Dynamic electro-thermal modeling of solar cells and modules

•The model gives the electro-thermal behavior of PV panels, under varying irradiance.•A temperature-dependent macrocircuit based on one-diode model describes each cell.•A feedback network determines the temperature of individual cells.•COMSOL identifies the feedback network thanks to an effective ex...

Full description

Saved in:
Bibliographic Details
Published inSolar energy Vol. 179; pp. 326 - 334
Main Authors Guerriero, Pierluigi, Codecasa, Lorenzo, d'Alessandro, Vincenzo, Daliento, Santolo
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.02.2019
Pergamon Press Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The model gives the electro-thermal behavior of PV panels, under varying irradiance.•A temperature-dependent macrocircuit based on one-diode model describes each cell.•A feedback network determines the temperature of individual cells.•COMSOL identifies the feedback network thanks to an effective extraction method.•The temperature in each node of the COMSOL mesh can be achieved. An accurate model describing the electro-thermal behavior of solar modules, subject to varying irradiance conditions, is presented. The model relies on an enhanced version of the popular one-diode model, implementing the temperature dependence of the parameters by means of a thermal feedback network. The feedback network is built by exploiting a very effective analytical approach which reduces computational efforts and allows an automated solution. The cell-level discretization allows the description of the temperature distribution over solar cell surfaces in panels subject to mismatch events (e.g., partial shading, localized soiling, etc.), along with its time evolution. Experiments performed on a partially shaded solar string evidence good agreement with the model. In uniform condition the temperature error is less than 3 °C, while, under mismatch, the error on the maximum temperature of a cell subject to hot spot is limited to 5 °C.
AbstractList An accurate model describing the electro-thermal behavior of solar modules, subject to varying irradiance conditions, is presented. The model relies on an enhanced version of the popular one-diode model, implementing the temperature dependence of the parameters by means of a thermal feedback network. The feedback network is built by exploiting a very effective analytical approach which reduces computational efforts and allows an automated solution. The cell-level discretization allows the description of the temperature distribution over solar cell surfaces in panels subject to mismatch events (e.g., partial shading, localized soiling, etc.), along with its time evolution. Experiments performed on a partially shaded solar string evidence good agreement with the model. In uniform condition the temperature error is less than 3 °C, while, under mismatch, the error on the maximum temperature of a cell subject to hot spot is limited to 5 °C.
•The model gives the electro-thermal behavior of PV panels, under varying irradiance.•A temperature-dependent macrocircuit based on one-diode model describes each cell.•A feedback network determines the temperature of individual cells.•COMSOL identifies the feedback network thanks to an effective extraction method.•The temperature in each node of the COMSOL mesh can be achieved. An accurate model describing the electro-thermal behavior of solar modules, subject to varying irradiance conditions, is presented. The model relies on an enhanced version of the popular one-diode model, implementing the temperature dependence of the parameters by means of a thermal feedback network. The feedback network is built by exploiting a very effective analytical approach which reduces computational efforts and allows an automated solution. The cell-level discretization allows the description of the temperature distribution over solar cell surfaces in panels subject to mismatch events (e.g., partial shading, localized soiling, etc.), along with its time evolution. Experiments performed on a partially shaded solar string evidence good agreement with the model. In uniform condition the temperature error is less than 3 °C, while, under mismatch, the error on the maximum temperature of a cell subject to hot spot is limited to 5 °C.
Author Daliento, Santolo
Guerriero, Pierluigi
d'Alessandro, Vincenzo
Codecasa, Lorenzo
Author_xml – sequence: 1
  givenname: Pierluigi
  surname: Guerriero
  fullname: Guerriero, Pierluigi
  email: pierluigi.guerriero@unina.it
  organization: Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80125 Naples, Italy
– sequence: 2
  givenname: Lorenzo
  surname: Codecasa
  fullname: Codecasa, Lorenzo
  organization: Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy
– sequence: 3
  givenname: Vincenzo
  orcidid: 0000-0003-1426-371X
  surname: d'Alessandro
  fullname: d'Alessandro, Vincenzo
  organization: Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80125 Naples, Italy
– sequence: 4
  givenname: Santolo
  surname: Daliento
  fullname: Daliento, Santolo
  organization: Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80125 Naples, Italy
BookMark eNqFkE1LAzEQhoNUsK3-BGHB86752N3s0oNI_YSCFwVvIU1mNUs2qclW6L83pT156WkO7zzvMM8MTZx3gNA1wQXBpL7ti-gtOAgFxaQpCC1wzc_QlJSc5IRWfIKmGLMmxy39vECzGHuMCScNn6LFw87JwagMLKgx-Hz8hjBImw1egzXuK_NdluplyBRYGzPp9D7bWoiX6LyTNsLVcc7Rx9Pj-_IlX709vy7vV7lijI-5pi0uKSjJWVeyri5Vi2ml1jWna2gqrbnCjcId1xxaYI1aJ66p6rrlpawoZ3N0c-jdBP-zhTiK3m-DSycFTU9gXDJO0lZ12FLBxxigE5tgBhl2gmCx9yR6cfQk9p4EoSJ5StziH6fMKEfj3RiksSfpuwMNScCvSWlUBpwCbUISKrQ3Jxr-ACTViUM
CitedBy_id crossref_primary_10_1016_j_solener_2019_07_093
crossref_primary_10_3390_en13133318
crossref_primary_10_1109_JPHOTOV_2023_3318833
crossref_primary_10_3390_solar5010002
crossref_primary_10_3390_en14144278
crossref_primary_10_3390_en14196247
crossref_primary_10_3390_solar5010007
crossref_primary_10_1016_j_enconman_2022_116476
crossref_primary_10_1088_1742_6596_2181_1_012020
crossref_primary_10_3390_solar4040031
crossref_primary_10_1002_pip_3507
crossref_primary_10_3390_en14061559
crossref_primary_10_1016_j_engfailanal_2023_107863
crossref_primary_10_1016_j_enconman_2022_116524
crossref_primary_10_1016_j_tsep_2024_102962
crossref_primary_10_1016_j_apenergy_2019_114075
crossref_primary_10_1016_j_ijleo_2019_163950
crossref_primary_10_1016_j_jclepro_2022_135701
crossref_primary_10_1016_j_solener_2023_111854
crossref_primary_10_1016_j_solener_2024_113206
crossref_primary_10_1556_606_2020_00145
crossref_primary_10_3390_app12062927
crossref_primary_10_1016_j_microrel_2019_113402
crossref_primary_10_1016_j_energy_2019_116043
Cites_doi 10.1016/j.solener.2013.07.004
10.1109/TPEL.2014.2325062
10.1109/MIEL.2010.5490512
10.1109/JPHOTOV.2015.2444091
10.1016/j.applthermaleng.2010.03.012
10.1063/1.97076
10.1016/j.solmat.2010.05.016
10.1016/j.solener.2016.05.001
10.1109/TDMR.2014.2348195
10.1109/TCSII.2008.2011612
10.1002/0470068329
10.1016/j.solener.2012.05.034
10.1109/TCAPT.2005.859741
10.1016/0379-6787(88)90059-2
10.1016/j.renene.2015.04.041
10.1155/2015/824832
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Pergamon Press Inc. Feb 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Pergamon Press Inc. Feb 2019
DBID AAYXX
CITATION
7SP
7ST
8FD
C1K
FR3
KR7
L7M
SOI
DOI 10.1016/j.solener.2018.12.067
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1471-1257
EndPage 334
ExternalDocumentID 10_1016_j_solener_2018_12_067
S0038092X18312647
GroupedDBID --K
--M
-ET
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACGOD
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
AZFZN
BELTK
BKOJK
BKOMP
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MAGPM
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SAC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SSR
SSZ
T5K
TAE
TN5
UKR
VOH
WH7
WUQ
XOL
XPP
YNT
ZMT
ZY4
~02
~A~
~G-
~KM
~S-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SP
7ST
8FD
C1K
EFKBS
FR3
KR7
L7M
SOI
ID FETCH-LOGICAL-c337t-d29042eca73f43f64c9025cb672be85dd7c08c0f7d7e9e38cbc338566974a5273
IEDL.DBID .~1
ISSN 0038-092X
IngestDate Wed Aug 13 04:44:08 EDT 2025
Tue Jul 01 01:08:55 EDT 2025
Thu Apr 24 22:56:40 EDT 2025
Fri Feb 23 02:28:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electro-thermal
Partial shading
Hot spot
PV modeling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-d29042eca73f43f64c9025cb672be85dd7c08c0f7d7e9e38cbc338566974a5273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1426-371X
PQID 2187004371
PQPubID 9393
PageCount 9
ParticipantIDs proquest_journals_2187004371
crossref_primary_10_1016_j_solener_2018_12_067
crossref_citationtrail_10_1016_j_solener_2018_12_067
elsevier_sciencedirect_doi_10_1016_j_solener_2018_12_067
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2019
2019-02-00
20190201
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 2019
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Solar energy
PublicationYear 2019
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References Codecasa, D’Amore, Maffezzoni (b0025) 2005; 28
ET-M54050, datasheet [WWW Document], n.d. ET-Solar. URL
Usama Siddiqui, Arif, Kelley, Dubowsky (b0105) 2012; 86
Banerjee, Anderson (b0010) 1986; 49
Guerriero, Di Napoli, D’Alessandro, Daliento (b0055) 2015
Hu, Cao, Ma, Finney, Li (b0060) 2014; 14
Kim, Lim, Song, Chang, Jeon (b0075) 2011; 95
Marànda, W., Piotrowicz, M., 2010. Extraction of thermal model parameters for field-installed photovoltaic module. 2010 27th Int. Conf. Microelectron. MIEL 2010 - Proc. 153–156.
Comsol 3.5a, User’s Manual, 2008.
Kim, Krein (b0080) 2015; 5
Sze, S.M., Kwok, K.N., 2007. Physics of Semiconductor Devices, third ed.
Green (b0050) 1982
.
Armstrong, Hurley (b0005) 2010; 30
Maffezzoni, D’Amore (b0085) 2009; 56
Jakopović, Benčić, Končar (b0110) 1990
Codecasa, D’Alessandro, Magnani, Rinaldi, Zampardi (b0020) 2014
Daliento, Di Napoli, Guerriero, d’Alessandro (b0040) 2016; 134
Bishop (b0015) 1988; 25
Hu, Gao, Song, Tian, Li, He (b0070) 2013; 96
d’Alessandro, Di Napoli, Guerriero, Daliento (b0035) 2015; 83
Hu, Cao, Wu, Ji, Holliday (b0065) 2014; 29
Merrikh, McNamara (b0095) 2014
Banerjee (10.1016/j.solener.2018.12.067_b0010) 1986; 49
10.1016/j.solener.2018.12.067_b0045
Guerriero (10.1016/j.solener.2018.12.067_b0055) 2015
10.1016/j.solener.2018.12.067_b0100
Daliento (10.1016/j.solener.2018.12.067_b0040) 2016; 134
d’Alessandro (10.1016/j.solener.2018.12.067_b0035) 2015; 83
Green (10.1016/j.solener.2018.12.067_b0050) 1982
Codecasa (10.1016/j.solener.2018.12.067_b0020) 2014
10.1016/j.solener.2018.12.067_b0030
Armstrong (10.1016/j.solener.2018.12.067_b0005) 2010; 30
Maffezzoni (10.1016/j.solener.2018.12.067_b0085) 2009; 56
Codecasa (10.1016/j.solener.2018.12.067_b0025) 2005; 28
Kim (10.1016/j.solener.2018.12.067_b0080) 2015; 5
Bishop (10.1016/j.solener.2018.12.067_b0015) 1988; 25
Usama Siddiqui (10.1016/j.solener.2018.12.067_b0105) 2012; 86
10.1016/j.solener.2018.12.067_b0090
Merrikh (10.1016/j.solener.2018.12.067_b0095) 2014
Kim (10.1016/j.solener.2018.12.067_b0075) 2011; 95
Hu (10.1016/j.solener.2018.12.067_b0065) 2014; 29
Hu (10.1016/j.solener.2018.12.067_b0060) 2014; 14
Hu (10.1016/j.solener.2018.12.067_b0070) 2013; 96
Jakopović (10.1016/j.solener.2018.12.067_b0110) 1990
References_xml – volume: 28
  start-page: 605
  year: 2005
  end-page: 614
  ident: b0025
  article-title: Multipoint moment matching reduction from port responses of dynamic thermal networks
  publication-title: IEEE Trans. Components Packag. Technol.
– reference: Marànda, W., Piotrowicz, M., 2010. Extraction of thermal model parameters for field-installed photovoltaic module. 2010 27th Int. Conf. Microelectron. MIEL 2010 - Proc. 153–156.
– year: 2015
  ident: b0055
  article-title: Accurate maximum power tracking in photovoltaic systems affected by partial shading
  publication-title: Int. J. Photoenergy
– volume: 14
  start-page: 951
  year: 2014
  end-page: 960
  ident: b0060
  article-title: Identifying PV module mismatch faults by a thermography-based temperature distribution analysis
  publication-title: IEEE Trans. DEVICE Mater. Reliab.
– volume: 56
  start-page: 162
  year: 2009
  end-page: 166
  ident: b0085
  article-title: Compact electrothermal macromodeling of photovoltaic modules. IEEE Trans
  publication-title: Circuits Syst. II Express Briefs
– reference: Sze, S.M., Kwok, K.N., 2007. Physics of Semiconductor Devices, third ed.
– volume: 30
  start-page: 1488
  year: 2010
  end-page: 1495
  ident: b0005
  article-title: A thermal model for photovoltaic panels under varying atmospheric conditions
  publication-title: Appl. Therm. Eng.
– year: 1982
  ident: b0050
  article-title: Solar cells: operating principles, technology, and system applications
– reference: Comsol 3.5a, User’s Manual, 2008.
– volume: 86
  start-page: 2620
  year: 2012
  end-page: 2631
  ident: b0105
  article-title: Three-dimensional thermal modeling of a photovoltaic module under varying conditions
  publication-title: Sol. Energy
– volume: 96
  start-page: 96
  year: 2013
  end-page: 102
  ident: b0070
  article-title: Photovoltaic fault detection using a parameter based model
  publication-title: Sol. Energy
– volume: 134
  year: 2016
  ident: b0040
  article-title: A modified bypass circuit for improved hot spot reliability of solar panels subject to partial shading
  publication-title: Sol. Energy
– reference: .
– start-page: 251
  year: 1990
  end-page: 260
  ident: b0110
  article-title: Identification of thermal equivalent-circuit parameters for semiconductors
  publication-title: Proc. IEEE Computers in Power Electronics
– volume: 25
  start-page: 73
  year: 1988
  end-page: 89
  ident: b0015
  article-title: Computer simulation of the effects of electrical mismatches in photovoltaic cell interconnection circuits
  publication-title: Sol. Cells
– year: 2014
  ident: b0020
  article-title: FAst Novel Thermal Analysis Simulation Tool for Integrated Circuits (FANTASTIC)
  publication-title: 20th INTERNATIONAL WORKSHOP on Thermal Investigations of ICs and Systems
– volume: 5
  start-page: 1435
  year: 2015
  end-page: 1441
  ident: b0080
  article-title: Reexamination of Photovoltaic Hot Spotting to Show Inadequacy of the Bypass Diode
  publication-title: IEEE J. Photovoltaics
– start-page: 1011
  year: 2014
  end-page: 1018
  ident: b0095
  article-title: Parametric evaluation of foster RC-network for predicting transient evolution of natural convection and radiation around a flat plate
  publication-title: Thermomech. Phenom. Electron. Syst. -Proceedings Intersoc. Conf.
– volume: 95
  start-page: 404
  year: 2011
  end-page: 407
  ident: b0075
  article-title: Numerical analysis on the thermal characteristics of photovoltaic module with ambient temperature variation
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 83
  start-page: 294
  year: 2015
  end-page: 304
  ident: b0035
  article-title: An automated high-granularity tool for a fast evaluation of the yield of PV plants accounting for shading effects
  publication-title: Renew. Energy
– reference: ET-M54050, datasheet [WWW Document], n.d. ET-Solar. URL
– volume: 29
  start-page: 5667
  year: 2014
  end-page: 5672
  ident: b0065
  article-title: Thermography-based virtual MPPT scheme for improving PV energy efficiency under partial shading conditions
  publication-title: IEEE Trans. Power Electron.
– volume: 49
  start-page: 38
  year: 1986
  ident: b0010
  article-title: Temperature dependence of shunt resistance in photovoltaic devices
  publication-title: Appl. Phys. Lett.
– volume: 96
  start-page: 96
  year: 2013
  ident: 10.1016/j.solener.2018.12.067_b0070
  article-title: Photovoltaic fault detection using a parameter based model
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.07.004
– ident: 10.1016/j.solener.2018.12.067_b0030
– volume: 29
  start-page: 5667
  year: 2014
  ident: 10.1016/j.solener.2018.12.067_b0065
  article-title: Thermography-based virtual MPPT scheme for improving PV energy efficiency under partial shading conditions
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2014.2325062
– ident: 10.1016/j.solener.2018.12.067_b0090
  doi: 10.1109/MIEL.2010.5490512
– volume: 5
  start-page: 1435
  year: 2015
  ident: 10.1016/j.solener.2018.12.067_b0080
  article-title: Reexamination of Photovoltaic Hot Spotting to Show Inadequacy of the Bypass Diode
  publication-title: IEEE J. Photovoltaics
  doi: 10.1109/JPHOTOV.2015.2444091
– volume: 30
  start-page: 1488
  year: 2010
  ident: 10.1016/j.solener.2018.12.067_b0005
  article-title: A thermal model for photovoltaic panels under varying atmospheric conditions
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2010.03.012
– ident: 10.1016/j.solener.2018.12.067_b0045
– volume: 49
  start-page: 38
  year: 1986
  ident: 10.1016/j.solener.2018.12.067_b0010
  article-title: Temperature dependence of shunt resistance in photovoltaic devices
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.97076
– year: 2014
  ident: 10.1016/j.solener.2018.12.067_b0020
  article-title: FAst Novel Thermal Analysis Simulation Tool for Integrated Circuits (FANTASTIC)
– volume: 95
  start-page: 404
  year: 2011
  ident: 10.1016/j.solener.2018.12.067_b0075
  article-title: Numerical analysis on the thermal characteristics of photovoltaic module with ambient temperature variation
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2010.05.016
– volume: 134
  year: 2016
  ident: 10.1016/j.solener.2018.12.067_b0040
  article-title: A modified bypass circuit for improved hot spot reliability of solar panels subject to partial shading
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.05.001
– volume: 14
  start-page: 951
  year: 2014
  ident: 10.1016/j.solener.2018.12.067_b0060
  article-title: Identifying PV module mismatch faults by a thermography-based temperature distribution analysis
  publication-title: IEEE Trans. DEVICE Mater. Reliab.
  doi: 10.1109/TDMR.2014.2348195
– volume: 56
  start-page: 162
  year: 2009
  ident: 10.1016/j.solener.2018.12.067_b0085
  article-title: Compact electrothermal macromodeling of photovoltaic modules. IEEE Trans
  publication-title: Circuits Syst. II Express Briefs
  doi: 10.1109/TCSII.2008.2011612
– ident: 10.1016/j.solener.2018.12.067_b0100
  doi: 10.1002/0470068329
– volume: 86
  start-page: 2620
  year: 2012
  ident: 10.1016/j.solener.2018.12.067_b0105
  article-title: Three-dimensional thermal modeling of a photovoltaic module under varying conditions
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2012.05.034
– volume: 28
  start-page: 605
  year: 2005
  ident: 10.1016/j.solener.2018.12.067_b0025
  article-title: Multipoint moment matching reduction from port responses of dynamic thermal networks
  publication-title: IEEE Trans. Components Packag. Technol.
  doi: 10.1109/TCAPT.2005.859741
– volume: 25
  start-page: 73
  year: 1988
  ident: 10.1016/j.solener.2018.12.067_b0015
  article-title: Computer simulation of the effects of electrical mismatches in photovoltaic cell interconnection circuits
  publication-title: Sol. Cells
  doi: 10.1016/0379-6787(88)90059-2
– start-page: 1011
  year: 2014
  ident: 10.1016/j.solener.2018.12.067_b0095
  article-title: Parametric evaluation of foster RC-network for predicting transient evolution of natural convection and radiation around a flat plate
  publication-title: Thermomech. Phenom. Electron. Syst. -Proceedings Intersoc. Conf.
– volume: 83
  start-page: 294
  year: 2015
  ident: 10.1016/j.solener.2018.12.067_b0035
  article-title: An automated high-granularity tool for a fast evaluation of the yield of PV plants accounting for shading effects
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.04.041
– year: 1982
  ident: 10.1016/j.solener.2018.12.067_b0050
– year: 2015
  ident: 10.1016/j.solener.2018.12.067_b0055
  article-title: Accurate maximum power tracking in photovoltaic systems affected by partial shading
  publication-title: Int. J. Photoenergy
  doi: 10.1155/2015/824832
– start-page: 251
  year: 1990
  ident: 10.1016/j.solener.2018.12.067_b0110
  article-title: Identification of thermal equivalent-circuit parameters for semiconductors
SSID ssj0017187
Score 2.3796403
Snippet •The model gives the electro-thermal behavior of PV panels, under varying irradiance.•A temperature-dependent macrocircuit based on one-diode model describes...
An accurate model describing the electro-thermal behavior of solar modules, subject to varying irradiance conditions, is presented. The model relies on an...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 326
SubjectTerms Computer applications
Electro-thermal
Feedback
Hot spot
Irradiance
Mathematical models
Modules
Partial shading
Photovoltaic cells
PV modeling
Shading
Solar cells
Solar energy
Temperature dependence
Temperature distribution
Temperature effects
Thermal analysis
Thermodynamic properties
Title Dynamic electro-thermal modeling of solar cells and modules
URI https://dx.doi.org/10.1016/j.solener.2018.12.067
https://www.proquest.com/docview/2187004371
Volume 179
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG6IXvRgfEYUyR68LrDbsm3jiaAENXKShFuz7bYJBBcicPW3O7PbxUdMSDzuYzab6XQ60858HyG3EvmQMhuHqdVZyJh2oU4pC4XTSde6VEYCG4VfRslwzJ4m3UmN9KteGCyr9L6_9OmFt_Z32l6b7eV0ij2-VHRkPAGjjGBZx45yxjhaeetjW-YRge8tcTMpHvPHk68unvYMktg5gjtjhZcodgULuvk_16dfnrpYfgbH5MjHjUGv_LUTUrP5KTn8hiZ4Ru7uS3b5wFPbhBjbvYFQwXYDrwQLF6wwlQ1wu34VpHmGzzZzuzon48HDa38Yem6E0FDK12EWS5hu1qScOkZdwgyeFxqd8Fhb0c0ybjrCdBzPuJWWCqNBTkDsBvlDiqBrF2QvX-T2kgQwJIw5rjs8SVjWpVJIl1rKmWSQfVBTJ6zSiDIeOBz5K-aqqhCbKa9IhYpUUaxAkXXS2ootS-SMXQKiUrf6YQIKvPsu0UY1PMrPwZWC4IUX0E3R1f-_fE0O4EqWddoNsrd-39gbCEPWulnYWZPs9x6fh6NPlj7dIA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4gHNSD8RnxuQevK7Dtbtt4IioBQU6QcGu23TaBIBqB_-90t4uPmJh43e5sNtN2OtOZ-T6AG-H4kDIThalRWUipsqFKCQ25VUlsbCpa3DUKPw-T7pg-TeJJBe7LXhhXVultf2HTc2vtnzS8Nhtv06nr8SW8KaIJLsoWHutsC2oOnSquQq3d63eHm2QCmt8COpO4TH80-Wzkacwwjp07fGdX5MXzi8Gccf7XI-qHsc5PoM4-7HnXMWgXf3cAFbM4hN0vgIJHcPdQEMwHnt0mdO7dCwrlhDf4SvBqg6WLZgN3Y78M0kXmxtZzszyGcedxdN8NPT1CqAlhqzCLBO44o1NGLCU2odqlDLVKWKQMj7OM6SbXTcsyZoQhXCuU4-i-YQiROty1E6guXhfmFAKcFUotU02WJDSLieDCpoYwKigGIETXgZYakdpjhzsKi7ksi8Rm0itSOkXKViRRkXW43Yi9FeAZfwnwUt3y2yqQaOD_Er0op0f6bbiU6L-wHL2pdfb_L1_Ddnf0PJCD3rB_Djs4Ioqy7Quort7X5hK9kpW68qvuAzZe39E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+electro-thermal+modeling+of+solar+cells+and+modules&rft.jtitle=Solar+energy&rft.au=Guerriero%2C+Pierluigi&rft.au=Codecasa%2C+Lorenzo&rft.au=d%27Alessandro%2C+Vincenzo&rft.au=Daliento%2C+Santolo&rft.date=2019-02-01&rft.issn=0038-092X&rft.volume=179&rft.spage=326&rft.epage=334&rft_id=info:doi/10.1016%2Fj.solener.2018.12.067&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_solener_2018_12_067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon