Effect of cooling channel position on heat transfer characteristics and thermoelectric performance of air-cooled PV/T system

•Three dimensional numerical models of air-cooled PV/T systems were established.•Effect of cooling channel position on heat transfer and thermoelectric performance.•Effects of internal and external parameters under two design positions.•Comparisons were made to determine the merits of two cooling ch...

Full description

Saved in:
Bibliographic Details
Published inSolar energy Vol. 180; pp. 489 - 500
Main Authors Wu, Shuang-Ying, Wang, Ting, Xiao, Lan, Shen, Zu-Guo
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.03.2019
Pergamon Press Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Three dimensional numerical models of air-cooled PV/T systems were established.•Effect of cooling channel position on heat transfer and thermoelectric performance.•Effects of internal and external parameters under two design positions.•Comparisons were made to determine the merits of two cooling channel positions. An investigation on the effect of cooling channel position on heat transfer characteristics and thermoelectric performance of air-cooled PV/T systems has been conducted numerically. Two design positions, cooling channels above PV panel (case1) and below PV panel (case2), were considered. It is found that the effect of internal radiation in the cooling channel on the system performance is greater for case1 in comparison to case2, while an opposite behavior is presented for the cooling effect on PV panels. Except for the effect of air inlet temperature, the magnitude and variation trend of the convective Nusselt number on PV panels are almost the same for two case systems. A maximum total exergy efficiency is obtained at the air inlet temperature of 298.15 K for case1 system and 295.65 K for case2 system. From the perspective of the amount of supplied energy, the case1 system is preferred. Detailed analysis focusing on the quality of energy should be carried out to determine the merits of case1 and case2 systems.
AbstractList •Three dimensional numerical models of air-cooled PV/T systems were established.•Effect of cooling channel position on heat transfer and thermoelectric performance.•Effects of internal and external parameters under two design positions.•Comparisons were made to determine the merits of two cooling channel positions. An investigation on the effect of cooling channel position on heat transfer characteristics and thermoelectric performance of air-cooled PV/T systems has been conducted numerically. Two design positions, cooling channels above PV panel (case1) and below PV panel (case2), were considered. It is found that the effect of internal radiation in the cooling channel on the system performance is greater for case1 in comparison to case2, while an opposite behavior is presented for the cooling effect on PV panels. Except for the effect of air inlet temperature, the magnitude and variation trend of the convective Nusselt number on PV panels are almost the same for two case systems. A maximum total exergy efficiency is obtained at the air inlet temperature of 298.15 K for case1 system and 295.65 K for case2 system. From the perspective of the amount of supplied energy, the case1 system is preferred. Detailed analysis focusing on the quality of energy should be carried out to determine the merits of case1 and case2 systems.
An investigation on the effect of cooling channel position on heat transfer characteristics and thermoelectric performance of air-cooled PV/T systems has been conducted numerically. Two design positions, cooling channels above PV panel (case1) and below PV panel (case2), were considered. It is found that the effect of internal radiation in the cooling channel on the system performance is greater for case1 in comparison to case2, while an opposite behavior is presented for the cooling effect on PV panels. Except for the effect of air inlet temperature, the magnitude and variation trend of the convective Nusselt number on PV panels are almost the same for two case systems. A maximum total exergy efficiency is obtained at the air inlet temperature of 298.15 K for case1 system and 295.65 K for case2 system. From the perspective of the amount of supplied energy, the case1 system is preferred. Detailed analysis focusing on the quality of energy should be carried out to determine the merits of case1 and case2 systems.
Author Shen, Zu-Guo
Wang, Ting
Wu, Shuang-Ying
Xiao, Lan
Author_xml – sequence: 1
  givenname: Shuang-Ying
  surname: Wu
  fullname: Wu, Shuang-Ying
  email: shuangyingwu@cqu.edu.cn
  organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
– sequence: 2
  givenname: Ting
  surname: Wang
  fullname: Wang, Ting
  organization: School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
– sequence: 3
  givenname: Lan
  surname: Xiao
  fullname: Xiao, Lan
  email: xiaolannancy@cqu.edu.cn
  organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
– sequence: 4
  givenname: Zu-Guo
  surname: Shen
  fullname: Shen, Zu-Guo
  organization: College of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
BookMark eNqFkE1r3DAQhkVJoZu0P6Eg6NnOjGyvbXooJSRtIdAe0tKb0Meoq8UrbSUlEOiPr8zmlEtAMAe97zPMc87OQgzE2HuEFgG3l_s2x4UCpVYAzi1gC333im2wH7FBMYxnbAPQTQ3M4vcbdp7zHgBHnMYN-3ftHJnCo-MmxsWHP9zsVAi08GPMvvgYeH07UoWXpEJ2lNZEUqZQ8rl4k7kKlpcdpUOkpcKSN_xIycV0UMHQylY-NSufLP_x6_KO58dc6PCWvXZqyfTuaV6wnzfXd1dfm9vvX75dfb5tTNeNpbEaJtRkZ9CD6WAaRNdbqwc7WAVaK9O7XkxmC7PryVmhFToh9LydUZDQU3fBPpy4xxT_3lMuch_vU6grpRA4dYAAQ019PKVMijknctL4olYD9XC_SAS56pZ7-aRbrroloKy6a3t41j4mf1Dp8cXep1OPqoAHX3-z8VS1WZ-qS2mjf4HwH1hxopc
CitedBy_id crossref_primary_10_1007_s11356_020_11008_3
crossref_primary_10_1093_ijlct_ctac053
crossref_primary_10_1007_s10765_024_03409_0
crossref_primary_10_1016_j_renene_2024_121371
crossref_primary_10_1016_j_solener_2020_08_083
crossref_primary_10_1049_iet_rpg_2019_1042
crossref_primary_10_1016_j_rineng_2024_102225
crossref_primary_10_2339_politeknik_1163785
crossref_primary_10_1016_j_applthermaleng_2024_123109
crossref_primary_10_1051_mattech_2024004
crossref_primary_10_1016_j_energy_2019_07_179
crossref_primary_10_1016_j_jobe_2024_109021
crossref_primary_10_1016_j_solener_2021_08_005
crossref_primary_10_1016_j_enconman_2021_114967
crossref_primary_10_1016_j_matpr_2020_09_739
crossref_primary_10_1016_j_apenergy_2024_124125
crossref_primary_10_1080_13467581_2022_2085716
crossref_primary_10_3390_en15051836
crossref_primary_10_1016_j_applthermaleng_2024_124599
crossref_primary_10_1016_j_csite_2022_102650
crossref_primary_10_1007_s10973_020_09752_2
crossref_primary_10_2139_ssrn_4129893
crossref_primary_10_1016_j_solener_2023_111829
crossref_primary_10_1155_2024_5180627
crossref_primary_10_1016_j_egyr_2022_11_053
crossref_primary_10_1016_j_renene_2021_09_063
crossref_primary_10_1016_j_jclepro_2024_142612
crossref_primary_10_3390_su141912298
crossref_primary_10_1016_j_psep_2024_07_109
crossref_primary_10_1016_j_apenergy_2021_117778
crossref_primary_10_1115_1_4049426
crossref_primary_10_1016_j_energy_2020_116959
crossref_primary_10_1002_ente_202301614
crossref_primary_10_1177_1420326X231164282
crossref_primary_10_1016_j_renene_2022_01_116
crossref_primary_10_2298_TSCI230116084A
crossref_primary_10_1016_j_enconman_2021_114320
crossref_primary_10_1016_j_tsep_2023_101720
crossref_primary_10_1016_j_energy_2022_124058
crossref_primary_10_1016_j_icheatmasstransfer_2024_108135
crossref_primary_10_1016_j_renene_2020_12_008
crossref_primary_10_2139_ssrn_3925447
crossref_primary_10_1016_j_applthermaleng_2023_121690
crossref_primary_10_1016_j_applthermaleng_2025_126261
crossref_primary_10_1016_j_jclepro_2023_139871
crossref_primary_10_1016_j_applthermaleng_2022_118774
crossref_primary_10_1016_j_energy_2020_117255
crossref_primary_10_1016_j_ijhydene_2021_04_205
crossref_primary_10_1016_j_applthermaleng_2022_119184
crossref_primary_10_1016_j_solener_2019_09_053
crossref_primary_10_1007_s40095_020_00353_1
crossref_primary_10_1016_j_seta_2021_101844
crossref_primary_10_1016_j_solener_2019_12_077
crossref_primary_10_1016_j_solener_2024_112456
crossref_primary_10_1016_j_enconman_2020_113660
crossref_primary_10_1016_j_apenergy_2024_124509
crossref_primary_10_1016_j_solener_2021_10_086
crossref_primary_10_1016_j_tsep_2023_101735
crossref_primary_10_21597_jist_676800
crossref_primary_10_1177_0958305X211065575
crossref_primary_10_1016_j_renene_2022_04_155
crossref_primary_10_1007_s40095_022_00491_8
crossref_primary_10_1016_j_csite_2019_100520
crossref_primary_10_1109_ACCESS_2023_3277728
crossref_primary_10_3390_en16124666
crossref_primary_10_1016_j_enbenv_2023_11_002
crossref_primary_10_1016_j_enconman_2019_112229
crossref_primary_10_1007_s11630_024_2014_0
crossref_primary_10_1016_j_enbenv_2024_02_008
crossref_primary_10_1016_j_energy_2024_130467
crossref_primary_10_1016_j_jobe_2023_108261
crossref_primary_10_21597_jist_656173
crossref_primary_10_1016_j_enbenv_2023_11_007
crossref_primary_10_1016_j_csite_2021_101232
crossref_primary_10_1016_j_rser_2020_110341
crossref_primary_10_1016_j_solener_2024_112445
crossref_primary_10_3390_en18010038
crossref_primary_10_1016_j_solener_2020_01_015
Cites_doi 10.1016/j.enbuild.2011.05.007
10.1016/j.enconman.2014.07.077
10.1016/S0196-8904(99)00136-3
10.1016/j.solener.2008.10.008
10.1080/15435075.2013.840833
10.1016/j.solmat.2006.06.061
10.1016/j.renene.2015.08.061
10.1115/1.4003145
10.2298/TSCI16S4071R
10.1016/j.rser.2006.10.001
10.1016/j.egypro.2015.07.819
10.1016/j.apenergy.2012.03.061
10.1016/j.apenergy.2011.04.044
10.1115/1.2770750
10.1016/j.expthermflusci.2017.02.012
10.1016/j.rser.2016.08.056
10.1016/j.solmat.2005.03.002
10.1016/S0038-092X(00)00153-5
10.1109/WiSPNET.2017.8300012
10.1016/j.solener.2010.07.010
10.1016/j.enconman.2016.04.095
10.1016/j.solener.2008.05.012
10.1016/S0960-1481(98)00263-8
ContentType Journal Article
Copyright 2019 International Solar Energy Society
Copyright Pergamon Press Inc. Mar 1, 2019
Copyright_xml – notice: 2019 International Solar Energy Society
– notice: Copyright Pergamon Press Inc. Mar 1, 2019
DBID AAYXX
CITATION
7SP
7ST
8FD
C1K
FR3
KR7
L7M
SOI
DOI 10.1016/j.solener.2019.01.043
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1471-1257
EndPage 500
ExternalDocumentID 10_1016_j_solener_2019_01_043
S0038092X19300544
GroupedDBID --K
--M
-ET
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACGOD
ACIWK
ACRLP
ADBBV
ADEZE
ADHUB
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BKOMP
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SSR
SSZ
T5K
TAE
TN5
WH7
XPP
YNT
ZMT
~02
~G-
~KM
~S-
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
NEJ
R2-
SAC
SEW
SSH
UKR
VOH
WUQ
XOL
ZY4
~A~
7SP
7ST
8FD
C1K
EFKBS
FR3
KR7
L7M
SOI
ID FETCH-LOGICAL-c337t-db081bed90b5c3085234ddb5d5da0bbac4f428c609f4efd2ba1f22b96912e2b83
IEDL.DBID .~1
ISSN 0038-092X
IngestDate Wed Aug 13 10:44:19 EDT 2025
Tue Jul 01 01:08:55 EDT 2025
Thu Apr 24 23:11:09 EDT 2025
Fri Feb 23 02:28:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Variable heat flux
Air-cooled PV/T system
Heat transfer characteristics
Cooling channel position
Thermoelectric performance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-db081bed90b5c3085234ddb5d5da0bbac4f428c609f4efd2ba1f22b96912e2b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2218301005
PQPubID 9393
PageCount 12
ParticipantIDs proquest_journals_2218301005
crossref_citationtrail_10_1016_j_solener_2019_01_043
crossref_primary_10_1016_j_solener_2019_01_043
elsevier_sciencedirect_doi_10_1016_j_solener_2019_01_043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
2019-03-00
20190301
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Solar energy
PublicationYear 2019
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References Shan, Tang, Cao, Fang (b0125) 2014; 87
Barnwal, Tiwari (b0010) 2008; 82
Candanedo, Brien, Athienitis (b0015) 2009
Shahsavar, Ameri (b0120) 2010; 84
Huang, Lin, Hung, Sun (b0055) 2014; 70
Kern, Rissell (b0075) 1978
Jong, Zondag (b0060) 2001
Nobusawa (b0095) 1980
Hegazy (b0045) 2000; 41
Wu, Guo, Xiao (b0150) 2015; 12
Othman, Hamid, Tabook, Sopian, Rosian, Ibarahim (b0100) 2016; 86
Liao, Athienitis, Candanedo, Park, Poissant, Collins (b0090) 2007; 129
Skoplaki, Palyvos (b0130) 2009; 83
Kumar, Rosen (b0085) 2011; 88
Sarhaddi, Farahat, Ajam, Behzadmehr (b0115) 2010; 1
Kamthania, Nayak, Tiwari (b0065) 2011; 43
Fluent Inc., FLUENT 6.3 User's Guide; 2006.
Candanedo, Diarra, Athienities, Harrison (b0020) 2008
Hepbasli (b0050) 2008; 12
Su, Jia, Huang, Alva, Tang, Fang (b0135) 2016; 120
Garg, Adhikari (b0035) 1999; 16
Khelifa, Touafek, Ben Moussa, Tabet, Ben cheikh Ei hocine, Haloui (b0080) 2015; 74
Sainthiya, H., Beniwal, N.S., 2017. Different types of cooling systems used in photovoltaic module solar system. In: 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), IEEE, Chennai, India.
Ranganathan, Elumalai, Priyadharshini (b0105) 2016; 20
Tiwari, Sodha, Chandra, Joshi (b0145) 2006; 90
Tiwari, Sodha (b0140) 2007; 91
Guo, Lin, Bilbao, White, Sproul (b0040) 2017; 67
Candanedo, Athienitis, Park (b0025) 2011; 133
Amori, Al-Najjar (b0005) 2012; 98
Kasaeian, Khanjari, Golzari, Mahian, Wongwises (b0070) 2017; 85
Wu (10.1016/j.solener.2019.01.043_b0150) 2015; 12
Kasaeian (10.1016/j.solener.2019.01.043_b0070) 2017; 85
Othman (10.1016/j.solener.2019.01.043_b0100) 2016; 86
Nobusawa (10.1016/j.solener.2019.01.043_b0095) 1980
Hepbasli (10.1016/j.solener.2019.01.043_b0050) 2008; 12
Tiwari (10.1016/j.solener.2019.01.043_b0145) 2006; 90
Kamthania (10.1016/j.solener.2019.01.043_b0065) 2011; 43
Sarhaddi (10.1016/j.solener.2019.01.043_b0115) 2010; 1
10.1016/j.solener.2019.01.043_b0110
10.1016/j.solener.2019.01.043_b0030
Tiwari (10.1016/j.solener.2019.01.043_b0140) 2007; 91
Amori (10.1016/j.solener.2019.01.043_b0005) 2012; 98
Jong (10.1016/j.solener.2019.01.043_b0060) 2001
Barnwal (10.1016/j.solener.2019.01.043_b0010) 2008; 82
Candanedo (10.1016/j.solener.2019.01.043_b0015) 2009
Hegazy (10.1016/j.solener.2019.01.043_b0045) 2000; 41
Garg (10.1016/j.solener.2019.01.043_b0035) 1999; 16
Ranganathan (10.1016/j.solener.2019.01.043_b0105) 2016; 20
Shahsavar (10.1016/j.solener.2019.01.043_b0120) 2010; 84
Skoplaki (10.1016/j.solener.2019.01.043_b0130) 2009; 83
Guo (10.1016/j.solener.2019.01.043_b0040) 2017; 67
Su (10.1016/j.solener.2019.01.043_b0135) 2016; 120
Candanedo (10.1016/j.solener.2019.01.043_b0020) 2008
Kern (10.1016/j.solener.2019.01.043_b0075) 1978
Huang (10.1016/j.solener.2019.01.043_b0055) 2014; 70
Shan (10.1016/j.solener.2019.01.043_b0125) 2014; 87
Kumar (10.1016/j.solener.2019.01.043_b0085) 2011; 88
Candanedo (10.1016/j.solener.2019.01.043_b0025) 2011; 133
Khelifa (10.1016/j.solener.2019.01.043_b0080) 2015; 74
Liao (10.1016/j.solener.2019.01.043_b0090) 2007; 129
References_xml – year: 2001
  ident: b0060
  article-title: System studies on combined PV/Thermal panels
  publication-title: 9
– volume: 83
  start-page: 614
  year: 2009
  end-page: 624
  ident: b0130
  article-title: On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations
  publication-title: Sol. Energy
– volume: 16
  start-page: 725
  year: 1999
  end-page: 730
  ident: b0035
  article-title: System performance studies on a photovoltaic/thermal (PV/T) air heating collector
  publication-title: Renew. Energy
– volume: 88
  start-page: 3603
  year: 2011
  end-page: 3614
  ident: b0085
  article-title: A critical review of photovoltaic–thermal solar collectors for air heating
  publication-title: Appl. Energy
– volume: 120
  start-page: 13
  year: 2016
  end-page: 24
  ident: b0135
  article-title: Dynamic performance analysis of photovoltaic–thermal solar collector with dual channels for different fluids
  publication-title: Energy Convers. Manage.
– volume: 129
  start-page: 61
  year: 2007
  end-page: 62
  ident: b0090
  article-title: Numerical and experimental study of heat transfer in a BIPV-thermal system
  publication-title: J. Sol. Energy Eng.
– volume: 1
  start-page: 1
  year: 2010
  end-page: 13
  ident: b0115
  article-title: Exergy efficiency of a solar photovoltaic array based on exergy destructions
  publication-title: Proc. Inst. Mech. Eng. Part A: J. Power & Energy
– volume: 91
  start-page: 17
  year: 2007
  end-page: 28
  ident: b0140
  article-title: Parametric study of various configurations of hybrid PV/thermal air collector: experimental validation of theoretical model
  publication-title: Sol. Energy Mater. Sol. Cells
– year: 2008
  ident: b0020
  article-title: Numerical modelling of heat transfer in photovoltaic-thermal air based system
  publication-title: 3rd Canadian Solar Buildings Conference, Glasgow
– year: 2009
  ident: b0015
  article-title: Development of an air-based open loop building-integrated photovoltaic/thermal system model
  publication-title: Eleventh International IBPSA Conference, Glasgow, Scotland
– volume: 98
  start-page: 384
  year: 2012
  end-page: 395
  ident: b0005
  article-title: Analysis of thermal and electrical performance of a hybrid (PV/T) air based solar collector for Iraq
  publication-title: Appl. Energy
– volume: 90
  start-page: 175
  year: 2006
  end-page: 189
  ident: b0145
  article-title: Performance evaluation of photovoltaic thermal solar air collector for composite climate of India
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 12
  start-page: 379
  year: 2015
  end-page: 397
  ident: b0150
  article-title: A review on the methodology for calculating heat and exergy losses of a conventional solar PV/T system
  publication-title: Int. J. Green Energy
– volume: 133
  start-page: 021002
  year: 2011
  ident: b0025
  article-title: Convective heat transfer coefficients in a building-integrated photovoltaic/thermal system
  publication-title: J. Sol. Energy Eng.
– reference: Sainthiya, H., Beniwal, N.S., 2017. Different types of cooling systems used in photovoltaic module solar system. In: 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), IEEE, Chennai, India.
– reference: Fluent Inc., FLUENT 6.3 User's Guide; 2006.
– volume: 43
  start-page: 2274
  year: 2011
  end-page: 2281
  ident: b0065
  article-title: Performance evaluation of a hybrid photovoltaic thermal double pass facade for space heating
  publication-title: Energy Build.
– year: 1980
  ident: b0095
  article-title: Exergy analyses
– volume: 20
  start-page: 1071
  year: 2016
  end-page: 1081
  ident: b0105
  article-title: Numerical model and experimental validation of the heat transfer in air-cooled solar photovoltaic panel
  publication-title: Therm. Sci.
– volume: 12
  start-page: 593
  year: 2008
  end-page: 661
  ident: b0050
  article-title: A key review on exergetic analysis and assessment of renewable energy resource for a sustainable future
  publication-title: Renew. Sustain. Energy Rev.
– volume: 70
  start-page: 443
  year: 2014
  end-page: 448
  ident: b0055
  article-title: Performance evaluation of solar photovoltaic/thermal systems
  publication-title: Sol. Energy
– volume: 74
  start-page: 835
  year: 2015
  end-page: 843
  ident: b0080
  article-title: Analysis of a hybrid solar collector photovoltaic thermal (PV/T)
  publication-title: Energy Procedia
– year: 1978
  ident: b0075
  article-title: Combined photovoltaic and thermal hybrid collector systems
  publication-title: 13
– volume: 84
  start-page: 1938
  year: 2010
  end-page: 1958
  ident: b0120
  article-title: Experimental investigation and modeling of a direct-coupled PV/T air collector
  publication-title: Sol. Energy
– volume: 82
  start-page: 1131
  year: 2008
  end-page: 1144
  ident: b0010
  article-title: Grape drying by using hybrid photovoltaic-thermal (PV/T) greenhouse dryer: an experimental study
  publication-title: Sol. Energy
– volume: 85
  start-page: 13
  year: 2017
  end-page: 21
  ident: b0070
  article-title: Effects of forced convection on the performance of a photovoltaic thermal system: an experimental study
  publication-title: Exp. Therm Fluid Sci.
– volume: 86
  start-page: 716
  year: 2016
  end-page: 722
  ident: b0100
  article-title: Performance analysis of PV/T Combi with water and air heating system: an experimental study
  publication-title: Renew. Energy
– volume: 41
  start-page: 861
  year: 2000
  end-page: 881
  ident: b0045
  article-title: Comparative study of the performances of four photovoltaic/thermal solar air collectors
  publication-title: Energy Convers. Manage.
– volume: 87
  start-page: 778
  year: 2014
  end-page: 786
  ident: b0125
  article-title: Comparative simulation analyses on dynamic performances of photovoltaic–thermal solar collectors with different configurations
  publication-title: Energy Convers. Manage.
– volume: 67
  start-page: 1
  year: 2017
  end-page: 14
  ident: b0040
  article-title: A review of photovoltaic thermal (PV/T) heat utilization with low temperature desiccant cooling and dehumidification
  publication-title: Renew. Sustain. Energy Rev.
– volume: 43
  start-page: 2274
  year: 2011
  ident: 10.1016/j.solener.2019.01.043_b0065
  article-title: Performance evaluation of a hybrid photovoltaic thermal double pass facade for space heating
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.05.007
– volume: 87
  start-page: 778
  issue: 87
  year: 2014
  ident: 10.1016/j.solener.2019.01.043_b0125
  article-title: Comparative simulation analyses on dynamic performances of photovoltaic–thermal solar collectors with different configurations
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2014.07.077
– volume: 41
  start-page: 861
  issue: 8
  year: 2000
  ident: 10.1016/j.solener.2019.01.043_b0045
  article-title: Comparative study of the performances of four photovoltaic/thermal solar air collectors
  publication-title: Energy Convers. Manage.
  doi: 10.1016/S0196-8904(99)00136-3
– volume: 83
  start-page: 614
  issue: 5
  year: 2009
  ident: 10.1016/j.solener.2019.01.043_b0130
  article-title: On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2008.10.008
– volume: 12
  start-page: 379
  issue: 4
  year: 2015
  ident: 10.1016/j.solener.2019.01.043_b0150
  article-title: A review on the methodology for calculating heat and exergy losses of a conventional solar PV/T system
  publication-title: Int. J. Green Energy
  doi: 10.1080/15435075.2013.840833
– year: 1978
  ident: 10.1016/j.solener.2019.01.043_b0075
  article-title: Combined photovoltaic and thermal hybrid collector systems
– volume: 91
  start-page: 17
  issue: 1
  year: 2007
  ident: 10.1016/j.solener.2019.01.043_b0140
  article-title: Parametric study of various configurations of hybrid PV/thermal air collector: experimental validation of theoretical model
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2006.06.061
– volume: 86
  start-page: 716
  issue: 1
  year: 2016
  ident: 10.1016/j.solener.2019.01.043_b0100
  article-title: Performance analysis of PV/T Combi with water and air heating system: an experimental study
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.08.061
– volume: 133
  start-page: 021002
  issue: 2
  year: 2011
  ident: 10.1016/j.solener.2019.01.043_b0025
  article-title: Convective heat transfer coefficients in a building-integrated photovoltaic/thermal system
  publication-title: J. Sol. Energy Eng.
  doi: 10.1115/1.4003145
– volume: 20
  start-page: 1071
  issue: suppl.4
  year: 2016
  ident: 10.1016/j.solener.2019.01.043_b0105
  article-title: Numerical model and experimental validation of the heat transfer in air-cooled solar photovoltaic panel
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI16S4071R
– volume: 12
  start-page: 593
  issue: 3
  year: 2008
  ident: 10.1016/j.solener.2019.01.043_b0050
  article-title: A key review on exergetic analysis and assessment of renewable energy resource for a sustainable future
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2006.10.001
– volume: 74
  start-page: 835
  year: 2015
  ident: 10.1016/j.solener.2019.01.043_b0080
  article-title: Analysis of a hybrid solar collector photovoltaic thermal (PV/T)
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.07.819
– year: 2001
  ident: 10.1016/j.solener.2019.01.043_b0060
  article-title: System studies on combined PV/Thermal panels
– volume: 98
  start-page: 384
  issue: 5
  year: 2012
  ident: 10.1016/j.solener.2019.01.043_b0005
  article-title: Analysis of thermal and electrical performance of a hybrid (PV/T) air based solar collector for Iraq
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.03.061
– volume: 88
  start-page: 3603
  issue: 11
  year: 2011
  ident: 10.1016/j.solener.2019.01.043_b0085
  article-title: A critical review of photovoltaic–thermal solar collectors for air heating
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.04.044
– volume: 129
  start-page: 61
  issue: 4
  year: 2007
  ident: 10.1016/j.solener.2019.01.043_b0090
  article-title: Numerical and experimental study of heat transfer in a BIPV-thermal system
  publication-title: J. Sol. Energy Eng.
  doi: 10.1115/1.2770750
– ident: 10.1016/j.solener.2019.01.043_b0030
– volume: 85
  start-page: 13
  year: 2017
  ident: 10.1016/j.solener.2019.01.043_b0070
  article-title: Effects of forced convection on the performance of a photovoltaic thermal system: an experimental study
  publication-title: Exp. Therm Fluid Sci.
  doi: 10.1016/j.expthermflusci.2017.02.012
– year: 1980
  ident: 10.1016/j.solener.2019.01.043_b0095
– volume: 67
  start-page: 1
  year: 2017
  ident: 10.1016/j.solener.2019.01.043_b0040
  article-title: A review of photovoltaic thermal (PV/T) heat utilization with low temperature desiccant cooling and dehumidification
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.08.056
– volume: 90
  start-page: 175
  issue: 2
  year: 2006
  ident: 10.1016/j.solener.2019.01.043_b0145
  article-title: Performance evaluation of photovoltaic thermal solar air collector for composite climate of India
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2005.03.002
– year: 2008
  ident: 10.1016/j.solener.2019.01.043_b0020
  article-title: Numerical modelling of heat transfer in photovoltaic-thermal air based system
– volume: 70
  start-page: 443
  issue: 5
  year: 2014
  ident: 10.1016/j.solener.2019.01.043_b0055
  article-title: Performance evaluation of solar photovoltaic/thermal systems
  publication-title: Sol. Energy
  doi: 10.1016/S0038-092X(00)00153-5
– ident: 10.1016/j.solener.2019.01.043_b0110
  doi: 10.1109/WiSPNET.2017.8300012
– volume: 84
  start-page: 1938
  issue: 11
  year: 2010
  ident: 10.1016/j.solener.2019.01.043_b0120
  article-title: Experimental investigation and modeling of a direct-coupled PV/T air collector
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2010.07.010
– volume: 120
  start-page: 13
  year: 2016
  ident: 10.1016/j.solener.2019.01.043_b0135
  article-title: Dynamic performance analysis of photovoltaic–thermal solar collector with dual channels for different fluids
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2016.04.095
– volume: 82
  start-page: 1131
  issue: 12
  year: 2008
  ident: 10.1016/j.solener.2019.01.043_b0010
  article-title: Grape drying by using hybrid photovoltaic-thermal (PV/T) greenhouse dryer: an experimental study
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2008.05.012
– volume: 16
  start-page: 725
  issue: 1–4
  year: 1999
  ident: 10.1016/j.solener.2019.01.043_b0035
  article-title: System performance studies on a photovoltaic/thermal (PV/T) air heating collector
  publication-title: Renew. Energy
  doi: 10.1016/S0960-1481(98)00263-8
– volume: 1
  start-page: 1
  issue: A6
  year: 2010
  ident: 10.1016/j.solener.2019.01.043_b0115
  article-title: Exergy efficiency of a solar photovoltaic array based on exergy destructions
  publication-title: Proc. Inst. Mech. Eng. Part A: J. Power & Energy
– year: 2009
  ident: 10.1016/j.solener.2019.01.043_b0015
  article-title: Development of an air-based open loop building-integrated photovoltaic/thermal system model
SSID ssj0017187
Score 2.5316339
Snippet •Three dimensional numerical models of air-cooled PV/T systems were established.•Effect of cooling channel position on heat transfer and thermoelectric...
An investigation on the effect of cooling channel position on heat transfer characteristics and thermoelectric performance of air-cooled PV/T systems has been...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 489
SubjectTerms Aerodynamics
Air intakes
Air temperature
Air-cooled PV/T system
Cooling
Cooling channel position
Cooling effects
Exergy
Fluid flow
Heat transfer
Heat transfer characteristics
Inlet temperature
Panels
Photovoltaic cells
Solar cells
Solar energy
Thermoelectric cooling
Thermoelectric performance
Variable heat flux
Title Effect of cooling channel position on heat transfer characteristics and thermoelectric performance of air-cooled PV/T system
URI https://dx.doi.org/10.1016/j.solener.2019.01.043
https://www.proquest.com/docview/2218301005
Volume 180
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-Iwokj14LbS728IeCZGgJsQDmN423ZcpwUIQb8bf7k4fgCaGxLSXPnbS7Exnvs3OfIPQnXFG4LQpPRsq5jGtIk9an3k2oVozSmVP52yf42g0ZY9xGNfQoKqFgbTK0vcXPj331uWdTjmbnWWaQo0v7fmcxA6CAPAATlDGumDl7a9NmkfgfG_Bm0lhm5_E2yqezswtYudA7gwZXjxn72T0r_j0y1Pn4Wd4go5L3Ij7xaedoprJztDRDpvgOfosmIjxwmK1gF48rxjKejMzx1VqFnYneF-8zvGqWcEbu4TNOMk0Bkz4tiga5KQKL7e1BSA7SVceyDcaP790Jrjggr5A0-H9ZDDyyuYKnqK0u_a0dGBAGs19GSrqgBehTGsZ6lAnvpSJYtatTFTkc8uM1UQmgSVE8ogHxBDZo5eoni0yc4Vw2HUPDeWRdrGeK5IEmqjAHSxUOrG8gVg1pUKVzOPQAGMuqhSzmSg1IUATwg-E00QDtTfDlgX1xr4BvUpf4ocNCRce9g1tVvoV5U_8LgjAR7de9cPr_0u-QYdwVaStNVF9vfowtw7HrGUrN9QWOug_PI3G3-bJ9vU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gHIAD4ikGA3Lg2q1N0m45ogk0nuKwod2i5oU2jW4a44b47dh98JIQEmpPTW1VcWJ_Ue3PhJw6WARgTR342IhAWJME2oci8Cm3VnCuOzZn-7xLegNxNYyHS6Rb1cJgWmXp-wufnnvr8kmrnM3WbDTCGl_eCSUbAgRB4CGWyYqA7YttDJpvH3keETjfgjiT439-Nvws42mN4RQ7QXZnTPGSOX2n4L8FqB-uOo8_F5tkowSO9Kz4ti2y5LJtsv6FTnCHvBZUxHTqqZliM55HinW9mZvQKjeLwo3uly5ywOrm-MZXxmaaZpYiKHyaFh1yRobOPosLUHc6mgeo31l6_9Dq04IMepcMLs773V5QdlcIDOftRWA1oAHtrAx1bDggL8aFtTq2sU1DrVMjPBxNTBJKL5y3TKeRZ0zLREbMMd3he6SWTTO3T2jchkHHZWIh2EvD0sgyE8ElYmNTL-tEVFOqTEk9jh0wJqrKMRur0hIKLaHCSIEl6qT5ITYruDf-EuhU9lLfFpGC-PCXaKOyryp38bNiiB_hwBrGB__XfEJWe_3bG3VzeXd9SNZwpMhha5DaYv7ijgDULPRxvmjfAYWl-IM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+cooling+channel+position+on+heat+transfer+characteristics+and+thermoelectric+performance+of+air-cooled+PV%2FT+system&rft.jtitle=Solar+energy&rft.au=Wu%2C+Shuang-Ying&rft.au=Wang%2C+Ting&rft.au=Xiao%2C+Lan&rft.au=Shen%2C+Zu-Guo&rft.date=2019-03-01&rft.issn=0038-092X&rft.volume=180&rft.spage=489&rft.epage=500&rft_id=info:doi/10.1016%2Fj.solener.2019.01.043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_solener_2019_01_043
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon