Oxidation of amorphous HfNbTaTiZr high entropy alloy thin films prepared by DC magnetron sputtering
High entropy alloys represent a new type of materials with a unique combination of physical properties originating from the occurrence of single-phase solid solutions of numerous elements. The preparation of nanostructured or amorphous structure in a form of thin films promises increased effective s...
Saved in:
Published in | Journal of alloys and compounds Vol. 869; p. 157978 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.07.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High entropy alloys represent a new type of materials with a unique combination of physical properties originating from the occurrence of single-phase solid solutions of numerous elements. The preparation of nanostructured or amorphous structure in a form of thin films promises increased effective surface and high intergranular diffusion of elements as well as a high affinity to oxidation. In this work, we studied HfNbTaTiZr thin films, deposited at room temperature by DC magnetron sputtering from a single bcc phase target. Films exhibit cellular structure (∼100 nm) with fine substructure (∼10 nm) made of round-shape amorphous clusters. The composition is close to equimolar with slight Ti enrichment and without any mutual segregation of elements. Oxidation at the ambient atmosphere leads to the formation of Ti, Zr, Nb, Hf, and Ta oxide clusters in the film up to the depth of 200–350 nm out of the total film thickness of 1650 nm. Oxygen absorption takes place preferentially in the large vacancy clusters located in between the amorphous cluster aggregates. The dominant type of defect are small open volumes with a size comparable with vacancy. The distribution of these defects is uniform with depth and is not influenced by the presence of oxygen in the film.
•Amorphous HfNbTaTiZr high entropy alloy thin films were deposited by DC magnetron sputtering.•A fine structure of round-shaped amorphous clusters ∼10 nm was observed.•Oxidation at ambient atmosphere leads to a preferential formation of Ti-, Hf- and Zr- oxide nanoclusters.•Oxidation takes place predominantly in large open volumes in between cluster aggregates. |
---|---|
AbstractList | High entropy alloys represent a new type of materials with a unique combination of physical properties originating from the occurrence of single-phase solid solutions of numerous elements. The preparation of nanostructured or amorphous structure in a form of thin films promises increased effective surface and high intergranular diffusion of elements as well as a high affinity to oxidation. In this work, we studied HfNbTaTiZr thin films, deposited at room temperature by DC magnetron sputtering from a single bcc phase target. Films exhibit cellular structure (∼100 nm) with fine substructure (∼10 nm) made of round-shape amorphous clusters. The composition is close to equimolar with slight Ti enrichment and without any mutual segregation of elements. Oxidation at the ambient atmosphere leads to the formation of Ti, Zr, Nb, Hf, and Ta oxide clusters in the film up to the depth of 200–350 nm out of the total film thickness of 1650 nm. Oxygen absorption takes place preferentially in the large vacancy clusters located in between the amorphous cluster aggregates. The dominant type of defect are small open volumes with a size comparable with vacancy. The distribution of these defects is uniform with depth and is not influenced by the presence of oxygen in the film. High entropy alloys represent a new type of materials with a unique combination of physical properties originating from the occurrence of single-phase solid solutions of numerous elements. The preparation of nanostructured or amorphous structure in a form of thin films promises increased effective surface and high intergranular diffusion of elements as well as a high affinity to oxidation. In this work, we studied HfNbTaTiZr thin films, deposited at room temperature by DC magnetron sputtering from a single bcc phase target. Films exhibit cellular structure (∼100 nm) with fine substructure (∼10 nm) made of round-shape amorphous clusters. The composition is close to equimolar with slight Ti enrichment and without any mutual segregation of elements. Oxidation at the ambient atmosphere leads to the formation of Ti, Zr, Nb, Hf, and Ta oxide clusters in the film up to the depth of 200–350 nm out of the total film thickness of 1650 nm. Oxygen absorption takes place preferentially in the large vacancy clusters located in between the amorphous cluster aggregates. The dominant type of defect are small open volumes with a size comparable with vacancy. The distribution of these defects is uniform with depth and is not influenced by the presence of oxygen in the film. •Amorphous HfNbTaTiZr high entropy alloy thin films were deposited by DC magnetron sputtering.•A fine structure of round-shaped amorphous clusters ∼10 nm was observed.•Oxidation at ambient atmosphere leads to a preferential formation of Ti-, Hf- and Zr- oxide nanoclusters.•Oxidation takes place predominantly in large open volumes in between cluster aggregates. |
ArticleNumber | 157978 |
Author | Vondráček, Martin Minárik, Peter Liedke, Maciej Oskar Hruška, Petr Lukáč, František Melikhova, Oksana Fekete, Ladislav Lančok, Ján Wagner, Andreas Butterling, Maik Cichoň, Stanislav Veselý, Jozef Čížek, Jakub Cieslar, Miroslav Kmječ, Tomáš |
Author_xml | – sequence: 1 givenname: Petr surname: Hruška fullname: Hruška, Petr email: hruskap@fzu.cz organization: Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00, Prague, Czech Republic – sequence: 2 givenname: František surname: Lukáč fullname: Lukáč, František organization: Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00, Prague, Czech Republic – sequence: 3 givenname: Stanislav surname: Cichoň fullname: Cichoň, Stanislav organization: Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague, Czech Republic – sequence: 4 givenname: Martin surname: Vondráček fullname: Vondráček, Martin organization: Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague, Czech Republic – sequence: 5 givenname: Jakub surname: Čížek fullname: Čížek, Jakub organization: Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00, Prague, Czech Republic – sequence: 6 givenname: Ladislav surname: Fekete fullname: Fekete, Ladislav organization: Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague, Czech Republic – sequence: 7 givenname: Ján surname: Lančok fullname: Lančok, Ján organization: Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague, Czech Republic – sequence: 8 givenname: Jozef surname: Veselý fullname: Veselý, Jozef organization: Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00, Prague, Czech Republic – sequence: 9 givenname: Peter surname: Minárik fullname: Minárik, Peter organization: Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00, Prague, Czech Republic – sequence: 10 givenname: Miroslav surname: Cieslar fullname: Cieslar, Miroslav organization: Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00, Prague, Czech Republic – sequence: 11 givenname: Oksana surname: Melikhova fullname: Melikhova, Oksana organization: Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00, Prague, Czech Republic – sequence: 12 givenname: Tomáš surname: Kmječ fullname: Kmječ, Tomáš organization: Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00, Prague, Czech Republic – sequence: 13 givenname: Maciej Oskar surname: Liedke fullname: Liedke, Maciej Oskar organization: Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328, Dresden, Germany – sequence: 14 givenname: Maik surname: Butterling fullname: Butterling, Maik organization: Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328, Dresden, Germany – sequence: 15 givenname: Andreas orcidid: 0000-0001-7575-3961 surname: Wagner fullname: Wagner, Andreas organization: Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328, Dresden, Germany |
BookMark | eNqFkEtr4zAUhcWQgUk78xMGBLN2qoctycyilPQJpd2km26EIl8nMrbkSkpp_n2dpqtuurpwOd858J2gmQ8eEPpLyYISKs66RWf63oZhwQibfpWspfqB5lRJXpRC1DM0JzWrCsWV-oVOUuoIIbTmdI7s45trTHbB49BiM4Q4bsMu4dv2Yb0yK_cc8dZtthh8jmHc42ko7HHeOo9b1w8JjxFGE6HB6z2-XOLBbDxMUY_TuMsZovOb3-hna_oEfz7vKXq6vlotb4v7x5u75cV9YTmXubAVW3NDVAMNqcpWqrohrFSStLw0ShEOipcNrYWEtZGUVqI2NWVKWtkqIhQ_Rf-OvWMMLztIWXdhF_00qVnFOBVCEDal_h9TNoaUIrTauvxhIEfjek2JPljVnf60qg9W9dHqRFdf6DG6wcT9t9z5kYNJwKuDqJN14C00LoLNugnum4Z3XDWWpA |
CitedBy_id | crossref_primary_10_3390_met12101718 crossref_primary_10_1016_j_ccr_2023_215204 crossref_primary_10_1186_s10033_022_00814_0 crossref_primary_10_1063_5_0190771 crossref_primary_10_3390_coatings14091179 crossref_primary_10_1016_j_apsusc_2024_160038 crossref_primary_10_1016_j_ijrmhm_2022_105836 crossref_primary_10_1016_j_intermet_2022_107610 crossref_primary_10_1002_adem_202301934 crossref_primary_10_1016_j_apsusc_2021_151894 crossref_primary_10_1116_6_0003065 crossref_primary_10_1007_s12666_023_02877_6 crossref_primary_10_1016_j_jallcom_2024_177206 crossref_primary_10_1016_j_surfcoat_2021_128005 crossref_primary_10_1016_j_mtnano_2023_100403 crossref_primary_10_1016_j_pmatsci_2025_101429 crossref_primary_10_1016_j_msea_2022_143144 crossref_primary_10_1021_acs_langmuir_2c03367 crossref_primary_10_1007_s11771_022_5181_8 crossref_primary_10_3390_coatings14020221 crossref_primary_10_1016_j_actamat_2024_120295 crossref_primary_10_1016_j_vacuum_2023_112186 crossref_primary_10_1007_s11663_024_03345_2 crossref_primary_10_1002_adem_202400960 crossref_primary_10_1016_j_mee_2022_111722 crossref_primary_10_3390_cryst12030335 crossref_primary_10_1016_j_intermet_2023_107868 crossref_primary_10_3390_cryst13040580 crossref_primary_10_1016_j_jmst_2024_07_024 crossref_primary_10_1016_j_jmrt_2024_02_203 |
Cites_doi | 10.1016/j.actamat.2016.08.081 10.1038/srep36770 10.12693/APhysPolA.137.219 10.1107/S1600576718000183 10.1016/j.actamat.2020.07.003 10.1002/sia.740160163 10.1103/RevModPhys.60.701 10.3390/met10081101 10.3390/e21020114 10.1016/0092-640X(85)90016-6 10.1016/j.jallcom.2018.07.319 10.1016/j.jallcom.2015.06.097 10.1006/adnd.2000.0848 10.1016/j.ijhydene.2017.05.104 10.1016/j.actamat.2020.07.004 10.1126/sciadv.aav2002 10.1016/j.tsf.2015.02.070 10.1016/j.intermet.2017.06.002 10.1002/sia.2032 10.12693/APhysPolA.134.891 10.1016/j.jallcom.2011.02.171 10.1557/jmr.2018.320 10.1016/j.msea.2015.12.017 10.1016/j.jallcom.2018.10.108 10.3390/e16094749 10.1016/j.pmatsci.2013.10.001 10.1063/1.4914180 10.1063/1.5040215 10.1038/nmat2340 10.1016/j.actamat.2017.09.035 10.1016/j.actamat.2018.08.053 10.1016/j.actamat.2016.02.035 10.1146/annurev.matsci.36.090804.094451 10.1016/j.jeurceramsoc.2018.11.004 10.12693/APhysPolA.137.177 10.1016/j.ultramic.2015.02.016 10.1016/j.jallcom.2019.05.043 10.1016/0092-640X(84)90016-0 10.1016/j.intermet.2018.11.015 10.1016/j.apsusc.2018.05.172 10.1016/S0168-583X(99)00909-X 10.1016/0079-6425(88)90010-2 10.12693/APhysPolA.137.260 10.1007/s10853-012-6260-2 10.1016/j.intermet.2013.05.002 10.1016/j.elspec.2011.12.001 10.1038/s41467-019-08460-2 10.1007/s11661-018-4605-4 10.1016/j.actamat.2018.02.028 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Jul 15, 2021 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Jul 15, 2021 |
DBID | AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1016/j.jallcom.2020.157978 |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1873-4669 |
ExternalDocumentID | 10_1016_j_jallcom_2020_157978 S0925838820343425 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SMS SSH T9H WUQ 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c337t-c52b3a08ded054f789d024870f34a8803e834d1967eba711569a91287c7f80683 |
IEDL.DBID | .~1 |
ISSN | 0925-8388 |
IngestDate | Thu Aug 07 15:29:18 EDT 2025 Tue Jul 01 03:58:57 EDT 2025 Thu Apr 24 23:08:41 EDT 2025 Fri Feb 23 02:44:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | High entropy alloys Magnetron sputtering HfNbTaTiZr X-ray photoelectron spectroscopy Positron annihilation spectroscopy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-c52b3a08ded054f789d024870f34a8803e834d1967eba711569a91287c7f80683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7575-3961 |
PQID | 2523166602 |
PQPubID | 2045454 |
ParticipantIDs | proquest_journals_2523166602 crossref_citationtrail_10_1016_j_jallcom_2020_157978 crossref_primary_10_1016_j_jallcom_2020_157978 elsevier_sciencedirect_doi_10_1016_j_jallcom_2020_157978 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-15 |
PublicationDateYYYYMMDD | 2021-07-15 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Journal of alloys and compounds |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Guo (bib19) 2013; 41 Backman (bib51) 2020; 197 Schweitzer (bib48) 2003 Greenwood, Earnshaw (bib47) 1997 Lee (bib3) 2018; 160 Biesinger (bib42) 2020 Ma (bib46) 2015; 106 Lukáč (bib54) 2018; 134 Miracle, Senkov (bib1) 2017; 122 Cantor (bib6) 2014; 16 Zhang (bib4) 2014; 61 Ma, Stoica, Wang (bib36) 2009; 8 Tüten (bib23) 2019; 105 Motallebzadeh (bib24) 2018; 49 Campbell, Papp (bib41) 2001; 77 Kim (bib25) 2019; 797 Cropper (bib26) 2018; 455 Sahlberg (bib14) 2016; 6 Lukac (bib27) 2018; 33 Coelho (bib28) 2018; 51 El-Atwani (bib10) 2019; 5 Lan (bib35) 2018; 149 Dirras (bib13) 2016; 654 Schuh (bib7) 2018; 142 Zlotea (bib15) 2019; 775 Gabriel (bib32) 2000; 161–163 Kirchheim (bib16) 1988; 32 Hruška (bib18) 2017; 42 Čížek (bib55) 2018; 768 Shi (bib2) 2019; 10 Wagner (bib31) 2018; vol. 1970 Backman, Opila (bib49) 2019; 39 Backman (bib50) 2020; 197 Lukáč (bib53) 2020; 137 Pundt, Kirchheim (bib17) 2006; 36 Brechtl (bib8) 2020; 10 Seah (bib38) 2005; 37 Kuriplach (bib56) 2020; 137 Čížek (bib34) 2020; 137 National Physical Laboratory (bib39) 2020 Powell (bib40) 2012; 185 Schultz, Lynn (bib33) 1988; 60 Zýka (bib12) 2019; 21 Jayaraj (bib43) 2017; 89 Senkov (bib5) 2011; 509 Braeckman, Depla (bib22) 2015; 646 Matsunami (bib37) 1984; 31 Senkov (bib9) 2012; 47 Morant, Galán, Sanz (bib44) 1990; 16 Braeckman, Depla (bib20) 2016; 109 Yeh, Lindau (bib29) 1985; 32 Moulder, Chastain, King (bib30) 1995 Bespalov (bib45) 2015; 159 Islak (bib11) 2020; 27 Watts, Wolstenholme (bib52) 2019 Braeckman (bib21) 2015; 580 Greenwood (10.1016/j.jallcom.2020.157978_bib47) 1997 Cantor (10.1016/j.jallcom.2020.157978_bib6) 2014; 16 Braeckman (10.1016/j.jallcom.2020.157978_bib21) 2015; 580 Campbell (10.1016/j.jallcom.2020.157978_bib41) 2001; 77 Čížek (10.1016/j.jallcom.2020.157978_bib34) 2020; 137 Backman (10.1016/j.jallcom.2020.157978_bib51) 2020; 197 Schweitzer (10.1016/j.jallcom.2020.157978_bib48) 2003 Schultz (10.1016/j.jallcom.2020.157978_bib33) 1988; 60 Lan (10.1016/j.jallcom.2020.157978_bib35) 2018; 149 Ma (10.1016/j.jallcom.2020.157978_bib36) 2009; 8 Cropper (10.1016/j.jallcom.2020.157978_bib26) 2018; 455 Čížek (10.1016/j.jallcom.2020.157978_bib55) 2018; 768 Zlotea (10.1016/j.jallcom.2020.157978_bib15) 2019; 775 Braeckman (10.1016/j.jallcom.2020.157978_bib22) 2015; 646 Tüten (10.1016/j.jallcom.2020.157978_bib23) 2019; 105 Brechtl (10.1016/j.jallcom.2020.157978_bib8) 2020; 10 Zhang (10.1016/j.jallcom.2020.157978_bib4) 2014; 61 Seah (10.1016/j.jallcom.2020.157978_bib38) 2005; 37 Morant (10.1016/j.jallcom.2020.157978_bib44) 1990; 16 Ma (10.1016/j.jallcom.2020.157978_bib46) 2015; 106 Gabriel (10.1016/j.jallcom.2020.157978_bib32) 2000; 161–163 Guo (10.1016/j.jallcom.2020.157978_bib19) 2013; 41 Coelho (10.1016/j.jallcom.2020.157978_bib28) 2018; 51 Schuh (10.1016/j.jallcom.2020.157978_bib7) 2018; 142 Miracle (10.1016/j.jallcom.2020.157978_bib1) 2017; 122 Dirras (10.1016/j.jallcom.2020.157978_bib13) 2016; 654 Kim (10.1016/j.jallcom.2020.157978_bib25) 2019; 797 Motallebzadeh (10.1016/j.jallcom.2020.157978_bib24) 2018; 49 Lee (10.1016/j.jallcom.2020.157978_bib3) 2018; 160 National Physical Laboratory (10.1016/j.jallcom.2020.157978_bib39) Moulder (10.1016/j.jallcom.2020.157978_bib30) 1995 Matsunami (10.1016/j.jallcom.2020.157978_bib37) 1984; 31 Senkov (10.1016/j.jallcom.2020.157978_bib9) 2012; 47 Kirchheim (10.1016/j.jallcom.2020.157978_bib16) 1988; 32 Wagner (10.1016/j.jallcom.2020.157978_bib31) 2018; vol. 1970 Bespalov (10.1016/j.jallcom.2020.157978_bib45) 2015; 159 Biesinger (10.1016/j.jallcom.2020.157978_bib42) Lukáč (10.1016/j.jallcom.2020.157978_bib54) 2018; 134 Braeckman (10.1016/j.jallcom.2020.157978_bib20) 2016; 109 Lukac (10.1016/j.jallcom.2020.157978_bib27) 2018; 33 Sahlberg (10.1016/j.jallcom.2020.157978_bib14) 2016; 6 Shi (10.1016/j.jallcom.2020.157978_bib2) 2019; 10 Kuriplach (10.1016/j.jallcom.2020.157978_bib56) 2020; 137 Senkov (10.1016/j.jallcom.2020.157978_bib5) 2011; 509 Zýka (10.1016/j.jallcom.2020.157978_bib12) 2019; 21 Lukáč (10.1016/j.jallcom.2020.157978_bib53) 2020; 137 Watts (10.1016/j.jallcom.2020.157978_bib52) 2019 El-Atwani (10.1016/j.jallcom.2020.157978_bib10) 2019; 5 Islak (10.1016/j.jallcom.2020.157978_bib11) 2020; 27 Powell (10.1016/j.jallcom.2020.157978_bib40) 2012; 185 Backman (10.1016/j.jallcom.2020.157978_bib50) 2020; 197 Pundt (10.1016/j.jallcom.2020.157978_bib17) 2006; 36 Hruška (10.1016/j.jallcom.2020.157978_bib18) 2017; 42 Backman (10.1016/j.jallcom.2020.157978_bib49) 2019; 39 Yeh (10.1016/j.jallcom.2020.157978_bib29) 1985; 32 Jayaraj (10.1016/j.jallcom.2020.157978_bib43) 2017; 89 |
References_xml | – volume: 77 start-page: 1 year: 2001 end-page: 56 ident: bib41 article-title: Widths of the atomic K–N7 levels publication-title: Atomic Data Nucl. Data Tables – volume: 51 start-page: 210 year: 2018 end-page: 218 ident: bib28 article-title: TOPASandTOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++ publication-title: J. Appl. Crystallogr. – volume: 149 start-page: 108 year: 2018 end-page: 118 ident: bib35 article-title: Structure origin of a transition of classic-to-avalanche nucleation in Zr-Cu-Al bulk metallic glasses publication-title: Acta Mater. – volume: 134 start-page: 891 year: 2018 end-page: 894 ident: bib54 article-title: Defects in high entropy alloy HfNbTaTiZr prepared by high pressure torsion publication-title: Acta Phys. Pol., A – volume: 646 start-page: 810 year: 2015 end-page: 815 ident: bib22 article-title: Structure formation and properties of sputter deposited Nbx-CoCrCuFeNi high entropy alloy thin films publication-title: J. Alloys Compd. – volume: 455 start-page: 153 year: 2018 end-page: 159 ident: bib26 article-title: Thin films of AlCrFeCoNiCu high-entropy alloy by pulsed laser deposition publication-title: Appl. Surf. Sci. – volume: 509 start-page: 6043 year: 2011 end-page: 6048 ident: bib5 article-title: Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy publication-title: J. Alloys Compd. – volume: 32 start-page: 1 year: 1985 end-page: 155 ident: bib29 article-title: Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103 publication-title: Atomic Data Nucl. Data Tables – volume: 36 start-page: 555 year: 2006 end-page: 608 ident: bib17 article-title: Hydrogen IN metals: microstructural aspects publication-title: Annu. Rev. Mater. Res. – volume: 10 year: 2020 ident: bib8 article-title: A review of the serrated-flow phenomenon and its role in the deformation behavior of high-entropy alloys publication-title: Metals – year: 2019 ident: bib52 article-title: An Introduction to Surface Analysis by XPS and AES – volume: 109 start-page: 323 year: 2016 end-page: 329 ident: bib20 article-title: On the amorphous nature of sputtered thin film alloys publication-title: Acta Mater. – volume: 580 start-page: 71 year: 2015 end-page: 76 ident: bib21 article-title: High entropy alloy thin films deposited by magnetron sputtering of powder targets publication-title: Thin Solid Films – volume: 60 start-page: 701 year: 1988 end-page: 779 ident: bib33 article-title: Interaction of positron beams with surfaces, thin films, and interfaces publication-title: Rev. Mod. Phys. – volume: 197 start-page: 20 year: 2020 end-page: 27 ident: bib50 article-title: Part I: theoretical predictions of preferential oxidation in refractory high entropy materials publication-title: Acta Mater. – volume: 47 start-page: 4062 year: 2012 end-page: 4074 ident: bib9 article-title: Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy publication-title: J. Mater. Sci. – volume: 10 start-page: 489 year: 2019 ident: bib2 article-title: Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae publication-title: Nat. Commun. – volume: 137 start-page: 177 year: 2020 end-page: 187 ident: bib34 article-title: PLRF code for decomposition of positron lifetime spectra publication-title: Acta Phys. Pol., A – volume: 159 start-page: 147 year: 2015 end-page: 151 ident: bib45 article-title: Initial stages of oxide formation on the Zr surface at low oxygen pressure: an in situ FIM and XPS study publication-title: Ultramicroscopy – volume: 185 start-page: 1 year: 2012 end-page: 3 ident: bib40 article-title: Recommended Auger parameters for 42 elemental solids publication-title: J. Electron. Spectrosc. Relat. Phenom. – volume: 768 start-page: 924 year: 2018 end-page: 937 ident: bib55 article-title: Strength enhancement of high entropy alloy HfNbTaTiZr by severe plastic deformation publication-title: J. Alloys Compd. – volume: 137 start-page: 260 year: 2020 end-page: 265 ident: bib56 article-title: Behavior of positrons in the HfNbTaTiZr complex concentrated alloy publication-title: Acta Phys. Pol., A – year: 2020 ident: bib39 article-title: Sputter yield values – volume: 21 year: 2019 ident: bib12 article-title: Microstructure and room temperature mechanical properties of different 3 and 4 element medium entropy alloys from HfNbTaTiZr system publication-title: Entropy – volume: 16 start-page: 304 year: 1990 end-page: 308 ident: bib44 article-title: An XPS study of the initial stages of oxidation of hafnium publication-title: Surf. Interface Anal. – volume: 161–163 start-page: 1143 year: 2000 end-page: 1147 ident: bib32 article-title: The Rossendorf radiation source ELBE and its FEL projects publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms – volume: 89 start-page: 123 year: 2017 end-page: 132 ident: bib43 article-title: Corrosion behavior and surface film characterization of TaNbHfZrTi high entropy alloy in aggressive nitric acid medium publication-title: Intermetallics – volume: 61 start-page: 1 year: 2014 end-page: 93 ident: bib4 article-title: Microstructures and properties of high-entropy alloys publication-title: Prog. Mater. Sci. – volume: 160 start-page: 158 year: 2018 end-page: 172 ident: bib3 article-title: Lattice distortion in a strong and ductile refractory high-entropy alloy publication-title: Acta Mater. – volume: 122 start-page: 448 year: 2017 end-page: 511 ident: bib1 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater. – volume: 106 year: 2015 ident: bib46 article-title: Non-equilibrium oxidation states of zirconium during early stages of metal oxidation publication-title: Appl. Phys. Lett. – volume: 49 start-page: 1992 year: 2018 end-page: 1997 ident: bib24 article-title: Mechanical properties of TiTaHfNbZr high-entropy alloy coatings deposited on NiTi shape memory alloy substrates publication-title: Metall. Mater. Trans. – volume: 8 start-page: 30 year: 2009 end-page: 34 ident: bib36 article-title: Power-law scaling and fractal nature of medium-range order in metallic glasses publication-title: Nat. Mater. – volume: 142 start-page: 201 year: 2018 end-page: 212 ident: bib7 article-title: Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties publication-title: Acta Mater. – volume: 27 start-page: 659 year: 2020 end-page: 664 ident: bib11 article-title: Wear properties and synthesis of CrFeNiMoTi high entropy alloy coatings produced by TIG process publication-title: Indian J. Eng. Mater. Sci. – volume: vol. 1970 year: 2018 ident: bib31 article-title: Positron annihilation lifetime and Doppler broadening spectroscopy at the ELBE facility publication-title: AIP Conference Proceedings – volume: 37 start-page: 444 year: 2005 end-page: 458 ident: bib38 article-title: An accurate semi-empirical equation for sputtering yields I: for argon ions publication-title: Surf. Interface Anal. – volume: 797 start-page: 834 year: 2019 end-page: 841 ident: bib25 article-title: Investigation of structure and mechanical properties of TiZrHfNiCuCo high entropy alloy thin films synthesized by magnetron sputtering publication-title: J. Alloys Compd. – volume: 39 start-page: 1796 year: 2019 end-page: 1802 ident: bib49 article-title: Thermodynamic assessment of the group IV, V and VI oxides for the design of oxidation resistant multi-principal component materials publication-title: J. Eur. Ceram. Soc. – volume: 654 start-page: 30 year: 2016 end-page: 38 ident: bib13 article-title: Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy publication-title: Mater. Sci. Eng., A – volume: 6 start-page: 36770 year: 2016 ident: bib14 article-title: Superior hydrogen storage in high entropy alloys publication-title: Sci. Rep. – volume: 5 year: 2019 ident: bib10 article-title: Outstanding radiation resistance of tungsten-based high-entropy alloys publication-title: Sci Adv – volume: 197 start-page: 81 year: 2020 end-page: 90 ident: bib51 article-title: Part II: experimental verification of computationally predicted preferential oxidation of refractory high entropy ultra-high temperature ceramics publication-title: Acta Mater. – volume: 33 start-page: 3247 year: 2018 end-page: 3257 ident: bib27 article-title: Spark plasma sintering of gas atomized high-entropy alloy HfNbTaTiZr publication-title: J. Mater. Res. – volume: 31 start-page: 1 year: 1984 end-page: 80 ident: bib37 article-title: Energy dependence of the ion-induced sputtering yields of monatomic solids publication-title: Atomic Data Nucl. Data Tables – volume: 105 start-page: 99 year: 2019 end-page: 106 ident: bib23 article-title: Microstructure and tribological properties of TiTaHfNbZr high entropy alloy coatings deposited on Ti 6Al 4V substrates publication-title: Intermetallics – volume: 16 start-page: 4749 year: 2014 end-page: 4768 ident: bib6 article-title: Multicomponent and high entropy alloys publication-title: Entropy – volume: 41 start-page: 96 year: 2013 end-page: 103 ident: bib19 article-title: More than entropy in high-entropy alloys: forming solid solutions or amorphous phase publication-title: Intermetallics – volume: 137 start-page: 219 year: 2020 end-page: 221 ident: bib53 article-title: Defects in thin layers of high entropy alloy HfNbTaTiZr publication-title: Acta Phys. Pol., A – year: 1995 ident: bib30 article-title: Handbook of X-Ray Photoelectron Spectroscopy: a Reference Book of Standard Spectra for Identification and Interpretation of XPS Data – start-page: 1600 year: 1997 ident: bib47 article-title: Chemistry of the Elements – volume: 775 start-page: 667 year: 2019 end-page: 674 ident: bib15 article-title: Hydrogen sorption in TiZrNbHfTa high entropy alloy publication-title: J. Alloys Compd. – year: 2003 ident: bib48 article-title: Metallic Materials: Physical, Mechanical, and Corrosion Properties – volume: 42 start-page: 22557 year: 2017 end-page: 22563 ident: bib18 article-title: Characterization of defects in titanium created by hydrogen charging publication-title: Int. J. Hydrogen Energy – year: 2020 ident: bib42 article-title: X-ray photoelectron spectroscopy (XPS) reference pages – volume: 32 start-page: 261 year: 1988 end-page: 325 ident: bib16 article-title: Hydrogen solubility and diffusivity in defective and amorphous metals publication-title: Prog. Mater. Sci. – volume: 122 start-page: 448 year: 2017 ident: 10.1016/j.jallcom.2020.157978_bib1 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.08.081 – year: 2003 ident: 10.1016/j.jallcom.2020.157978_bib48 – volume: 6 start-page: 36770 year: 2016 ident: 10.1016/j.jallcom.2020.157978_bib14 article-title: Superior hydrogen storage in high entropy alloys publication-title: Sci. Rep. doi: 10.1038/srep36770 – volume: 137 start-page: 219 issue: 2 year: 2020 ident: 10.1016/j.jallcom.2020.157978_bib53 article-title: Defects in thin layers of high entropy alloy HfNbTaTiZr publication-title: Acta Phys. Pol., A doi: 10.12693/APhysPolA.137.219 – volume: 51 start-page: 210 issue: 1 year: 2018 ident: 10.1016/j.jallcom.2020.157978_bib28 article-title: TOPASandTOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++ publication-title: J. Appl. Crystallogr. doi: 10.1107/S1600576718000183 – volume: 197 start-page: 20 year: 2020 ident: 10.1016/j.jallcom.2020.157978_bib50 article-title: Part I: theoretical predictions of preferential oxidation in refractory high entropy materials publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.07.003 – volume: 16 start-page: 304 issue: 1–12 year: 1990 ident: 10.1016/j.jallcom.2020.157978_bib44 article-title: An XPS study of the initial stages of oxidation of hafnium publication-title: Surf. Interface Anal. doi: 10.1002/sia.740160163 – volume: 60 start-page: 701 issue: 3 year: 1988 ident: 10.1016/j.jallcom.2020.157978_bib33 article-title: Interaction of positron beams with surfaces, thin films, and interfaces publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.60.701 – volume: 10 issue: 8 year: 2020 ident: 10.1016/j.jallcom.2020.157978_bib8 article-title: A review of the serrated-flow phenomenon and its role in the deformation behavior of high-entropy alloys publication-title: Metals doi: 10.3390/met10081101 – volume: 21 issue: 2 year: 2019 ident: 10.1016/j.jallcom.2020.157978_bib12 article-title: Microstructure and room temperature mechanical properties of different 3 and 4 element medium entropy alloys from HfNbTaTiZr system publication-title: Entropy doi: 10.3390/e21020114 – volume: 32 start-page: 1 issue: 1 year: 1985 ident: 10.1016/j.jallcom.2020.157978_bib29 article-title: Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103 publication-title: Atomic Data Nucl. Data Tables doi: 10.1016/0092-640X(85)90016-6 – volume: 768 start-page: 924 year: 2018 ident: 10.1016/j.jallcom.2020.157978_bib55 article-title: Strength enhancement of high entropy alloy HfNbTaTiZr by severe plastic deformation publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.07.319 – volume: 646 start-page: 810 year: 2015 ident: 10.1016/j.jallcom.2020.157978_bib22 article-title: Structure formation and properties of sputter deposited Nbx-CoCrCuFeNi high entropy alloy thin films publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.06.097 – volume: 77 start-page: 1 issue: 1 year: 2001 ident: 10.1016/j.jallcom.2020.157978_bib41 article-title: Widths of the atomic K–N7 levels publication-title: Atomic Data Nucl. Data Tables doi: 10.1006/adnd.2000.0848 – volume: 42 start-page: 22557 issue: 35 year: 2017 ident: 10.1016/j.jallcom.2020.157978_bib18 article-title: Characterization of defects in titanium created by hydrogen charging publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.05.104 – volume: 197 start-page: 81 year: 2020 ident: 10.1016/j.jallcom.2020.157978_bib51 article-title: Part II: experimental verification of computationally predicted preferential oxidation of refractory high entropy ultra-high temperature ceramics publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.07.004 – volume: 5 issue: 3 year: 2019 ident: 10.1016/j.jallcom.2020.157978_bib10 article-title: Outstanding radiation resistance of tungsten-based high-entropy alloys publication-title: Sci Adv doi: 10.1126/sciadv.aav2002 – volume: 580 start-page: 71 year: 2015 ident: 10.1016/j.jallcom.2020.157978_bib21 article-title: High entropy alloy thin films deposited by magnetron sputtering of powder targets publication-title: Thin Solid Films doi: 10.1016/j.tsf.2015.02.070 – volume: 89 start-page: 123 year: 2017 ident: 10.1016/j.jallcom.2020.157978_bib43 article-title: Corrosion behavior and surface film characterization of TaNbHfZrTi high entropy alloy in aggressive nitric acid medium publication-title: Intermetallics doi: 10.1016/j.intermet.2017.06.002 – volume: 37 start-page: 444 issue: 5 year: 2005 ident: 10.1016/j.jallcom.2020.157978_bib38 article-title: An accurate semi-empirical equation for sputtering yields I: for argon ions publication-title: Surf. Interface Anal. doi: 10.1002/sia.2032 – ident: 10.1016/j.jallcom.2020.157978_bib42 – volume: 134 start-page: 891 issue: 3 year: 2018 ident: 10.1016/j.jallcom.2020.157978_bib54 article-title: Defects in high entropy alloy HfNbTaTiZr prepared by high pressure torsion publication-title: Acta Phys. Pol., A doi: 10.12693/APhysPolA.134.891 – volume: 509 start-page: 6043 issue: 20 year: 2011 ident: 10.1016/j.jallcom.2020.157978_bib5 article-title: Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2011.02.171 – volume: 33 start-page: 3247 issue: 19 year: 2018 ident: 10.1016/j.jallcom.2020.157978_bib27 article-title: Spark plasma sintering of gas atomized high-entropy alloy HfNbTaTiZr publication-title: J. Mater. Res. doi: 10.1557/jmr.2018.320 – volume: 654 start-page: 30 year: 2016 ident: 10.1016/j.jallcom.2020.157978_bib13 article-title: Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2015.12.017 – volume: 775 start-page: 667 year: 2019 ident: 10.1016/j.jallcom.2020.157978_bib15 article-title: Hydrogen sorption in TiZrNbHfTa high entropy alloy publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.10.108 – volume: 16 start-page: 4749 issue: 9 year: 2014 ident: 10.1016/j.jallcom.2020.157978_bib6 article-title: Multicomponent and high entropy alloys publication-title: Entropy doi: 10.3390/e16094749 – year: 1995 ident: 10.1016/j.jallcom.2020.157978_bib30 – ident: 10.1016/j.jallcom.2020.157978_bib39 – volume: 61 start-page: 1 year: 2014 ident: 10.1016/j.jallcom.2020.157978_bib4 article-title: Microstructures and properties of high-entropy alloys publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2013.10.001 – volume: 106 issue: 10 year: 2015 ident: 10.1016/j.jallcom.2020.157978_bib46 article-title: Non-equilibrium oxidation states of zirconium during early stages of metal oxidation publication-title: Appl. Phys. Lett. doi: 10.1063/1.4914180 – volume: vol. 1970 year: 2018 ident: 10.1016/j.jallcom.2020.157978_bib31 article-title: Positron annihilation lifetime and Doppler broadening spectroscopy at the ELBE facility doi: 10.1063/1.5040215 – volume: 8 start-page: 30 issue: 1 year: 2009 ident: 10.1016/j.jallcom.2020.157978_bib36 article-title: Power-law scaling and fractal nature of medium-range order in metallic glasses publication-title: Nat. Mater. doi: 10.1038/nmat2340 – volume: 142 start-page: 201 year: 2018 ident: 10.1016/j.jallcom.2020.157978_bib7 article-title: Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.09.035 – volume: 27 start-page: 659 year: 2020 ident: 10.1016/j.jallcom.2020.157978_bib11 article-title: Wear properties and synthesis of CrFeNiMoTi high entropy alloy coatings produced by TIG process publication-title: Indian J. Eng. Mater. Sci. – volume: 160 start-page: 158 year: 2018 ident: 10.1016/j.jallcom.2020.157978_bib3 article-title: Lattice distortion in a strong and ductile refractory high-entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.08.053 – volume: 109 start-page: 323 year: 2016 ident: 10.1016/j.jallcom.2020.157978_bib20 article-title: On the amorphous nature of sputtered thin film alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.02.035 – volume: 36 start-page: 555 issue: 1 year: 2006 ident: 10.1016/j.jallcom.2020.157978_bib17 article-title: Hydrogen IN metals: microstructural aspects publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev.matsci.36.090804.094451 – volume: 39 start-page: 1796 issue: 5 year: 2019 ident: 10.1016/j.jallcom.2020.157978_bib49 article-title: Thermodynamic assessment of the group IV, V and VI oxides for the design of oxidation resistant multi-principal component materials publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.11.004 – volume: 137 start-page: 177 issue: 2 year: 2020 ident: 10.1016/j.jallcom.2020.157978_bib34 article-title: PLRF code for decomposition of positron lifetime spectra publication-title: Acta Phys. Pol., A doi: 10.12693/APhysPolA.137.177 – volume: 159 start-page: 147 issue: Pt 2 year: 2015 ident: 10.1016/j.jallcom.2020.157978_bib45 article-title: Initial stages of oxide formation on the Zr surface at low oxygen pressure: an in situ FIM and XPS study publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2015.02.016 – volume: 797 start-page: 834 year: 2019 ident: 10.1016/j.jallcom.2020.157978_bib25 article-title: Investigation of structure and mechanical properties of TiZrHfNiCuCo high entropy alloy thin films synthesized by magnetron sputtering publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.05.043 – volume: 31 start-page: 1 issue: 1 year: 1984 ident: 10.1016/j.jallcom.2020.157978_bib37 article-title: Energy dependence of the ion-induced sputtering yields of monatomic solids publication-title: Atomic Data Nucl. Data Tables doi: 10.1016/0092-640X(84)90016-0 – volume: 105 start-page: 99 year: 2019 ident: 10.1016/j.jallcom.2020.157978_bib23 article-title: Microstructure and tribological properties of TiTaHfNbZr high entropy alloy coatings deposited on Ti 6Al 4V substrates publication-title: Intermetallics doi: 10.1016/j.intermet.2018.11.015 – volume: 455 start-page: 153 year: 2018 ident: 10.1016/j.jallcom.2020.157978_bib26 article-title: Thin films of AlCrFeCoNiCu high-entropy alloy by pulsed laser deposition publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.05.172 – volume: 161–163 start-page: 1143 year: 2000 ident: 10.1016/j.jallcom.2020.157978_bib32 article-title: The Rossendorf radiation source ELBE and its FEL projects publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms doi: 10.1016/S0168-583X(99)00909-X – volume: 32 start-page: 261 issue: 4 year: 1988 ident: 10.1016/j.jallcom.2020.157978_bib16 article-title: Hydrogen solubility and diffusivity in defective and amorphous metals publication-title: Prog. Mater. Sci. doi: 10.1016/0079-6425(88)90010-2 – volume: 137 start-page: 260 issue: 2 year: 2020 ident: 10.1016/j.jallcom.2020.157978_bib56 article-title: Behavior of positrons in the HfNbTaTiZr complex concentrated alloy publication-title: Acta Phys. Pol., A doi: 10.12693/APhysPolA.137.260 – volume: 47 start-page: 4062 issue: 9 year: 2012 ident: 10.1016/j.jallcom.2020.157978_bib9 article-title: Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy publication-title: J. Mater. Sci. doi: 10.1007/s10853-012-6260-2 – volume: 41 start-page: 96 year: 2013 ident: 10.1016/j.jallcom.2020.157978_bib19 article-title: More than entropy in high-entropy alloys: forming solid solutions or amorphous phase publication-title: Intermetallics doi: 10.1016/j.intermet.2013.05.002 – volume: 185 start-page: 1 issue: 1–2 year: 2012 ident: 10.1016/j.jallcom.2020.157978_bib40 article-title: Recommended Auger parameters for 42 elemental solids publication-title: J. Electron. Spectrosc. Relat. Phenom. doi: 10.1016/j.elspec.2011.12.001 – start-page: 1600 year: 1997 ident: 10.1016/j.jallcom.2020.157978_bib47 – volume: 10 start-page: 489 issue: 1 year: 2019 ident: 10.1016/j.jallcom.2020.157978_bib2 article-title: Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae publication-title: Nat. Commun. doi: 10.1038/s41467-019-08460-2 – volume: 49 start-page: 1992 issue: 6 year: 2018 ident: 10.1016/j.jallcom.2020.157978_bib24 article-title: Mechanical properties of TiTaHfNbZr high-entropy alloy coatings deposited on NiTi shape memory alloy substrates publication-title: Metall. Mater. Trans. doi: 10.1007/s11661-018-4605-4 – volume: 149 start-page: 108 year: 2018 ident: 10.1016/j.jallcom.2020.157978_bib35 article-title: Structure origin of a transition of classic-to-avalanche nucleation in Zr-Cu-Al bulk metallic glasses publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.02.028 – year: 2019 ident: 10.1016/j.jallcom.2020.157978_bib52 |
SSID | ssj0001931 |
Score | 2.497852 |
Snippet | High entropy alloys represent a new type of materials with a unique combination of physical properties originating from the occurrence of single-phase solid... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 157978 |
SubjectTerms | Cellular structure Clusters Film thickness HfNbTaTiZr High entropy alloys Magnetron sputtering Oxidation Physical properties Positron annihilation spectroscopy Room temperature Solid solutions Thin films Vacancies X-ray photoelectron spectroscopy Zirconium |
Title | Oxidation of amorphous HfNbTaTiZr high entropy alloy thin films prepared by DC magnetron sputtering |
URI | https://dx.doi.org/10.1016/j.jallcom.2020.157978 https://www.proquest.com/docview/2523166602 |
Volume | 869 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFH6ahhDsgKCANtgmH7imTW2ndo5TYSqbKAc6aeJi2bENqdo0ajuJXvjtPDsJG2jSpF0j24n8nt97jj9_H8AHk0pPTZol0nGW8KE2ibbcJNTInDtnbBrpi79MR5MrfnGdXe_BuLsLE2CVbexvYnqM1u2TQTubg7osB9_SnIYzP0xhjDN0vXCDnYvg5f3ftzAPLFCiah42TkLr21s8g3l_rheLABqhWDT1h5mIamv356f_InVMP-cv4UVbN5Kz5tNewZ6revBs3Mm19eDgDrNgD55GZGexeQ3F119lo5tEVp7o5QonFnf7ZOKnZqZn5fc1CZTFJPzlXdU7Eg7id2T7s6yILxfLDanXLqLUidmRj2Oy1D8qF_6fk00dRa7xfW_g6vzTbDxJWmWFpGBMbJMio4bpVFpnsWTzQuY2cJuJ1DOucUUzJxm3uDiFM1pg0TjKdY6ZTBTCy3Qk2VvYr1aVOwSSSWuGubO4jbTca4ODODtyEiOhl5ryI-DdfKqipR0P6hcL1eHL5qo1gwpmUI0ZjqD_t1vd8G481EF2xlL_OJDC3PBQ1-POuKpdwRtFcYcejlRT-u7xI7-H5zRgYAIRZ3YM-9v1jTvBImZrTqOXnsKTs8-Xk-kfv6LxIQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH4aQ2hwmKCAGBvMh13TprbTOMep29SxrRzopImLZcf2SNWmUVskeuFv59lJNpiQJu0a2U7k5_fD8efvAzjSsXBUx0kkLGcR7ysdKcN1RLXIuLXaxIG--Go8GF3zLzfJzRYM27swHlbZxP46podo3TzpNbPZq4qi9y3OqD_zwxTGOMOl9wyec3RfL2PQ_X2P88AKJcjmYevIN7-_xtObdqdqNvOoEYpVU7efpEFu7f8J6kGoDvnn7DXsNoUjOa6_7Q1s2bIDO8NWr60Dr_6iFuzAiwDtzFdvIf_6q6iFk8jCETVf4Mzidp-M3FhP1KT4viSes5j437yLakP8SfyGrH8UJXHFbL4i1dIGmDrRG3IyJHN1W1r_A52sqqByje97B9dnp5PhKGqkFaKcsXQd5QnVTMXCWIM1m0tFZjy5WRo7xhW6NLOCcYPemVqtUqwaB5nKMJWleepEPBDsPWyXi9J-AJIIo_uZNbiPNNwpjYNYM7ACQ6ETivI94O18yrzhHffyFzPZAsymsjGD9GaQtRn2oHvXraqJNx7rIFpjyX9WkMTk8FjXg9a4snHhlaS4RfdnqjH9-PSRD2FnNLm6lJfn44t9eEk9IMazciYHsL1e_rSfsKJZ689hxf4BRijyrw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxidation+of+amorphous+HfNbTaTiZr+high+entropy+alloy+thin+films+prepared+by+DC+magnetron+sputtering&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Hru%C5%A1ka%2C+Petr&rft.au=Luk%C3%A1%C4%8D%2C+Franti%C5%A1ek&rft.au=Cicho%C5%88%2C+Stanislav&rft.au=Vondr%C3%A1%C4%8Dek%2C+Martin&rft.date=2021-07-15&rft.pub=Elsevier+B.V&rft.issn=0925-8388&rft.eissn=1873-4669&rft.volume=869&rft_id=info:doi/10.1016%2Fj.jallcom.2020.157978&rft.externalDocID=S0925838820343425 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |