In-situ investigations of hydrogen influenced crack initiation and propagation under tensile and low cycle fatigue loadings in RPV steel
Present work aims to unveil the mechanism of hydrogen embrittlement (HE) in SA508 Grade 3 Class I low alloy reactor pressure vessel (RPV) steel. In-situ tensile and low cycle fatigue (LCF) tests are performed on specially designed specimens using tensile/fatigue testing stage under scanning electron...
Saved in:
Published in | Journal of nuclear materials Vol. 529; p. 151912 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.02.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0022-3115 1873-4820 |
DOI | 10.1016/j.jnucmat.2019.151912 |
Cover
Loading…
Abstract | Present work aims to unveil the mechanism of hydrogen embrittlement (HE) in SA508 Grade 3 Class I low alloy reactor pressure vessel (RPV) steel. In-situ tensile and low cycle fatigue (LCF) tests are performed on specially designed specimens using tensile/fatigue testing stage under scanning electron microscope (SEM). Electrochemical hydrogen charging resulted in localized void formation at prior austenite grain boundaries (PAGBs) during tensile loading. Alongside the hydrogen induced weakening of PAGBs due to synergetic HELP (hydrogen enhanced localized plasticity) and HEDE (hydrogen enhanced decohesion) mechanisms of HE, fish-eyes formation around Al2O3–SiO2 type inclusions are the primary factors for hydrogen enhanced tensile properties degradation in subject RPV steel. During LCF loading, crack initiation and propagation is facilitated by long rod inter-lath cementite particles distributed along the bainitic ferrite lath boundaries in the un-charged specimen. In case of hydrogen charged specimen, the edge crack formed during LCF loading propagated through the specimen by cleavage. Predominantly plasticity (slip) driven transgranular crack propagation occurred in un-charged specimen. In contrary, hydrogen charging resulted in LCF crack to propagate in mixed intergranular and transgranular manner during early stages of propagation, whereas once the crack length exceeded 5 to 6 grains, cleavage type transgranular crack propagation was observed. |
---|---|
AbstractList | Present work aims to unveil the mechanism of hydrogen embrittlement (HE) in SA508 Grade 3 Class I low alloy reactor pressure vessel (RPV) steel. In-situ tensile and low cycle fatigue (LCF) tests are performed on specially designed specimens using tensile/fatigue testing stage under scanning electron microscope (SEM). Electrochemical hydrogen charging resulted in localized void formation at prior austenite grain boundaries (PAGBs) during tensile loading. Alongside the hydrogen induced weakening of PAGBs due to synergetic HELP (hydrogen enhanced localized plasticity) and HEDE (hydrogen enhanced decohesion) mechanisms of HE, fish-eyes formation around Al2O3–SiO2 type inclusions are the primary factors for hydrogen enhanced tensile properties degradation in subject RPV steel. During LCF loading, crack initiation and propagation is facilitated by long rod inter-lath cementite particles distributed along the bainitic ferrite lath boundaries in the un-charged specimen. In case of hydrogen charged specimen, the edge crack formed during LCF loading propagated through the specimen by cleavage. Predominantly plasticity (slip) driven transgranular crack propagation occurred in un-charged specimen. In contrary, hydrogen charging resulted in LCF crack to propagate in mixed intergranular and transgranular manner during early stages of propagation, whereas once the crack length exceeded 5 to 6 grains, cleavage type transgranular crack propagation was observed. |
ArticleNumber | 151912 |
Author | Singh, Rajwinder Arora, Aman Mahajan, Dhiraj K. Singh, Vishal |
Author_xml | – sequence: 1 givenname: Rajwinder surname: Singh fullname: Singh, Rajwinder – sequence: 2 givenname: Vishal surname: Singh fullname: Singh, Vishal – sequence: 3 givenname: Aman surname: Arora fullname: Arora, Aman – sequence: 4 givenname: Dhiraj K. surname: Mahajan fullname: Mahajan, Dhiraj K. email: dhiraj.mahajan@iitrpr.ac.in |
BookMark | eNqFkN1KJDEQhcPiwo7uPsJCwOse8zPp6cYLEfEPBGVZvQ3ppDKmbZMxSY_MG_jYxmmvvPGqqKpzTlLfPtrzwQNCfymZU0Lro37e-1E_qzxnhLZzKmhL2Q80o82SV4uGkT00I4SxilMqfqH9lHpCiGiJmKG3a18ll0fs_AZSdiuVXfAJB4sftyaGFfiyssMIXoPBOir9VAYuu50QK2_wOoa1mox49AYizuCTG2C3HcIr1ltdOlskqxHKRBnnV6nk4H93DzhlgOE3-mnVkODPZz1A9xfn_8-uqpvby-uz05tKc77MlWkYq5dEC8Ggq1sKqrbGgulI07W8MwZAUSMAOtZouuBcKGihYZbbWmi15AfocMotv34Zy8myD2P05UnJuCAtW7CWFNXxpNIxpBTBSu3y7sIclRskJfIDvezlJ3r5gV5O6ItbfHGvo3tWcfut72TyQQGwcRBl0m4H3kXQWZrgvkl4B4uJpxs |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2022_03_203 crossref_primary_10_1016_j_matchar_2024_114143 crossref_primary_10_1016_j_engfailanal_2022_106044 crossref_primary_10_1016_j_tafmec_2023_103794 crossref_primary_10_3390_fractalfract6040215 crossref_primary_10_1016_j_ijhydene_2024_08_136 crossref_primary_10_1016_j_ijmecsci_2024_109625 crossref_primary_10_1016_j_jmrt_2025_02_195 crossref_primary_10_1134_S1029959922050095 crossref_primary_10_1111_ffe_14267 crossref_primary_10_1016_j_jallcom_2023_168800 crossref_primary_10_1016_j_jmrt_2023_10_196 crossref_primary_10_1016_j_msea_2020_139488 crossref_primary_10_1007_s11665_021_05554_1 crossref_primary_10_1016_j_ijhydene_2020_12_140 crossref_primary_10_3390_mi11040430 crossref_primary_10_1111_ffe_13799 crossref_primary_10_1111_ffe_14404 crossref_primary_10_1177_09544089231159776 crossref_primary_10_1016_j_corsci_2023_111735 crossref_primary_10_1016_j_tafmec_2024_104655 crossref_primary_10_1088_2053_1591_ac3bf6 |
Cites_doi | 10.1016/j.engfailanal.2015.05.017 10.1016/j.actamat.2014.01.048 10.1016/S0013-7944(00)00119-3 10.1016/0022-3115(86)90261-8 10.1002/adma.200904354 10.1016/j.ijhydene.2018.05.011 10.1016/j.actamat.2018.07.043 10.5006/1958 10.1016/j.ijpvp.2015.04.010 10.1016/j.jmps.2017.12.016 10.1016/0022-3115(65)90114-5 10.1016/j.msea.2017.05.086 10.1016/j.msea.2008.11.040 10.1016/j.actamat.2010.11.024 10.1016/j.ijhydene.2016.11.193 10.1007/BF02817280 10.1016/j.msea.2013.05.049 10.1016/j.jmps.2015.03.002 10.1016/0308-0161(87)90041-X 10.1115/1.1334378 10.1007/BF02644079 10.1016/j.msea.2016.12.018 10.1016/S0921-5093(02)00737-2 10.1016/j.ijhydene.2014.01.138 10.1016/j.ijhydene.2019.06.098 10.1016/j.scriptamat.2015.05.017 10.1016/j.actamat.2017.09.057 10.3390/ma11040499 10.1016/0001-6160(56)90129-8 10.1016/j.ijpvp.2019.03.004 10.1016/0022-3115(78)90451-8 10.1016/j.msea.2013.10.044 10.1038/ncomms13341 10.1016/S1359-6454(01)00301-9 10.1016/j.msea.2006.01.080 10.1016/j.ijpvp.2008.08.003 10.1557/mrs2003.143 10.1007/s11661-017-4159-x 10.1016/j.engfracmech.2019.106528 10.1038/nmat3479 10.1016/j.engfracmech.2018.06.018 10.1016/j.jmps.2009.10.005 10.1007/s12613-015-1139-2 10.1080/01418619108204854 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Feb 2020 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Feb 2020 |
DBID | AAYXX CITATION 7QQ 7SR 7ST 7TB 7U5 8BQ 8FD C1K FR3 JG9 L7M SOI |
DOI | 10.1016/j.jnucmat.2019.151912 |
DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Ceramic Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-4820 |
ExternalDocumentID | 10_1016_j_jnucmat_2019_151912 S0022311519310633 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACIWK ACNCT ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HME HVGLF HZ~ IHE J1W JARJE KOM LY6 LY7 LZ3 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SES SET SEW SHN SMS SPC SPCBC SPD SSM SSQ SSR SSZ T5K UHS WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7QQ 7SR 7ST 7TB 7U5 8BQ 8FD C1K EFKBS FR3 JG9 L7M SOI |
ID | FETCH-LOGICAL-c337t-d822670c552eb691ea6fdfedb08b93bddeea1d5eeb28c14335ae9e82f3f65ca73 |
IEDL.DBID | .~1 |
ISSN | 0022-3115 |
IngestDate | Wed Aug 13 11:21:31 EDT 2025 Tue Jul 01 03:20:03 EDT 2025 Thu Apr 24 22:58:57 EDT 2025 Fri Feb 23 02:47:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Tensile loading SA508 grade 3 class I low alloy steel Hydrogen charging Low cycle fatigue loading Crack initiation Crack propagation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-d822670c552eb691ea6fdfedb08b93bddeea1d5eeb28c14335ae9e82f3f65ca73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2350924290 |
PQPubID | 2045447 |
ParticipantIDs | proquest_journals_2350924290 crossref_citationtrail_10_1016_j_jnucmat_2019_151912 crossref_primary_10_1016_j_jnucmat_2019_151912 elsevier_sciencedirect_doi_10_1016_j_jnucmat_2019_151912 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2020 2020-02-00 20200201 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of nuclear materials |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Djukic, Bakic, Sijacki Zeravcic, Sedmak, Rajicic (bib19) 2019; 216 Kim, Lee, Lee, Park, Lee (bib37) 2009; 505 (bib25) 1965 Dadfarnia, Nagao, Sofronis, Robertson (bib35) 2015; 78 Xie, Li, Li, Wang, Gumbsch, Sun, Ma, Li, Shan (bib46) 2016; 7 Djukic, Bakic, Sijacki Zeravcic, Sedmak, Rajicic (bib13) 2016; 72 Chakravarny, Prasad, Sinha, Asundi (bib26) 1986; 138 Kumar, Kain, Singh, Vishwanadh (bib17) 2017; 700 Broomfield (bib24) 1965; 16 Gerberich, Oriani, Lji, Chen, Foecke (bib9) 1991; 63 Tien, Thompson, Bernstein, Richards (bib39) 1976; 7A Djukic, Sijacki Zeravcic, Bakic, Sedmak, Rajicic (bib4) 2015; 58 Teter, Robertson, Birnbaum (bib21) 2001; 49 Lee, Kim (bib31) 2001; 123 Singh, Singh, Singh, Mahajan (bib18) 2019; 171 Jang, Kim, Jang, Lee, Kim (bib32) 2013; 580 Marinelli, Alvarez-Armas, Krupp (bib42) 2017; 684 Lee, Kim (bib3) 2006; 420 Huang, Yeh, Kuo, Jeng, Young (bib33) 2008; 85 Dadfarnia, Novak, Ahn, Liu, Sofronis, Johnson, Robertson (bib11) 2010; 22 Ghosh, Rostron, Garg, Panday (bib36) 2018; 199 Rogers (bib41) 1956; 4 Hicks, Robinson (bib29) 1986; 17 Martin, Fenske, Liu, Sofronis, Robertson (bib45) 2011; 59 Liu, Wang, Liu, Song, Luo, Yuan (bib2) 2014; 18 Song, Curtin (bib7) 2013; 12 Kim, Park, Lee, Lee (bib28) 2015; 131 Liu, Wang, Liu, Song, Luo, Yuan (bib23) 2015; 22 Song, Chai, Wu, Liu, Qin, Cheng (bib40) 2018; 11 Okada, Shibata, Takeda, Tsuji (bib38) 2018; 43 Zhao, Seok, Choi, Lee, Park, Ramamurty, Suh, Jang (bib44) 2015; 107 Harris, Lawrence, Medlin, Guetard, Burns, Somerday (bib22) 2018; 158 Rehrl, Mraczek, Pichler, Werner (bib15) 2014; 590 Singh, Singh, Arora, Mahajan (bib43) 2019; 44 Birnbaum (bib10) 2003; 28 Dmytrakh, Leshchak, Syrotyuk, Barna (bib20) 2017; 42 Jemblie, Olden, Akselsen (bib8) 2017; 375 Deng, Barnoush (bib47) 2018; 142 TAKANU, KAYANO (bib27) 1978; 78 Koyama, Tasan, Akiyama, Tsuzaki, Raabe (bib5) 2014; 70 Novak, Yuan, Somerday, Sofronis, Ritchie (bib16) 2010; 58 Achilles, Bulloch (bib30) 1987; 30 Nagao, Dadfarnia, Somerday, Sofronis, Ritchie (bib14) 2018; 112 Mohtadi-Bonab, Szpunar, Collins, Stankievech (bib34) 2014; 39 Katz, Tymiak, Gerberich (bib12) 2001; 68 Wu, Kim (bib1) 2003; 348 Hu, Dong, Luo, Xiao, Zhong, Li (bib6) 2017; 48A Dmytrakh (10.1016/j.jnucmat.2019.151912_bib20) 2017; 42 Hu (10.1016/j.jnucmat.2019.151912_bib6) 2017; 48A Dadfarnia (10.1016/j.jnucmat.2019.151912_bib35) 2015; 78 Singh (10.1016/j.jnucmat.2019.151912_bib18) 2019; 171 Lee (10.1016/j.jnucmat.2019.151912_bib3) 2006; 420 Hicks (10.1016/j.jnucmat.2019.151912_bib29) 1986; 17 Jang (10.1016/j.jnucmat.2019.151912_bib32) 2013; 580 Djukic (10.1016/j.jnucmat.2019.151912_bib13) 2016; 72 Novak (10.1016/j.jnucmat.2019.151912_bib16) 2010; 58 Lee (10.1016/j.jnucmat.2019.151912_bib31) 2001; 123 Wu (10.1016/j.jnucmat.2019.151912_bib1) 2003; 348 Martin (10.1016/j.jnucmat.2019.151912_bib45) 2011; 59 Koyama (10.1016/j.jnucmat.2019.151912_bib5) 2014; 70 Jemblie (10.1016/j.jnucmat.2019.151912_bib8) 2017; 375 Huang (10.1016/j.jnucmat.2019.151912_bib33) 2008; 85 Kim (10.1016/j.jnucmat.2019.151912_bib28) 2015; 131 Harris (10.1016/j.jnucmat.2019.151912_bib22) 2018; 158 Okada (10.1016/j.jnucmat.2019.151912_bib38) 2018; 43 Kim (10.1016/j.jnucmat.2019.151912_bib37) 2009; 505 Mohtadi-Bonab (10.1016/j.jnucmat.2019.151912_bib34) 2014; 39 Djukic (10.1016/j.jnucmat.2019.151912_bib4) 2015; 58 Birnbaum (10.1016/j.jnucmat.2019.151912_bib10) 2003; 28 Teter (10.1016/j.jnucmat.2019.151912_bib21) 2001; 49 Tien (10.1016/j.jnucmat.2019.151912_bib39) 1976; 7A Marinelli (10.1016/j.jnucmat.2019.151912_bib42) 2017; 684 Gerberich (10.1016/j.jnucmat.2019.151912_bib9) 1991; 63 Deng (10.1016/j.jnucmat.2019.151912_bib47) 2018; 142 Nagao (10.1016/j.jnucmat.2019.151912_bib14) 2018; 112 Song (10.1016/j.jnucmat.2019.151912_bib7) 2013; 12 Katz (10.1016/j.jnucmat.2019.151912_bib12) 2001; 68 Ghosh (10.1016/j.jnucmat.2019.151912_bib36) 2018; 199 Liu (10.1016/j.jnucmat.2019.151912_bib2) 2014; 18 Liu (10.1016/j.jnucmat.2019.151912_bib23) 2015; 22 Chakravarny (10.1016/j.jnucmat.2019.151912_bib26) 1986; 138 (10.1016/j.jnucmat.2019.151912_bib25) 1965 Kumar (10.1016/j.jnucmat.2019.151912_bib17) 2017; 700 Dadfarnia (10.1016/j.jnucmat.2019.151912_bib11) 2010; 22 Song (10.1016/j.jnucmat.2019.151912_bib40) 2018; 11 TAKANU (10.1016/j.jnucmat.2019.151912_bib27) 1978; 78 Achilles (10.1016/j.jnucmat.2019.151912_bib30) 1987; 30 Broomfield (10.1016/j.jnucmat.2019.151912_bib24) 1965; 16 Zhao (10.1016/j.jnucmat.2019.151912_bib44) 2015; 107 Rehrl (10.1016/j.jnucmat.2019.151912_bib15) 2014; 590 Djukic (10.1016/j.jnucmat.2019.151912_bib19) 2019; 216 Xie (10.1016/j.jnucmat.2019.151912_bib46) 2016; 7 Rogers (10.1016/j.jnucmat.2019.151912_bib41) 1956; 4 Singh (10.1016/j.jnucmat.2019.151912_bib43) 2019; 44 |
References_xml | – volume: 171 start-page: 242 year: 2019 end-page: 252 ident: bib18 article-title: Role of prior austenite grain boundaries in short fatigue crack growth in hydrogen charged RPV steel publication-title: Int. J. Press. Vessel. Pip. – volume: 48A start-page: 4046 year: 2017 end-page: 4057 ident: bib6 article-title: Study on the hydrogen embrittlement of Aermet100 using hydrogen permeation and SSRT techniques publication-title: Metall. Mater. Trans. A – volume: 58 start-page: 206 year: 2010 end-page: 226 ident: bib16 article-title: A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel publication-title: J. Mech. Phys. Solids – volume: 123 start-page: 173 year: 2001 end-page: 178 ident: bib31 article-title: Strain rate effects on the fatigue crack growth of SA508 Cl.3 reactor pressure vessel steel in high-temperature water environment publication-title: J. Press. Vessel Technol. – volume: 44 start-page: 22039 year: 2019 end-page: 22049 ident: bib43 article-title: Hydrogen induced blister cracking and mechanical failure in X65 pipeline steels publication-title: Int. J. Hydrogen Energy – volume: 22 start-page: 820 year: 2015 ident: bib23 article-title: Effects of H content on the tensile properties and fracture behavior of SA508-III steel publication-title: Int. J. Miner. Metall. Mater. – volume: 375 year: 2017 ident: bib8 article-title: A review of cohesive zone modelling as an approach for numerically assessing hydrogen embrittlement of steel structures publication-title: Philos. Trans. Ser. A Math. Phys. Eng. Sci. – volume: 112 start-page: 403 year: 2018 end-page: 430 ident: bib14 article-title: Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and “quasi-cleavage” fracture of lath martensitic steels publication-title: J. Mech. Phys. Solids – volume: 216 start-page: 106528 year: 2019 ident: bib19 article-title: The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: localized plasticity and decohesion publication-title: Eng. Fract. Mech. – volume: 11 start-page: 499 year: 2018 ident: bib40 article-title: Experimental investigation of the effect of hydrogen on fracture toughness of 2.25Cr-1Mo-0.25V steel and welds after annealing publication-title: Materials – volume: 142 start-page: 236 year: 2018 end-page: 247 ident: bib47 article-title: Hydrogen embrittlement revealed via novel in situ fracture experiments using notched micro-cantilever specimens publication-title: Acta Mater. – volume: 138 start-page: 107 year: 1986 end-page: 116 ident: bib26 article-title: Hydrogen embrittlement of ASTM A 203 D nuclear structural steel publication-title: J. Nucl. Mater. – volume: 7 start-page: 13341 year: 2016 ident: bib46 article-title: Hydrogenated vacancies lock dislocations in aluminium publication-title: Nat. Commun. – volume: 107 start-page: 46 year: 2015 end-page: 49 ident: bib44 article-title: The role of hydrogen in hardening/softening steel: influence of the charging process publication-title: Scr. Mater. – volume: 59 start-page: 1601 year: 2011 end-page: 1606 ident: bib45 article-title: On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels publication-title: Acta Mater. – volume: 131 start-page: 60 year: 2015 end-page: 66 ident: bib28 article-title: Comparison of fracture properties in SA508 Gr.3 and Gr.4N high strength low alloy steels for advanced pressure vessel materials publication-title: Int. J. Press. Vessel. Pip. – volume: 505 start-page: 105 year: 2009 end-page: 110 ident: bib37 article-title: Microstructural influences on hydrogen delayed fracture of high strength steels publication-title: Mater. Sci. Eng. A – volume: 348 start-page: 309 year: 2003 end-page: 318 ident: bib1 article-title: Effects of strain rate and temperature on tensile behavior of hydrogen-charged SA508 Cl.3 pressure vessel steel publication-title: Mater. Sci. Eng. A – volume: 420 start-page: 279 year: 2006 end-page: 285 ident: bib3 article-title: Effect of pre-charged hydrogen on fatigue crack growth of low alloy steel at 288°C publication-title: Mater. Sci. Eng. A – volume: 70 start-page: 174 year: 2014 end-page: 187 ident: bib5 article-title: Hydrogen-assisted decohesion and localized plasticity in dual-phase steel publication-title: Acta Mater. – volume: 72 start-page: 943 year: 2016 end-page: 961 ident: bib13 article-title: Hydrogen embrittlement of industrial components: predicition, prevention, and models publication-title: Corrosion – volume: 85 start-page: 772 year: 2008 end-page: 781 ident: bib33 article-title: Fatigue crack growth behavior of reactor pressure vessel steels in air and high-temperature water environments publication-title: Int. J. Press. Vessel. Pip. – volume: 199 start-page: 609 year: 2018 end-page: 618 ident: bib36 article-title: Hydrogen induced cracking of pipeline and pressure vessel steels: a review publication-title: Eng. Fract. Mech. – volume: 7A start-page: 821 year: 1976 end-page: 829 ident: bib39 article-title: Hydrogen transport by dislocations publication-title: Metall. Mater. Trans. A – volume: 22 start-page: 1128 year: 2010 end-page: 1135 ident: bib11 article-title: Recent advances in the study of structural materials compatibility with hydrogen publication-title: Adv. Mater. – volume: 39 start-page: 6076 year: 2014 end-page: 6088 ident: bib34 article-title: Evaluation of hydrogen induced cracking behavior of API X70 pipeline steel at different heat treatments publication-title: Int. J. Hydrogen Energy – volume: 12 start-page: 145 year: 2013 end-page: 151 ident: bib7 article-title: Atomic mechanism and prediction of hydrogen embrittlement in iron publication-title: Nat. Mater. – volume: 590 start-page: 360 year: 2014 end-page: 367 ident: bib15 article-title: Mechanical properties and fracture behavior of hydrogen charged AHSS/UHSS grades at high- and low strain rate tests publication-title: Mater. Sci. Eng. A – volume: 18 year: 2014 ident: bib2 article-title: Effects of hydrogen on fracture toughness and fracture behaviour of SA508-III steel publication-title: Mater. Res. Innov. – volume: 158 start-page: 180 year: 2018 end-page: 192 ident: bib22 article-title: Elucidating the contribution of mobile hydrogen-deformation interactions to hydrogen-induced intergranular cracking in polycrystalline nickel publication-title: Acta Mater. – volume: 78 start-page: 511 year: 2015 end-page: 525 ident: bib35 article-title: Modeling hydrogen transport by dislocations publication-title: J. Mech. Phys. Solids – volume: 16 start-page: 249 year: 1965 end-page: 259 ident: bib24 article-title: Hydrogen effects in an irradiated 1% Cr, 1/2% Mo PWR pressure vessel steel publication-title: J. Nucl. Mater. – volume: 700 start-page: 140 year: 2017 end-page: 151 ident: bib17 article-title: Influence of hydrogen on mechanical properties and fracture of tempered 13 wt% Cr martensitic stainless steel publication-title: Mater. Sci. Eng. A – volume: 4 start-page: 114 year: 1956 end-page: 117 ident: bib41 article-title: The influence of hydrogen on the yield point in iron publication-title: Acta Metall. – year: 1965 ident: bib25 publication-title: WCAP-2885 – volume: 17 start-page: 1837 year: 1986 end-page: 1849 ident: bib29 article-title: Fatigue crack growth rates in a pressure vessel steel under various conditions of loading and the environment publication-title: Metall. Trans. A – volume: 580 start-page: 41 year: 2013 end-page: 50 ident: bib32 article-title: Low-cycle fatigue behaviors of two heats of SA508 Gr.1a low alloy steel in 310°C air and deoxygenated water—effects of dynamic strain aging and microstructures publication-title: Mater. Sci. Eng. A – volume: 684 start-page: 254 year: 2017 end-page: 260 ident: bib42 article-title: Cyclic deformation mechanisms and microcracks behavior in high-strength bainitic steel publication-title: Mater. Sci. Eng. A – volume: 28 start-page: 479 year: 2003 end-page: 485 ident: bib10 article-title: Hydrogen effects on deformation and fracture: Science and sociology publication-title: MRS Bull. – volume: 63 start-page: 363 year: 1991 end-page: 376 ident: bib9 article-title: The necessity of both plasticity and brittleness in the fracture thresholds of iron publication-title: Philos. Mag. A – volume: 68 start-page: 619 year: 2001 end-page: 646 ident: bib12 article-title: Nanomechanical probes as new approaches to hydrogen/deformation interaction studies publication-title: Eng. Fract. Mech. – volume: 30 start-page: 171 year: 1987 end-page: 192 ident: bib30 article-title: The effect of frequency and environment on the fatigue crack growth behaviour of SA508 Cl. III RPV steel publication-title: Int. J. Press. Vessel. Pip. – volume: 49 start-page: 4313 year: 2001 end-page: 4323 ident: bib21 article-title: The effects of hydrogen on the deformation and fracture of β-titanium publication-title: Acta Mater. – volume: 58 start-page: 485 year: 2015 end-page: 498 ident: bib4 article-title: Hydrogen damage of steels: a case study and hydrogen embrittlement model publication-title: Eng. Fail. Anal. – volume: 78 start-page: 299 year: 1978 end-page: 308 ident: bib27 article-title: Hydrogen embrittlement of unirradiated steels for nuclear reactor pressure vessels publication-title: J. Nucl. Mater. – volume: 43 start-page: 11298 year: 2018 end-page: 11306 ident: bib38 article-title: Crystallographic feature of hydrogen-related fracture in 2Mn-0.1C ferritic steel publication-title: Int. J. Hydrogen Energy – volume: 42 start-page: 6401 year: 2017 end-page: 6408 ident: bib20 article-title: Effect of hydrogen concentration on fatigue crack growth behaviour in pipeline steel publication-title: Int. J. Hydrogen Energy – year: 1965 ident: 10.1016/j.jnucmat.2019.151912_bib25 – volume: 58 start-page: 485 year: 2015 ident: 10.1016/j.jnucmat.2019.151912_bib4 article-title: Hydrogen damage of steels: a case study and hydrogen embrittlement model publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2015.05.017 – volume: 70 start-page: 174 year: 2014 ident: 10.1016/j.jnucmat.2019.151912_bib5 article-title: Hydrogen-assisted decohesion and localized plasticity in dual-phase steel publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.01.048 – volume: 68 start-page: 619 year: 2001 ident: 10.1016/j.jnucmat.2019.151912_bib12 article-title: Nanomechanical probes as new approaches to hydrogen/deformation interaction studies publication-title: Eng. Fract. Mech. doi: 10.1016/S0013-7944(00)00119-3 – volume: 138 start-page: 107 year: 1986 ident: 10.1016/j.jnucmat.2019.151912_bib26 article-title: Hydrogen embrittlement of ASTM A 203 D nuclear structural steel publication-title: J. Nucl. Mater. doi: 10.1016/0022-3115(86)90261-8 – volume: 22 start-page: 1128 year: 2010 ident: 10.1016/j.jnucmat.2019.151912_bib11 article-title: Recent advances in the study of structural materials compatibility with hydrogen publication-title: Adv. Mater. doi: 10.1002/adma.200904354 – volume: 43 start-page: 11298 year: 2018 ident: 10.1016/j.jnucmat.2019.151912_bib38 article-title: Crystallographic feature of hydrogen-related fracture in 2Mn-0.1C ferritic steel publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.05.011 – volume: 158 start-page: 180 year: 2018 ident: 10.1016/j.jnucmat.2019.151912_bib22 article-title: Elucidating the contribution of mobile hydrogen-deformation interactions to hydrogen-induced intergranular cracking in polycrystalline nickel publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.07.043 – volume: 72 start-page: 943 year: 2016 ident: 10.1016/j.jnucmat.2019.151912_bib13 article-title: Hydrogen embrittlement of industrial components: predicition, prevention, and models publication-title: Corrosion doi: 10.5006/1958 – volume: 131 start-page: 60 year: 2015 ident: 10.1016/j.jnucmat.2019.151912_bib28 article-title: Comparison of fracture properties in SA508 Gr.3 and Gr.4N high strength low alloy steels for advanced pressure vessel materials publication-title: Int. J. Press. Vessel. Pip. doi: 10.1016/j.ijpvp.2015.04.010 – volume: 112 start-page: 403 year: 2018 ident: 10.1016/j.jnucmat.2019.151912_bib14 article-title: Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and “quasi-cleavage” fracture of lath martensitic steels publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2017.12.016 – volume: 16 start-page: 249 year: 1965 ident: 10.1016/j.jnucmat.2019.151912_bib24 article-title: Hydrogen effects in an irradiated 1% Cr, 1/2% Mo PWR pressure vessel steel publication-title: J. Nucl. Mater. doi: 10.1016/0022-3115(65)90114-5 – volume: 700 start-page: 140 year: 2017 ident: 10.1016/j.jnucmat.2019.151912_bib17 article-title: Influence of hydrogen on mechanical properties and fracture of tempered 13 wt% Cr martensitic stainless steel publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.05.086 – volume: 505 start-page: 105 year: 2009 ident: 10.1016/j.jnucmat.2019.151912_bib37 article-title: Microstructural influences on hydrogen delayed fracture of high strength steels publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2008.11.040 – volume: 59 start-page: 1601 year: 2011 ident: 10.1016/j.jnucmat.2019.151912_bib45 article-title: On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.11.024 – volume: 375 year: 2017 ident: 10.1016/j.jnucmat.2019.151912_bib8 article-title: A review of cohesive zone modelling as an approach for numerically assessing hydrogen embrittlement of steel structures publication-title: Philos. Trans. Ser. A Math. Phys. Eng. Sci. – volume: 42 start-page: 6401 year: 2017 ident: 10.1016/j.jnucmat.2019.151912_bib20 article-title: Effect of hydrogen concentration on fatigue crack growth behaviour in pipeline steel publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.11.193 – volume: 17 start-page: 1837 year: 1986 ident: 10.1016/j.jnucmat.2019.151912_bib29 article-title: Fatigue crack growth rates in a pressure vessel steel under various conditions of loading and the environment publication-title: Metall. Trans. A doi: 10.1007/BF02817280 – volume: 580 start-page: 41 year: 2013 ident: 10.1016/j.jnucmat.2019.151912_bib32 article-title: Low-cycle fatigue behaviors of two heats of SA508 Gr.1a low alloy steel in 310°C air and deoxygenated water—effects of dynamic strain aging and microstructures publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2013.05.049 – volume: 78 start-page: 511 year: 2015 ident: 10.1016/j.jnucmat.2019.151912_bib35 article-title: Modeling hydrogen transport by dislocations publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2015.03.002 – volume: 30 start-page: 171 year: 1987 ident: 10.1016/j.jnucmat.2019.151912_bib30 article-title: The effect of frequency and environment on the fatigue crack growth behaviour of SA508 Cl. III RPV steel publication-title: Int. J. Press. Vessel. Pip. doi: 10.1016/0308-0161(87)90041-X – volume: 123 start-page: 173 year: 2001 ident: 10.1016/j.jnucmat.2019.151912_bib31 article-title: Strain rate effects on the fatigue crack growth of SA508 Cl.3 reactor pressure vessel steel in high-temperature water environment publication-title: J. Press. Vessel Technol. doi: 10.1115/1.1334378 – volume: 7A start-page: 821 year: 1976 ident: 10.1016/j.jnucmat.2019.151912_bib39 article-title: Hydrogen transport by dislocations publication-title: Metall. Mater. Trans. A doi: 10.1007/BF02644079 – volume: 684 start-page: 254 year: 2017 ident: 10.1016/j.jnucmat.2019.151912_bib42 article-title: Cyclic deformation mechanisms and microcracks behavior in high-strength bainitic steel publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.12.018 – volume: 348 start-page: 309 year: 2003 ident: 10.1016/j.jnucmat.2019.151912_bib1 article-title: Effects of strain rate and temperature on tensile behavior of hydrogen-charged SA508 Cl.3 pressure vessel steel publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(02)00737-2 – volume: 39 start-page: 6076 year: 2014 ident: 10.1016/j.jnucmat.2019.151912_bib34 article-title: Evaluation of hydrogen induced cracking behavior of API X70 pipeline steel at different heat treatments publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.01.138 – volume: 44 start-page: 22039 year: 2019 ident: 10.1016/j.jnucmat.2019.151912_bib43 article-title: Hydrogen induced blister cracking and mechanical failure in X65 pipeline steels publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.06.098 – volume: 107 start-page: 46 year: 2015 ident: 10.1016/j.jnucmat.2019.151912_bib44 article-title: The role of hydrogen in hardening/softening steel: influence of the charging process publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2015.05.017 – volume: 142 start-page: 236 year: 2018 ident: 10.1016/j.jnucmat.2019.151912_bib47 article-title: Hydrogen embrittlement revealed via novel in situ fracture experiments using notched micro-cantilever specimens publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.09.057 – volume: 11 start-page: 499 year: 2018 ident: 10.1016/j.jnucmat.2019.151912_bib40 article-title: Experimental investigation of the effect of hydrogen on fracture toughness of 2.25Cr-1Mo-0.25V steel and welds after annealing publication-title: Materials doi: 10.3390/ma11040499 – volume: 4 start-page: 114 year: 1956 ident: 10.1016/j.jnucmat.2019.151912_bib41 article-title: The influence of hydrogen on the yield point in iron publication-title: Acta Metall. doi: 10.1016/0001-6160(56)90129-8 – volume: 171 start-page: 242 year: 2019 ident: 10.1016/j.jnucmat.2019.151912_bib18 article-title: Role of prior austenite grain boundaries in short fatigue crack growth in hydrogen charged RPV steel publication-title: Int. J. Press. Vessel. Pip. doi: 10.1016/j.ijpvp.2019.03.004 – volume: 78 start-page: 299 year: 1978 ident: 10.1016/j.jnucmat.2019.151912_bib27 article-title: Hydrogen embrittlement of unirradiated steels for nuclear reactor pressure vessels publication-title: J. Nucl. Mater. doi: 10.1016/0022-3115(78)90451-8 – volume: 590 start-page: 360 year: 2014 ident: 10.1016/j.jnucmat.2019.151912_bib15 article-title: Mechanical properties and fracture behavior of hydrogen charged AHSS/UHSS grades at high- and low strain rate tests publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2013.10.044 – volume: 7 start-page: 13341 year: 2016 ident: 10.1016/j.jnucmat.2019.151912_bib46 article-title: Hydrogenated vacancies lock dislocations in aluminium publication-title: Nat. Commun. doi: 10.1038/ncomms13341 – volume: 49 start-page: 4313 year: 2001 ident: 10.1016/j.jnucmat.2019.151912_bib21 article-title: The effects of hydrogen on the deformation and fracture of β-titanium publication-title: Acta Mater. doi: 10.1016/S1359-6454(01)00301-9 – volume: 18 year: 2014 ident: 10.1016/j.jnucmat.2019.151912_bib2 article-title: Effects of hydrogen on fracture toughness and fracture behaviour of SA508-III steel publication-title: Mater. Res. Innov. – volume: 420 start-page: 279 year: 2006 ident: 10.1016/j.jnucmat.2019.151912_bib3 article-title: Effect of pre-charged hydrogen on fatigue crack growth of low alloy steel at 288°C publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2006.01.080 – volume: 85 start-page: 772 year: 2008 ident: 10.1016/j.jnucmat.2019.151912_bib33 article-title: Fatigue crack growth behavior of reactor pressure vessel steels in air and high-temperature water environments publication-title: Int. J. Press. Vessel. Pip. doi: 10.1016/j.ijpvp.2008.08.003 – volume: 28 start-page: 479 year: 2003 ident: 10.1016/j.jnucmat.2019.151912_bib10 article-title: Hydrogen effects on deformation and fracture: Science and sociology publication-title: MRS Bull. doi: 10.1557/mrs2003.143 – volume: 48A start-page: 4046 year: 2017 ident: 10.1016/j.jnucmat.2019.151912_bib6 article-title: Study on the hydrogen embrittlement of Aermet100 using hydrogen permeation and SSRT techniques publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-017-4159-x – volume: 216 start-page: 106528 year: 2019 ident: 10.1016/j.jnucmat.2019.151912_bib19 article-title: The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: localized plasticity and decohesion publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2019.106528 – volume: 12 start-page: 145 year: 2013 ident: 10.1016/j.jnucmat.2019.151912_bib7 article-title: Atomic mechanism and prediction of hydrogen embrittlement in iron publication-title: Nat. Mater. doi: 10.1038/nmat3479 – volume: 199 start-page: 609 year: 2018 ident: 10.1016/j.jnucmat.2019.151912_bib36 article-title: Hydrogen induced cracking of pipeline and pressure vessel steels: a review publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2018.06.018 – volume: 58 start-page: 206 year: 2010 ident: 10.1016/j.jnucmat.2019.151912_bib16 article-title: A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2009.10.005 – volume: 22 start-page: 820 year: 2015 ident: 10.1016/j.jnucmat.2019.151912_bib23 article-title: Effects of H content on the tensile properties and fracture behavior of SA508-III steel publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-015-1139-2 – volume: 63 start-page: 363 year: 1991 ident: 10.1016/j.jnucmat.2019.151912_bib9 article-title: The necessity of both plasticity and brittleness in the fracture thresholds of iron publication-title: Philos. Mag. A doi: 10.1080/01418619108204854 |
SSID | ssj0005905 |
Score | 2.4411101 |
Snippet | Present work aims to unveil the mechanism of hydrogen embrittlement (HE) in SA508 Grade 3 Class I low alloy reactor pressure vessel (RPV) steel. In-situ... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 151912 |
SubjectTerms | Aluminum oxide Boundaries Cementite Cleavage Crack initiation Crack propagation Edge cracks Electrochemistry Fatigue tests Grain boundaries Hydrogen Hydrogen charging Hydrogen embrittlement Inclusions Low cycle fatigue Low cycle fatigue loading Metal fatigue Plastic properties Plasticity Pressure vessels Propagation SA508 grade 3 class I low alloy steel Scanning electron microscopy Silicon dioxide Steel Tensile loading Tensile properties Transgranular cracks |
Title | In-situ investigations of hydrogen influenced crack initiation and propagation under tensile and low cycle fatigue loadings in RPV steel |
URI | https://dx.doi.org/10.1016/j.jnucmat.2019.151912 https://www.proquest.com/docview/2350924290 |
Volume | 529 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FEfQgPrE-Sg5et90mu9vdYylKqygiKt5CNg_dWral3SK9ePZnO8lmrQoieNy8SDKzM9_ANxOETgVRmgqfehHhvhcowr044bFHTSkUTiQPiUlwvrqO-vfBxWP4WEO9KhfG0Cqd7S9turXWrqXlbrM1yTKT4wuuDQANQBCIa6ip-BkEHaPlzbcvNI-kpDFa1jqMXmbxtIbNYT4XAAwNwytpmpXa5Df_9MNSW_dzvoU2HW7E3XJr26im8h208aWa4A5as2xOMdtF74Pcm2XFHGfLKhqgXXis8fNCTsegNNDlXieRWEy5eIGGrCjlhHkuMWwEbE35bRLNpthy3UfK9o7Gr1gsYCdYw5CnuYIWy8afwTr49uYBg_ao0R66Pz-76_U99-SCJyjtFJ4EvBB1fBGGRKVR0lY80lIrmfpxmtAUbKHibRkqiMdjAVCLhlwlKiaa6igUvEP30Uo-ztUBwrGSUQqhehBJEQAQSDWgDSkAUSWmwI2uo6C6aCZcPXLzLMaIVcSzIXPyYUY-rJRPHTU_p03Kghx_TYgrKbJvmsXAafw19biSOnO_9owRChgLzpP4h_9f-QitExO4W_r3MVoppnN1AuimSBtWfRtotTu47F9_AOZh_SU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-tAEB60clAfRD1HvLsPvqZNd5M0eRRRWi9FRA--LZu9aGpJpU0R_4E_29lkY1UQwcfsZpbNzmTmG_hmFuBQUm2Y9JkXUeF7gabCixMRe8y2QhFUiZDaAufLftS9Dc7uwrs5OK5rYSyt0vn-yqeX3tqNtNxptp6yzNb4YmhDQIMQBPMaxuZhwXanChuwcNQ77_ZnTI-kYjKWxHUUmBXytAbNQT6ViA0tyStp2sXa9LsQ9cVZlxHodBVWHHQkR9Xu1mBO5-uw_KGh4Dr8KQmdcvIXXnu5N8mKKclmjTTQwMjIkIcXNR6h3eCUu6BEETkW8hEHsqJSFRG5IrgRdDfVs601G5OS7j7U5exw9EzkC-6EGHzlfqpxpCTkT3Adcn31n6AB6eE_uD09uTnueu7WBU8y1ik8hZAh6vgyDKlOo6StRWSU0Sr14zRhKbpDLdoq1JiSxxLRFguFTnRMDTNRKEWHbUAjH-V6E0isVZRith5ESgaIBVKDgENJBFWJ7XFjtiCoD5pL15Lc3owx5DX3bMCdfrjVD6_0swXNd7GnqifHTwJxrUX-ybg4xo2fRHdrrXP3d084ZQiz8HsSf_v3Kx_AYvfm8oJf9PrnO7BEbR5fssF3oVGMp3oPwU6R7jtjfgOG1P_W |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-situ+investigations+of+hydrogen+influenced+crack+initiation+and+propagation+under+tensile+and+low+cycle+fatigue+loadings+in+RPV+steel&rft.jtitle=Journal+of+nuclear+materials&rft.au=Singh%2C+Rajwinder&rft.au=Singh%2C+Vishal&rft.au=Arora%2C+Aman&rft.au=Mahajan%2C+Dhiraj+K.&rft.date=2020-02-01&rft.issn=0022-3115&rft.volume=529&rft.spage=151912&rft_id=info:doi/10.1016%2Fj.jnucmat.2019.151912&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jnucmat_2019_151912 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3115&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3115&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3115&client=summon |