermoelectric performance of air-cooled PV/T system |
URI | https://dx.doi.org/10.1016/j.solener.2019.01.043 https://www.proquest.com/docview/2218301005 |
Volume | 180 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-Iwokj14LbS728IeCZGgJsQDmN423ZcpwUIQb8bf7k4fgCaGxLSXPnbS7Exnvs3OfIPQnXFG4LQpPRsq5jGtIk9an3k2oVozSmVP52yf42g0ZY9xGNfQoKqFgbTK0vcXPj331uWdTjmbnWWaQo0v7fmcxA6CAPAATlDGumDl7a9NmkfgfG_Bm0lhm5_E2yqezswtYudA7gwZXjxn72T0r_j0y1Pn4Wd4go5L3Ij7xaedoprJztDRDpvgOfosmIjxwmK1gF48rxjKejMzx1VqFnYneF-8zvGqWcEbu4TNOMk0Bkz4tiga5KQKL7e1BSA7SVceyDcaP790Jrjggr5A0-H9ZDDyyuYKnqK0u_a0dGBAGs19GSrqgBehTGsZ6lAnvpSJYtatTFTkc8uM1UQmgSVE8ogHxBDZo5eoni0yc4Vw2HUPDeWRdrGeK5IEmqjAHSxUOrG8gVg1pUKVzOPQAGMuqhSzmSg1IUATwg-E00QDtTfDlgX1xr4BvUpf4ocNCRce9g1tVvoV5U_8LgjAR7de9cPr_0u-QYdwVaStNVF9vfowtw7HrGUrN9QWOug_PI3G3-bJ9vU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gHIAD4ikGA3Lg2q1N0m45ogk0nuKwod2i5oU2jW4a44b47dh98JIQEmpPTW1VcWJ_Ue3PhJw6WARgTR342IhAWJME2oci8Cm3VnCuOzZn-7xLegNxNYyHS6Rb1cJgWmXp-wufnnvr8kmrnM3WbDTCGl_eCSUbAgRB4CGWyYqA7YttDJpvH3keETjfgjiT439-Nvws42mN4RQ7QXZnTPGSOX2n4L8FqB-uOo8_F5tkowSO9Kz4ti2y5LJtsv6FTnCHvBZUxHTqqZliM55HinW9mZvQKjeLwo3uly5ywOrm-MZXxmaaZpYiKHyaFh1yRobOPosLUHc6mgeo31l6_9Dq04IMepcMLs773V5QdlcIDOftRWA1oAHtrAx1bDggL8aFtTq2sU1DrVMjPBxNTBJKL5y3TKeRZ0zLREbMMd3he6SWTTO3T2jchkHHZWIh2EvD0sgyE8ElYmNTL-tEVFOqTEk9jh0wJqrKMRur0hIKLaHCSIEl6qT5ITYruDf-EuhU9lLfFpGC-PCXaKOyryp38bNiiB_hwBrGB__XfEJWe_3bG3VzeXd9SNZwpMhha5DaYv7ijgDULPRxvmjfAYWl-IM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+cooling+channel+position+on+heat+transfer+characteristics+and+thermoelectric+performance+of+air-cooled+PV%2FT+system&rft.jtitle=Solar+energy&rft.au=Wu%2C+Shuang-Ying&rft.au=Wang%2C+Ting&rft.au=Xiao%2C+Lan&rft.au=Shen%2C+Zu-Guo&rft.date=2019-03-01&rft.issn=0038-092X&rft.volume=180&rft.spage=489&rft.epage=500&rft_id=info:doi/10.1016%2Fj.solener.2019.01.043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_solener_2019_01_043 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon |