Thermoelectric generator characterization at extra-low-temperature difference for building applications in extreme hot climates: Experimental and numerical study

•Energy harvesting using thermoelectric generators in low-temperature difference.•Thermoelectric generators building application in extreme hot climates conditions.•Development of an experimental setup and computer simulation model.•Application of thermoelectric generators for wireless sensor networ...

Full description

Saved in:
Bibliographic Details
Published inEnergy and buildings Vol. 225; p. 110285
Main Authors Al Musleh, Mohamed, Topriska, Evangelia Vasiliki, Jenkins, David, Owens, Edward
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 15.10.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Energy harvesting using thermoelectric generators in low-temperature difference.•Thermoelectric generators building application in extreme hot climates conditions.•Development of an experimental setup and computer simulation model.•Application of thermoelectric generators for wireless sensor networks powering.•COMSOL computer simulation of thermoelectric generators. In locations subject to extreme climate and air-conditioned spaces, a temperature gradient is usually present in various parts of air-conditioned buildings. Building envelopes separate the temperature-controlled space indoor and the extreme outdoor climate and the temperature gradients between the two sides of the building envelope drive energy flow. Thermoelectric Generator (TEG) modules can be used to harvest energy due to this thermal gradient to power sensor nodes and other low power applications. At high-temperature differences, these modules perform well, however, many current and future sensors and Internet of Things (IoT) applications in buildings only have access to the Low-Temperature difference. The research described herein focuses on the development of the experimental setup and the numerical model of a characterization test rig in the low-temperature region for a building envelope integrated TEG application in the United Arab Emirates (UAE). This is a field lacking research especially when combined in consideration with the United Arab Emirates (UAE) climatic conditions. Actual experimental results are presented together with the corresponding simulation results. COMSOL Multiphysics® computer modelling software was used as a platform to develop and test the model. The model allows a detailed characterization of the TEG in open-circuit and loaded conditions. The experimental work includes Current-Voltage (I-V) tracing and Maximum Power Point Tracking (MPPT) tests on the subject TEG at 10 °C temperature deference which is relevant to the expected indoors to outdoors temperature difference in the extreme climate conditions considered in this work. Similar tests were simulated using the computer model and the results were compared to experimental results. Results showed a generation capability of about 18 mW matched load output at 10 °C temperature difference. The simulation results were in agreement with the experimental results, root-mean-square deviation was found to be below 5% which is within the acceptable range compared to the available literature.
AbstractList In locations subject to extreme climate and air-conditioned spaces, a temperature gradient is usually present in various parts of air-conditioned buildings. Building envelopes separate the temperature-controlled space indoor and the extreme outdoor climate and the temperature gradients between the two sides of the building envelope drive energy flow. Thermoelectric Generator (TEG) modules can be used to harvest energy due to this thermal gradient to power sensor nodes and other low power applications. At high-temperature differences, these modules perform well, however, many current and future sensors and Internet of Things (IoT) applications in buildings only have access to the Low-Temperature difference. The research described herein focuses on the development of the experimental setup and the numerical model of a characterization test rig in the low-temperature region for a building envelope integrated TEG application in the United Arab Emirates (UAE). This is a field lacking research especially when combined in consideration with the United Arab Emirates (UAE) climatic conditions. Actual experimental results are presented together with the corresponding simulation results. COMSOL Multiphysics® computer modelling software was used as a platform to develop and test the model. The model allows a detailed characterization of the TEG in open-circuit and loaded conditions. The experimental work includes Current-Voltage (I-V) tracing and Maximum Power Point Tracking (MPPT) tests on the subject TEG at 10 °C temperature deference which is relevant to the expected indoors to outdoors temperature difference in the extreme climate conditions considered in this work. Similar tests were simulated using the computer model and the results were compared to experimental results. Results showed a generation capability of about 18 mW matched load output at 10 °C temperature difference. The simulation results were in agreement with the experimental results, root-mean-square deviation was found to be below 5% which is within the acceptable range compared to the available literature.
•Energy harvesting using thermoelectric generators in low-temperature difference.•Thermoelectric generators building application in extreme hot climates conditions.•Development of an experimental setup and computer simulation model.•Application of thermoelectric generators for wireless sensor networks powering.•COMSOL computer simulation of thermoelectric generators. In locations subject to extreme climate and air-conditioned spaces, a temperature gradient is usually present in various parts of air-conditioned buildings. Building envelopes separate the temperature-controlled space indoor and the extreme outdoor climate and the temperature gradients between the two sides of the building envelope drive energy flow. Thermoelectric Generator (TEG) modules can be used to harvest energy due to this thermal gradient to power sensor nodes and other low power applications. At high-temperature differences, these modules perform well, however, many current and future sensors and Internet of Things (IoT) applications in buildings only have access to the Low-Temperature difference. The research described herein focuses on the development of the experimental setup and the numerical model of a characterization test rig in the low-temperature region for a building envelope integrated TEG application in the United Arab Emirates (UAE). This is a field lacking research especially when combined in consideration with the United Arab Emirates (UAE) climatic conditions. Actual experimental results are presented together with the corresponding simulation results. COMSOL Multiphysics® computer modelling software was used as a platform to develop and test the model. The model allows a detailed characterization of the TEG in open-circuit and loaded conditions. The experimental work includes Current-Voltage (I-V) tracing and Maximum Power Point Tracking (MPPT) tests on the subject TEG at 10 °C temperature deference which is relevant to the expected indoors to outdoors temperature difference in the extreme climate conditions considered in this work. Similar tests were simulated using the computer model and the results were compared to experimental results. Results showed a generation capability of about 18 mW matched load output at 10 °C temperature difference. The simulation results were in agreement with the experimental results, root-mean-square deviation was found to be below 5% which is within the acceptable range compared to the available literature.
ArticleNumber 110285
Author Jenkins, David
Topriska, Evangelia Vasiliki
Owens, Edward
Al Musleh, Mohamed
Author_xml – sequence: 1
  givenname: Mohamed
  surname: Al Musleh
  fullname: Al Musleh, Mohamed
  email: m.al-musleh@hw.ac.uk
  organization: Heriot-Watt University Dubai Campus, DIAC, Dubai, United Arab Emirates
– sequence: 2
  givenname: Evangelia Vasiliki
  surname: Topriska
  fullname: Topriska, Evangelia Vasiliki
  organization: Heriot-Watt University Dubai Campus, DIAC, Dubai, United Arab Emirates
– sequence: 3
  givenname: David
  surname: Jenkins
  fullname: Jenkins, David
  organization: Heriot-Watt University, EH14 4AS Edinburgh, United Kingdom
– sequence: 4
  givenname: Edward
  surname: Owens
  fullname: Owens, Edward
  organization: Heriot-Watt University, EH14 4AS Edinburgh, United Kingdom
BookMark eNqFkVFPHCEUhYnRpKv2JzQh6fOswMwAtg_GGK0mJr7YZ8LCxWUzA1NgWvXf-E_L7vrki0-Em_MduOcco8MQAyD0jZIlJZSfbZYQVrMf7JIRVmeUMNkfoAWVgjWcCnmIFqQVshFCyi_oOOcNIYT3gi7Q2-Ma0hhhAFOSN_gJAiRdYsJmrZM2BZJ_1cXHgHXB8FySbob4rykwTlvhnABb7xwkCAawq-DuKz48YT1Ngzc7OGMfdjSMgNexYDP4URfIP_D1czXyI4SiB6yDxWEe68DUWy6zfTlFR04PGb6-nyfo983149Vtc__w6-7q8r4xbStKYxk3jnLojLC2k67nnPVatNS1hrqOANWGMmddJyQ4LglxfNWuLKPCUNm17Qn6vvedUvwzQy5qE-cU6pOKdX3X0_68E1X1c68yKeacwCnjy27FmowfFCVq24naqPdO1LYTte-k0v0Heqqr6_TyKXex56AG8NdDUtn4beDWp1qcstF_4vAf92uwsw
CitedBy_id crossref_primary_10_1016_j_ijft_2022_100264
crossref_primary_10_1016_j_enconman_2023_117656
crossref_primary_10_14710_ijred_2021_33917
crossref_primary_10_3390_nano12213883
crossref_primary_10_3390_su16177585
crossref_primary_10_1038_s41598_023_28080_7
crossref_primary_10_1016_j_jpowsour_2024_235757
crossref_primary_10_1080_15567036_2023_2206370
crossref_primary_10_1016_j_energy_2023_127128
crossref_primary_10_3390_ma17040926
crossref_primary_10_1063_5_0066089
crossref_primary_10_1016_j_enbuild_2023_113225
crossref_primary_10_1016_j_energy_2021_120177
crossref_primary_10_1016_j_buildenv_2023_110160
crossref_primary_10_1049_cit2_12259
crossref_primary_10_1088_1755_1315_1074_1_012003
crossref_primary_10_1016_j_energy_2024_134096
crossref_primary_10_1016_j_ijthermalsci_2023_108430
crossref_primary_10_1016_j_jobe_2023_107304
crossref_primary_10_3390_en13226045
crossref_primary_10_1016_j_jobe_2024_110081
crossref_primary_10_1016_j_tsep_2022_101515
Cites_doi 10.5402/2012/328237
10.1007/978-81-322-2656-7_76
10.3390/s17122848
10.4236/jectc.2017.74010
10.1016/j.egyr.2019.12.011
10.3390/s110202013
10.3390/s19153364
10.1016/j.apmt.2018.07.004
10.1109/ICEDSA.2016.7818473
10.1039/C4RA07864K
10.1155/2016/9278701
10.1155/2013/232438
10.1109/EUROCON.2017.8011235
10.1155/2014/295190
10.1109/IWCMC.2017.7986366
10.1002/aenm.201900201
10.1109/JSSC.2010.2042251
10.1109/ICEAC.2015.7352200
10.1109/ACCESS.2019.2891815
10.1016/j.apenergy.2010.02.013
10.1038/srep00841
10.1016/j.apenergy.2016.01.078
10.3390/en11092465
10.1155/2016/2081902
10.1155/2020/9592836
10.3390/en10091329
10.1007/978-1-4614-2173-3
10.1016/j.apenergy.2016.05.087
10.2172/1238537
10.1007/s11664-009-0988-8
10.1016/j.nanoen.2018.04.065
10.3390/s18124113
10.1109/PGSRET.2015.7312207
10.1515/9783110445053
10.3390/en11030576
10.1371/journal.pone.0124413
10.1109/ACCESS.2018.2851203
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Oct 15, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Oct 15, 2020
DBID AAYXX
CITATION
7ST
8FD
C1K
F28
FR3
KR7
SOI
DOI 10.1016/j.enbuild.2020.110285
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-6178
ExternalDocumentID 10_1016_j_enbuild_2020_110285
S0378778820308185
GeographicLocations United Arab Emirates
GeographicLocations_xml – name: United Arab Emirates
GroupedDBID --M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
SDF
SDG
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~02
~G-
--K
29G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
RPZ
SAC
SET
SEW
SSH
WUQ
ZMT
ZY4
7ST
8FD
C1K
EFKBS
F28
FR3
KR7
SOI
ID FETCH-LOGICAL-c337t-d26cf16e4c7dd48f56625a731f3c1f40e1ac12fdf478ef6800f6b3bd217c18433
IEDL.DBID .~1
ISSN 0378-7788
IngestDate Wed Aug 13 05:45:41 EDT 2025
Tue Jul 01 01:13:01 EDT 2025
Thu Apr 24 22:53:31 EDT 2025
Fri Feb 23 02:48:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multiphysics
Energy efficiency
Energy harvesting
Building envelope
Thermoelectricity
TEG
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-d26cf16e4c7dd48f56625a731f3c1f40e1ac12fdf478ef6800f6b3bd217c18433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2454515947
PQPubID 2045483
ParticipantIDs proquest_journals_2454515947
crossref_citationtrail_10_1016_j_enbuild_2020_110285
crossref_primary_10_1016_j_enbuild_2020_110285
elsevier_sciencedirect_doi_10_1016_j_enbuild_2020_110285
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-15
PublicationDateYYYYMMDD 2020-10-15
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-15
  day: 15
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Energy and buildings
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Chen, Lee (b0055) 2011; 11
WensiWang, Victor Cionca, NingningWang, Mike Hayes, Brendan O’Flynn, and Cian O’Mathuna, 2013, Thermoelectric Energy Harvesting for Building Energy Management Wireless Sensor Networks. International Journal of Distributed Sensor Networks Volume 2013, Article ID 232438.
Powerwise, How can I save electricity? Residential Air Conditioning, Regulation & Supervision Bureau, 2019.
Paul Nicolae Borza Mihai Machedon-Pisu, and Felix Hamza-Lup, Design of Wireless Sensors for IoT with Energy Storage and Communication Channel Heterogeneity Sensors (Basel). 19 15 2019 Aug 3364
Karlsson, Decker (b0035) 2015
European Thermodynamics Limited, GM250-127-14-16 Thermoelectric Generator Module, Product datasheet, 2017.
Miriam Carlos-Mancilla, Ernesto López-Mellado, and Mario Siller, Wireless Sensor Networks Formation: Approaches and Techniques, Journal of Sensors, 2016, Article ID 2081902.
Ari Kahan, EIA projects nearly 50% increase in world energy usage by 2050, led by growth in Asia, U.S. Energy Information Administration, September 24, 2019.
Inayat, Salman B., Rader, Kelly R., Hussain, Muhammad M., Nano-materials Enabled Thermoelectricity from Window Glasses, Scient. Rep. 2:841, 2012.
Dua, Jiayue, Paul, Eklund (b0160) 2018; 12
COMSOL Multiphysics, COMSOL Multiphysics Reference Manual 5.5, Burlington, MA, USA: COMSOL Inc. 2019.
Merim Dzaferagic Nicholas J. Kaminski Irene Macaluso Nicola Marchetti Relation between functional complexity, scalability and energy efficiency in WSNs the 13th International Wireless Communications and Mobile Computing Conference (IWCMC) 2017
Corucci, Anastasi, Marcelloni (b0060) 2011
Maa, Xing, Pandit, Ekkad, Huxtable, Deshpande, Wanga (b0245) 2017; 185
Ali Assi,Mohammed Jama, andMaitha Al-Shamisi, Prediction of Global Solar Radiation in Abu Dhabi, International Scholarly Research Network, ISRN Renewable Energy, Volume 2012, Article ID 328237.
Technical Supplies and services Co. LLC., Preinsulated Duct System, product data sheet, 2016.
Kanoun, Olfa, Energy Harvesting for Wireless Sensor Networks Technology, Components and System Design, 2019, DE GRUYTER OLDENBOURG.
European Thermodynamics Limited, GM250-127-14-16 Thermoelectric Generator Module, Product detailed Construction specifications, 2017.
Abdel-Motaleb, Qadri (b0240) 2017; 7
Rowe (b0120) 2018
Víctor Echarri Almudena Espinosa Carlos Rizo Thermal Transmission through Existing Building Enclosures: Destructive Monitoring in Intermediate Layers versus Non-Destructive Monitoring with Sensors on Surfaces 17 2017. Sensors. 2848 10.3390/s17122848
Sadie Cox, Building energy codes policy overview and good practice, Clean energy solutions center, 2016.
Li, Shi, Guo, Cao, Niu, Xiong (b0025) 2015; 10
8031, Flow sensor for continuous low-flow measurement and batch control, product datasheet, Christian Bürkert GmbH & Co.KG, 2020
Al Dakheel, Tabet Aoul, Hassan (b0030) 2018; 11
Berardi (b0050) 2013
Tang, Wang, Cattley, Gu, Ball (b0125) 2018; 18
J. Suhonen, M. Kohvakka, V. Kaseva, T.D. Hämäläinen, M. Hännikäinen, Low-Power Wireless Sensor Networks Protocols, Services and Applications, 2012, Springer-Verlag, New York.
M. Abo-Zahhad, M. Farrag, A. Ali and O. Amin, An energy consumption model for wireless sensor networks, 5th International Conference on Energy Aware Computing Systems & Applications, Cairo, 2015, pp. 1-4.
Mohammed Sulaiman BenSaleh, Raoudha Saida , Yessine Hadj Kacem, and Mohamed Abid, Wireless Sensor Network Design Methodologies: A Survey, Journal of Sensors, 2020, Article ID 9592836.
Gou, Xiao, Yang (b0250) 2010; 87
Hou, Tan, Zhang, Bergmann (b0115) 2018; 6
Teffah, K, Zhang, Y, Mou, X-l, Modeling and Experimentation of New Thermoelectric Cooler–Thermoelectric Generator Module, Energies, 11, 2018, 576.
Nesrine Jaziri, Ayda Boughamoura, Jens Müller, Brahim Mezghani, Fares Tounsi, and Mohammed Ismail, A comprehensive review of Thermoelectric Generators: Technologies and common applications, Energy Reports, 2019.
Ramya R., Saravanakumar G., and Ravi S., Energy Harvesting in Wireless Sensor Networks, In: Dash S., Bhaskar M., Panigrahi B., Das S. (eds) Artificial Intelligence and Evolutionary Computations in Engineering Systems. Advances in Intelligent Systems and Computing, vol 394., 2016, Springer, New Delhi.
M. Srbinovska V. Dimcev C. Gavrovski Energy consumption estimation of wireless sensor networks in greenhouse crop production IEEE EUROCON 2017–17th International Conference on Smart Technologies 2017 870 875
Push-in (b0220) 2013
Chen, Li, Liu, Li, Lv, Jia, Jiang (b0135) 2017; 10
E. Hatzikraniotis, K.T. Zorbas, I. Samaras, Th. Kyratsi, And K.M. Paraskevopoulos, Efficiency Study of a Commercial Thermoelectric Power Generator (TEG) Under Thermal Cycling, J. Electron. Mater., 39 (9), 2010.
Kollias, Aristotelis, Nikolaidis, Ioanis, In-wall Thermoelectric Harvesting for Wireless Sensor Networks, SMARTGREENS 2014 - 3rd International Conference on Smart Grids and Green IT Systems.
Aerofoam Insulation Solutions, PAerofoam® NBR Rubber Insulation Tubes, Product datasheet, Hira Industries LLC., 2019.
Yang, Cho, Park, Kim (b0165) 2018; 49
Noor Zaman, Low Tang Jung, and Muhammad Mehboob, Enhancing Energy Efficiency of Wireless Sensor Network through the Design of Energy Efficient Routing Protocol, Journal of Sensors Volume 2016, Article ID 9278701.
Carlson, Strunz, Otis (b0175) 2010; 45
WBA-1.62-0.55-CU-01 Water Block, product datasheet, Custom thermoelectric, 2017.
Thermoelectric Conversion Systems Limited, RO2-series: I-V curve tracer and dynamic voltage tracker, Product data sheet, 2017.
Ilahi, Tehseen, Abid, Muhammad, and Ilahi, Touseef, Design and analysis of thermoelectric material based roof top energy harvesting system for Pakistan, IEEEE, 978-1-4673-6813-1/15, 2015.
Raj C.N., Prasad, Asutosh, Multiphysics Modeling and Multilevel Optimization of Thermoelectric Generators for Waste Heat Recovery, COMSOL International Conference 2018, Bengaluru, India.
Luo, Zhang, Liu, Wang, Meng, Jing (b0270) 2016; 177
Zakariya M. Dalala, Osama Saadeh, Mathhar Bdour, and Zaka Ullah Zahid, A New Maximum Power Point Tracking (MPPT) Algorithm for Thermoelectric Generators with Reduced Voltage Sensors Count Control, Energies 2018, 11, 1826; doi:10.3390/en1107182.
Rashid, Ziauddin, Mathew, Alnaimat (b0185) 2019; 14
Wei, Nie, He, Hao, Zhaoa, Zhanga (b0145) 2014; 4
Burton, Mehraban, Beynon, McGettrick, Watson, Lavery, Carnie (b0170) 2019; 9
R. Marcelín-Jiménez, E. Rodriguez-Colina, M. Pascoe-Chalke, C. Moreno-Escobar, and J. L. Marzo, Cluster-Based Localisation Method for Dense WSN: A Distributed Balance between Accuracy and Complexity Fixed by Cluster Size, Journal of Distributed Sensor Networks, 2014, Article ID 295190.
O. Akash M. Mohsem Measurement and Analysis of Solar Irradiation and Other Related Meteorological Parameters in Ras Al Khaimah 2016 UAE ICEDA
Abdulfattah, Tsimenidis, Al-Jewad, Yakovlev (b0155) 2019; 7
10.1016/j.enbuild.2020.110285_b0085
Maa (10.1016/j.enbuild.2020.110285_b0245) 2017; 185
10.1016/j.enbuild.2020.110285_b0200
10.1016/j.enbuild.2020.110285_b0045
10.1016/j.enbuild.2020.110285_b0080
Rowe (10.1016/j.enbuild.2020.110285_b0120) 2018
10.1016/j.enbuild.2020.110285_b0280
10.1016/j.enbuild.2020.110285_b0040
Luo (10.1016/j.enbuild.2020.110285_b0270) 2016; 177
10.1016/j.enbuild.2020.110285_b0005
10.1016/j.enbuild.2020.110285_b0205
Li (10.1016/j.enbuild.2020.110285_b0025) 2015; 10
Abdel-Motaleb (10.1016/j.enbuild.2020.110285_b0240) 2017; 7
Chen (10.1016/j.enbuild.2020.110285_b0055) 2011; 11
10.1016/j.enbuild.2020.110285_b0130
10.1016/j.enbuild.2020.110285_b0010
Berardi (10.1016/j.enbuild.2020.110285_b0050) 2013
10.1016/j.enbuild.2020.110285_b0255
10.1016/j.enbuild.2020.110285_b0210
10.1016/j.enbuild.2020.110285_b0015
10.1016/j.enbuild.2020.110285_b0090
Dua (10.1016/j.enbuild.2020.110285_b0160) 2018; 12
10.1016/j.enbuild.2020.110285_b0095
Tang (10.1016/j.enbuild.2020.110285_b0125) 2018; 18
Abdulfattah (10.1016/j.enbuild.2020.110285_b0155) 2019; 7
10.1016/j.enbuild.2020.110285_b0215
10.1016/j.enbuild.2020.110285_b0020
Karlsson (10.1016/j.enbuild.2020.110285_b0035) 2015
10.1016/j.enbuild.2020.110285_b0140
Push-in (10.1016/j.enbuild.2020.110285_b0220) 2013
10.1016/j.enbuild.2020.110285_b0065
10.1016/j.enbuild.2020.110285_b0100
10.1016/j.enbuild.2020.110285_b0265
Rashid (10.1016/j.enbuild.2020.110285_b0185) 2019; 14
Yang (10.1016/j.enbuild.2020.110285_b0165) 2018; 49
10.1016/j.enbuild.2020.110285_b0180
10.1016/j.enbuild.2020.110285_b0260
Chen (10.1016/j.enbuild.2020.110285_b0135) 2017; 10
Wei (10.1016/j.enbuild.2020.110285_b0145) 2014; 4
Burton (10.1016/j.enbuild.2020.110285_b0170) 2019; 9
10.1016/j.enbuild.2020.110285_b0105
10.1016/j.enbuild.2020.110285_b0225
Corucci (10.1016/j.enbuild.2020.110285_b0060) 2011
10.1016/j.enbuild.2020.110285_b0075
10.1016/j.enbuild.2020.110285_b0195
10.1016/j.enbuild.2020.110285_b0110
10.1016/j.enbuild.2020.110285_b0275
10.1016/j.enbuild.2020.110285_b0230
Al Dakheel (10.1016/j.enbuild.2020.110285_b0030) 2018; 11
10.1016/j.enbuild.2020.110285_b0235
10.1016/j.enbuild.2020.110285_b0190
10.1016/j.enbuild.2020.110285_b0070
10.1016/j.enbuild.2020.110285_b0150
Hou (10.1016/j.enbuild.2020.110285_b0115) 2018; 6
Carlson (10.1016/j.enbuild.2020.110285_b0175) 2010; 45
Gou (10.1016/j.enbuild.2020.110285_b0250) 2010; 87
References_xml – reference: E. Hatzikraniotis, K.T. Zorbas, I. Samaras, Th. Kyratsi, And K.M. Paraskevopoulos, Efficiency Study of a Commercial Thermoelectric Power Generator (TEG) Under Thermal Cycling, J. Electron. Mater., 39 (9), 2010.
– volume: 6
  start-page: 35243
  year: 2018
  end-page: 35249
  ident: b0115
  article-title: Thermal Energy Harvesting WSNs Node for Temperature Monitoring in IIoT
  publication-title: IEEE Access
– reference: Nesrine Jaziri, Ayda Boughamoura, Jens Müller, Brahim Mezghani, Fares Tounsi, and Mohammed Ismail, A comprehensive review of Thermoelectric Generators: Technologies and common applications, Energy Reports, 2019.
– reference: Mohammed Sulaiman BenSaleh, Raoudha Saida , Yessine Hadj Kacem, and Mohamed Abid, Wireless Sensor Network Design Methodologies: A Survey, Journal of Sensors, 2020, Article ID 9592836.
– volume: 9
  start-page: 1900201
  year: 2019
  ident: b0170
  article-title: 3D Printed SnSe Thermoelectric Generators with High Figure of Merit
  publication-title: Adv. Energy Mater.
– reference: J. Suhonen, M. Kohvakka, V. Kaseva, T.D. Hämäläinen, M. Hännikäinen, Low-Power Wireless Sensor Networks Protocols, Services and Applications, 2012, Springer-Verlag, New York.
– volume: 12
  start-page: 366
  year: 2018
  end-page: 388
  ident: b0160
  article-title: Flexible thermoelectric materials and devices
  publication-title: Appli. Mater. Today
– reference: M. Srbinovska V. Dimcev C. Gavrovski Energy consumption estimation of wireless sensor networks in greenhouse crop production IEEE EUROCON 2017–17th International Conference on Smart Technologies 2017 870 875
– reference: Ali Assi,Mohammed Jama, andMaitha Al-Shamisi, Prediction of Global Solar Radiation in Abu Dhabi, International Scholarly Research Network, ISRN Renewable Energy, Volume 2012, Article ID 328237.
– volume: 11
  start-page: 2013
  year: 2011
  end-page: 2034
  ident: b0055
  article-title: Energy Saving Effects of Wireless Sensor Networks: A Case Study of Convenience Stores in Taiwan
  publication-title: Sensors (Basel)
– reference: Raj C.N., Prasad, Asutosh, Multiphysics Modeling and Multilevel Optimization of Thermoelectric Generators for Waste Heat Recovery, COMSOL International Conference 2018, Bengaluru, India.
– reference: Merim Dzaferagic Nicholas J. Kaminski Irene Macaluso Nicola Marchetti Relation between functional complexity, scalability and energy efficiency in WSNs the 13th International Wireless Communications and Mobile Computing Conference (IWCMC) 2017
– reference: R. Marcelín-Jiménez, E. Rodriguez-Colina, M. Pascoe-Chalke, C. Moreno-Escobar, and J. L. Marzo, Cluster-Based Localisation Method for Dense WSN: A Distributed Balance between Accuracy and Complexity Fixed by Cluster Size, Journal of Distributed Sensor Networks, 2014, Article ID 295190.
– reference: Ilahi, Tehseen, Abid, Muhammad, and Ilahi, Touseef, Design and analysis of thermoelectric material based roof top energy harvesting system for Pakistan, IEEEE, 978-1-4673-6813-1/15, 2015.
– reference: European Thermodynamics Limited, GM250-127-14-16 Thermoelectric Generator Module, Product detailed Construction specifications, 2017.
– year: 2013
  ident: b0220
  article-title: Temperature Probewith Connecting Cable 902150/10, product datasheet
  publication-title: JUMO GmbH & Co. KG
– reference: COMSOL Multiphysics, COMSOL Multiphysics Reference Manual 5.5, Burlington, MA, USA: COMSOL Inc. 2019.
– start-page: 990
  year: 2011
  end-page: 993
  ident: b0060
  article-title: A WSN-based testbed for energy efficiency in buildings, IEEE Symposium on Computers and Communications (ISCC)
  publication-title: Kerkyra
– reference: Powerwise, How can I save electricity? Residential Air Conditioning, Regulation & Supervision Bureau, 2019.
– reference: Thermoelectric Conversion Systems Limited, RO2-series: I-V curve tracer and dynamic voltage tracker, Product data sheet, 2017.
– volume: 7
  start-page: 11775
  year: 2019
  end-page: 11784
  ident: b0155
  article-title: Performance Analysis of MICS-Based RF Wireless Power Transfer System for Implantable Medical Devices
  publication-title: Access IEEE
– volume: 4
  start-page: 48128
  year: 2014
  ident: b0145
  article-title: Energy harvesting from solar irradiation in cities using the thermoelectric behavior of carbon fiber reinforced cement composites
  publication-title: RSC Adv.
– volume: 10
  start-page: 1329
  year: 2017
  ident: b0135
  article-title: Enhanced Efficiency of Thermoelectric Generator by Optimizing Mechanical and Electrical Structures
  publication-title: Energies
– volume: 177
  start-page: 25
  year: 2016
  end-page: 39
  ident: b0270
  article-title: Thermal performance evaluation of an active building integrated photovoltaic thermoelectric wall system
  publication-title: Appl. Energy
– volume: 87
  start-page: 3131
  year: 2010
  end-page: 3136
  ident: b0250
  article-title: Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system
  publication-title: Appl. Energy
– reference: Zakariya M. Dalala, Osama Saadeh, Mathhar Bdour, and Zaka Ullah Zahid, A New Maximum Power Point Tracking (MPPT) Algorithm for Thermoelectric Generators with Reduced Voltage Sensors Count Control, Energies 2018, 11, 1826; doi:10.3390/en1107182.
– year: 2013
  ident: b0050
  article-title: Moving to Sustainable Buildings: Paths to Adopt Green Innovations in Developed Countries
– reference: Víctor Echarri Almudena Espinosa Carlos Rizo Thermal Transmission through Existing Building Enclosures: Destructive Monitoring in Intermediate Layers versus Non-Destructive Monitoring with Sensors on Surfaces 17 2017. Sensors. 2848 10.3390/s17122848
– reference: Ari Kahan, EIA projects nearly 50% increase in world energy usage by 2050, led by growth in Asia, U.S. Energy Information Administration, September 24, 2019.
– volume: 49
  start-page: 333
  year: 2018
  end-page: 337
  ident: b0165
  article-title: Bendable thermoelectric generators composed of p- and n-type silver chalcogenide nanoparticle thin films
  publication-title: Nano Energy
– reference: Kollias, Aristotelis, Nikolaidis, Ioanis, In-wall Thermoelectric Harvesting for Wireless Sensor Networks, SMARTGREENS 2014 - 3rd International Conference on Smart Grids and Green IT Systems.
– reference: Teffah, K, Zhang, Y, Mou, X-l, Modeling and Experimentation of New Thermoelectric Cooler–Thermoelectric Generator Module, Energies, 11, 2018, 576.
– reference: Miriam Carlos-Mancilla, Ernesto López-Mellado, and Mario Siller, Wireless Sensor Networks Formation: Approaches and Techniques, Journal of Sensors, 2016, Article ID 2081902.
– reference: Ramya R., Saravanakumar G., and Ravi S., Energy Harvesting in Wireless Sensor Networks, In: Dash S., Bhaskar M., Panigrahi B., Das S. (eds) Artificial Intelligence and Evolutionary Computations in Engineering Systems. Advances in Intelligent Systems and Computing, vol 394., 2016, Springer, New Delhi.
– year: 2018
  ident: b0120
  article-title: Thermoelectrics Handbook: Macro to Nano
– volume: 7
  start-page: 123
  year: 2017
  end-page: 135
  ident: b0240
  article-title: Multi-Physics Numerical Simulation of Thermoelectric Devices
  publication-title: J. Electron. Cool. Therm. Control
– reference: Technical Supplies and services Co. LLC., Preinsulated Duct System, product data sheet, 2016.
– reference: Inayat, Salman B., Rader, Kelly R., Hussain, Muhammad M., Nano-materials Enabled Thermoelectricity from Window Glasses, Scient. Rep. 2:841, 2012.
– volume: 10
  year: 2015
  ident: b0025
  article-title: Climate Impacts on Extreme Energy Consumption of Different Types of Buildings
  publication-title: PLoS ONE
– reference: M. Abo-Zahhad, M. Farrag, A. Ali and O. Amin, An energy consumption model for wireless sensor networks, 5th International Conference on Energy Aware Computing Systems & Applications, Cairo, 2015, pp. 1-4.
– reference: 8031, Flow sensor for continuous low-flow measurement and batch control, product datasheet, Christian Bürkert GmbH & Co.KG, 2020
– reference: Paul Nicolae Borza Mihai Machedon-Pisu, and Felix Hamza-Lup, Design of Wireless Sensors for IoT with Energy Storage and Communication Channel Heterogeneity Sensors (Basel). 19 15 2019 Aug 3364
– reference: WensiWang, Victor Cionca, NingningWang, Mike Hayes, Brendan O’Flynn, and Cian O’Mathuna, 2013, Thermoelectric Energy Harvesting for Building Energy Management Wireless Sensor Networks. International Journal of Distributed Sensor Networks Volume 2013, Article ID 232438.
– year: 2015
  ident: b0035
  article-title: and Jad Moussalli, Energy efficiency in the UAE Aiming for sustainability
– reference: Sadie Cox, Building energy codes policy overview and good practice, Clean energy solutions center, 2016.
– reference: Aerofoam Insulation Solutions, PAerofoam® NBR Rubber Insulation Tubes, Product datasheet, Hira Industries LLC., 2019.
– reference: European Thermodynamics Limited, GM250-127-14-16 Thermoelectric Generator Module, Product datasheet, 2017.
– volume: 185
  start-page: 1343
  year: 2017
  end-page: 1354
  ident: b0245
  article-title: Numerical study on thermoelectric–hydraulic performance of a thermoelectric power generator with a plate-fin heat exchanger with longitudinal vortex generators
  publication-title: Appl. Energy
– volume: 45
  start-page: 741
  year: 2010
  end-page: 750
  ident: b0175
  article-title: A 20 mV Input Boost Converter With Efficient Digital Control for Thermoelectric Energy Harvesting
  publication-title: IEEE J. Solid-state Circuits
– reference: Noor Zaman, Low Tang Jung, and Muhammad Mehboob, Enhancing Energy Efficiency of Wireless Sensor Network through the Design of Energy Efficient Routing Protocol, Journal of Sensors Volume 2016, Article ID 9278701.
– reference: WBA-1.62-0.55-CU-01 Water Block, product datasheet, Custom thermoelectric, 2017.
– volume: 14
  start-page: 568
  year: 2019
  end-page: 575
  ident: b0185
  article-title: The potential of phase change materials in mitigating cooling load of buildings in UAE
  publication-title: Int. J. Low-Carbon Technol.
– volume: 11
  start-page: 2465
  year: 2018
  ident: b0030
  article-title: Enhancing Green Building Rating of a School under the Hot Climate of UAE; Renewable Energy Application and System Integration
  publication-title: Energies.
– reference: O. Akash M. Mohsem Measurement and Analysis of Solar Irradiation and Other Related Meteorological Parameters in Ras Al Khaimah 2016 UAE ICEDA
– reference: Kanoun, Olfa, Energy Harvesting for Wireless Sensor Networks Technology, Components and System Design, 2019, DE GRUYTER OLDENBOURG.
– volume: 18
  start-page: 4113
  year: 2018
  ident: b0125
  article-title: Energy Harvesting Technologies for Achieving Self-Powered Wireless Sensor Networks in Machine Condition Monitoring
  publication-title: Sensors.
– year: 2013
  ident: 10.1016/j.enbuild.2020.110285_b0220
  article-title: Temperature Probewith Connecting Cable 902150/10, product datasheet
  publication-title: JUMO GmbH & Co. KG
– ident: 10.1016/j.enbuild.2020.110285_b0190
  doi: 10.5402/2012/328237
– ident: 10.1016/j.enbuild.2020.110285_b0105
  doi: 10.1007/978-81-322-2656-7_76
– ident: 10.1016/j.enbuild.2020.110285_b0110
– ident: 10.1016/j.enbuild.2020.110285_b0180
  doi: 10.3390/s17122848
– volume: 7
  start-page: 123
  year: 2017
  ident: 10.1016/j.enbuild.2020.110285_b0240
  article-title: Multi-Physics Numerical Simulation of Thermoelectric Devices
  publication-title: J. Electron. Cool. Therm. Control
  doi: 10.4236/jectc.2017.74010
– ident: 10.1016/j.enbuild.2020.110285_b0280
  doi: 10.1016/j.egyr.2019.12.011
– volume: 11
  start-page: 2013
  issue: 2
  year: 2011
  ident: 10.1016/j.enbuild.2020.110285_b0055
  article-title: Energy Saving Effects of Wireless Sensor Networks: A Case Study of Convenience Stores in Taiwan
  publication-title: Sensors (Basel)
  doi: 10.3390/s110202013
– ident: 10.1016/j.enbuild.2020.110285_b0200
– ident: 10.1016/j.enbuild.2020.110285_b0080
  doi: 10.3390/s19153364
– ident: 10.1016/j.enbuild.2020.110285_b0130
– volume: 12
  start-page: 366
  year: 2018
  ident: 10.1016/j.enbuild.2020.110285_b0160
  article-title: Flexible thermoelectric materials and devices
  publication-title: Appli. Mater. Today
  doi: 10.1016/j.apmt.2018.07.004
– ident: 10.1016/j.enbuild.2020.110285_b0040
– ident: 10.1016/j.enbuild.2020.110285_b0195
  doi: 10.1109/ICEDSA.2016.7818473
– ident: 10.1016/j.enbuild.2020.110285_b0210
– volume: 4
  start-page: 48128
  year: 2014
  ident: 10.1016/j.enbuild.2020.110285_b0145
  article-title: Energy harvesting from solar irradiation in cities using the thermoelectric behavior of carbon fiber reinforced cement composites
  publication-title: RSC Adv.
  doi: 10.1039/C4RA07864K
– ident: 10.1016/j.enbuild.2020.110285_b0085
  doi: 10.1155/2016/9278701
– year: 2013
  ident: 10.1016/j.enbuild.2020.110285_b0050
– ident: 10.1016/j.enbuild.2020.110285_b0070
  doi: 10.1155/2013/232438
– ident: 10.1016/j.enbuild.2020.110285_b0255
– ident: 10.1016/j.enbuild.2020.110285_b0075
  doi: 10.1109/EUROCON.2017.8011235
– ident: 10.1016/j.enbuild.2020.110285_b0005
  doi: 10.1155/2014/295190
– ident: 10.1016/j.enbuild.2020.110285_b0020
  doi: 10.1109/IWCMC.2017.7986366
– volume: 9
  start-page: 1900201
  year: 2019
  ident: 10.1016/j.enbuild.2020.110285_b0170
  article-title: 3D Printed SnSe Thermoelectric Generators with High Figure of Merit
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900201
– volume: 45
  start-page: 741
  issue: 4
  year: 2010
  ident: 10.1016/j.enbuild.2020.110285_b0175
  article-title: A 20 mV Input Boost Converter With Efficient Digital Control for Thermoelectric Energy Harvesting
  publication-title: IEEE J. Solid-state Circuits
  doi: 10.1109/JSSC.2010.2042251
– ident: 10.1016/j.enbuild.2020.110285_b0090
  doi: 10.1109/ICEAC.2015.7352200
– volume: 7
  start-page: 11775
  year: 2019
  ident: 10.1016/j.enbuild.2020.110285_b0155
  article-title: Performance Analysis of MICS-Based RF Wireless Power Transfer System for Implantable Medical Devices
  publication-title: Access IEEE
  doi: 10.1109/ACCESS.2019.2891815
– ident: 10.1016/j.enbuild.2020.110285_b0265
– volume: 87
  start-page: 3131
  year: 2010
  ident: 10.1016/j.enbuild.2020.110285_b0250
  article-title: Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.02.013
– ident: 10.1016/j.enbuild.2020.110285_b0140
  doi: 10.1038/srep00841
– start-page: 990
  year: 2011
  ident: 10.1016/j.enbuild.2020.110285_b0060
  article-title: A WSN-based testbed for energy efficiency in buildings, IEEE Symposium on Computers and Communications (ISCC)
  publication-title: Kerkyra
– ident: 10.1016/j.enbuild.2020.110285_b0230
– ident: 10.1016/j.enbuild.2020.110285_b0225
– volume: 185
  start-page: 1343
  year: 2017
  ident: 10.1016/j.enbuild.2020.110285_b0245
  article-title: Numerical study on thermoelectric–hydraulic performance of a thermoelectric power generator with a plate-fin heat exchanger with longitudinal vortex generators
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.01.078
– year: 2015
  ident: 10.1016/j.enbuild.2020.110285_b0035
– volume: 11
  start-page: 2465
  issue: 9
  year: 2018
  ident: 10.1016/j.enbuild.2020.110285_b0030
  article-title: Enhancing Green Building Rating of a School under the Hot Climate of UAE; Renewable Energy Application and System Integration
  publication-title: Energies.
  doi: 10.3390/en11092465
– ident: 10.1016/j.enbuild.2020.110285_b0010
  doi: 10.1155/2016/2081902
– ident: 10.1016/j.enbuild.2020.110285_b0015
  doi: 10.1155/2020/9592836
– volume: 10
  start-page: 1329
  year: 2017
  ident: 10.1016/j.enbuild.2020.110285_b0135
  article-title: Enhanced Efficiency of Thermoelectric Generator by Optimizing Mechanical and Electrical Structures
  publication-title: Energies
  doi: 10.3390/en10091329
– ident: 10.1016/j.enbuild.2020.110285_b0260
– ident: 10.1016/j.enbuild.2020.110285_b0065
– ident: 10.1016/j.enbuild.2020.110285_b0095
  doi: 10.1007/978-1-4614-2173-3
– volume: 177
  start-page: 25
  year: 2016
  ident: 10.1016/j.enbuild.2020.110285_b0270
  article-title: Thermal performance evaluation of an active building integrated photovoltaic thermoelectric wall system
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.05.087
– ident: 10.1016/j.enbuild.2020.110285_b0045
  doi: 10.2172/1238537
– volume: 14
  start-page: 568
  year: 2019
  ident: 10.1016/j.enbuild.2020.110285_b0185
  article-title: The potential of phase change materials in mitigating cooling load of buildings in UAE
  publication-title: Int. J. Low-Carbon Technol.
– ident: 10.1016/j.enbuild.2020.110285_b0275
  doi: 10.1007/s11664-009-0988-8
– volume: 49
  start-page: 333
  year: 2018
  ident: 10.1016/j.enbuild.2020.110285_b0165
  article-title: Bendable thermoelectric generators composed of p- and n-type silver chalcogenide nanoparticle thin films
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.04.065
– volume: 18
  start-page: 4113
  issue: 12
  year: 2018
  ident: 10.1016/j.enbuild.2020.110285_b0125
  article-title: Energy Harvesting Technologies for Achieving Self-Powered Wireless Sensor Networks in Machine Condition Monitoring
  publication-title: Sensors.
  doi: 10.3390/s18124113
– ident: 10.1016/j.enbuild.2020.110285_b0205
– year: 2018
  ident: 10.1016/j.enbuild.2020.110285_b0120
– ident: 10.1016/j.enbuild.2020.110285_b0150
  doi: 10.1109/PGSRET.2015.7312207
– ident: 10.1016/j.enbuild.2020.110285_b0100
  doi: 10.1515/9783110445053
– ident: 10.1016/j.enbuild.2020.110285_b0235
  doi: 10.3390/en11030576
– ident: 10.1016/j.enbuild.2020.110285_b0215
– volume: 10
  issue: 4
  year: 2015
  ident: 10.1016/j.enbuild.2020.110285_b0025
  article-title: Climate Impacts on Extreme Energy Consumption of Different Types of Buildings
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0124413
– volume: 6
  start-page: 35243
  year: 2018
  ident: 10.1016/j.enbuild.2020.110285_b0115
  article-title: Thermal Energy Harvesting WSNs Node for Temperature Monitoring in IIoT
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2851203
SSID ssj0006571
Score 2.4407346
Snippet •Energy harvesting using thermoelectric generators in low-temperature difference.•Thermoelectric generators building application in extreme hot climates...
In locations subject to extreme climate and air-conditioned spaces, a temperature gradient is usually present in various parts of air-conditioned buildings....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110285
SubjectTerms Air conditioners
Air temperature
Building envelope
Building envelopes
Buildings
Circuits
Climate
Climatic conditions
Energy efficiency
Energy flow
Energy harvesting
High temperature
Hot climates
Hot weather construction
Internet of Things
Load matching
Low temperature
Mathematical models
Maximum power tracking
Model testing
Modules
Multiphysics
Numerical models
Simulation
TEG
Temperature
Temperature gradients
Thermoelectric generators
Thermoelectricity
Volt-ampere characteristics
Title Thermoelectric generator characterization at extra-low-temperature difference for building applications in extreme hot climates: Experimental and numerical study
URI https://dx.doi.org/10.1016/j.enbuild.2020.110285
https://www.proquest.com/docview/2454515947
Volume 225
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwELUQvbSHqqUgoIB86NW7G9txQm9oBVpoi6q2SNwsZ2y3QdksWoJ667_0Txk7DiwVElJPUSKPFXnGM8_yzBtCPkgBMJHesKoQgkkrcUsZZVlpRV5xQKOKxPNfztXsQp5d5pdrZDrUwoS0yuT7e58evXX6Mk6rOb6u6_H3iUBjwxMcD5QrGHZCBbssgpWP_jykeag8HrrCYBZGP1TxjK9GgV6gbgJhKI8J8Ty0VH46Pv3jqWP4OXlDXifcSI_6X3tL1ly7QV6tsAm-I39R5cv5om9sUwP9GRml8UxN4Z6VuS-6pKaj6JSXhjWL3yywUyVqZTr0SwFHEc3SKjXNpqv33LRuo7SbO_pr0VFo6nlArB_p8Uq7AGpaS9vb_kKooZHGdpNcnBz_mM5Y6sDAQIiiY5Yr8JlyEgqLavSI_XhuCpF5AZmXE5cZyLi3Xhal8wrBp1eVqCyecyA0khFbZL1dtG6bUGmqQ-FEqbyZSCi5AYQSUBkOylqccofIYd01JHry0CWj0UMe2pVO6tJBXbpX1w4Z3Ytd9_wczwmUg1L1I0PTGEOeE90bjECnnX6juUQMiphQFrv_P_N78jK8hZiY5XtkvVveun0EO111EK35gLw4mn77_DU8Tz_Nzu8AbcQFvg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELXocqA9oNJS8dXiA1ezG9tx0t4QAi0F9gJI3CxnbNOgbBZtg_g9_acdJ86yoEpIvSYZK_KMZ97I9nuEHEgBMJLesCITgkkrcUkZZVluRVpwwKBqiecvJ2p8I3_eprcr5Li_CxOOVcbc3-X0NlvHJ8M4m8OHshxejQQGG3ZwPFCuYNl5R1YDO1U6IKtHZ-fjySIhq7Ttu8L3LBg8X-QZ3h8GhoGyCpyhvD0Tz4Oq8r9L1Ktk3Vag049kPUJHetT93QZZcfUn8mGJUPAz-YNen09nnbZNCfSuJZXGtprCgpi5u3dJTUMxL88Nq2ZPLBBURXZl2kumgKMIaGkRdbPp8lY3LevW2k0d_TVrKFTlNIDWH_RkSTGAmtrS-rHbE6poy2S7SW5OT66PxyyKMDAQImuY5Qp8opyEzKInPcI_nppMJF5A4uXIJQYS7q2XWe68QvzpVSEKi60OBC0Z8YUM6lnttgiVpvgunMiVNyMJOTeAaAIKw0FZi0NuE9nPu4bIUB6EMirdH0W719FdOrhLd-7aJocLs4eOouMtg7x3qn4RaxrLyFume30Q6LjYf2uOYRdgocx2_n_kfbI2vr680Bdnk_Nd8j68CSUySffIoJk_uq-IfZriW4ztvxyEBto
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermoelectric+generator+characterization+at+extra-low-temperature+difference+for+building+applications+in+extreme+hot+climates%3A+Experimental+and+numerical+study&rft.jtitle=Energy+and+buildings&rft.au=Al+Musleh%2C+Mohamed&rft.au=Topriska%2C+Evangelia+Vasiliki&rft.au=Jenkins%2C+David&rft.au=Owens%2C+Edward&rft.date=2020-10-15&rft.issn=0378-7788&rft.volume=225&rft.spage=110285&rft_id=info:doi/10.1016%2Fj.enbuild.2020.110285&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enbuild_2020_110285
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon