Nonlinear differential equations with neutral term: Asymptotic behavior of solutions

The aim of this work is to study some oscillation behavior of solutions of a class of third-order neutral differential equations with multi delays. We present new oscillation criteria that complete and simplify some previous results. We also provide an example to clarify the significance of our resu...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 9; no. 12; pp. 33649 - 33661
Main Author AlKandari, Maryam
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The aim of this work is to study some oscillation behavior of solutions of a class of third-order neutral differential equations with multi delays. We present new oscillation criteria that complete and simplify some previous results. We also provide an example to clarify the significance of our results.
AbstractList The aim of this work is to study some oscillation behavior of solutions of a class of third-order neutral differential equations with multi delays. We present new oscillation criteria that complete and simplify some previous results. We also provide an example to clarify the significance of our results.
Author AlKandari, Maryam
Author_xml – sequence: 1
  givenname: Maryam
  surname: AlKandari
  fullname: AlKandari, Maryam
BookMark eNpNkMtOwzAQRS1UJErpkr1_IMWvxAm7quJRqYJNWVvj2Kaukrg4Lqh_T9oCYjMzuqM5Gp1rNOpCZxG6pWTGKy7uWkibGSNM0IIUF2jMhORZUZXl6N98haZ9vyWEMMoEk2KM1i-ha3xnIWLjnbPRdslDg-3HHpIPXY-_fNrgzu5THOJkY3uP5_2h3aWQfI213cCnDxEHh_vQ7E83N-jSQdPb6U-foLfHh_XiOVu9Pi0X81VWcy5TZgpeS0a1gZwwJgwHZ4ciSwBdlDqH0hFj83rY1lI6aYSkta5s7jixvLJ8gpZnrgmwVbvoW4gHFcCrUxDiu4I4fNlYJSpKgRgmoCiEZrxijHGjQXJTilzrgZWdWXUMfR-t--NRoo6G1dGw-jXMvwFQknJw
Cites_doi 10.1016/j.mcm.2010.02.011
10.3390/math11122605
10.1186/s13662-019-2060-1
10.22436/jmcs.028.03.07
10.3390/sym15020553
10.1007/978-1-4612-9892-2
10.1186/1687-1847-2014-35
10.1186/s13662-017-1384-y
10.3390/e23020129
10.1016/j.aml.2015.12.010
10.14232/ejqtde.2011.1.76
10.7494/OpMath.2017.37.6.839
10.22436/jmcs.025.04.05
10.1155/2012/569201
10.58997/ejde.2023.70
10.3390/math7121177
10.3390/math11061391
10.22436/jmcs.028.01.06
10.1515/ms-2024-0008
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.20241606
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 33661
ExternalDocumentID oai_doaj_org_article_4911a0d24a664b2392223dba73d845bb
10_3934_math_20241606
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c337t-d63c721bda50224d3afed3a78aab68b5a8f0de5c502c77f7d471cb9e5f30e39e3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:25:41 EDT 2025
Tue Jul 01 03:57:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-d63c721bda50224d3afed3a78aab68b5a8f0de5c502c77f7d471cb9e5f30e39e3
OpenAccessLink https://doaj.org/article/4911a0d24a664b2392223dba73d845bb
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_4911a0d24a664b2392223dba73d845bb
crossref_primary_10_3934_math_20241606
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2024
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.20241606-9
key-10.3934/math.20241606-7
key-10.3934/math.20241606-8
key-10.3934/math.20241606-5
key-10.3934/math.20241606-6
key-10.3934/math.20241606-3
key-10.3934/math.20241606-4
key-10.3934/math.20241606-1
key-10.3934/math.20241606-16
key-10.3934/math.20241606-2
key-10.3934/math.20241606-17
key-10.3934/math.20241606-18
key-10.3934/math.20241606-19
key-10.3934/math.20241606-10
key-10.3934/math.20241606-11
key-10.3934/math.20241606-12
key-10.3934/math.20241606-13
key-10.3934/math.20241606-14
key-10.3934/math.20241606-15
key-10.3934/math.20241606-20
key-10.3934/math.20241606-21
key-10.3934/math.20241606-22
key-10.3934/math.20241606-23
key-10.3934/math.20241606-24
key-10.3934/math.20241606-25
key-10.3934/math.20241606-26
References_xml – ident: key-10.3934/math.20241606-4
– ident: key-10.3934/math.20241606-12
– ident: key-10.3934/math.20241606-10
– ident: key-10.3934/math.20241606-8
– ident: key-10.3934/math.20241606-5
  doi: 10.1016/j.mcm.2010.02.011
– ident: key-10.3934/math.20241606-16
  doi: 10.3390/math11122605
– ident: key-10.3934/math.20241606-6
  doi: 10.1186/s13662-019-2060-1
– ident: key-10.3934/math.20241606-20
  doi: 10.22436/jmcs.028.03.07
– ident: key-10.3934/math.20241606-21
  doi: 10.3390/sym15020553
– ident: key-10.3934/math.20241606-11
  doi: 10.1007/978-1-4612-9892-2
– ident: key-10.3934/math.20241606-25
  doi: 10.1186/1687-1847-2014-35
– ident: key-10.3934/math.20241606-24
  doi: 10.1186/s13662-017-1384-y
– ident: key-10.3934/math.20241606-1
  doi: 10.3390/e23020129
– ident: key-10.3934/math.20241606-9
  doi: 10.1016/j.aml.2015.12.010
– ident: key-10.3934/math.20241606-22
  doi: 10.14232/ejqtde.2011.1.76
– ident: key-10.3934/math.20241606-14
  doi: 10.7494/OpMath.2017.37.6.839
– ident: key-10.3934/math.20241606-18
  doi: 10.22436/jmcs.025.04.05
– ident: key-10.3934/math.20241606-26
  doi: 10.1155/2012/569201
– ident: key-10.3934/math.20241606-3
– ident: key-10.3934/math.20241606-19
  doi: 10.58997/ejde.2023.70
– ident: key-10.3934/math.20241606-7
– ident: key-10.3934/math.20241606-2
  doi: 10.3390/math7121177
– ident: key-10.3934/math.20241606-17
  doi: 10.3390/math11061391
– ident: key-10.3934/math.20241606-23
– ident: key-10.3934/math.20241606-13
  doi: 10.22436/jmcs.028.01.06
– ident: key-10.3934/math.20241606-15
  doi: 10.1515/ms-2024-0008
SSID ssj0002124274
Score 2.2429876
Snippet The aim of this work is to study some oscillation behavior of solutions of a class of third-order neutral differential equations with multi delays. We present...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 33649
SubjectTerms differential equation
neutral
oscillation
third-order
Title Nonlinear differential equations with neutral term: Asymptotic behavior of solutions
URI https://doaj.org/article/4911a0d24a664b2392223dba73d845bb
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8oDYorbxm60gqgqpnVqpW2THzgRpadOBf89dnFTZWFgyJJZ1urPvu_M53xHyxLDKOJIm8Tq1kKA4mWgjRJKOQqG1UczWlEKzuZwu-cdKrDqtvvBOWKQHjoobcNiNduhTbqXkLgU4B0DzzirmNRfOofcFzOskU-iDQQAO-VYk1WSG8QHEf1h7AMCS2N2oA0Idrv4aVCZn5LSJBuk4SnFOjkJ5QU5mByrV3SVZzCOZhd3StpkJbMpPGr4jSfeO4lEqLcMezywoetoXOt79fG2qNcxA2__w6bqgh3V2RZaT98XbNGlaISQ5Y6pKvGQ55GrOW4Gg65ktAjyUttZJ7YTVxdAHkcPXXKlCecCc3JkgCjYMzAR2TXrlugw3hBoJ48KIWY0VPq1twbU1WB5LlUi56pPnVjfZJjJeZJApoBIzVGLWKrFPXlFzh0FIVF2_APNljfmyv8x3-x-T3JFjFCqejNyTXrXdhweIFSr3WC-LX8oOvBM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+differential+equations+with+neutral+term%3A+Asymptotic+behavior+of+solutions&rft.jtitle=AIMS+mathematics&rft.au=AlKandari%2C+Maryam&rft.date=2024-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=9&rft.issue=12&rft.spage=33649&rft.epage=33661&rft_id=info:doi/10.3934%2Fmath.20241606&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_20241606
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon