Exosomes Derived from Hypoxia-Treated Human Adipose Mesenchymal Stem Cells Enhance Angiogenesis Through the PKA Signaling Pathway
Angiogenesis is a complicated and sequential process that plays an important role in different physiological processes. Mesenchymal stem cells (MSCs), which are pluripotent stem cells, are widely used for the treatment of ischemic and traumatic diseases, and exosomes derived from these cells can als...
Saved in:
Published in | Stem cells and development Vol. 27; no. 7; p. 456 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.04.2018
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Angiogenesis is a complicated and sequential process that plays an important role in different physiological processes. Mesenchymal stem cells (MSCs), which are pluripotent stem cells, are widely used for the treatment of ischemic and traumatic diseases, and exosomes derived from these cells can also promote angiogenesis. Therefore, we aimed to uncover mechanisms to improve MSC exosome-mediated angiogenesis. For this study, we isolated human adipose-derived MSCs (hAD-MSCs) and assessed differentiation ability and markers. Cells were divided into hypoxia-treated MSCs (H-MSCs) and normoxia-treated MSCs (N-MSC), and exosomes were extracted by ultrafiltration. Exosomes (100 μg/mL) from H-MSCs and N-MSCs were added to human umbilical vein endothelial cells (HUVECs). Exosome uptake and the ability of endothelial cells to form tubes were detected in real time. Protein samples were collected at different time points to detect the expression of inhibitors (Vash1) and enhancers (Angpt1 and Flk1) of angiogenesis; we also assessed their related signaling pathways. We found that exosomes from the hypoxia group were more easily taken up by HUVECs; furthermore, their angiogenesis stimulatory activity was also significantly enhanced compared to that with exosomes from the normoxia group. HUVECs exposed to exosomes from H-MSCs significantly upregulated angiogenesis-stimulating genes and deregulated angiogenesis-inhibitory genes. The expression of vascular endothelial growth factor (VEGF) and activation of the protein kinase A (PKA) signaling pathway in HUVECs were significantly increased by hypoxia-exposed exosomes. Moreover, a PKA inhibitor was shown to significantly suppress angiogenesis. Finally, we concluded that hypoxia-exposed exosomes derived from hAD-MSCs can improve angiogenesis by activating the PKA signaling pathway and promoting the expression of VEGF. These results could be used to uncover safe and effective treatments for traumatic diseases. |
---|---|
AbstractList | Angiogenesis is a complicated and sequential process that plays an important role in different physiological processes. Mesenchymal stem cells (MSCs), which are pluripotent stem cells, are widely used for the treatment of ischemic and traumatic diseases, and exosomes derived from these cells can also promote angiogenesis. Therefore, we aimed to uncover mechanisms to improve MSC exosome-mediated angiogenesis. For this study, we isolated human adipose-derived MSCs (hAD-MSCs) and assessed differentiation ability and markers. Cells were divided into hypoxia-treated MSCs (H-MSCs) and normoxia-treated MSCs (N-MSC), and exosomes were extracted by ultrafiltration. Exosomes (100 μg/mL) from H-MSCs and N-MSCs were added to human umbilical vein endothelial cells (HUVECs). Exosome uptake and the ability of endothelial cells to form tubes were detected in real time. Protein samples were collected at different time points to detect the expression of inhibitors (Vash1) and enhancers (Angpt1 and Flk1) of angiogenesis; we also assessed their related signaling pathways. We found that exosomes from the hypoxia group were more easily taken up by HUVECs; furthermore, their angiogenesis stimulatory activity was also significantly enhanced compared to that with exosomes from the normoxia group. HUVECs exposed to exosomes from H-MSCs significantly upregulated angiogenesis-stimulating genes and deregulated angiogenesis-inhibitory genes. The expression of vascular endothelial growth factor (VEGF) and activation of the protein kinase A (PKA) signaling pathway in HUVECs were significantly increased by hypoxia-exposed exosomes. Moreover, a PKA inhibitor was shown to significantly suppress angiogenesis. Finally, we concluded that hypoxia-exposed exosomes derived from hAD-MSCs can improve angiogenesis by activating the PKA signaling pathway and promoting the expression of VEGF. These results could be used to uncover safe and effective treatments for traumatic diseases. |
Author | Xue, Chunling Li, Xuechun Wei, Junji Zhao, Sun Ma, Baitao Zhao, Robert C Shen, Yamei Li, Ba Chen, Yunfei Han, Qin Gu, Junjie |
Author_xml | – sequence: 1 givenname: Chunling surname: Xue fullname: Xue, Chunling organization: 1 Beijing Key Laboratory (No. BZO381), Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , Beijing, People's Republic of China – sequence: 2 givenname: Yamei surname: Shen fullname: Shen, Yamei organization: 1 Beijing Key Laboratory (No. BZO381), Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , Beijing, People's Republic of China – sequence: 3 givenname: Xuechun surname: Li fullname: Li, Xuechun organization: 1 Beijing Key Laboratory (No. BZO381), Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , Beijing, People's Republic of China – sequence: 4 givenname: Ba surname: Li fullname: Li, Ba organization: 1 Beijing Key Laboratory (No. BZO381), Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , Beijing, People's Republic of China – sequence: 5 givenname: Sun surname: Zhao fullname: Zhao, Sun organization: 2 Department of Oncology, Chinese Academy of Medical Science and Peking Union Medical College , Beijing, People's Republic of China – sequence: 6 givenname: Junjie surname: Gu fullname: Gu, Junjie organization: 2 Department of Oncology, Chinese Academy of Medical Science and Peking Union Medical College , Beijing, People's Republic of China – sequence: 7 givenname: Yunfei surname: Chen fullname: Chen, Yunfei organization: 1 Beijing Key Laboratory (No. BZO381), Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , Beijing, People's Republic of China – sequence: 8 givenname: Baitao surname: Ma fullname: Ma, Baitao organization: 3 Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College , Beijing, People's Republic of China – sequence: 9 givenname: Junji surname: Wei fullname: Wei, Junji organization: 3 Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College , Beijing, People's Republic of China – sequence: 10 givenname: Qin surname: Han fullname: Han, Qin organization: 1 Beijing Key Laboratory (No. BZO381), Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , Beijing, People's Republic of China – sequence: 11 givenname: Robert C surname: Zhao fullname: Zhao, Robert C organization: 1 Beijing Key Laboratory (No. BZO381), Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , Beijing, People's Republic of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29415626$$D View this record in MEDLINE/PubMed |
BookMark | eNo1kMtOwzAURC0Eog9YskX-gRTb8SNZRqVQRBGVWtaV69wkRokdxSk0S_6cImA1o7M40swEnTvvAKEbSmaUJOldMPmMEapmhKXyDI2pECpKRMxHaBLCOyFMsoRfohFLORWSyTH6Whx98A0EfA-d_YAcF51v8HJo_dHqaNuB7k9weWi0w1luWx8Av0AAZ6qh0TXe9NDgOdR1wAtXaWcAZ660vgQHwQa8rTp_KCvcV4DXzxne2NLp2roSr3VfferhCl0Uug5w_ZdT9Paw2M6X0er18WmerSITx6qPTM7jnOQKiPwBqdEJFaet-zglheDMKF7wVErgEgxJTMH2iTp1ZWJKmGBsim5_ve1h30C-azvb6G7Y_X_BvgHskWGG |
CitedBy_id | crossref_primary_10_1016_j_jconrel_2020_11_062 crossref_primary_10_1089_scd_2020_0092 crossref_primary_10_2174_1381612826666200420144805 crossref_primary_10_1021_acsbiomaterials_2c01104 crossref_primary_10_1002_sctm_18_0199 crossref_primary_10_1016_S1875_5364_23_60419_4 crossref_primary_10_1126_scitranslmed_aav8521 crossref_primary_10_1007_s12015_023_10597_z crossref_primary_10_3389_fsurg_2022_1030288 crossref_primary_10_1016_j_biomaterials_2023_121998 crossref_primary_10_1186_s13287_023_03439_9 crossref_primary_10_1186_s13287_019_1276_z crossref_primary_10_3390_cells9040976 crossref_primary_10_1089_scd_2020_0133 crossref_primary_10_1186_s12951_021_01126_6 crossref_primary_10_1016_j_biotechadv_2023_108122 crossref_primary_10_1186_s12951_023_02177_7 crossref_primary_10_1007_s10456_022_09848_3 crossref_primary_10_3389_fbioe_2020_624096 crossref_primary_10_1002_adfm_201909125 crossref_primary_10_1177_20417314211008626 crossref_primary_10_3390_ijms22031429 crossref_primary_10_1152_ajpheart_00217_2021 crossref_primary_10_3389_fbioe_2023_1322514 crossref_primary_10_3390_cancers12123599 crossref_primary_10_1080_20013078_2018_1522236 crossref_primary_10_1016_j_biomaterials_2018_05_048 crossref_primary_10_15283_ijsc23092 crossref_primary_10_1016_j_giant_2024_100251 crossref_primary_10_3389_fcell_2024_1446050 crossref_primary_10_3390_biology13040253 crossref_primary_10_1007_s12274_023_6080_5 crossref_primary_10_3390_cells10010042 crossref_primary_10_3390_ijms222011269 crossref_primary_10_3390_biom12040575 crossref_primary_10_1016_j_reth_2023_11_007 crossref_primary_10_1016_j_jss_2021_04_013 crossref_primary_10_1111_cns_14428 crossref_primary_10_1186_s13287_021_02662_6 crossref_primary_10_3390_cells9020312 crossref_primary_10_3390_ijms25063562 crossref_primary_10_3389_fcell_2021_703989 crossref_primary_10_1007_s00441_023_03758_6 crossref_primary_10_1186_s13287_019_1358_y crossref_primary_10_1186_s13287_024_03928_5 crossref_primary_10_1080_21623945_2021_1983242 crossref_primary_10_1186_s13287_024_03774_5 crossref_primary_10_1186_s13287_021_02511_6 crossref_primary_10_1111_wrr_13033 crossref_primary_10_3389_fcell_2021_734720 crossref_primary_10_3389_fcell_2021_648098 crossref_primary_10_1097_FJC_0000000000000974 crossref_primary_10_1002_2211_5463_13142 crossref_primary_10_1186_s13287_023_03413_5 crossref_primary_10_2147_IJN_S404925 crossref_primary_10_31083_j_rcm2309310 crossref_primary_10_1186_s13046_021_02114_2 crossref_primary_10_1002_jev2_12002 crossref_primary_10_1631_jzus_B2300566 crossref_primary_10_1016_j_matdes_2023_111885 crossref_primary_10_1186_s13287_021_02212_0 crossref_primary_10_1016_j_addr_2021_04_013 crossref_primary_10_14336_AD_2021_0315 crossref_primary_10_1186_s13287_020_01669_9 crossref_primary_10_3389_fendo_2021_756581 crossref_primary_10_4103_1673_5374_390956 crossref_primary_10_3390_bioengineering6010004 crossref_primary_10_3390_ijms24032344 crossref_primary_10_1016_j_jcyt_2020_03_433 crossref_primary_10_1155_2021_6655225 crossref_primary_10_3390_ijms20153721 crossref_primary_10_3390_cells11060988 crossref_primary_10_1111_obr_13691 crossref_primary_10_1016_j_cellimm_2021_104358 crossref_primary_10_1096_fj_201902232R crossref_primary_10_1093_asj_sjad139 crossref_primary_10_3389_fimmu_2023_1256687 crossref_primary_10_1155_2020_4356359 crossref_primary_10_1007_s12265_023_10449_8 crossref_primary_10_1007_s13770_023_00557_6 crossref_primary_10_1007_s10571_022_01201_y crossref_primary_10_1002_SMMD_20230027 crossref_primary_10_1039_D4NR00207E crossref_primary_10_1016_j_nantod_2023_101986 crossref_primary_10_3390_ijms21030727 crossref_primary_10_1186_s13287_022_02849_5 crossref_primary_10_5483_BMBRep_2020_53_2_235 crossref_primary_10_1016_j_ajps_2024_100945 crossref_primary_10_1155_2019_2831756 crossref_primary_10_1038_s41392_024_01735_1 crossref_primary_10_3389_fcell_2019_00353 crossref_primary_10_1016_j_heliyon_2024_e38969 crossref_primary_10_3389_fbioe_2024_1428793 crossref_primary_10_1096_fj_202201488R crossref_primary_10_3389_fbioe_2022_925841 crossref_primary_10_1155_2022_8775591 crossref_primary_10_1186_s12903_020_01313_1 crossref_primary_10_3389_fbioe_2022_829868 crossref_primary_10_4252_wjsc_v15_i5_400 crossref_primary_10_1016_j_job_2023_01_008 crossref_primary_10_1186_s13287_018_1007_x crossref_primary_10_3390_biom10050707 crossref_primary_10_1155_2021_2616807 crossref_primary_10_1152_ajpheart_00674_2021 crossref_primary_10_3390_cells9030724 crossref_primary_10_3389_fimmu_2019_00663 crossref_primary_10_1186_s12964_024_01870_w crossref_primary_10_3389_fbioe_2020_565561 crossref_primary_10_3389_fimmu_2022_824188 crossref_primary_10_1007_s10856_019_6321_z crossref_primary_10_1084_jem_20211628 crossref_primary_10_1155_2020_1289380 crossref_primary_10_3389_fcell_2021_649552 crossref_primary_10_3390_life11080784 crossref_primary_10_1007_s12265_022_10329_7 crossref_primary_10_3390_bioengineering9110675 crossref_primary_10_1007_s11010_024_05058_1 crossref_primary_10_1186_s12951_021_00942_0 crossref_primary_10_3390_biomedicines10071507 crossref_primary_10_1007_s13770_022_00469_x crossref_primary_10_1016_j_actbio_2022_11_057 crossref_primary_10_1016_j_jot_2022_08_001 crossref_primary_10_3389_fmed_2022_858824 crossref_primary_10_3390_ijms25105204 crossref_primary_10_3390_ijms232113596 crossref_primary_10_1016_j_intimp_2022_109172 crossref_primary_10_3389_fbioe_2020_00997 crossref_primary_10_1186_s13287_023_03374_9 crossref_primary_10_1016_j_actbio_2020_11_001 crossref_primary_10_3390_ijms22020763 crossref_primary_10_1016_j_mtbio_2022_100522 crossref_primary_10_2174_1574888X14666191104151928 crossref_primary_10_1002_bit_28378 crossref_primary_10_1002_jex2_115 crossref_primary_10_3390_ijms20020406 crossref_primary_10_3892_ijmm_2022_5199 crossref_primary_10_1016_j_scr_2020_102122 crossref_primary_10_1016_j_biomaterials_2019_119492 crossref_primary_10_1111_iej_13188 crossref_primary_10_1186_s13287_021_02151_w crossref_primary_10_14336_AD_2020_1221 crossref_primary_10_3389_fmed_2021_728496 crossref_primary_10_3390_cells10071729 crossref_primary_10_3390_ijms221910890 crossref_primary_10_1016_j_exer_2021_108626 crossref_primary_10_1111_jcmm_17689 crossref_primary_10_2147_IJN_S506456 crossref_primary_10_1016_j_acthis_2023_152042 crossref_primary_10_1016_j_bioactmat_2022_07_022 crossref_primary_10_1096_fj_202301403RR crossref_primary_10_1016_j_jtv_2024_04_005 crossref_primary_10_1016_j_job_2022_08_004 crossref_primary_10_1016_j_mtbio_2023_100810 crossref_primary_10_3390_ijms23052425 crossref_primary_10_1080_20013078_2020_1757900 crossref_primary_10_1177_13860291241291326 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1089/scd.2017.0296 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1557-8534 |
ExternalDocumentID | 29415626 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 123 29Q 34G 39C 4.4 ABBKN ABJNI ACGFS ADBBV ADNWM AENEX ALMA_UNASSIGNED_HOLDINGS BNQNF CS3 DU5 EJD F5P IAO IHR IM4 MV1 NPM NQHIM O9- RML UE5 |
ID | FETCH-LOGICAL-c337t-cd43d0d7e06c3379ca815017b390f542c74f4966e46ec08cf2b8746e7c3102522 |
IngestDate | Wed Feb 19 02:34:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | animal models hypoxic exosomes VEGF angiogenesis mesenchymal stem cells |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-cd43d0d7e06c3379ca815017b390f542c74f4966e46ec08cf2b8746e7c3102522 |
PMID | 29415626 |
ParticipantIDs | pubmed_primary_29415626 |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Stem cells and development |
PublicationTitleAlternate | Stem Cells Dev |
PublicationYear | 2018 |
SSID | ssj0026284 |
Score | 2.5775583 |
Snippet | Angiogenesis is a complicated and sequential process that plays an important role in different physiological processes. Mesenchymal stem cells (MSCs), which... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 456 |
Title | Exosomes Derived from Hypoxia-Treated Human Adipose Mesenchymal Stem Cells Enhance Angiogenesis Through the PKA Signaling Pathway |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29415626 |
Volume | 27 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELY6EBIviN-DAboH3qqMNHbi5LGMogo0hEQnlacpcew00ppUarutvO2f2N-7O8ft0gLS4CWK7PySv6_23fXuM2Pv4whXASOVF0qeeSKUPS_mRnpJHpkU3QkTKap3Pv4WDU_El3E47nSuW1lLy0V2qH79sa7kf1DFNsSVqmT_AdnNQ7EBzxFfPCLCeLwTxoPLel6T2tInfNs5mo62WGS4mtWXZeqNyB7ExiZO38_LGeWmH1O5kZqspiQDstDT7pE-O5t3B9XEFg_0q6KsC5oAy3l35DbxIeP0-9d-90dZkN1eFaTsP7lIt_4Stg9T9mEUjM9vs5HWoI6XTdrhZEnyHMUmuOMKRH6mU11uEoRslgHeofDq7caPaTtU0YtbGS7aTa8hromhC1-6-bfRBnA8k63JVDSS479N8n6c2G0pSei1Jw_9INm6DjGaTS3iQULuaXCH3h3N7XXXHttD74O2U6UYkHPjI1zRnVorfsmHre8gbWl3746fYu2V0WP2yDka0G9Y84R1dPWUPWi2Hl09Y1dr7oDjDhB3YIc7YLkDjjvQ4g4Q3GC5A4470OYOOO4AcgeQO7DhDjjuPGcnnwejo6HntuPwFOdy4alc8NzPpfYjakhUGqM30ZMZT3wTikBJYQR6z1pEWvmxMkEWSzyXCl2IAO38F-xeVVd6nwFPcYSUJPuQC5nyGBcOoQy6r1pHQuev2Mtm7E5njebK6XpUX_-154A9vOXcG3bf4I9cv0WLcZG9swDeAHCKbQM |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exosomes+Derived+from+Hypoxia-Treated+Human+Adipose+Mesenchymal+Stem+Cells+Enhance+Angiogenesis+Through+the+PKA+Signaling+Pathway&rft.jtitle=Stem+cells+and+development&rft.au=Xue%2C+Chunling&rft.au=Shen%2C+Yamei&rft.au=Li%2C+Xuechun&rft.au=Li%2C+Ba&rft.date=2018-04-01&rft.eissn=1557-8534&rft.volume=27&rft.issue=7&rft.spage=456&rft_id=info:doi/10.1089%2Fscd.2017.0296&rft_id=info%3Apmid%2F29415626&rft_id=info%3Apmid%2F29415626&rft.externalDocID=29415626 |