Exosomes Derived from Hypoxia-Treated Human Adipose Mesenchymal Stem Cells Enhance Angiogenesis Through the PKA Signaling Pathway

Angiogenesis is a complicated and sequential process that plays an important role in different physiological processes. Mesenchymal stem cells (MSCs), which are pluripotent stem cells, are widely used for the treatment of ischemic and traumatic diseases, and exosomes derived from these cells can als...

Full description

Saved in:
Bibliographic Details
Published inStem cells and development Vol. 27; no. 7; p. 456
Main Authors Xue, Chunling, Shen, Yamei, Li, Xuechun, Li, Ba, Zhao, Sun, Gu, Junjie, Chen, Yunfei, Ma, Baitao, Wei, Junji, Han, Qin, Zhao, Robert C
Format Journal Article
LanguageEnglish
Published United States 01.04.2018
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Angiogenesis is a complicated and sequential process that plays an important role in different physiological processes. Mesenchymal stem cells (MSCs), which are pluripotent stem cells, are widely used for the treatment of ischemic and traumatic diseases, and exosomes derived from these cells can also promote angiogenesis. Therefore, we aimed to uncover mechanisms to improve MSC exosome-mediated angiogenesis. For this study, we isolated human adipose-derived MSCs (hAD-MSCs) and assessed differentiation ability and markers. Cells were divided into hypoxia-treated MSCs (H-MSCs) and normoxia-treated MSCs (N-MSC), and exosomes were extracted by ultrafiltration. Exosomes (100 μg/mL) from H-MSCs and N-MSCs were added to human umbilical vein endothelial cells (HUVECs). Exosome uptake and the ability of endothelial cells to form tubes were detected in real time. Protein samples were collected at different time points to detect the expression of inhibitors (Vash1) and enhancers (Angpt1 and Flk1) of angiogenesis; we also assessed their related signaling pathways. We found that exosomes from the hypoxia group were more easily taken up by HUVECs; furthermore, their angiogenesis stimulatory activity was also significantly enhanced compared to that with exosomes from the normoxia group. HUVECs exposed to exosomes from H-MSCs significantly upregulated angiogenesis-stimulating genes and deregulated angiogenesis-inhibitory genes. The expression of vascular endothelial growth factor (VEGF) and activation of the protein kinase A (PKA) signaling pathway in HUVECs were significantly increased by hypoxia-exposed exosomes. Moreover, a PKA inhibitor was shown to significantly suppress angiogenesis. Finally, we concluded that hypoxia-exposed exosomes derived from hAD-MSCs can improve angiogenesis by activating the PKA signaling pathway and promoting the expression of VEGF. These results could be used to uncover safe and effective treatments for traumatic diseases.
AbstractList Angiogenesis is a complicated and sequential process that plays an important role in different physiological processes. Mesenchymal stem cells (MSCs), which are pluripotent stem cells, are widely used for the treatment of ischemic and traumatic diseases, and exosomes derived from these cells can also promote angiogenesis. Therefore, we aimed to uncover mechanisms to improve MSC exosome-mediated angiogenesis. For this study, we isolated human adipose-derived MSCs (hAD-MSCs) and assessed differentiation ability and markers. Cells were divided into hypoxia-treated MSCs (H-MSCs) and normoxia-treated MSCs (N-MSC), and exosomes were extracted by ultrafiltration. Exosomes (100 μg/mL) from H-MSCs and N-MSCs were added to human umbilical vein endothelial cells (HUVECs). Exosome uptake and the ability of endothelial cells to form tubes were detected in real time. Protein samples were collected at different time points to detect the expression of inhibitors (Vash1) and enhancers (Angpt1 and Flk1) of angiogenesis; we also assessed their related signaling pathways. We found that exosomes from the hypoxia group were more easily taken up by HUVECs; furthermore, their angiogenesis stimulatory activity was also significantly enhanced compared to that with exosomes from the normoxia group. HUVECs exposed to exosomes from H-MSCs significantly upregulated angiogenesis-stimulating genes and deregulated angiogenesis-inhibitory genes. The expression of vascular endothelial growth factor (VEGF) and activation of the protein kinase A (PKA) signaling pathway in HUVECs were significantly increased by hypoxia-exposed exosomes. Moreover, a PKA inhibitor was shown to significantly suppress angiogenesis. Finally, we concluded that hypoxia-exposed exosomes derived from hAD-MSCs can improve angiogenesis by activating the PKA signaling pathway and promoting the expression of VEGF. These results could be used to uncover safe and effective treatments for traumatic diseases.
Author Xue, Chunling
Li, Xuechun
Wei, Junji
Zhao, Sun
Ma, Baitao
Zhao, Robert C
Shen, Yamei
Li, Ba
Chen, Yunfei
Han, Qin
Gu, Junjie
Author_xml – sequence: 1
  givenname: Chunling
  surname: Xue
  fullname: Xue, Chunling
  organization: 1 Beijing Key Laboratory (No. BZO381), Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , Beijing, People's Republic of China
– sequence: 2
  givenname: Yamei
  surname: Shen
  fullname: Shen, Yamei
  organization: 1 Beijing Key Laboratory (No. BZO381), Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , Beijing, People's Republic of China
– sequence: 3
  givenname: Xuechun
  surname: Li
  fullname: Li, Xuechun
  organization: 1 Beijing Key Laboratory (No. BZO381), Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , Beijing, People's Republic of China
– sequence: 4
  givenname: Ba
  surname: Li
  fullname: Li, Ba
  organization: 1 Beijing Key Laboratory (No. BZO381), Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , Beijing, People's Republic of China
– sequence: 5
  givenname: Sun
  surname: Zhao
  fullname: Zhao, Sun
  organization: 2 Department of Oncology, Chinese Academy of Medical Science and Peking Union Medical College , Beijing, People's Republic of China
– sequence: 6
  givenname: Junjie
  surname: Gu
  fullname: Gu, Junjie
  organization: 2 Department of Oncology, Chinese Academy of Medical Science and Peking Union Medical College , Beijing, People's Republic of China
– sequence: 7
  givenname: Yunfei
  surname: Chen
  fullname: Chen, Yunfei
  organization: 1 Beijing Key Laboratory (No. BZO381), Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , Beijing, People's Republic of China
– sequence: 8
  givenname: Baitao
  surname: Ma
  fullname: Ma, Baitao
  organization: 3 Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College , Beijing, People's Republic of China
– sequence: 9
  givenname: Junji
  surname: Wei
  fullname: Wei, Junji
  organization: 3 Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College , Beijing, People's Republic of China
– sequence: 10
  givenname: Qin
  surname: Han
  fullname: Han, Qin
  organization: 1 Beijing Key Laboratory (No. BZO381), Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , Beijing, People's Republic of China
– sequence: 11
  givenname: Robert C
  surname: Zhao
  fullname: Zhao, Robert C
  organization: 1 Beijing Key Laboratory (No. BZO381), Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , Beijing, People's Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29415626$$D View this record in MEDLINE/PubMed
BookMark eNo1kMtOwzAURC0Eog9YskX-gRTb8SNZRqVQRBGVWtaV69wkRokdxSk0S_6cImA1o7M40swEnTvvAKEbSmaUJOldMPmMEapmhKXyDI2pECpKRMxHaBLCOyFMsoRfohFLORWSyTH6Whx98A0EfA-d_YAcF51v8HJo_dHqaNuB7k9weWi0w1luWx8Av0AAZ6qh0TXe9NDgOdR1wAtXaWcAZ660vgQHwQa8rTp_KCvcV4DXzxne2NLp2roSr3VfferhCl0Uug5w_ZdT9Paw2M6X0er18WmerSITx6qPTM7jnOQKiPwBqdEJFaet-zglheDMKF7wVErgEgxJTMH2iTp1ZWJKmGBsim5_ve1h30C-azvb6G7Y_X_BvgHskWGG
CitedBy_id crossref_primary_10_1016_j_jconrel_2020_11_062
crossref_primary_10_1089_scd_2020_0092
crossref_primary_10_2174_1381612826666200420144805
crossref_primary_10_1021_acsbiomaterials_2c01104
crossref_primary_10_1002_sctm_18_0199
crossref_primary_10_1016_S1875_5364_23_60419_4
crossref_primary_10_1126_scitranslmed_aav8521
crossref_primary_10_1007_s12015_023_10597_z
crossref_primary_10_3389_fsurg_2022_1030288
crossref_primary_10_1016_j_biomaterials_2023_121998
crossref_primary_10_1186_s13287_023_03439_9
crossref_primary_10_1186_s13287_019_1276_z
crossref_primary_10_3390_cells9040976
crossref_primary_10_1089_scd_2020_0133
crossref_primary_10_1186_s12951_021_01126_6
crossref_primary_10_1016_j_biotechadv_2023_108122
crossref_primary_10_1186_s12951_023_02177_7
crossref_primary_10_1007_s10456_022_09848_3
crossref_primary_10_3389_fbioe_2020_624096
crossref_primary_10_1002_adfm_201909125
crossref_primary_10_1177_20417314211008626
crossref_primary_10_3390_ijms22031429
crossref_primary_10_1152_ajpheart_00217_2021
crossref_primary_10_3389_fbioe_2023_1322514
crossref_primary_10_3390_cancers12123599
crossref_primary_10_1080_20013078_2018_1522236
crossref_primary_10_1016_j_biomaterials_2018_05_048
crossref_primary_10_15283_ijsc23092
crossref_primary_10_1016_j_giant_2024_100251
crossref_primary_10_3389_fcell_2024_1446050
crossref_primary_10_3390_biology13040253
crossref_primary_10_1007_s12274_023_6080_5
crossref_primary_10_3390_cells10010042
crossref_primary_10_3390_ijms222011269
crossref_primary_10_3390_biom12040575
crossref_primary_10_1016_j_reth_2023_11_007
crossref_primary_10_1016_j_jss_2021_04_013
crossref_primary_10_1111_cns_14428
crossref_primary_10_1186_s13287_021_02662_6
crossref_primary_10_3390_cells9020312
crossref_primary_10_3390_ijms25063562
crossref_primary_10_3389_fcell_2021_703989
crossref_primary_10_1007_s00441_023_03758_6
crossref_primary_10_1186_s13287_019_1358_y
crossref_primary_10_1186_s13287_024_03928_5
crossref_primary_10_1080_21623945_2021_1983242
crossref_primary_10_1186_s13287_024_03774_5
crossref_primary_10_1186_s13287_021_02511_6
crossref_primary_10_1111_wrr_13033
crossref_primary_10_3389_fcell_2021_734720
crossref_primary_10_3389_fcell_2021_648098
crossref_primary_10_1097_FJC_0000000000000974
crossref_primary_10_1002_2211_5463_13142
crossref_primary_10_1186_s13287_023_03413_5
crossref_primary_10_2147_IJN_S404925
crossref_primary_10_31083_j_rcm2309310
crossref_primary_10_1186_s13046_021_02114_2
crossref_primary_10_1002_jev2_12002
crossref_primary_10_1631_jzus_B2300566
crossref_primary_10_1016_j_matdes_2023_111885
crossref_primary_10_1186_s13287_021_02212_0
crossref_primary_10_1016_j_addr_2021_04_013
crossref_primary_10_14336_AD_2021_0315
crossref_primary_10_1186_s13287_020_01669_9
crossref_primary_10_3389_fendo_2021_756581
crossref_primary_10_4103_1673_5374_390956
crossref_primary_10_3390_bioengineering6010004
crossref_primary_10_3390_ijms24032344
crossref_primary_10_1016_j_jcyt_2020_03_433
crossref_primary_10_1155_2021_6655225
crossref_primary_10_3390_ijms20153721
crossref_primary_10_3390_cells11060988
crossref_primary_10_1111_obr_13691
crossref_primary_10_1016_j_cellimm_2021_104358
crossref_primary_10_1096_fj_201902232R
crossref_primary_10_1093_asj_sjad139
crossref_primary_10_3389_fimmu_2023_1256687
crossref_primary_10_1155_2020_4356359
crossref_primary_10_1007_s12265_023_10449_8
crossref_primary_10_1007_s13770_023_00557_6
crossref_primary_10_1007_s10571_022_01201_y
crossref_primary_10_1002_SMMD_20230027
crossref_primary_10_1039_D4NR00207E
crossref_primary_10_1016_j_nantod_2023_101986
crossref_primary_10_3390_ijms21030727
crossref_primary_10_1186_s13287_022_02849_5
crossref_primary_10_5483_BMBRep_2020_53_2_235
crossref_primary_10_1016_j_ajps_2024_100945
crossref_primary_10_1155_2019_2831756
crossref_primary_10_1038_s41392_024_01735_1
crossref_primary_10_3389_fcell_2019_00353
crossref_primary_10_1016_j_heliyon_2024_e38969
crossref_primary_10_3389_fbioe_2024_1428793
crossref_primary_10_1096_fj_202201488R
crossref_primary_10_3389_fbioe_2022_925841
crossref_primary_10_1155_2022_8775591
crossref_primary_10_1186_s12903_020_01313_1
crossref_primary_10_3389_fbioe_2022_829868
crossref_primary_10_4252_wjsc_v15_i5_400
crossref_primary_10_1016_j_job_2023_01_008
crossref_primary_10_1186_s13287_018_1007_x
crossref_primary_10_3390_biom10050707
crossref_primary_10_1155_2021_2616807
crossref_primary_10_1152_ajpheart_00674_2021
crossref_primary_10_3390_cells9030724
crossref_primary_10_3389_fimmu_2019_00663
crossref_primary_10_1186_s12964_024_01870_w
crossref_primary_10_3389_fbioe_2020_565561
crossref_primary_10_3389_fimmu_2022_824188
crossref_primary_10_1007_s10856_019_6321_z
crossref_primary_10_1084_jem_20211628
crossref_primary_10_1155_2020_1289380
crossref_primary_10_3389_fcell_2021_649552
crossref_primary_10_3390_life11080784
crossref_primary_10_1007_s12265_022_10329_7
crossref_primary_10_3390_bioengineering9110675
crossref_primary_10_1007_s11010_024_05058_1
crossref_primary_10_1186_s12951_021_00942_0
crossref_primary_10_3390_biomedicines10071507
crossref_primary_10_1007_s13770_022_00469_x
crossref_primary_10_1016_j_actbio_2022_11_057
crossref_primary_10_1016_j_jot_2022_08_001
crossref_primary_10_3389_fmed_2022_858824
crossref_primary_10_3390_ijms25105204
crossref_primary_10_3390_ijms232113596
crossref_primary_10_1016_j_intimp_2022_109172
crossref_primary_10_3389_fbioe_2020_00997
crossref_primary_10_1186_s13287_023_03374_9
crossref_primary_10_1016_j_actbio_2020_11_001
crossref_primary_10_3390_ijms22020763
crossref_primary_10_1016_j_mtbio_2022_100522
crossref_primary_10_2174_1574888X14666191104151928
crossref_primary_10_1002_bit_28378
crossref_primary_10_1002_jex2_115
crossref_primary_10_3390_ijms20020406
crossref_primary_10_3892_ijmm_2022_5199
crossref_primary_10_1016_j_scr_2020_102122
crossref_primary_10_1016_j_biomaterials_2019_119492
crossref_primary_10_1111_iej_13188
crossref_primary_10_1186_s13287_021_02151_w
crossref_primary_10_14336_AD_2020_1221
crossref_primary_10_3389_fmed_2021_728496
crossref_primary_10_3390_cells10071729
crossref_primary_10_3390_ijms221910890
crossref_primary_10_1016_j_exer_2021_108626
crossref_primary_10_1111_jcmm_17689
crossref_primary_10_2147_IJN_S506456
crossref_primary_10_1016_j_acthis_2023_152042
crossref_primary_10_1016_j_bioactmat_2022_07_022
crossref_primary_10_1096_fj_202301403RR
crossref_primary_10_1016_j_jtv_2024_04_005
crossref_primary_10_1016_j_job_2022_08_004
crossref_primary_10_1016_j_mtbio_2023_100810
crossref_primary_10_3390_ijms23052425
crossref_primary_10_1080_20013078_2020_1757900
crossref_primary_10_1177_13860291241291326
ContentType Journal Article
DBID NPM
DOI 10.1089/scd.2017.0296
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1557-8534
ExternalDocumentID 29415626
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
123
29Q
34G
39C
4.4
ABBKN
ABJNI
ACGFS
ADBBV
ADNWM
AENEX
ALMA_UNASSIGNED_HOLDINGS
BNQNF
CS3
DU5
EJD
F5P
IAO
IHR
IM4
MV1
NPM
NQHIM
O9-
RML
UE5
ID FETCH-LOGICAL-c337t-cd43d0d7e06c3379ca815017b390f542c74f4966e46ec08cf2b8746e7c3102522
IngestDate Wed Feb 19 02:34:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords animal models
hypoxic exosomes
VEGF
angiogenesis
mesenchymal stem cells
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-cd43d0d7e06c3379ca815017b390f542c74f4966e46ec08cf2b8746e7c3102522
PMID 29415626
ParticipantIDs pubmed_primary_29415626
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Stem cells and development
PublicationTitleAlternate Stem Cells Dev
PublicationYear 2018
SSID ssj0026284
Score 2.5775583
Snippet Angiogenesis is a complicated and sequential process that plays an important role in different physiological processes. Mesenchymal stem cells (MSCs), which...
SourceID pubmed
SourceType Index Database
StartPage 456
Title Exosomes Derived from Hypoxia-Treated Human Adipose Mesenchymal Stem Cells Enhance Angiogenesis Through the PKA Signaling Pathway
URI https://www.ncbi.nlm.nih.gov/pubmed/29415626
Volume 27
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELY6EBIviN-DAboH3qqMNHbi5LGMogo0hEQnlacpcew00ppUarutvO2f2N-7O8ft0gLS4CWK7PySv6_23fXuM2Pv4whXASOVF0qeeSKUPS_mRnpJHpkU3QkTKap3Pv4WDU_El3E47nSuW1lLy0V2qH79sa7kf1DFNsSVqmT_AdnNQ7EBzxFfPCLCeLwTxoPLel6T2tInfNs5mo62WGS4mtWXZeqNyB7ExiZO38_LGeWmH1O5kZqspiQDstDT7pE-O5t3B9XEFg_0q6KsC5oAy3l35DbxIeP0-9d-90dZkN1eFaTsP7lIt_4Stg9T9mEUjM9vs5HWoI6XTdrhZEnyHMUmuOMKRH6mU11uEoRslgHeofDq7caPaTtU0YtbGS7aTa8hromhC1-6-bfRBnA8k63JVDSS479N8n6c2G0pSei1Jw_9INm6DjGaTS3iQULuaXCH3h3N7XXXHttD74O2U6UYkHPjI1zRnVorfsmHre8gbWl3746fYu2V0WP2yDka0G9Y84R1dPWUPWi2Hl09Y1dr7oDjDhB3YIc7YLkDjjvQ4g4Q3GC5A4470OYOOO4AcgeQO7DhDjjuPGcnnwejo6HntuPwFOdy4alc8NzPpfYjakhUGqM30ZMZT3wTikBJYQR6z1pEWvmxMkEWSzyXCl2IAO38F-xeVVd6nwFPcYSUJPuQC5nyGBcOoQy6r1pHQuev2Mtm7E5njebK6XpUX_-154A9vOXcG3bf4I9cv0WLcZG9swDeAHCKbQM
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exosomes+Derived+from+Hypoxia-Treated+Human+Adipose+Mesenchymal+Stem+Cells+Enhance+Angiogenesis+Through+the+PKA+Signaling+Pathway&rft.jtitle=Stem+cells+and+development&rft.au=Xue%2C+Chunling&rft.au=Shen%2C+Yamei&rft.au=Li%2C+Xuechun&rft.au=Li%2C+Ba&rft.date=2018-04-01&rft.eissn=1557-8534&rft.volume=27&rft.issue=7&rft.spage=456&rft_id=info:doi/10.1089%2Fscd.2017.0296&rft_id=info%3Apmid%2F29415626&rft_id=info%3Apmid%2F29415626&rft.externalDocID=29415626