High-entropy FeCoNiMnCu alloy coating on ferritic stainless steel for solid oxide fuel cell interconnects

A high-entropy alloy coating of FeCoNiMnCu was prepared on SUS 430 steel via magnetron sputtering for solid oxide fuel cell (SOFC) interconnects application. The coated steels were subject to thermal exposure in air at 800 °C for up to 10 weeks. Phase constituents, microstructure and area specific r...

Full description

Saved in:
Bibliographic Details
Published inJournal of alloys and compounds Vol. 908; p. 164608
Main Authors Zhao, Qingqing, Geng, Shujiang, Zhang, Yu, Chen, Gang, Zhu, Shenglong, Wang, Fuhui
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 05.07.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A high-entropy alloy coating of FeCoNiMnCu was prepared on SUS 430 steel via magnetron sputtering for solid oxide fuel cell (SOFC) interconnects application. The coated steels were subject to thermal exposure in air at 800 °C for up to 10 weeks. Phase constituents, microstructure and area specific resistance (ASR) of the coated steel before and after the oxidation testing were investigated. Results indicated the alloy coating was thermally converted into a high-entropy spinel coating of (Fe,Co,Ni,Mn,Cu)3O4 after oxidation and a protective Cr2O3 layer was formed at the steel/coating interface. The (Fe,Co,Ni,Mn,Cu)3O4 spinel coating effectively suppressed growth of Cr2O3 layer and outward diffusion of Cr during the long term exposure. Scale ASR of the coated steel was as low as 6.59 mΩ·cm2 at 800 °C after 10 weeks. It indicates that (Fe,Co,Ni,Mn,Cu)3O4 is a promising coating material for SOFC metallic interconnects. •A high-entropy alloy coating of FeCoNiMnCu is sputtered on SUS430 steel.•The coating is thermally converted into a high-entropy (Fe,Co,Ni,Mn,Cu)3O4 spinel.•The spinel coating effectively suppresses growth of Cr2O3 and out-diffusion of Cr.•Area specific resistance of coated steel is sufficiently low after long term exposure.
AbstractList A high-entropy alloy coating of FeCoNiMnCu was prepared on SUS 430 steel via magnetron sputtering for solid oxide fuel cell (SOFC) interconnects application. The coated steels were subject to thermal exposure in air at 800 °C for up to 10 weeks. Phase constituents, microstructure and area specific resistance (ASR) of the coated steel before and after the oxidation testing were investigated. Results indicated the alloy coating was thermally converted into a high-entropy spinel coating of (Fe,Co,Ni,Mn,Cu)3O4 after oxidation and a protective Cr2O3 layer was formed at the steel/coating interface. The (Fe,Co,Ni,Mn,Cu)3O4 spinel coating effectively suppressed growth of Cr2O3 layer and outward diffusion of Cr during the long term exposure. Scale ASR of the coated steel was as low as 6.59 mΩ·cm2 at 800 °C after 10 weeks. It indicates that (Fe,Co,Ni,Mn,Cu)3O4 is a promising coating material for SOFC metallic interconnects. •A high-entropy alloy coating of FeCoNiMnCu is sputtered on SUS430 steel.•The coating is thermally converted into a high-entropy (Fe,Co,Ni,Mn,Cu)3O4 spinel.•The spinel coating effectively suppresses growth of Cr2O3 and out-diffusion of Cr.•Area specific resistance of coated steel is sufficiently low after long term exposure.
A high-entropy alloy coating of FeCoNiMnCu was prepared on SUS 430 steel via magnetron sputtering for solid oxide fuel cell (SOFC) interconnects application. The coated steels were subject to thermal exposure in air at 800 °C for up to 10 weeks. Phase constituents, microstructure and area specific resistance (ASR) of the coated steel before and after the oxidation testing were investigated. Results indicated the alloy coating was thermally converted into a high-entropy spinel coating of (Fe,Co,Ni,Mn,Cu)3O4 after oxidation and a protective Cr2O3 layer was formed at the steel/coating interface. The (Fe,Co,Ni,Mn,Cu)3O4 spinel coating effectively suppressed growth of Cr2O3 layer and outward diffusion of Cr during the long term exposure. Scale ASR of the coated steel was as low as 6.59 mΩ·cm2 at 800 °C after 10 weeks. It indicates that (Fe,Co,Ni,Mn,Cu)3O4 is a promising coating material for SOFC metallic interconnects.
ArticleNumber 164608
Author Zhu, Shenglong
Geng, Shujiang
Wang, Fuhui
Zhang, Yu
Chen, Gang
Zhao, Qingqing
Author_xml – sequence: 1
  givenname: Qingqing
  surname: Zhao
  fullname: Zhao, Qingqing
  organization: Shenyang National Laboratory for Materials Science, Northeastern University, No. 3-11 Wenhua Road, Shenyang 110819, China
– sequence: 2
  givenname: Shujiang
  surname: Geng
  fullname: Geng, Shujiang
  email: gengsj@smm.neu.edu.cn
  organization: Shenyang National Laboratory for Materials Science, Northeastern University, No. 3-11 Wenhua Road, Shenyang 110819, China
– sequence: 3
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  organization: Shenyang National Laboratory for Materials Science, Northeastern University, No. 3-11 Wenhua Road, Shenyang 110819, China
– sequence: 4
  givenname: Gang
  surname: Chen
  fullname: Chen, Gang
  organization: Shenyang National Laboratory for Materials Science, Northeastern University, No. 3-11 Wenhua Road, Shenyang 110819, China
– sequence: 5
  givenname: Shenglong
  surname: Zhu
  fullname: Zhu, Shenglong
  organization: Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
– sequence: 6
  givenname: Fuhui
  surname: Wang
  fullname: Wang, Fuhui
  organization: Shenyang National Laboratory for Materials Science, Northeastern University, No. 3-11 Wenhua Road, Shenyang 110819, China
BookMark eNqFkM1qWzEQRkVJoU6aRwgIur6OfmxdXbIowTRJIW037VrI0iiZiyI5klzit6-Cs-omqxmG73wD55ScpJyAkAvOlpxxdTkvZxujy09LwYRYcrVSTH8gC65HOayUmk7Igk1iPWip9SdyWuvMGOOT5AuCd_jwOEBqJe8O9AY2-Sf-SJs97Y35QF22DdMDzYkGKAUbOlqbxRSh1r4BRBpyoTVH9DS_oAca9v3oIEaKqUFxOSVwrX4mH4ONFc7f5hn5c_Pt9-ZuuP91-31zfT84Kcc2OCG99mC51MxvA3OjVGtuLaw5n5hTfuu43IZJWAZ6YnYchdIrwSAE72XHzsiXY--u5Oc91GbmvC-pvzRCqZ7mWo49tT6mXMm1FghmV_DJloPhzLxaNbN5s2perZqj1c5d_cc5bN1R7gYtxnfpr0cauoC_CMVUh5AceCzdkfEZ32n4B8Y7mlQ
CitedBy_id crossref_primary_10_1038_s41598_024_55331_y
crossref_primary_10_1016_j_jmrt_2023_12_218
crossref_primary_10_3390_ma15124081
crossref_primary_10_3390_ma17030632
crossref_primary_10_1002_srin_202300565
crossref_primary_10_1002_fuce_202300117
crossref_primary_10_1002_adem_202301934
crossref_primary_10_1016_j_ijhydene_2023_06_221
crossref_primary_10_1016_j_surfcoat_2025_131829
crossref_primary_10_1007_s12666_024_03469_8
crossref_primary_10_1016_j_ceramint_2022_09_159
crossref_primary_10_1016_j_jeurceramsoc_2023_05_002
crossref_primary_10_1016_j_mtcomm_2022_105283
crossref_primary_10_1016_j_jallcom_2024_177585
crossref_primary_10_1021_acsaem_4c02000
crossref_primary_10_1016_j_ijhydene_2025_02_433
crossref_primary_10_1016_j_ijhydene_2024_11_199
crossref_primary_10_3390_ma15248783
crossref_primary_10_1016_j_corcom_2023_12_004
crossref_primary_10_1016_j_jallcom_2022_166351
crossref_primary_10_1016_j_surfcoat_2024_131172
crossref_primary_10_1002_srin_202300216
crossref_primary_10_1007_s40033_024_00788_4
crossref_primary_10_1016_j_ceramint_2023_12_293
crossref_primary_10_3390_e27020101
crossref_primary_10_1002_adfm_202310402
crossref_primary_10_1016_j_apcatb_2023_122595
Cites_doi 10.1016/j.ijhydene.2013.09.044
10.1016/j.jpowsour.2012.07.091
10.1016/j.jpowsour.2015.06.139
10.1016/j.matlet.2017.12.148
10.1016/j.jallcom.2020.156158
10.1016/j.corsci.2021.109837
10.1016/j.ijhydene.2019.03.203
10.1016/j.jpowsour.2009.09.069
10.1103/PhysRevB.72.115101
10.1111/j.1551-2916.2007.01522.x
10.1016/j.jpowsour.2008.06.065
10.1111/j.1551-2916.2011.04749.x
10.1016/j.ijhydene.2013.10.042
10.1016/j.ijhydene.2015.02.052
10.1016/j.jpowsour.2008.05.024
10.1016/j.ijhydene.2014.08.105
10.1016/j.ijhydene.2014.09.138
10.1016/j.jpowsour.2013.05.109
10.1016/j.actamat.2010.08.032
10.1007/BF00309461
10.1016/S0921-5093(02)00736-0
10.1111/jace.12254
10.1016/j.actamat.2013.04.058
10.1149/1.2434690
10.1038/ncomms9485
10.1016/S1359-6454(97)00346-7
10.1111/jace.16075
10.1016/j.jallcom.2018.07.333
10.1016/j.jpowsour.2005.03.137
10.1016/j.jpowsour.2018.01.072
10.1016/j.ijhydene.2016.03.051
10.1016/j.jpowsour.2010.11.078
10.1007/s11085-018-9851-8
10.1016/j.ijhydene.2018.12.173
10.1016/j.ceramint.2016.11.135
10.1016/j.jpowsour.2009.12.007
10.1016/j.jpowsour.2019.01.045
10.1016/j.corsci.2018.01.022
10.1016/j.ijhydene.2017.01.178
10.1016/j.jpowsour.2013.01.067
10.1088/1757-899X/104/1/012017
10.1149/1.1595659
10.1016/j.msea.2005.02.047
10.1016/j.ijhydene.2010.04.113
10.1016/j.jpowsour.2012.05.013
10.1149/1.1797031
10.1016/0001-6160(61)90138-9
10.1016/j.jpowsour.2016.09.136
10.1016/j.jpowsour.2010.05.031
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier BV Jul 5, 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier BV Jul 5, 2022
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/j.jallcom.2022.164608
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4669
ExternalDocumentID 10_1016_j_jallcom_2022_164608
S0925838822009999
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SMS
SSH
T9H
WUQ
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c337t-c23d8dea1380dbf0c73651aae51190c6dbc13bf92a0e890a77268420effdd3a13
IEDL.DBID .~1
ISSN 0925-8388
IngestDate Fri Jul 25 02:25:47 EDT 2025
Tue Jul 01 03:34:18 EDT 2025
Thu Apr 24 23:06:22 EDT 2025
Fri Feb 23 02:41:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords High-entropy alloy coating
High-entropy spinel coating
Electrical property
Oxidation
Solid oxide fuel cell interconnect
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-c23d8dea1380dbf0c73651aae51190c6dbc13bf92a0e890a77268420effdd3a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2667261837
PQPubID 2045454
ParticipantIDs proquest_journals_2667261837
crossref_primary_10_1016_j_jallcom_2022_164608
crossref_citationtrail_10_1016_j_jallcom_2022_164608
elsevier_sciencedirect_doi_10_1016_j_jallcom_2022_164608
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-05
PublicationDateYYYYMMDD 2022-07-05
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-05
  day: 05
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Journal of alloys and compounds
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Thaheem, Joh, Noh, Lee (bib18) 2019; 44
Grolig, Alnegren, Froitzheim, Svensson (bib12) 2015; 297
Masi, Bellusci, McPhail, Padella, Reale, Hong, Steinberger-Wilckens, Carlini (bib20) 2017; 43
Magdefrau, Chen, Sun, Yamanis, Aindow (bib42) 2013; 227
Dąbrowa, Stygar, Mikuła, Knapik, Mroczka, Tejchman, Danielewski, Martin (bib23) 2018; 216
Geng, Zhao, Li, Mu, Chen, Wang, Zhu (bib9) 2017; 42
Liu, Fergus, Cruz, Jayaram (bib29) 2013; 96
You, Zhang, Zhang, Zeng (bib14) 2018; 90
Park, Shin, Lee, Kim, An, Ji, Kim, Son, Lee, Kim, Lee, Yoon (bib6) 2018; 134
Shaigan, Qu, Ivey, Chen (bib7) 2010; 195
Geng, Li, Ma, Wang, Li, Wang (bib24) 2010; 195
Urusov (bib40) 1983; 9
Stanislowski, Wessel, Hilpert, Markus, Singheiser (bib3) 2007; 154
Zhu, Deevi (bib48) 2003; 348
Schmidt, Basu, Brinkman (bib49) 2005; 72
Zhao, Geng, Chen, Wang (bib21) 2019; 414
Zhao, Geng, Chen, Wang (bib43) 2019; 44
Petric, Ling (bib15) 2007; 90
Miguel-Pérez, Martínez-Amesti, Nó, Larrañaga, Arriortua (bib39) 2013; 243
Wang, Jiang, Duan, Mao, Dong, Dong, Wang, Luo, Liu, Qi (bib37) 2020; 844
Morán-Ruiz, Vidal, Larrañaga, Porras-Vázquez, Slater, Arriortua (bib38) 2015; 40
Hallström, Höglund, Ågren (bib30) 2011; 59
Qu, Jian, Hill, Ivey (bib16) 2006; 153
Sachitanand, Sattari, Svensson, Froitzheim (bib4) 2013; 38
Zhao, Geng, Chen, Wang (bib32) 2021; 192
Wang, Liu, Fergus, Stevenson (bib41) 2011; 94
Yang, Weil, Paxton, Stevenson (bib2) 2003; 150
Liu, Gao, Dahm, Wang (bib26) 1998; 46
Hua, Zhang, Wu, Pu, Chi, Jian (bib47) 2010; 195
Uehara, Yasuda, Okamoto, Baba (bib10) 2011; 196
Shaigan, Ivey, Chen (bib35) 2008; 185
Tsai, Tsai, Yeh (bib46) 2013; 61
Zhao, Geng, Chen, Wang (bib13) 2018; 769
Hong, Chen, Shen, Han, Fahrenholtz, Zhang (bib31) 2018
Yang, Hardy, Walker, Xia, Simner, Stevenson (bib36) 2004; 151
Puranen, Pihlatie, Lagerbom, Bolelli, Laakso, Hyvärinen, Kylmälahti, Himanen, Kiviaho, Lusvarghi, Vuoristo (bib19) 2014; 39
Geng, Li, Ma, Zhu, Wang (bib25) 2013; 232
Shong, Liu, Wu, Liu, Yang (bib34) 2014; 39
Hirano, Cohen, Averbach (bib33) 1961; 9
Zhang, Yu, Zeng, Parbey, Xiao, Li, Li, Andersson (bib5) 2018; 381
Fergus (bib1) 2005; 397
Brylewski, Kruk, Bobruk, Adamczyk, Partyka, Rutkowski (bib44) 2016; 333
Macauley, Gannon, Deibert, White (bib27) 2011; 36
Jiang, Chen (bib8) 2014; 39
Szymczewska, Molin, Venkatachalam, Chen, Jasinski, Hendriksen (bib11) 2016
Rost, Sachet, Borman, Moballegh, Dickey, Hou, Jones, Curtarolo, Maria (bib22) 2015; 6
Xiao, Zhang, Xiong, Chi, Pu, Jian (bib17) 2016; 41
Geng, Qi, Xiang, Zhu, Wang (bib45) 2012; 215
Shaigan, Ivey, Chen (bib28) 2008; 183
Zhao (10.1016/j.jallcom.2022.164608_bib43) 2019; 44
Shong (10.1016/j.jallcom.2022.164608_bib34) 2014; 39
Hua (10.1016/j.jallcom.2022.164608_bib47) 2010; 195
Uehara (10.1016/j.jallcom.2022.164608_bib10) 2011; 196
Xiao (10.1016/j.jallcom.2022.164608_bib17) 2016; 41
Wang (10.1016/j.jallcom.2022.164608_bib37) 2020; 844
Hong (10.1016/j.jallcom.2022.164608_bib31) 2018
Yang (10.1016/j.jallcom.2022.164608_bib2) 2003; 150
Fergus (10.1016/j.jallcom.2022.164608_bib1) 2005; 397
Schmidt (10.1016/j.jallcom.2022.164608_bib49) 2005; 72
Tsai (10.1016/j.jallcom.2022.164608_bib46) 2013; 61
Geng (10.1016/j.jallcom.2022.164608_bib25) 2013; 232
Morán-Ruiz (10.1016/j.jallcom.2022.164608_bib38) 2015; 40
Zhao (10.1016/j.jallcom.2022.164608_bib13) 2018; 769
Miguel-Pérez (10.1016/j.jallcom.2022.164608_bib39) 2013; 243
Thaheem (10.1016/j.jallcom.2022.164608_bib18) 2019; 44
Masi (10.1016/j.jallcom.2022.164608_bib20) 2017; 43
Hirano (10.1016/j.jallcom.2022.164608_bib33) 1961; 9
Grolig (10.1016/j.jallcom.2022.164608_bib12) 2015; 297
Geng (10.1016/j.jallcom.2022.164608_bib24) 2010; 195
Yang (10.1016/j.jallcom.2022.164608_bib36) 2004; 151
Zhao (10.1016/j.jallcom.2022.164608_bib32) 2021; 192
Rost (10.1016/j.jallcom.2022.164608_bib22) 2015; 6
Shaigan (10.1016/j.jallcom.2022.164608_bib28) 2008; 183
Jiang (10.1016/j.jallcom.2022.164608_bib8) 2014; 39
Geng (10.1016/j.jallcom.2022.164608_bib9) 2017; 42
Petric (10.1016/j.jallcom.2022.164608_bib15) 2007; 90
Szymczewska (10.1016/j.jallcom.2022.164608_bib11) 2016
Stanislowski (10.1016/j.jallcom.2022.164608_bib3) 2007; 154
Liu (10.1016/j.jallcom.2022.164608_bib26) 1998; 46
Hallström (10.1016/j.jallcom.2022.164608_bib30) 2011; 59
Geng (10.1016/j.jallcom.2022.164608_bib45) 2012; 215
Shaigan (10.1016/j.jallcom.2022.164608_bib35) 2008; 185
Puranen (10.1016/j.jallcom.2022.164608_bib19) 2014; 39
Brylewski (10.1016/j.jallcom.2022.164608_bib44) 2016; 333
Wang (10.1016/j.jallcom.2022.164608_bib41) 2011; 94
Park (10.1016/j.jallcom.2022.164608_bib6) 2018; 134
Dąbrowa (10.1016/j.jallcom.2022.164608_bib23) 2018; 216
Zhu (10.1016/j.jallcom.2022.164608_bib48) 2003; 348
Qu (10.1016/j.jallcom.2022.164608_bib16) 2006; 153
You (10.1016/j.jallcom.2022.164608_bib14) 2018; 90
Sachitanand (10.1016/j.jallcom.2022.164608_bib4) 2013; 38
Liu (10.1016/j.jallcom.2022.164608_bib29) 2013; 96
Shaigan (10.1016/j.jallcom.2022.164608_bib7) 2010; 195
Magdefrau (10.1016/j.jallcom.2022.164608_bib42) 2013; 227
Zhao (10.1016/j.jallcom.2022.164608_bib21) 2019; 414
Urusov (10.1016/j.jallcom.2022.164608_bib40) 1983; 9
Macauley (10.1016/j.jallcom.2022.164608_bib27) 2011; 36
Zhang (10.1016/j.jallcom.2022.164608_bib5) 2018; 381
References_xml – volume: 90
  start-page: 499
  year: 2018
  end-page: 513
  ident: bib14
  article-title: Oxidation behavior of NiFe
  publication-title: Oxid. Met.
– volume: 196
  start-page: 7251
  year: 2011
  end-page: 7256
  ident: bib10
  article-title: Effect of Mn–Co spinel coating for Fe–Cr ferritic alloys ZMG232L and 232J3 for solid oxide fuel cell interconnects on oxidation behavior and Cr-evaporation
  publication-title: J. Power Sources
– volume: 150
  start-page: A1188
  year: 2003
  end-page: A1201
  ident: bib2
  article-title: Selection and evaluation of heat-resistant alloys for SOFC interconnect applications
  publication-title: J. Electrochem. Soc.
– volume: 94
  start-page: 4490
  year: 2011
  end-page: 4495
  ident: bib41
  article-title: Interactions between SOFC interconnect coating materials and chromia
  publication-title: J. Am. Ceram. Soc.
– year: 2018
  ident: bib31
  article-title: Microstructural evolution and mechanical properties of (Mg,Co,Ni,Cu,Zn)O high-entropy ceramics
  publication-title: J. Am. Ceram. Soc.
– volume: 195
  start-page: 3256
  year: 2010
  end-page: 3260
  ident: bib24
  article-title: Evaluation of electrodeposited Fe–Ni alloy on ferritic stainless steel solid oxide fuel cell interconnect
  publication-title: J. Power Sources
– volume: 185
  start-page: 331
  year: 2008
  end-page: 337
  ident: bib35
  article-title: Co/LaCrO3 composite coatings for AISI 430 stainless steel solid oxide fuel cell interconnects
  publication-title: J. Power Sources
– volume: 153
  start-page: 114
  year: 2006
  end-page: 124
  ident: bib16
  article-title: Electrical and microstructural characterization of spinel phases as potential coatings for SOFC metallic interconnects
  publication-title: J. Power Sources
– volume: 41
  start-page: 9611
  year: 2016
  end-page: 9618
  ident: bib17
  article-title: Oxidation behavior of Cu-doped MnCo
  publication-title: Int. J. Hydrog. Energy
– volume: 40
  start-page: 4804
  year: 2015
  end-page: 4818
  ident: bib38
  article-title: Evaluation of using protective/conductive coating on Fe-22Cr mesh as a composite cathode contact material for intermediate solid oxide fuel cells
  publication-title: Int. J. Hydrog. Energy
– volume: 72
  year: 2005
  ident: bib49
  article-title: Small polaron hopping in spinel manganates
  publication-title: Phys. Rev. B
– volume: 195
  start-page: 7375
  year: 2010
  end-page: 7379
  ident: bib47
  article-title: A promising NiCo
  publication-title: J. Power Sources
– volume: 39
  start-page: 17284
  year: 2014
  end-page: 17294
  ident: bib19
  article-title: Post-mortem evaluation of oxidized atmospheric plasma sprayed Mn–Co–Fe oxide spinel coatings on SOFC interconnectors
  publication-title: Int. J. Hydrog. Energy
– volume: 39
  start-page: 505
  year: 2014
  end-page: 531
  ident: bib8
  article-title: Chromium deposition and poisoning of cathodes of solid oxide fuel cells – a review
  publication-title: Int. J. Hydrog. Energy
– volume: 6
  start-page: 8485
  year: 2015
  ident: bib22
  article-title: Entropy-stabilized oxides
  publication-title: Nat. Commun.
– volume: 46
  start-page: 1691
  year: 1998
  end-page: 1700
  ident: bib26
  article-title: Oxidation behaviour of sputter-deposited Ni-Cr-Al micro-crystalline coatings
  publication-title: Acta Mater.
– volume: 216
  start-page: 32
  year: 2018
  end-page: 36
  ident: bib23
  article-title: Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)
  publication-title: Mater. Lett.
– volume: 151
  start-page: A1825
  year: 2004
  end-page: A1831
  ident: bib36
  article-title: Structure and conductivity of thermally grown scales on ferritic Fe-Cr-Mn steel for SOFC interconnect applications
  publication-title: J. Electrochem. Soc.
– volume: 243
  start-page: 419
  year: 2013
  end-page: 430
  ident: bib39
  article-title: The effect of doping (Mn,B)
  publication-title: J. Power Sources
– volume: 348
  start-page: 227
  year: 2003
  end-page: 243
  ident: bib48
  article-title: Development of interconnect materials for solid oxide fuel cells
  publication-title: Mater. Sci. Eng.: A
– volume: 43
  start-page: 2829
  year: 2017
  end-page: 2835
  ident: bib20
  article-title: The effect of chemical composition on high temperature behaviour of Fe and Cu doped Mn-Co spinels
  publication-title: Ceram. Int.
– volume: 215
  start-page: 274
  year: 2012
  end-page: 278
  ident: bib45
  article-title: Oxidation and electrical behavior of ferritic stainless steel interconnect with Fe–Co–Ni coating by electroplating
  publication-title: J. Power Sources
– volume: 134
  start-page: 17
  year: 2018
  end-page: 22
  ident: bib6
  article-title: Thermal degradation mechanism of ferritic alloy (Crofer 22 APU)
  publication-title: Corros. Sci.
– volume: 9
  start-page: 1
  year: 1983
  end-page: 5
  ident: bib40
  article-title: Interaction of cations on octahedral and tetrahedral sites in simple spinels
  publication-title: Phys. Chem. Miner.
– volume: 297
  start-page: 534
  year: 2015
  end-page: 539
  ident: bib12
  article-title: Copper iron conversion coating for solid oxide fuel cell interconnects
  publication-title: J. Power Sources
– volume: 769
  start-page: 120
  year: 2018
  end-page: 129
  ident: bib13
  article-title: Application of sputtered NiFe
  publication-title: J. Alloy. Compd.
– volume: 42
  start-page: 10298
  year: 2017
  end-page: 10307
  ident: bib9
  article-title: Sputtered MnCu metallic coating on ferritic stainless steel for solid oxide fuel cell interconnects application
  publication-title: Int. J. Hydrog. Energy
– volume: 154
  start-page: A295
  year: 2007
  end-page: A306
  ident: bib3
  article-title: Chromium vaporization from high-temperature alloys
  publication-title: J. Electrochem. Soc.
– volume: 96
  start-page: 1841
  year: 2013
  end-page: 1846
  ident: bib29
  article-title: Electrical properties, cation distributions, and thermal expansion of manganese cobalt chromite spinel oxides
  publication-title: J. Am. Ceram. Soc.
– volume: 333
  start-page: 145
  year: 2016
  end-page: 155
  ident: bib44
  article-title: Structure and electrical properties of Cu-doped Mn-Co-O spinel prepared via soft chemistry and its application in intermediate-temperature solid oxide fuel cell interconnects
  publication-title: J. Power Sources
– volume: 39
  start-page: 19737
  year: 2014
  end-page: 19746
  ident: bib34
  article-title: Oxidation behavior of nickel coating on ferritic stainless steel interconnect for SOFC application
  publication-title: Int. J. Hydrog. Energy
– volume: 227
  start-page: 318
  year: 2013
  end-page: 326
  ident: bib42
  article-title: Formation of spinel reaction layers in manganese cobaltite – coated Crofer22 APU for solid oxide fuel cell interconnects
  publication-title: J. Power Sources
– volume: 59
  start-page: 53
  year: 2011
  end-page: 60
  ident: bib30
  article-title: Modeling of iron diffusion in the iron oxides magnetite and hematite with variable stoichiometry
  publication-title: Acta Mater.
– volume: 38
  start-page: 15328
  year: 2013
  end-page: 15334
  ident: bib4
  article-title: Evaluation of the oxidation and Cr evaporation properties of selected FeCr alloys used as SOFC interconnects
  publication-title: Int. J. Hydrog. Energy
– volume: 61
  start-page: 4887
  year: 2013
  end-page: 4897
  ident: bib46
  article-title: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys
  publication-title: Acta Mater.
– volume: 414
  start-page: 530
  year: 2019
  end-page: 539
  ident: bib21
  article-title: FeCoNi converting coating for solid oxide fuel cell steel interconnect application
  publication-title: J. Power Sources
– volume: 183
  start-page: 651
  year: 2008
  end-page: 659
  ident: bib28
  article-title: Oxidation and electrical behavior of nickel/lanthanum chromite-coated stainless steel interconnects
  publication-title: J. Power Sources
– volume: 844
  year: 2020
  ident: bib37
  article-title: Spinel-structured high entropy oxide (FeCoNiCrMn)
  publication-title: J. Alloy. Compd.
– volume: 9
  start-page: 440
  year: 1961
  end-page: 445
  ident: bib33
  article-title: Diffusion of nickel into iron
  publication-title: Acta Metall.
– year: 2016
  ident: bib11
  article-title: Assesment of (Mn,Co)
  publication-title: IOP Conf. Ser.: Mater. Sci. Eng.
– volume: 44
  start-page: 13744
  year: 2019
  end-page: 13756
  ident: bib43
  article-title: Influence of preoxidation on high temperature behavior of NiFe
  publication-title: Int. J. Hydrog. Energy
– volume: 90
  start-page: 1515
  year: 2007
  end-page: 1520
  ident: bib15
  article-title: Electrical conductivity and thermal expansion of spinels at elevated temperatures
  publication-title: J. Am. Ceram. Soc.
– volume: 44
  start-page: 4293
  year: 2019
  end-page: 4303
  ident: bib18
  article-title: Highly conductive and stable Mn
  publication-title: Int. J. Hydrog. Energy
– volume: 36
  start-page: 4540
  year: 2011
  end-page: 4548
  ident: bib27
  article-title: The influence of pre-treatment on the oxidation behavior of Co coated SOFC interconnects
  publication-title: Int. J. Hydrog. Energy
– volume: 381
  start-page: 26
  year: 2018
  end-page: 29
  ident: bib5
  article-title: Mechanism of chromium poisoning the conventional cathode material for solid oxide fuel cells
  publication-title: J. Power Sources
– volume: 232
  start-page: 66
  year: 2013
  end-page: 73
  ident: bib25
  article-title: Sputtered nanocrystalline coating of a low-Cr alloy for solid oxide fuel cell interconnects application
  publication-title: J. Power Sources
– volume: 195
  start-page: 1529
  year: 2010
  end-page: 1542
  ident: bib7
  article-title: A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects
  publication-title: J. Power Sources
– volume: 192
  year: 2021
  ident: bib32
  article-title: Comparison of electroplating and sputtering Ni for Ni/NiFe2 dual layer coating on ferritic stainless steel interconnect
  publication-title: Corros. Sci.
– volume: 397
  start-page: 271
  year: 2005
  end-page: 283
  ident: bib1
  article-title: Metallic interconnects for solid oxide fuel cells
  publication-title: Mater. Sci. Eng.: A
– volume: 38
  start-page: 15328
  issue: 35
  year: 2013
  ident: 10.1016/j.jallcom.2022.164608_bib4
  article-title: Evaluation of the oxidation and Cr evaporation properties of selected FeCr alloys used as SOFC interconnects
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2013.09.044
– volume: 227
  start-page: 318
  year: 2013
  ident: 10.1016/j.jallcom.2022.164608_bib42
  article-title: Formation of spinel reaction layers in manganese cobaltite – coated Crofer22 APU for solid oxide fuel cell interconnects
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.07.091
– volume: 297
  start-page: 534
  year: 2015
  ident: 10.1016/j.jallcom.2022.164608_bib12
  article-title: Copper iron conversion coating for solid oxide fuel cell interconnects
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.06.139
– volume: 216
  start-page: 32
  year: 2018
  ident: 10.1016/j.jallcom.2022.164608_bib23
  article-title: Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.12.148
– volume: 844
  year: 2020
  ident: 10.1016/j.jallcom.2022.164608_bib37
  article-title: Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2020.156158
– volume: 192
  year: 2021
  ident: 10.1016/j.jallcom.2022.164608_bib32
  article-title: Comparison of electroplating and sputtering Ni for Ni/NiFe2 dual layer coating on ferritic stainless steel interconnect
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2021.109837
– volume: 44
  start-page: 13744
  issue: 26
  year: 2019
  ident: 10.1016/j.jallcom.2022.164608_bib43
  article-title: Influence of preoxidation on high temperature behavior of NiFe2 coated SOFC interconnect steel
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.03.203
– volume: 195
  start-page: 1529
  issue: 6
  year: 2010
  ident: 10.1016/j.jallcom.2022.164608_bib7
  article-title: A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.09.069
– volume: 72
  issue: 11
  year: 2005
  ident: 10.1016/j.jallcom.2022.164608_bib49
  article-title: Small polaron hopping in spinel manganates
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.115101
– volume: 90
  start-page: 1515
  issue: 5
  year: 2007
  ident: 10.1016/j.jallcom.2022.164608_bib15
  article-title: Electrical conductivity and thermal expansion of spinels at elevated temperatures
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2007.01522.x
– volume: 185
  start-page: 331
  issue: 1
  year: 2008
  ident: 10.1016/j.jallcom.2022.164608_bib35
  article-title: Co/LaCrO3 composite coatings for AISI 430 stainless steel solid oxide fuel cell interconnects
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.06.065
– volume: 94
  start-page: 4490
  issue: 12
  year: 2011
  ident: 10.1016/j.jallcom.2022.164608_bib41
  article-title: Interactions between SOFC interconnect coating materials and chromia
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2011.04749.x
– volume: 39
  start-page: 505
  issue: 1
  year: 2014
  ident: 10.1016/j.jallcom.2022.164608_bib8
  article-title: Chromium deposition and poisoning of cathodes of solid oxide fuel cells – a review
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2013.10.042
– volume: 40
  start-page: 4804
  issue: 14
  year: 2015
  ident: 10.1016/j.jallcom.2022.164608_bib38
  article-title: Evaluation of using protective/conductive coating on Fe-22Cr mesh as a composite cathode contact material for intermediate solid oxide fuel cells
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2015.02.052
– volume: 183
  start-page: 651
  issue: 2
  year: 2008
  ident: 10.1016/j.jallcom.2022.164608_bib28
  article-title: Oxidation and electrical behavior of nickel/lanthanum chromite-coated stainless steel interconnects
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.05.024
– volume: 39
  start-page: 17284
  issue: 30
  year: 2014
  ident: 10.1016/j.jallcom.2022.164608_bib19
  article-title: Post-mortem evaluation of oxidized atmospheric plasma sprayed Mn–Co–Fe oxide spinel coatings on SOFC interconnectors
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2014.08.105
– volume: 39
  start-page: 19737
  issue: 34
  year: 2014
  ident: 10.1016/j.jallcom.2022.164608_bib34
  article-title: Oxidation behavior of nickel coating on ferritic stainless steel interconnect for SOFC application
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2014.09.138
– volume: 243
  start-page: 419
  year: 2013
  ident: 10.1016/j.jallcom.2022.164608_bib39
  article-title: The effect of doping (Mn,B)3O4 materials as protective layers in different metallic interconnects for solid oxide fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.05.109
– volume: 59
  start-page: 53
  issue: 1
  year: 2011
  ident: 10.1016/j.jallcom.2022.164608_bib30
  article-title: Modeling of iron diffusion in the iron oxides magnetite and hematite with variable stoichiometry
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.08.032
– volume: 9
  start-page: 1
  issue: 1
  year: 1983
  ident: 10.1016/j.jallcom.2022.164608_bib40
  article-title: Interaction of cations on octahedral and tetrahedral sites in simple spinels
  publication-title: Phys. Chem. Miner.
  doi: 10.1007/BF00309461
– volume: 348
  start-page: 227
  issue: 1–2
  year: 2003
  ident: 10.1016/j.jallcom.2022.164608_bib48
  article-title: Development of interconnect materials for solid oxide fuel cells
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/S0921-5093(02)00736-0
– volume: 96
  start-page: 1841
  issue: 6
  year: 2013
  ident: 10.1016/j.jallcom.2022.164608_bib29
  article-title: Electrical properties, cation distributions, and thermal expansion of manganese cobalt chromite spinel oxides
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.12254
– volume: 61
  start-page: 4887
  issue: 13
  year: 2013
  ident: 10.1016/j.jallcom.2022.164608_bib46
  article-title: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.04.058
– volume: 154
  start-page: A295
  issue: 4
  year: 2007
  ident: 10.1016/j.jallcom.2022.164608_bib3
  article-title: Chromium vaporization from high-temperature alloys
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2434690
– volume: 6
  start-page: 8485
  year: 2015
  ident: 10.1016/j.jallcom.2022.164608_bib22
  article-title: Entropy-stabilized oxides
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9485
– volume: 46
  start-page: 1691
  issue: 5
  year: 1998
  ident: 10.1016/j.jallcom.2022.164608_bib26
  article-title: Oxidation behaviour of sputter-deposited Ni-Cr-Al micro-crystalline coatings
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(97)00346-7
– year: 2018
  ident: 10.1016/j.jallcom.2022.164608_bib31
  article-title: Microstructural evolution and mechanical properties of (Mg,Co,Ni,Cu,Zn)O high-entropy ceramics
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.16075
– volume: 769
  start-page: 120
  year: 2018
  ident: 10.1016/j.jallcom.2022.164608_bib13
  article-title: Application of sputtered NiFe2 alloy coating for SOFC interconnect steel
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2018.07.333
– volume: 153
  start-page: 114
  issue: 1
  year: 2006
  ident: 10.1016/j.jallcom.2022.164608_bib16
  article-title: Electrical and microstructural characterization of spinel phases as potential coatings for SOFC metallic interconnects
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.03.137
– volume: 381
  start-page: 26
  year: 2018
  ident: 10.1016/j.jallcom.2022.164608_bib5
  article-title: Mechanism of chromium poisoning the conventional cathode material for solid oxide fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.01.072
– volume: 41
  start-page: 9611
  issue: 22
  year: 2016
  ident: 10.1016/j.jallcom.2022.164608_bib17
  article-title: Oxidation behavior of Cu-doped MnCo2O4 spinel coating on ferritic stainless steels for solid oxide fuel cell interconnects
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2016.03.051
– volume: 196
  start-page: 7251
  issue: 17
  year: 2011
  ident: 10.1016/j.jallcom.2022.164608_bib10
  article-title: Effect of Mn–Co spinel coating for Fe–Cr ferritic alloys ZMG232L and 232J3 for solid oxide fuel cell interconnects on oxidation behavior and Cr-evaporation
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.11.078
– volume: 90
  start-page: 499
  issue: 3–4
  year: 2018
  ident: 10.1016/j.jallcom.2022.164608_bib14
  article-title: Oxidation behavior of NiFe2O4 spinel-coated interconnects in wet air
  publication-title: Oxid. Met.
  doi: 10.1007/s11085-018-9851-8
– volume: 44
  start-page: 4293
  issue: 8
  year: 2019
  ident: 10.1016/j.jallcom.2022.164608_bib18
  article-title: Highly conductive and stable Mn1.35Co1.35Cu0.2Y0.1O4 spinel protective coating on commercial ferritic stainless steels for intermediate-temperature solid oxide fuel cell interconnect applications
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2018.12.173
– volume: 43
  start-page: 2829
  issue: 2
  year: 2017
  ident: 10.1016/j.jallcom.2022.164608_bib20
  article-title: The effect of chemical composition on high temperature behaviour of Fe and Cu doped Mn-Co spinels
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.11.135
– volume: 195
  start-page: 3256
  issue: 10
  year: 2010
  ident: 10.1016/j.jallcom.2022.164608_bib24
  article-title: Evaluation of electrodeposited Fe–Ni alloy on ferritic stainless steel solid oxide fuel cell interconnect
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.12.007
– volume: 414
  start-page: 530
  year: 2019
  ident: 10.1016/j.jallcom.2022.164608_bib21
  article-title: FeCoNi converting coating for solid oxide fuel cell steel interconnect application
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.01.045
– volume: 134
  start-page: 17
  year: 2018
  ident: 10.1016/j.jallcom.2022.164608_bib6
  article-title: Thermal degradation mechanism of ferritic alloy (Crofer 22 APU)
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2018.01.022
– volume: 42
  start-page: 10298
  issue: 15
  year: 2017
  ident: 10.1016/j.jallcom.2022.164608_bib9
  article-title: Sputtered MnCu metallic coating on ferritic stainless steel for solid oxide fuel cell interconnects application
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2017.01.178
– volume: 232
  start-page: 66
  year: 2013
  ident: 10.1016/j.jallcom.2022.164608_bib25
  article-title: Sputtered nanocrystalline coating of a low-Cr alloy for solid oxide fuel cell interconnects application
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.01.067
– year: 2016
  ident: 10.1016/j.jallcom.2022.164608_bib11
  article-title: Assesment of (Mn,Co)3O4 powders for possible coating material for SOFC/SOEC interconnects
  publication-title: IOP Conf. Ser.: Mater. Sci. Eng.
  doi: 10.1088/1757-899X/104/1/012017
– volume: 150
  start-page: A1188
  issue: 9
  year: 2003
  ident: 10.1016/j.jallcom.2022.164608_bib2
  article-title: Selection and evaluation of heat-resistant alloys for SOFC interconnect applications
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1595659
– volume: 397
  start-page: 271
  issue: 1–2
  year: 2005
  ident: 10.1016/j.jallcom.2022.164608_bib1
  article-title: Metallic interconnects for solid oxide fuel cells
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/j.msea.2005.02.047
– volume: 36
  start-page: 4540
  issue: 7
  year: 2011
  ident: 10.1016/j.jallcom.2022.164608_bib27
  article-title: The influence of pre-treatment on the oxidation behavior of Co coated SOFC interconnects
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2010.04.113
– volume: 215
  start-page: 274
  year: 2012
  ident: 10.1016/j.jallcom.2022.164608_bib45
  article-title: Oxidation and electrical behavior of ferritic stainless steel interconnect with Fe–Co–Ni coating by electroplating
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.05.013
– volume: 151
  start-page: A1825
  issue: 11
  year: 2004
  ident: 10.1016/j.jallcom.2022.164608_bib36
  article-title: Structure and conductivity of thermally grown scales on ferritic Fe-Cr-Mn steel for SOFC interconnect applications
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1797031
– volume: 9
  start-page: 440
  issue: 5
  year: 1961
  ident: 10.1016/j.jallcom.2022.164608_bib33
  article-title: Diffusion of nickel into iron
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(61)90138-9
– volume: 333
  start-page: 145
  year: 2016
  ident: 10.1016/j.jallcom.2022.164608_bib44
  article-title: Structure and electrical properties of Cu-doped Mn-Co-O spinel prepared via soft chemistry and its application in intermediate-temperature solid oxide fuel cell interconnects
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.09.136
– volume: 195
  start-page: 7375
  issue: 21
  year: 2010
  ident: 10.1016/j.jallcom.2022.164608_bib47
  article-title: A promising NiCo2O4 protective coating for metallic interconnects of solid oxide fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.05.031
SSID ssj0001931
Score 2.532964
Snippet A high-entropy alloy coating of FeCoNiMnCu was prepared on SUS 430 steel via magnetron sputtering for solid oxide fuel cell (SOFC) interconnects application....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 164608
SubjectTerms Chromium oxides
Cobalt
Copper
Diffusion coating
Diffusion layers
Electrical property
Entropy
Ferritic stainless steel
Ferritic stainless steels
High entropy alloys
High-entropy alloy coating
High-entropy spinel coating
Interconnections
Iron constituents
Magnetron sputtering
Manganese
Nickel
Oxidation
Oxidation resistance
Protective coatings
Solid oxide fuel cell interconnect
Solid oxide fuel cells
Spinel
Steel constituents
Title High-entropy FeCoNiMnCu alloy coating on ferritic stainless steel for solid oxide fuel cell interconnects
URI https://dx.doi.org/10.1016/j.jallcom.2022.164608
https://www.proquest.com/docview/2667261837
Volume 908
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9EEfVBdCp-kwdfu6VN22WPUhxTcS8q-BbSJIWO0g63gb74t3vXtX4hCL61JQlt7nr3I_e7O4CLIA2tEVx7URaGXiipBqSUvkfOGGXunLSU73w3jkeP4c1T9LQCSZsLQ7TKxvYvbXptrZsnvWY3e9M8793zQUAxP_RwNcyhJL4w7JOWd98-aR4IUOqueTjYo9GfWTy9SXeii4JIIwF6si5V2qIuk7_7px-WunY_wx3YbnAju1y-2i6suLIDG0nbrq0DW18qC3ZgvWZ2mtke5MTk8OgMt5q-sqFLqnF-VyYLRhH3V2YqTcRnVpUsoyKNuDyrU6oKNIF45VzBENcyVNHcsuolt45lC3xIJ_6Mik08G-LKmPlsHx6HVw_JyGv6K3hGiP7cM4Gw0jrtC8ltmnHTF3Hka-0otshNbFPjizQbBJo7OeAagThF7bjLMmsFTjuA1bIq3SEwlDi3foomi5JXIwRdcqC1jGUqYj-N3BGE7a4q0xQfpx4YhWpZZhPVCEORMNRSGEfQ_Zg2XVbf-GuCbEWmvqmRQg_x19TTVsSq-Y9nCuELfjQqbv_4_yufwCbd1STf6BRW588Ld4ZQZp6e17p6DmuX17ej8Tv-EfNM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9swED66lNLtYXTpxrp2rR726kS2bEd-LKYhXZu8rIW-CVmSwcHYoUlg_fe7c-RuHYPC3ozsE7ZOvvvQ3X0H8C0qYmsE10FSxnEQS-KAlDIMyBmjzp2Tluqd54t0dh9_f0ge9iDva2EordLb_p1N76y1Hxn71Ryvqmr8g2cRxfzQw3UwJ3sD-8ROlQxg__L6ZrZ4NsiIUbrGefh8QAK_C3nGy9FS1zXljUTozEZEtkWNJv_tov4y1p0Hmh7Bew8d2eXu7T7AnmuGcJj3HduG8O4PcsEhHHTJnWZ9DBUlcwR0jNuuntjU5e2imjf5llHQ_YmZVlPuM2sbVhJPI07PuqqqGq0gXjlXM4S2DHdpZVn7s7KOlVscpEN_RnwTj4bSZcxm_RHup1d3-SzwLRYCI8RkE5hIWGmdDoXktii5mYg0CbV2FF7kJrWFCUVRZpHmTmZcIxanwB13ZWmtQLFPMGjaxn0GhkrnNizQalH9aoK4S2Zay1QWIg2LxJ1A3K-qMp5_nNpg1KpPNFsqrwxFylA7ZZzA6FlstSPgeE1A9ipTL3aSQifxmuhZr2Llf-W1QgSDH417d_Ll_2e-gMPZ3fxW3V4vbk7hLd3pcn6TMxhsHrfuKyKbTXHud-4vU3_1_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-entropy+FeCoNiMnCu+alloy+coating+on+ferritic+stainless+steel+for+solid+oxide+fuel+cell+interconnects&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Zhao%2C+Qingqing&rft.au=Geng%2C+Shujiang&rft.au=Zhang%2C+Yu&rft.au=Chen%2C+Gang&rft.date=2022-07-05&rft.pub=Elsevier+BV&rft.issn=0925-8388&rft.eissn=1873-4669&rft.volume=908&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jallcom.2022.164608&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon