In-situ investigations of hydrogen influenced crack initiation and propagation under tensile and low cycle fatigue loadings in RPV steel

Present work aims to unveil the mechanism of hydrogen embrittlement (HE) in SA508 Grade 3 Class I low alloy reactor pressure vessel (RPV) steel. In-situ tensile and low cycle fatigue (LCF) tests are performed on specially designed specimens using tensile/fatigue testing stage under scanning electron...

Full description

Saved in:
Bibliographic Details
Published inJournal of nuclear materials Vol. 529; p. 151912
Main Authors Singh, Rajwinder, Singh, Vishal, Arora, Aman, Mahajan, Dhiraj K.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.02.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0022-3115
1873-4820
DOI10.1016/j.jnucmat.2019.151912

Cover

Loading…
Abstract Present work aims to unveil the mechanism of hydrogen embrittlement (HE) in SA508 Grade 3 Class I low alloy reactor pressure vessel (RPV) steel. In-situ tensile and low cycle fatigue (LCF) tests are performed on specially designed specimens using tensile/fatigue testing stage under scanning electron microscope (SEM). Electrochemical hydrogen charging resulted in localized void formation at prior austenite grain boundaries (PAGBs) during tensile loading. Alongside the hydrogen induced weakening of PAGBs due to synergetic HELP (hydrogen enhanced localized plasticity) and HEDE (hydrogen enhanced decohesion) mechanisms of HE, fish-eyes formation around Al2O3–SiO2 type inclusions are the primary factors for hydrogen enhanced tensile properties degradation in subject RPV steel. During LCF loading, crack initiation and propagation is facilitated by long rod inter-lath cementite particles distributed along the bainitic ferrite lath boundaries in the un-charged specimen. In case of hydrogen charged specimen, the edge crack formed during LCF loading propagated through the specimen by cleavage. Predominantly plasticity (slip) driven transgranular crack propagation occurred in un-charged specimen. In contrary, hydrogen charging resulted in LCF crack to propagate in mixed intergranular and transgranular manner during early stages of propagation, whereas once the crack length exceeded 5 to 6 grains, cleavage type transgranular crack propagation was observed.
AbstractList Present work aims to unveil the mechanism of hydrogen embrittlement (HE) in SA508 Grade 3 Class I low alloy reactor pressure vessel (RPV) steel. In-situ tensile and low cycle fatigue (LCF) tests are performed on specially designed specimens using tensile/fatigue testing stage under scanning electron microscope (SEM). Electrochemical hydrogen charging resulted in localized void formation at prior austenite grain boundaries (PAGBs) during tensile loading. Alongside the hydrogen induced weakening of PAGBs due to synergetic HELP (hydrogen enhanced localized plasticity) and HEDE (hydrogen enhanced decohesion) mechanisms of HE, fish-eyes formation around Al2O3–SiO2 type inclusions are the primary factors for hydrogen enhanced tensile properties degradation in subject RPV steel. During LCF loading, crack initiation and propagation is facilitated by long rod inter-lath cementite particles distributed along the bainitic ferrite lath boundaries in the un-charged specimen. In case of hydrogen charged specimen, the edge crack formed during LCF loading propagated through the specimen by cleavage. Predominantly plasticity (slip) driven transgranular crack propagation occurred in un-charged specimen. In contrary, hydrogen charging resulted in LCF crack to propagate in mixed intergranular and transgranular manner during early stages of propagation, whereas once the crack length exceeded 5 to 6 grains, cleavage type transgranular crack propagation was observed.
ArticleNumber 151912
Author Singh, Rajwinder
Arora, Aman
Mahajan, Dhiraj K.
Singh, Vishal
Author_xml – sequence: 1
  givenname: Rajwinder
  surname: Singh
  fullname: Singh, Rajwinder
– sequence: 2
  givenname: Vishal
  surname: Singh
  fullname: Singh, Vishal
– sequence: 3
  givenname: Aman
  surname: Arora
  fullname: Arora, Aman
– sequence: 4
  givenname: Dhiraj K.
  surname: Mahajan
  fullname: Mahajan, Dhiraj K.
  email: dhiraj.mahajan@iitrpr.ac.in
BookMark eNqFkN1KJDEQhcPiwo7uPsJCwOse8zPp6cYLEfEPBGVZvQ3ppDKmbZMxSY_MG_jYxmmvvPGqqKpzTlLfPtrzwQNCfymZU0Lro37e-1E_qzxnhLZzKmhL2Q80o82SV4uGkT00I4SxilMqfqH9lHpCiGiJmKG3a18ll0fs_AZSdiuVXfAJB4sftyaGFfiyssMIXoPBOir9VAYuu50QK2_wOoa1mox49AYizuCTG2C3HcIr1ltdOlskqxHKRBnnV6nk4H93DzhlgOE3-mnVkODPZz1A9xfn_8-uqpvby-uz05tKc77MlWkYq5dEC8Ggq1sKqrbGgulI07W8MwZAUSMAOtZouuBcKGihYZbbWmi15AfocMotv34Zy8myD2P05UnJuCAtW7CWFNXxpNIxpBTBSu3y7sIclRskJfIDvezlJ3r5gV5O6ItbfHGvo3tWcfut72TyQQGwcRBl0m4H3kXQWZrgvkl4B4uJpxs
CitedBy_id crossref_primary_10_1016_j_ijhydene_2022_03_203
crossref_primary_10_1016_j_matchar_2024_114143
crossref_primary_10_1016_j_engfailanal_2022_106044
crossref_primary_10_1016_j_tafmec_2023_103794
crossref_primary_10_3390_fractalfract6040215
crossref_primary_10_1016_j_ijhydene_2024_08_136
crossref_primary_10_1016_j_ijmecsci_2024_109625
crossref_primary_10_1016_j_jmrt_2025_02_195
crossref_primary_10_1134_S1029959922050095
crossref_primary_10_1111_ffe_14267
crossref_primary_10_1016_j_jallcom_2023_168800
crossref_primary_10_1016_j_jmrt_2023_10_196
crossref_primary_10_1016_j_msea_2020_139488
crossref_primary_10_1007_s11665_021_05554_1
crossref_primary_10_1016_j_ijhydene_2020_12_140
crossref_primary_10_3390_mi11040430
crossref_primary_10_1111_ffe_13799
crossref_primary_10_1111_ffe_14404
crossref_primary_10_1177_09544089231159776
crossref_primary_10_1016_j_corsci_2023_111735
crossref_primary_10_1016_j_tafmec_2024_104655
crossref_primary_10_1088_2053_1591_ac3bf6
Cites_doi 10.1016/j.engfailanal.2015.05.017
10.1016/j.actamat.2014.01.048
10.1016/S0013-7944(00)00119-3
10.1016/0022-3115(86)90261-8
10.1002/adma.200904354
10.1016/j.ijhydene.2018.05.011
10.1016/j.actamat.2018.07.043
10.5006/1958
10.1016/j.ijpvp.2015.04.010
10.1016/j.jmps.2017.12.016
10.1016/0022-3115(65)90114-5
10.1016/j.msea.2017.05.086
10.1016/j.msea.2008.11.040
10.1016/j.actamat.2010.11.024
10.1016/j.ijhydene.2016.11.193
10.1007/BF02817280
10.1016/j.msea.2013.05.049
10.1016/j.jmps.2015.03.002
10.1016/0308-0161(87)90041-X
10.1115/1.1334378
10.1007/BF02644079
10.1016/j.msea.2016.12.018
10.1016/S0921-5093(02)00737-2
10.1016/j.ijhydene.2014.01.138
10.1016/j.ijhydene.2019.06.098
10.1016/j.scriptamat.2015.05.017
10.1016/j.actamat.2017.09.057
10.3390/ma11040499
10.1016/0001-6160(56)90129-8
10.1016/j.ijpvp.2019.03.004
10.1016/0022-3115(78)90451-8
10.1016/j.msea.2013.10.044
10.1038/ncomms13341
10.1016/S1359-6454(01)00301-9
10.1016/j.msea.2006.01.080
10.1016/j.ijpvp.2008.08.003
10.1557/mrs2003.143
10.1007/s11661-017-4159-x
10.1016/j.engfracmech.2019.106528
10.1038/nmat3479
10.1016/j.engfracmech.2018.06.018
10.1016/j.jmps.2009.10.005
10.1007/s12613-015-1139-2
10.1080/01418619108204854
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Feb 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Feb 2020
DBID AAYXX
CITATION
7QQ
7SR
7ST
7TB
7U5
8BQ
8FD
C1K
FR3
JG9
L7M
SOI
DOI 10.1016/j.jnucmat.2019.151912
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Ceramic Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-4820
ExternalDocumentID 10_1016_j_jnucmat_2019_151912
S0022311519310633
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HME
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
LY7
LZ3
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SHN
SMS
SPC
SPCBC
SPD
SSM
SSQ
SSR
SSZ
T5K
UHS
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7QQ
7SR
7ST
7TB
7U5
8BQ
8FD
C1K
EFKBS
FR3
JG9
L7M
SOI
ID FETCH-LOGICAL-c337t-d822670c552eb691ea6fdfedb08b93bddeea1d5eeb28c14335ae9e82f3f65ca73
IEDL.DBID .~1
ISSN 0022-3115
IngestDate Wed Aug 13 11:21:31 EDT 2025
Tue Jul 01 03:20:03 EDT 2025
Thu Apr 24 22:58:57 EDT 2025
Fri Feb 23 02:47:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Tensile loading
SA508 grade 3 class I low alloy steel
Hydrogen charging
Low cycle fatigue loading
Crack initiation
Crack propagation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-d822670c552eb691ea6fdfedb08b93bddeea1d5eeb28c14335ae9e82f3f65ca73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2350924290
PQPubID 2045447
ParticipantIDs proquest_journals_2350924290
crossref_citationtrail_10_1016_j_jnucmat_2019_151912
crossref_primary_10_1016_j_jnucmat_2019_151912
elsevier_sciencedirect_doi_10_1016_j_jnucmat_2019_151912
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of nuclear materials
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Djukic, Bakic, Sijacki Zeravcic, Sedmak, Rajicic (bib19) 2019; 216
Kim, Lee, Lee, Park, Lee (bib37) 2009; 505
(bib25) 1965
Dadfarnia, Nagao, Sofronis, Robertson (bib35) 2015; 78
Xie, Li, Li, Wang, Gumbsch, Sun, Ma, Li, Shan (bib46) 2016; 7
Djukic, Bakic, Sijacki Zeravcic, Sedmak, Rajicic (bib13) 2016; 72
Chakravarny, Prasad, Sinha, Asundi (bib26) 1986; 138
Kumar, Kain, Singh, Vishwanadh (bib17) 2017; 700
Broomfield (bib24) 1965; 16
Gerberich, Oriani, Lji, Chen, Foecke (bib9) 1991; 63
Tien, Thompson, Bernstein, Richards (bib39) 1976; 7A
Djukic, Sijacki Zeravcic, Bakic, Sedmak, Rajicic (bib4) 2015; 58
Teter, Robertson, Birnbaum (bib21) 2001; 49
Lee, Kim (bib31) 2001; 123
Singh, Singh, Singh, Mahajan (bib18) 2019; 171
Jang, Kim, Jang, Lee, Kim (bib32) 2013; 580
Marinelli, Alvarez-Armas, Krupp (bib42) 2017; 684
Lee, Kim (bib3) 2006; 420
Huang, Yeh, Kuo, Jeng, Young (bib33) 2008; 85
Dadfarnia, Novak, Ahn, Liu, Sofronis, Johnson, Robertson (bib11) 2010; 22
Ghosh, Rostron, Garg, Panday (bib36) 2018; 199
Rogers (bib41) 1956; 4
Hicks, Robinson (bib29) 1986; 17
Martin, Fenske, Liu, Sofronis, Robertson (bib45) 2011; 59
Liu, Wang, Liu, Song, Luo, Yuan (bib2) 2014; 18
Song, Curtin (bib7) 2013; 12
Kim, Park, Lee, Lee (bib28) 2015; 131
Liu, Wang, Liu, Song, Luo, Yuan (bib23) 2015; 22
Song, Chai, Wu, Liu, Qin, Cheng (bib40) 2018; 11
Okada, Shibata, Takeda, Tsuji (bib38) 2018; 43
Zhao, Seok, Choi, Lee, Park, Ramamurty, Suh, Jang (bib44) 2015; 107
Harris, Lawrence, Medlin, Guetard, Burns, Somerday (bib22) 2018; 158
Rehrl, Mraczek, Pichler, Werner (bib15) 2014; 590
Singh, Singh, Arora, Mahajan (bib43) 2019; 44
Birnbaum (bib10) 2003; 28
Dmytrakh, Leshchak, Syrotyuk, Barna (bib20) 2017; 42
Jemblie, Olden, Akselsen (bib8) 2017; 375
Deng, Barnoush (bib47) 2018; 142
TAKANU, KAYANO (bib27) 1978; 78
Koyama, Tasan, Akiyama, Tsuzaki, Raabe (bib5) 2014; 70
Novak, Yuan, Somerday, Sofronis, Ritchie (bib16) 2010; 58
Achilles, Bulloch (bib30) 1987; 30
Nagao, Dadfarnia, Somerday, Sofronis, Ritchie (bib14) 2018; 112
Mohtadi-Bonab, Szpunar, Collins, Stankievech (bib34) 2014; 39
Katz, Tymiak, Gerberich (bib12) 2001; 68
Wu, Kim (bib1) 2003; 348
Hu, Dong, Luo, Xiao, Zhong, Li (bib6) 2017; 48A
Dmytrakh (10.1016/j.jnucmat.2019.151912_bib20) 2017; 42
Hu (10.1016/j.jnucmat.2019.151912_bib6) 2017; 48A
Dadfarnia (10.1016/j.jnucmat.2019.151912_bib35) 2015; 78
Singh (10.1016/j.jnucmat.2019.151912_bib18) 2019; 171
Lee (10.1016/j.jnucmat.2019.151912_bib3) 2006; 420
Hicks (10.1016/j.jnucmat.2019.151912_bib29) 1986; 17
Jang (10.1016/j.jnucmat.2019.151912_bib32) 2013; 580
Djukic (10.1016/j.jnucmat.2019.151912_bib13) 2016; 72
Novak (10.1016/j.jnucmat.2019.151912_bib16) 2010; 58
Lee (10.1016/j.jnucmat.2019.151912_bib31) 2001; 123
Wu (10.1016/j.jnucmat.2019.151912_bib1) 2003; 348
Martin (10.1016/j.jnucmat.2019.151912_bib45) 2011; 59
Koyama (10.1016/j.jnucmat.2019.151912_bib5) 2014; 70
Jemblie (10.1016/j.jnucmat.2019.151912_bib8) 2017; 375
Huang (10.1016/j.jnucmat.2019.151912_bib33) 2008; 85
Kim (10.1016/j.jnucmat.2019.151912_bib28) 2015; 131
Harris (10.1016/j.jnucmat.2019.151912_bib22) 2018; 158
Okada (10.1016/j.jnucmat.2019.151912_bib38) 2018; 43
Kim (10.1016/j.jnucmat.2019.151912_bib37) 2009; 505
Mohtadi-Bonab (10.1016/j.jnucmat.2019.151912_bib34) 2014; 39
Djukic (10.1016/j.jnucmat.2019.151912_bib4) 2015; 58
Birnbaum (10.1016/j.jnucmat.2019.151912_bib10) 2003; 28
Teter (10.1016/j.jnucmat.2019.151912_bib21) 2001; 49
Tien (10.1016/j.jnucmat.2019.151912_bib39) 1976; 7A
Marinelli (10.1016/j.jnucmat.2019.151912_bib42) 2017; 684
Gerberich (10.1016/j.jnucmat.2019.151912_bib9) 1991; 63
Deng (10.1016/j.jnucmat.2019.151912_bib47) 2018; 142
Nagao (10.1016/j.jnucmat.2019.151912_bib14) 2018; 112
Song (10.1016/j.jnucmat.2019.151912_bib7) 2013; 12
Katz (10.1016/j.jnucmat.2019.151912_bib12) 2001; 68
Ghosh (10.1016/j.jnucmat.2019.151912_bib36) 2018; 199
Liu (10.1016/j.jnucmat.2019.151912_bib2) 2014; 18
Liu (10.1016/j.jnucmat.2019.151912_bib23) 2015; 22
Chakravarny (10.1016/j.jnucmat.2019.151912_bib26) 1986; 138
(10.1016/j.jnucmat.2019.151912_bib25) 1965
Kumar (10.1016/j.jnucmat.2019.151912_bib17) 2017; 700
Dadfarnia (10.1016/j.jnucmat.2019.151912_bib11) 2010; 22
Song (10.1016/j.jnucmat.2019.151912_bib40) 2018; 11
TAKANU (10.1016/j.jnucmat.2019.151912_bib27) 1978; 78
Achilles (10.1016/j.jnucmat.2019.151912_bib30) 1987; 30
Broomfield (10.1016/j.jnucmat.2019.151912_bib24) 1965; 16
Zhao (10.1016/j.jnucmat.2019.151912_bib44) 2015; 107
Rehrl (10.1016/j.jnucmat.2019.151912_bib15) 2014; 590
Djukic (10.1016/j.jnucmat.2019.151912_bib19) 2019; 216
Xie (10.1016/j.jnucmat.2019.151912_bib46) 2016; 7
Rogers (10.1016/j.jnucmat.2019.151912_bib41) 1956; 4
Singh (10.1016/j.jnucmat.2019.151912_bib43) 2019; 44
References_xml – volume: 171
  start-page: 242
  year: 2019
  end-page: 252
  ident: bib18
  article-title: Role of prior austenite grain boundaries in short fatigue crack growth in hydrogen charged RPV steel
  publication-title: Int. J. Press. Vessel. Pip.
– volume: 48A
  start-page: 4046
  year: 2017
  end-page: 4057
  ident: bib6
  article-title: Study on the hydrogen embrittlement of Aermet100 using hydrogen permeation and SSRT techniques
  publication-title: Metall. Mater. Trans. A
– volume: 58
  start-page: 206
  year: 2010
  end-page: 226
  ident: bib16
  article-title: A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel
  publication-title: J. Mech. Phys. Solids
– volume: 123
  start-page: 173
  year: 2001
  end-page: 178
  ident: bib31
  article-title: Strain rate effects on the fatigue crack growth of SA508 Cl.3 reactor pressure vessel steel in high-temperature water environment
  publication-title: J. Press. Vessel Technol.
– volume: 44
  start-page: 22039
  year: 2019
  end-page: 22049
  ident: bib43
  article-title: Hydrogen induced blister cracking and mechanical failure in X65 pipeline steels
  publication-title: Int. J. Hydrogen Energy
– volume: 22
  start-page: 820
  year: 2015
  ident: bib23
  article-title: Effects of H content on the tensile properties and fracture behavior of SA508-III steel
  publication-title: Int. J. Miner. Metall. Mater.
– volume: 375
  year: 2017
  ident: bib8
  article-title: A review of cohesive zone modelling as an approach for numerically assessing hydrogen embrittlement of steel structures
  publication-title: Philos. Trans. Ser. A Math. Phys. Eng. Sci.
– volume: 112
  start-page: 403
  year: 2018
  end-page: 430
  ident: bib14
  article-title: Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and “quasi-cleavage” fracture of lath martensitic steels
  publication-title: J. Mech. Phys. Solids
– volume: 216
  start-page: 106528
  year: 2019
  ident: bib19
  article-title: The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: localized plasticity and decohesion
  publication-title: Eng. Fract. Mech.
– volume: 11
  start-page: 499
  year: 2018
  ident: bib40
  article-title: Experimental investigation of the effect of hydrogen on fracture toughness of 2.25Cr-1Mo-0.25V steel and welds after annealing
  publication-title: Materials
– volume: 142
  start-page: 236
  year: 2018
  end-page: 247
  ident: bib47
  article-title: Hydrogen embrittlement revealed via novel in situ fracture experiments using notched micro-cantilever specimens
  publication-title: Acta Mater.
– volume: 138
  start-page: 107
  year: 1986
  end-page: 116
  ident: bib26
  article-title: Hydrogen embrittlement of ASTM A 203 D nuclear structural steel
  publication-title: J. Nucl. Mater.
– volume: 7
  start-page: 13341
  year: 2016
  ident: bib46
  article-title: Hydrogenated vacancies lock dislocations in aluminium
  publication-title: Nat. Commun.
– volume: 107
  start-page: 46
  year: 2015
  end-page: 49
  ident: bib44
  article-title: The role of hydrogen in hardening/softening steel: influence of the charging process
  publication-title: Scr. Mater.
– volume: 59
  start-page: 1601
  year: 2011
  end-page: 1606
  ident: bib45
  article-title: On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels
  publication-title: Acta Mater.
– volume: 131
  start-page: 60
  year: 2015
  end-page: 66
  ident: bib28
  article-title: Comparison of fracture properties in SA508 Gr.3 and Gr.4N high strength low alloy steels for advanced pressure vessel materials
  publication-title: Int. J. Press. Vessel. Pip.
– volume: 505
  start-page: 105
  year: 2009
  end-page: 110
  ident: bib37
  article-title: Microstructural influences on hydrogen delayed fracture of high strength steels
  publication-title: Mater. Sci. Eng. A
– volume: 348
  start-page: 309
  year: 2003
  end-page: 318
  ident: bib1
  article-title: Effects of strain rate and temperature on tensile behavior of hydrogen-charged SA508 Cl.3 pressure vessel steel
  publication-title: Mater. Sci. Eng. A
– volume: 420
  start-page: 279
  year: 2006
  end-page: 285
  ident: bib3
  article-title: Effect of pre-charged hydrogen on fatigue crack growth of low alloy steel at 288°C
  publication-title: Mater. Sci. Eng. A
– volume: 70
  start-page: 174
  year: 2014
  end-page: 187
  ident: bib5
  article-title: Hydrogen-assisted decohesion and localized plasticity in dual-phase steel
  publication-title: Acta Mater.
– volume: 72
  start-page: 943
  year: 2016
  end-page: 961
  ident: bib13
  article-title: Hydrogen embrittlement of industrial components: predicition, prevention, and models
  publication-title: Corrosion
– volume: 85
  start-page: 772
  year: 2008
  end-page: 781
  ident: bib33
  article-title: Fatigue crack growth behavior of reactor pressure vessel steels in air and high-temperature water environments
  publication-title: Int. J. Press. Vessel. Pip.
– volume: 199
  start-page: 609
  year: 2018
  end-page: 618
  ident: bib36
  article-title: Hydrogen induced cracking of pipeline and pressure vessel steels: a review
  publication-title: Eng. Fract. Mech.
– volume: 7A
  start-page: 821
  year: 1976
  end-page: 829
  ident: bib39
  article-title: Hydrogen transport by dislocations
  publication-title: Metall. Mater. Trans. A
– volume: 22
  start-page: 1128
  year: 2010
  end-page: 1135
  ident: bib11
  article-title: Recent advances in the study of structural materials compatibility with hydrogen
  publication-title: Adv. Mater.
– volume: 39
  start-page: 6076
  year: 2014
  end-page: 6088
  ident: bib34
  article-title: Evaluation of hydrogen induced cracking behavior of API X70 pipeline steel at different heat treatments
  publication-title: Int. J. Hydrogen Energy
– volume: 12
  start-page: 145
  year: 2013
  end-page: 151
  ident: bib7
  article-title: Atomic mechanism and prediction of hydrogen embrittlement in iron
  publication-title: Nat. Mater.
– volume: 590
  start-page: 360
  year: 2014
  end-page: 367
  ident: bib15
  article-title: Mechanical properties and fracture behavior of hydrogen charged AHSS/UHSS grades at high- and low strain rate tests
  publication-title: Mater. Sci. Eng. A
– volume: 18
  year: 2014
  ident: bib2
  article-title: Effects of hydrogen on fracture toughness and fracture behaviour of SA508-III steel
  publication-title: Mater. Res. Innov.
– volume: 158
  start-page: 180
  year: 2018
  end-page: 192
  ident: bib22
  article-title: Elucidating the contribution of mobile hydrogen-deformation interactions to hydrogen-induced intergranular cracking in polycrystalline nickel
  publication-title: Acta Mater.
– volume: 78
  start-page: 511
  year: 2015
  end-page: 525
  ident: bib35
  article-title: Modeling hydrogen transport by dislocations
  publication-title: J. Mech. Phys. Solids
– volume: 16
  start-page: 249
  year: 1965
  end-page: 259
  ident: bib24
  article-title: Hydrogen effects in an irradiated 1% Cr, 1/2% Mo PWR pressure vessel steel
  publication-title: J. Nucl. Mater.
– volume: 700
  start-page: 140
  year: 2017
  end-page: 151
  ident: bib17
  article-title: Influence of hydrogen on mechanical properties and fracture of tempered 13 wt% Cr martensitic stainless steel
  publication-title: Mater. Sci. Eng. A
– volume: 4
  start-page: 114
  year: 1956
  end-page: 117
  ident: bib41
  article-title: The influence of hydrogen on the yield point in iron
  publication-title: Acta Metall.
– year: 1965
  ident: bib25
  publication-title: WCAP-2885
– volume: 17
  start-page: 1837
  year: 1986
  end-page: 1849
  ident: bib29
  article-title: Fatigue crack growth rates in a pressure vessel steel under various conditions of loading and the environment
  publication-title: Metall. Trans. A
– volume: 580
  start-page: 41
  year: 2013
  end-page: 50
  ident: bib32
  article-title: Low-cycle fatigue behaviors of two heats of SA508 Gr.1a low alloy steel in 310°C air and deoxygenated water—effects of dynamic strain aging and microstructures
  publication-title: Mater. Sci. Eng. A
– volume: 684
  start-page: 254
  year: 2017
  end-page: 260
  ident: bib42
  article-title: Cyclic deformation mechanisms and microcracks behavior in high-strength bainitic steel
  publication-title: Mater. Sci. Eng. A
– volume: 28
  start-page: 479
  year: 2003
  end-page: 485
  ident: bib10
  article-title: Hydrogen effects on deformation and fracture: Science and sociology
  publication-title: MRS Bull.
– volume: 63
  start-page: 363
  year: 1991
  end-page: 376
  ident: bib9
  article-title: The necessity of both plasticity and brittleness in the fracture thresholds of iron
  publication-title: Philos. Mag. A
– volume: 68
  start-page: 619
  year: 2001
  end-page: 646
  ident: bib12
  article-title: Nanomechanical probes as new approaches to hydrogen/deformation interaction studies
  publication-title: Eng. Fract. Mech.
– volume: 30
  start-page: 171
  year: 1987
  end-page: 192
  ident: bib30
  article-title: The effect of frequency and environment on the fatigue crack growth behaviour of SA508 Cl. III RPV steel
  publication-title: Int. J. Press. Vessel. Pip.
– volume: 49
  start-page: 4313
  year: 2001
  end-page: 4323
  ident: bib21
  article-title: The effects of hydrogen on the deformation and fracture of β-titanium
  publication-title: Acta Mater.
– volume: 58
  start-page: 485
  year: 2015
  end-page: 498
  ident: bib4
  article-title: Hydrogen damage of steels: a case study and hydrogen embrittlement model
  publication-title: Eng. Fail. Anal.
– volume: 78
  start-page: 299
  year: 1978
  end-page: 308
  ident: bib27
  article-title: Hydrogen embrittlement of unirradiated steels for nuclear reactor pressure vessels
  publication-title: J. Nucl. Mater.
– volume: 43
  start-page: 11298
  year: 2018
  end-page: 11306
  ident: bib38
  article-title: Crystallographic feature of hydrogen-related fracture in 2Mn-0.1C ferritic steel
  publication-title: Int. J. Hydrogen Energy
– volume: 42
  start-page: 6401
  year: 2017
  end-page: 6408
  ident: bib20
  article-title: Effect of hydrogen concentration on fatigue crack growth behaviour in pipeline steel
  publication-title: Int. J. Hydrogen Energy
– year: 1965
  ident: 10.1016/j.jnucmat.2019.151912_bib25
– volume: 58
  start-page: 485
  year: 2015
  ident: 10.1016/j.jnucmat.2019.151912_bib4
  article-title: Hydrogen damage of steels: a case study and hydrogen embrittlement model
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2015.05.017
– volume: 70
  start-page: 174
  year: 2014
  ident: 10.1016/j.jnucmat.2019.151912_bib5
  article-title: Hydrogen-assisted decohesion and localized plasticity in dual-phase steel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.01.048
– volume: 68
  start-page: 619
  year: 2001
  ident: 10.1016/j.jnucmat.2019.151912_bib12
  article-title: Nanomechanical probes as new approaches to hydrogen/deformation interaction studies
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/S0013-7944(00)00119-3
– volume: 138
  start-page: 107
  year: 1986
  ident: 10.1016/j.jnucmat.2019.151912_bib26
  article-title: Hydrogen embrittlement of ASTM A 203 D nuclear structural steel
  publication-title: J. Nucl. Mater.
  doi: 10.1016/0022-3115(86)90261-8
– volume: 22
  start-page: 1128
  year: 2010
  ident: 10.1016/j.jnucmat.2019.151912_bib11
  article-title: Recent advances in the study of structural materials compatibility with hydrogen
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200904354
– volume: 43
  start-page: 11298
  year: 2018
  ident: 10.1016/j.jnucmat.2019.151912_bib38
  article-title: Crystallographic feature of hydrogen-related fracture in 2Mn-0.1C ferritic steel
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.05.011
– volume: 158
  start-page: 180
  year: 2018
  ident: 10.1016/j.jnucmat.2019.151912_bib22
  article-title: Elucidating the contribution of mobile hydrogen-deformation interactions to hydrogen-induced intergranular cracking in polycrystalline nickel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.07.043
– volume: 72
  start-page: 943
  year: 2016
  ident: 10.1016/j.jnucmat.2019.151912_bib13
  article-title: Hydrogen embrittlement of industrial components: predicition, prevention, and models
  publication-title: Corrosion
  doi: 10.5006/1958
– volume: 131
  start-page: 60
  year: 2015
  ident: 10.1016/j.jnucmat.2019.151912_bib28
  article-title: Comparison of fracture properties in SA508 Gr.3 and Gr.4N high strength low alloy steels for advanced pressure vessel materials
  publication-title: Int. J. Press. Vessel. Pip.
  doi: 10.1016/j.ijpvp.2015.04.010
– volume: 112
  start-page: 403
  year: 2018
  ident: 10.1016/j.jnucmat.2019.151912_bib14
  article-title: Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and “quasi-cleavage” fracture of lath martensitic steels
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2017.12.016
– volume: 16
  start-page: 249
  year: 1965
  ident: 10.1016/j.jnucmat.2019.151912_bib24
  article-title: Hydrogen effects in an irradiated 1% Cr, 1/2% Mo PWR pressure vessel steel
  publication-title: J. Nucl. Mater.
  doi: 10.1016/0022-3115(65)90114-5
– volume: 700
  start-page: 140
  year: 2017
  ident: 10.1016/j.jnucmat.2019.151912_bib17
  article-title: Influence of hydrogen on mechanical properties and fracture of tempered 13 wt% Cr martensitic stainless steel
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2017.05.086
– volume: 505
  start-page: 105
  year: 2009
  ident: 10.1016/j.jnucmat.2019.151912_bib37
  article-title: Microstructural influences on hydrogen delayed fracture of high strength steels
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2008.11.040
– volume: 59
  start-page: 1601
  year: 2011
  ident: 10.1016/j.jnucmat.2019.151912_bib45
  article-title: On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.11.024
– volume: 375
  year: 2017
  ident: 10.1016/j.jnucmat.2019.151912_bib8
  article-title: A review of cohesive zone modelling as an approach for numerically assessing hydrogen embrittlement of steel structures
  publication-title: Philos. Trans. Ser. A Math. Phys. Eng. Sci.
– volume: 42
  start-page: 6401
  year: 2017
  ident: 10.1016/j.jnucmat.2019.151912_bib20
  article-title: Effect of hydrogen concentration on fatigue crack growth behaviour in pipeline steel
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.11.193
– volume: 17
  start-page: 1837
  year: 1986
  ident: 10.1016/j.jnucmat.2019.151912_bib29
  article-title: Fatigue crack growth rates in a pressure vessel steel under various conditions of loading and the environment
  publication-title: Metall. Trans. A
  doi: 10.1007/BF02817280
– volume: 580
  start-page: 41
  year: 2013
  ident: 10.1016/j.jnucmat.2019.151912_bib32
  article-title: Low-cycle fatigue behaviors of two heats of SA508 Gr.1a low alloy steel in 310°C air and deoxygenated water—effects of dynamic strain aging and microstructures
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2013.05.049
– volume: 78
  start-page: 511
  year: 2015
  ident: 10.1016/j.jnucmat.2019.151912_bib35
  article-title: Modeling hydrogen transport by dislocations
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2015.03.002
– volume: 30
  start-page: 171
  year: 1987
  ident: 10.1016/j.jnucmat.2019.151912_bib30
  article-title: The effect of frequency and environment on the fatigue crack growth behaviour of SA508 Cl. III RPV steel
  publication-title: Int. J. Press. Vessel. Pip.
  doi: 10.1016/0308-0161(87)90041-X
– volume: 123
  start-page: 173
  year: 2001
  ident: 10.1016/j.jnucmat.2019.151912_bib31
  article-title: Strain rate effects on the fatigue crack growth of SA508 Cl.3 reactor pressure vessel steel in high-temperature water environment
  publication-title: J. Press. Vessel Technol.
  doi: 10.1115/1.1334378
– volume: 7A
  start-page: 821
  year: 1976
  ident: 10.1016/j.jnucmat.2019.151912_bib39
  article-title: Hydrogen transport by dislocations
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/BF02644079
– volume: 684
  start-page: 254
  year: 2017
  ident: 10.1016/j.jnucmat.2019.151912_bib42
  article-title: Cyclic deformation mechanisms and microcracks behavior in high-strength bainitic steel
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2016.12.018
– volume: 348
  start-page: 309
  year: 2003
  ident: 10.1016/j.jnucmat.2019.151912_bib1
  article-title: Effects of strain rate and temperature on tensile behavior of hydrogen-charged SA508 Cl.3 pressure vessel steel
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(02)00737-2
– volume: 39
  start-page: 6076
  year: 2014
  ident: 10.1016/j.jnucmat.2019.151912_bib34
  article-title: Evaluation of hydrogen induced cracking behavior of API X70 pipeline steel at different heat treatments
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.01.138
– volume: 44
  start-page: 22039
  year: 2019
  ident: 10.1016/j.jnucmat.2019.151912_bib43
  article-title: Hydrogen induced blister cracking and mechanical failure in X65 pipeline steels
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.06.098
– volume: 107
  start-page: 46
  year: 2015
  ident: 10.1016/j.jnucmat.2019.151912_bib44
  article-title: The role of hydrogen in hardening/softening steel: influence of the charging process
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2015.05.017
– volume: 142
  start-page: 236
  year: 2018
  ident: 10.1016/j.jnucmat.2019.151912_bib47
  article-title: Hydrogen embrittlement revealed via novel in situ fracture experiments using notched micro-cantilever specimens
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.09.057
– volume: 11
  start-page: 499
  year: 2018
  ident: 10.1016/j.jnucmat.2019.151912_bib40
  article-title: Experimental investigation of the effect of hydrogen on fracture toughness of 2.25Cr-1Mo-0.25V steel and welds after annealing
  publication-title: Materials
  doi: 10.3390/ma11040499
– volume: 4
  start-page: 114
  year: 1956
  ident: 10.1016/j.jnucmat.2019.151912_bib41
  article-title: The influence of hydrogen on the yield point in iron
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(56)90129-8
– volume: 171
  start-page: 242
  year: 2019
  ident: 10.1016/j.jnucmat.2019.151912_bib18
  article-title: Role of prior austenite grain boundaries in short fatigue crack growth in hydrogen charged RPV steel
  publication-title: Int. J. Press. Vessel. Pip.
  doi: 10.1016/j.ijpvp.2019.03.004
– volume: 78
  start-page: 299
  year: 1978
  ident: 10.1016/j.jnucmat.2019.151912_bib27
  article-title: Hydrogen embrittlement of unirradiated steels for nuclear reactor pressure vessels
  publication-title: J. Nucl. Mater.
  doi: 10.1016/0022-3115(78)90451-8
– volume: 590
  start-page: 360
  year: 2014
  ident: 10.1016/j.jnucmat.2019.151912_bib15
  article-title: Mechanical properties and fracture behavior of hydrogen charged AHSS/UHSS grades at high- and low strain rate tests
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2013.10.044
– volume: 7
  start-page: 13341
  year: 2016
  ident: 10.1016/j.jnucmat.2019.151912_bib46
  article-title: Hydrogenated vacancies lock dislocations in aluminium
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13341
– volume: 49
  start-page: 4313
  year: 2001
  ident: 10.1016/j.jnucmat.2019.151912_bib21
  article-title: The effects of hydrogen on the deformation and fracture of β-titanium
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(01)00301-9
– volume: 18
  year: 2014
  ident: 10.1016/j.jnucmat.2019.151912_bib2
  article-title: Effects of hydrogen on fracture toughness and fracture behaviour of SA508-III steel
  publication-title: Mater. Res. Innov.
– volume: 420
  start-page: 279
  year: 2006
  ident: 10.1016/j.jnucmat.2019.151912_bib3
  article-title: Effect of pre-charged hydrogen on fatigue crack growth of low alloy steel at 288°C
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2006.01.080
– volume: 85
  start-page: 772
  year: 2008
  ident: 10.1016/j.jnucmat.2019.151912_bib33
  article-title: Fatigue crack growth behavior of reactor pressure vessel steels in air and high-temperature water environments
  publication-title: Int. J. Press. Vessel. Pip.
  doi: 10.1016/j.ijpvp.2008.08.003
– volume: 28
  start-page: 479
  year: 2003
  ident: 10.1016/j.jnucmat.2019.151912_bib10
  article-title: Hydrogen effects on deformation and fracture: Science and sociology
  publication-title: MRS Bull.
  doi: 10.1557/mrs2003.143
– volume: 48A
  start-page: 4046
  year: 2017
  ident: 10.1016/j.jnucmat.2019.151912_bib6
  article-title: Study on the hydrogen embrittlement of Aermet100 using hydrogen permeation and SSRT techniques
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-017-4159-x
– volume: 216
  start-page: 106528
  year: 2019
  ident: 10.1016/j.jnucmat.2019.151912_bib19
  article-title: The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: localized plasticity and decohesion
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2019.106528
– volume: 12
  start-page: 145
  year: 2013
  ident: 10.1016/j.jnucmat.2019.151912_bib7
  article-title: Atomic mechanism and prediction of hydrogen embrittlement in iron
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3479
– volume: 199
  start-page: 609
  year: 2018
  ident: 10.1016/j.jnucmat.2019.151912_bib36
  article-title: Hydrogen induced cracking of pipeline and pressure vessel steels: a review
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2018.06.018
– volume: 58
  start-page: 206
  year: 2010
  ident: 10.1016/j.jnucmat.2019.151912_bib16
  article-title: A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2009.10.005
– volume: 22
  start-page: 820
  year: 2015
  ident: 10.1016/j.jnucmat.2019.151912_bib23
  article-title: Effects of H content on the tensile properties and fracture behavior of SA508-III steel
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-015-1139-2
– volume: 63
  start-page: 363
  year: 1991
  ident: 10.1016/j.jnucmat.2019.151912_bib9
  article-title: The necessity of both plasticity and brittleness in the fracture thresholds of iron
  publication-title: Philos. Mag. A
  doi: 10.1080/01418619108204854
SSID ssj0005905
Score 2.4411101
Snippet Present work aims to unveil the mechanism of hydrogen embrittlement (HE) in SA508 Grade 3 Class I low alloy reactor pressure vessel (RPV) steel. In-situ...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 151912
SubjectTerms Aluminum oxide
Boundaries
Cementite
Cleavage
Crack initiation
Crack propagation
Edge cracks
Electrochemistry
Fatigue tests
Grain boundaries
Hydrogen
Hydrogen charging
Hydrogen embrittlement
Inclusions
Low cycle fatigue
Low cycle fatigue loading
Metal fatigue
Plastic properties
Plasticity
Pressure vessels
Propagation
SA508 grade 3 class I low alloy steel
Scanning electron microscopy
Silicon dioxide
Steel
Tensile loading
Tensile properties
Transgranular cracks
Title In-situ investigations of hydrogen influenced crack initiation and propagation under tensile and low cycle fatigue loadings in RPV steel
URI https://dx.doi.org/10.1016/j.jnucmat.2019.151912
https://www.proquest.com/docview/2350924290
Volume 529
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FEfQgPrE-Sg5et90mu9vdYylKqygiKt5CNg_dWral3SK9ePZnO8lmrQoieNy8SDKzM9_ANxOETgVRmgqfehHhvhcowr044bFHTSkUTiQPiUlwvrqO-vfBxWP4WEO9KhfG0Cqd7S9turXWrqXlbrM1yTKT4wuuDQANQBCIa6ip-BkEHaPlzbcvNI-kpDFa1jqMXmbxtIbNYT4XAAwNwytpmpXa5Df_9MNSW_dzvoU2HW7E3XJr26im8h208aWa4A5as2xOMdtF74Pcm2XFHGfLKhqgXXis8fNCTsegNNDlXieRWEy5eIGGrCjlhHkuMWwEbE35bRLNpthy3UfK9o7Gr1gsYCdYw5CnuYIWy8afwTr49uYBg_ao0R66Pz-76_U99-SCJyjtFJ4EvBB1fBGGRKVR0lY80lIrmfpxmtAUbKHibRkqiMdjAVCLhlwlKiaa6igUvEP30Uo-ztUBwrGSUQqhehBJEQAQSDWgDSkAUSWmwI2uo6C6aCZcPXLzLMaIVcSzIXPyYUY-rJRPHTU_p03Kghx_TYgrKbJvmsXAafw19biSOnO_9owRChgLzpP4h_9f-QitExO4W_r3MVoppnN1AuimSBtWfRtotTu47F9_AOZh_SU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-tAEB60clAfRD1HvLsPvqZNd5M0eRRRWi9FRA--LZu9aGpJpU0R_4E_29lkY1UQwcfsZpbNzmTmG_hmFuBQUm2Y9JkXUeF7gabCixMRe8y2QhFUiZDaAufLftS9Dc7uwrs5OK5rYSyt0vn-yqeX3tqNtNxptp6yzNb4YmhDQIMQBPMaxuZhwXanChuwcNQ77_ZnTI-kYjKWxHUUmBXytAbNQT6ViA0tyStp2sXa9LsQ9cVZlxHodBVWHHQkR9Xu1mBO5-uw_KGh4Dr8KQmdcvIXXnu5N8mKKclmjTTQwMjIkIcXNR6h3eCUu6BEETkW8hEHsqJSFRG5IrgRdDfVs601G5OS7j7U5exw9EzkC-6EGHzlfqpxpCTkT3Adcn31n6AB6eE_uD09uTnueu7WBU8y1ik8hZAh6vgyDKlOo6StRWSU0Sr14zRhKbpDLdoq1JiSxxLRFguFTnRMDTNRKEWHbUAjH-V6E0isVZRith5ESgaIBVKDgENJBFWJ7XFjtiCoD5pL15Lc3owx5DX3bMCdfrjVD6_0swXNd7GnqifHTwJxrUX-ybg4xo2fRHdrrXP3d084ZQiz8HsSf_v3Kx_AYvfm8oJf9PrnO7BEbR5fssF3oVGMp3oPwU6R7jtjfgOG1P_W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-situ+investigations+of+hydrogen+influenced+crack+initiation+and+propagation+under+tensile+and+low+cycle+fatigue+loadings+in+RPV+steel&rft.jtitle=Journal+of+nuclear+materials&rft.au=Singh%2C+Rajwinder&rft.au=Singh%2C+Vishal&rft.au=Arora%2C+Aman&rft.au=Mahajan%2C+Dhiraj+K.&rft.date=2020-02-01&rft.issn=0022-3115&rft.volume=529&rft.spage=151912&rft_id=info:doi/10.1016%2Fj.jnucmat.2019.151912&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jnucmat_2019_151912
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3115&client=summon