Development of a novel method to detect clothing level and facial skin temperature for controlling HVAC systems
[Display omitted] •An image classification model based on a convolutional neural network (CNN) was used to determine clothing level.•Comfortable air temperature was correlated with clothing level.•Thermal sensation was linked to facial skin temperature.•Facial skin temperature was used to control an...
Saved in:
Published in | Energy and buildings Vol. 239; p. 110859 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.05.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•An image classification model based on a convolutional neural network (CNN) was used to determine clothing level.•Comfortable air temperature was correlated with clothing level.•Thermal sensation was linked to facial skin temperature.•Facial skin temperature was used to control an HVAC system for a comfortable indoor environment.
People spend most of their time indoors, and thus it is important to provide occupants with a comfortable indoor thermal environment. However, inappropriate thermostat temperature settings in offices make occupants less comfortable. This study developed a new control strategy for HVAC systems that adjusts the thermostat setpoint according to clothing level and mean facial skin temperature. An image-classification model was trained on the basis of a convolutional neural network (CNN) to classify the clothing level of occupants, which was then used to calculate a comfortable air temperature. This investigation used a long-wave infrared (LWIR) camera with a face-detection program to obtain occupants’ mean facial skin temperature. This study performed experimental tests to correlate mean facial skin temperature with thermal sensation votes. The mean facial skin temperature was then used to develop a control strategy for an HVAC system in a single-occupant office. With the use of the control strategy, 91% of the subjects tested in this investigation felt thermally neutral in the office. |
---|---|
AbstractList | [Display omitted]
•An image classification model based on a convolutional neural network (CNN) was used to determine clothing level.•Comfortable air temperature was correlated with clothing level.•Thermal sensation was linked to facial skin temperature.•Facial skin temperature was used to control an HVAC system for a comfortable indoor environment.
People spend most of their time indoors, and thus it is important to provide occupants with a comfortable indoor thermal environment. However, inappropriate thermostat temperature settings in offices make occupants less comfortable. This study developed a new control strategy for HVAC systems that adjusts the thermostat setpoint according to clothing level and mean facial skin temperature. An image-classification model was trained on the basis of a convolutional neural network (CNN) to classify the clothing level of occupants, which was then used to calculate a comfortable air temperature. This investigation used a long-wave infrared (LWIR) camera with a face-detection program to obtain occupants’ mean facial skin temperature. This study performed experimental tests to correlate mean facial skin temperature with thermal sensation votes. The mean facial skin temperature was then used to develop a control strategy for an HVAC system in a single-occupant office. With the use of the control strategy, 91% of the subjects tested in this investigation felt thermally neutral in the office. People spend most of their time indoors, and thus it is important to provide occupants with a comfortable indoor thermal environment. However, inappropriate thermostat temperature settings in offices make occupants less comfortable. This study developed a new control strategy for HVAC systems that adjusts the thermostat setpoint according to clothing level and mean facial skin temperature. An image-classification model was trained on the basis of a convolutional neural network (CNN) to classify the clothing level of occupants, which was then used to calculate a comfortable air temperature. This investigation used a long-wave infrared (LWIR) camera with a face-detection program to obtain occupants' mean facial skin temperature. This study performed experimental tests to correlate mean facial skin temperature with thermal sensation votes. The mean facial skin temperature was then used to develop a control strategy for an HVAC system in a single-occupant office. With the use of the control strategy, 91% of the subjects tested in this investigation felt thermally neutral in the office. |
ArticleNumber | 110859 |
Author | Li, Xuan Chen, Qingyan |
Author_xml | – sequence: 1 givenname: Xuan orcidid: 0000-0003-4164-4980 surname: Li fullname: Li, Xuan – sequence: 2 givenname: Qingyan surname: Chen fullname: Chen, Qingyan email: yanchen@purdue.edu |
BookMark | eNqFkEFPHCEUx0ljk65bP0ITEs-zBWYYID0Ys7bVxMSLeiUsvKlsWViBNfHby2Q9efHCI-T_e-_xO0UnMUVA6AclK0ro-HO7grg5-OBWjDC6opRIrr6gBZWCdSMV8gQtSC9kJ4SU39BpKVtCyMgFXaB0BS8Q0n4HseI0YYNjag94B_UpOVwTdlDBVmxDqk8-_sNhBrCJDk_GehNw-e8jrrDbQzb1kAFPKWObYs0phJm4frxc4_JaWqZ8R18nEwqcvdclevjz-3593d3e_b1ZX952tu9F7TaOS6cYGUci2AibYdi0n_KJKCeMJErJducDddxO7WRqJFQpwm0_jIMhsl-i82PffU7PByhVb9MhxzZSM94zqphqdYl-HVM2p1IyTNr6aqqflzc-aEr0bFhv9bthPRvWR8ON5h_offY7k18_5S6OHDQBLx6yLtZDtOB8bqq1S_6TDm_i0ppb |
CitedBy_id | crossref_primary_10_3390_app122312105 crossref_primary_10_1016_j_buildenv_2025_112750 crossref_primary_10_3390_app12115473 crossref_primary_10_1016_j_measurement_2024_115879 crossref_primary_10_1111_ina_13138 crossref_primary_10_3390_en15186726 crossref_primary_10_3390_ijerph19052866 crossref_primary_10_1016_j_jtherbio_2023_103600 crossref_primary_10_1016_j_enbuild_2023_113771 crossref_primary_10_1016_j_buildenv_2024_111882 crossref_primary_10_1016_j_enbuild_2022_112682 crossref_primary_10_3390_su14127349 crossref_primary_10_1016_j_jobe_2024_110445 crossref_primary_10_1155_2024_5584960 crossref_primary_10_1007_s12273_021_0861_0 crossref_primary_10_1016_j_enbuild_2023_113325 crossref_primary_10_1016_j_enbuild_2023_113666 crossref_primary_10_1016_j_rineng_2024_103765 crossref_primary_10_1016_j_enbuild_2023_112899 crossref_primary_10_1016_j_buildenv_2023_110558 crossref_primary_10_1016_j_buildenv_2023_110736 crossref_primary_10_1016_j_buildenv_2024_111229 crossref_primary_10_1016_j_decarb_2023_100023 crossref_primary_10_3390_buildings12020170 crossref_primary_10_1016_j_buildenv_2024_111578 crossref_primary_10_1007_s12273_024_1114_9 crossref_primary_10_1016_j_buildenv_2022_109811 |
Cites_doi | 10.1061/9780784479681.013 10.1016/j.buildenv.2018.03.015 10.1016/j.buildenv.2018.06.052 10.1016/j.buildenv.2009.02.014 10.1016/S0378-7788(02)00006-3 10.1016/S0378-7788(02)00003-8 10.1016/j.buildenv.2018.01.023 10.1016/j.buildenv.2011.06.002 10.1016/j.buildenv.2019.106579 10.1109/CVPR.2018.00474 10.1111/ina.12046 10.1016/j.apenergy.2018.02.049 10.1016/j.enbuild.2015.09.022 10.1016/j.enbuild.2008.05.001 10.1016/j.buildenv.2012.08.024 10.1016/j.enbuild.2018.07.025 10.1080/09613218.2015.993536 10.1038/sj.jea.7500165 10.1016/j.enbuild.2015.12.031 10.1016/j.buildenv.2018.11.017 10.1016/j.buildenv.2011.10.009 10.1007/s12652-017-0567-4 10.3390/en10091368 10.1016/j.buildenv.2019.106281 10.1016/j.buildenv.2012.08.005 10.1016/j.buildenv.2014.01.002 10.1016/j.rser.2017.05.175 10.1016/j.buildenv.2013.12.007 10.1016/j.buildenv.2012.07.003 10.1016/j.buildenv.2017.05.004 10.1016/j.apenergy.2007.06.005 10.1016/j.buildenv.2009.03.014 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier BV May 15, 2021 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV May 15, 2021 |
DBID | AAYXX CITATION 7ST 8FD C1K F28 FR3 KR7 SOI |
DOI | 10.1016/j.enbuild.2021.110859 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-6178 |
ExternalDocumentID | 10_1016_j_enbuild_2021_110859 S0378778821001432 |
GroupedDBID | --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL SDF SDG SES SPC SPCBC SSJ SSR SST SSZ T5K ~02 ~G- --K 29G AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG RPZ SAC SET SEW SSH WUQ ZMT ZY4 7ST 8FD C1K EFKBS F28 FR3 KR7 SOI |
ID | FETCH-LOGICAL-c337t-bd58d920660726eb44b0165f09d7a809985f0541d5cf41d296019905c3464a083 |
IEDL.DBID | .~1 |
ISSN | 0378-7788 |
IngestDate | Wed Aug 13 08:16:30 EDT 2025 Tue Jul 01 01:13:04 EDT 2025 Thu Apr 24 23:13:30 EDT 2025 Fri Feb 23 02:44:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Infrared thermography Thermal comfort Clothing level Skin temperature Thermostat setpoint Image classification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-bd58d920660726eb44b0165f09d7a809985f0541d5cf41d296019905c3464a083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4164-4980 |
PQID | 2532192925 |
PQPubID | 2045483 |
ParticipantIDs | proquest_journals_2532192925 crossref_citationtrail_10_1016_j_enbuild_2021_110859 crossref_primary_10_1016_j_enbuild_2021_110859 elsevier_sciencedirect_doi_10_1016_j_enbuild_2021_110859 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-15 |
PublicationDateYYYYMMDD | 2021-05-15 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Energy and buildings |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Salehi, Ghanbaran, Maerefat (b0080) 2020; 169 A. Schindler, T. Lidy, S. Karner, M. Hecker, 2018. Fashion and apparel classification using convolutional neural networks. arXiv preprint arXiv:1811.04374 ANSI/ASHRAE. (2017). Standard 55: 2017, Thermal Environmental Conditions for Human Occupancy. ASHRAE. Choi, Loftness, Lee (b0100) 2012; 50 Földváry Ličina, Cheung, Zhang, de Dear, Parkinson, Arens, Chun, Schiavon, Luo, Brager, Li, Kaam (b0010) 2018 Xu, Chen, Zhao (b0060) 2010 Yi, Choi (b0090) 2015 Choi, Yeom (b0075) 2017; 121 Liu, Schiavon, Das, Jin, Spanos (b0110) 2019; 162 Wang, Zhu, Li, Han, Sun, Moon, Yu (b0130) 2017 Liu, Yang, Shen, Yang (b0180) 2018; 135 Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001. Cosma, Simha (b0120) 2018; 143 Enescu (b0020) 2017; 79 Ole Fanger, Toftum (b0055) 2002; 34 Indraganti, Ooka, Rijal, Brager (b0050) 2014; 74 Jazizadeh, Jung (b0085) 2018; 220 Arens, Humphreys, de Dear, Zhang (b0140) 2010; 45 Kontes, Giannakis, Horn, Steiger, Rovas (b0135) 2017; 10 Derrible, Reeder (b0160) 2015; 108 Liu, Liao, Yang, Du, Hu, Yang, Li (b0210) 2014; 73 Xiong, Lian, Zhou, You, Lin (b0095) 2016; 113 Brager, Zhang, Arens (b0150) 2015; 43 TensorFlow (n.d.). Transfer learning with a pretrained ConvNet, TensorFlow, https://www.tensorflow.org/tutorials/images/transfer_learning. Schiavon, Melikov (b0035) 2008; 40 de Carvalho, da Silva, Ramos (b0185) 2013; 59 Klepeis, Nelson, Ott, Robinson, Tsang, Switzer (b0005) 2001; 11 McIntyre (b0030) 1978; 84 Schiavon, Lee (b0175) 2013; 59 Cosma, Simha (b0125) 2019; 148 P. Viola, M. Jones, n.d. Rapid object detection using a boosted cascade of simple features. FlIR Systems, n.d. Technical Documentation: FLIR Lepton with Radiometry QuickStart Guide https://www.flir.com/products/lepton/. Fanger (b0025) 1982 Ogbonna, Harris (b0065) 2008; 85 de Dear, Akimoto, Arens, Brager, Candido, Cheong (b0040) 2013; 23 Choi, Loftness (b0070) 2012; 58 Kim, Schiavon, Brager (b0045) 2018; 132 Li, Menassa, Kamat (b0115) 2018; 176 L.N. Smith, 2018. A disciplined approach to neural network hyper-parameters: Part 1 -- Learning rate, batch size, momentum, and weight decay. arXiv, 1803.09820 M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, 2018. MobileNetV2: Inverted residuals and linear bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Yao, Li, Liu (b0165) 2009; 44 Nkurikiyeyezu, Suzuki, Lopez (b0105) 2018; 9 Peffer, Pritoni, Meier, Aragon, Perry (b0155) 2011; 46 Gagge, Stolwijk, Nishi (b0170) 1971; 77 Nicol, Humphreys (b0145) 2002; 34 S.J. Russell, P. Norvig, 2015. Artificial intelligence: A modern approach. Schiavon (10.1016/j.enbuild.2021.110859_b0035) 2008; 40 Wang (10.1016/j.enbuild.2021.110859_b0130) 2017 Kontes (10.1016/j.enbuild.2021.110859_b0135) 2017; 10 Derrible (10.1016/j.enbuild.2021.110859_b0160) 2015; 108 de Carvalho (10.1016/j.enbuild.2021.110859_b0185) 2013; 59 10.1016/j.enbuild.2021.110859_b0195 Peffer (10.1016/j.enbuild.2021.110859_b0155) 2011; 46 Fanger (10.1016/j.enbuild.2021.110859_b0025) 1982 Arens (10.1016/j.enbuild.2021.110859_b0140) 2010; 45 Schiavon (10.1016/j.enbuild.2021.110859_b0175) 2013; 59 10.1016/j.enbuild.2021.110859_b0215 10.1016/j.enbuild.2021.110859_b0015 Enescu (10.1016/j.enbuild.2021.110859_b0020) 2017; 79 Xu (10.1016/j.enbuild.2021.110859_b0060) 2010 Jazizadeh (10.1016/j.enbuild.2021.110859_b0085) 2018; 220 de Dear (10.1016/j.enbuild.2021.110859_b0040) 2013; 23 10.1016/j.enbuild.2021.110859_b0190 Ole Fanger (10.1016/j.enbuild.2021.110859_b0055) 2002; 34 Choi (10.1016/j.enbuild.2021.110859_b0075) 2017; 121 10.1016/j.enbuild.2021.110859_b0220 Klepeis (10.1016/j.enbuild.2021.110859_b0005) 2001; 11 Földváry Ličina (10.1016/j.enbuild.2021.110859_b0010) 2018 Nicol (10.1016/j.enbuild.2021.110859_b0145) 2002; 34 Nkurikiyeyezu (10.1016/j.enbuild.2021.110859_b0105) 2018; 9 Ogbonna (10.1016/j.enbuild.2021.110859_b0065) 2008; 85 Choi (10.1016/j.enbuild.2021.110859_b0100) 2012; 50 Cosma (10.1016/j.enbuild.2021.110859_b0120) 2018; 143 Brager (10.1016/j.enbuild.2021.110859_b0150) 2015; 43 10.1016/j.enbuild.2021.110859_b0205 Liu (10.1016/j.enbuild.2021.110859_b0180) 2018; 135 Li (10.1016/j.enbuild.2021.110859_b0115) 2018; 176 10.1016/j.enbuild.2021.110859_b0225 Gagge (10.1016/j.enbuild.2021.110859_b0170) 1971; 77 10.1016/j.enbuild.2021.110859_b0200 Choi (10.1016/j.enbuild.2021.110859_b0070) 2012; 58 Yi (10.1016/j.enbuild.2021.110859_b0090) 2015 Xiong (10.1016/j.enbuild.2021.110859_b0095) 2016; 113 Kim (10.1016/j.enbuild.2021.110859_b0045) 2018; 132 Indraganti (10.1016/j.enbuild.2021.110859_b0050) 2014; 74 Liu (10.1016/j.enbuild.2021.110859_b0110) 2019; 162 McIntyre (10.1016/j.enbuild.2021.110859_b0030) 1978; 84 Yao (10.1016/j.enbuild.2021.110859_b0165) 2009; 44 Salehi (10.1016/j.enbuild.2021.110859_b0080) 2020; 169 Cosma (10.1016/j.enbuild.2021.110859_b0125) 2019; 148 Liu (10.1016/j.enbuild.2021.110859_b0210) 2014; 73 |
References_xml | – volume: 59 start-page: 38 year: 2013 end-page: 46 ident: b0185 article-title: Influence of weather and indoor climate on clothing of occupants in naturally ventilated school buildings publication-title: Build. Environ. – volume: 79 start-page: 1353 year: 2017 end-page: 1379 ident: b0020 article-title: A review of thermal comfort models and indicators for indoor environments publication-title: Renew. Sustain. Energy Rev. – volume: 113 start-page: 87 year: 2016 end-page: 98 ident: b0095 article-title: Potential indicators for the effect of temperature steps on human health and thermal comfort publication-title: Energy Build. – volume: 34 start-page: 563 year: 2002 end-page: 572 ident: b0145 article-title: Adaptive thermal comfort and sustainable thermal standards for buildings publication-title: Energy Build. – volume: 43 start-page: 274 year: 2015 end-page: 287 ident: b0150 article-title: Evolving opportunities for providing thermal comfort publication-title: Build. Res. Information – volume: 74 start-page: 39 year: 2014 end-page: 53 ident: b0050 article-title: Adaptive model of thermal comfort for offices in hot and humid climates of India publication-title: Build. Environ. – reference: M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, 2018. MobileNetV2: Inverted residuals and linear bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. – volume: 84 start-page: 101 year: 1978 end-page: 109 ident: b0030 article-title: Three approaches to thermal comfort publication-title: ASHRAE Trans. – volume: 77 start-page: 247 year: 1971 end-page: 262 ident: b0170 article-title: An effective temperature scale based on a simple model of human physiological regulatory response publication-title: ASHRAE Trans. – volume: 73 start-page: 232 year: 2014 end-page: 238 ident: b0210 article-title: The response of human thermal perception and skin temperature to step-change transient thermal environments publication-title: Build. Environ. – reference: ANSI/ASHRAE. (2017). Standard 55: 2017, Thermal Environmental Conditions for Human Occupancy. ASHRAE. – year: 2017 ident: b0130 article-title: Smart control of indoor thermal environment based on online learned thermal comfort model using infrared thermal imaging publication-title: 2017 13th IEEE Conference on Automation Science and Engineering (CASE) – volume: 9 start-page: 1465 year: 2018 end-page: 1477 ident: b0105 article-title: Heart rate variability as a predictive biomarker of thermal comfort publication-title: J. Ambient Intell. Hum. Comput. – year: 1982 ident: b0025 article-title: Thermal Comfort: Analysis and Applications in Environmental Engineering – volume: 162 start-page: 106281 year: 2019 ident: b0110 article-title: Personal thermal comfort models with wearable sensors publication-title: Build. Environ. – reference: TensorFlow (n.d.). Transfer learning with a pretrained ConvNet, TensorFlow, https://www.tensorflow.org/tutorials/images/transfer_learning. – volume: 34 start-page: 533 year: 2002 end-page: 536 ident: b0055 article-title: Extension of the PMV model to non-air-conditioned buildings in warm climates publication-title: Energy Build. – reference: S.J. Russell, P. Norvig, 2015. Artificial intelligence: A modern approach. – volume: 59 start-page: 250 year: 2013 end-page: 260 ident: b0175 article-title: Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures publication-title: Build. Environ. – year: 2018 ident: b0010 article-title: ASHRAE Global Thermal Comfort Database II, v4 – volume: 176 start-page: 246 year: 2018 end-page: 261 ident: b0115 article-title: Non-intrusive interpretation of human thermal comfort through analysis of facial infrared thermography publication-title: Energy Build. – volume: 135 start-page: 142 year: 2018 end-page: 152 ident: b0180 article-title: Indoor clothing insulation and thermal history: a clothing model based on logistic function and running mean outdoor temperature publication-title: Build. Environ. – volume: 45 start-page: 4 year: 2010 end-page: 10 ident: b0140 article-title: Are ‘class A’ temperature requirements realistic or desirable? publication-title: Build. Environ. – year: 2010 ident: b0060 article-title: An adaptive Predicted Mean Vote (aPMV) model in office publication-title: 2010 International Conference on Mechanic Automation and Control Engineering – volume: 46 start-page: 2529 year: 2011 end-page: 2541 ident: b0155 article-title: How people use thermostats in homes: a review publication-title: Build. Environ. – volume: 220 start-page: 829 year: 2018 end-page: 841 ident: b0085 article-title: Personalized thermal comfort inference using RGB video images for distributed HVAC control publication-title: Appl. Energy – start-page: 117 year: 2015 end-page: 125 ident: b0090 article-title: Facial skin temperature as a proactive variable in a building thermal comfort control system publication-title: Sustainable Human-Build. Ecosystems – volume: 148 start-page: 372 year: 2019 end-page: 383 ident: b0125 article-title: Machine learning method for real-time non-invasive prediction of individual thermal preference in transient conditions publication-title: Build. Environ. – reference: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001. – volume: 50 start-page: 165 year: 2012 end-page: 175 ident: b0100 article-title: Investigation of the possibility of the use of heart rate as a human factor for thermal sensation models publication-title: Build. Environ. – volume: 40 start-page: 1954 year: 2008 end-page: 1960 ident: b0035 article-title: Energy saving and improved comfort by increased air movement publication-title: Energy Build. – volume: 85 start-page: 1 year: 2008 end-page: 11 ident: b0065 article-title: Thermal comfort in sub-Saharan Africa: Field study report in Jos-Nigeria publication-title: Appl. Energy – volume: 108 start-page: 304 year: 2015 end-page: 306 ident: b0160 article-title: The cost of over-cooling commercial buildings in the United States publication-title: Energy Build. – volume: 11 start-page: 231 year: 2001 end-page: 252 ident: b0005 article-title: The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants publication-title: J. Exposure Sci. Environ. Epidemiol. – volume: 44 start-page: 2089 year: 2009 end-page: 2096 ident: b0165 article-title: A theoretical adaptive model of thermal comfort – Adaptive Predicted Mean Vote (aPMV) publication-title: Build. Environ. – reference: FlIR Systems, n.d. Technical Documentation: FLIR Lepton with Radiometry QuickStart Guide https://www.flir.com/products/lepton/. – volume: 10 start-page: 1368 year: 2017 ident: b0135 article-title: Using thermostats for indoor climate control in office buildings: the effect on thermal comfort publication-title: Energies – volume: 23 start-page: 442 year: 2013 end-page: 461 ident: b0040 article-title: Progress in thermal comfort research over the last twenty years publication-title: Indoor Air – volume: 58 start-page: 258 year: 2012 end-page: 269 ident: b0070 article-title: Investigation of human body skin temperatures as a bio-signal to indicate overall thermal sensations publication-title: Build. Environ. – reference: P. Viola, M. Jones, n.d. Rapid object detection using a boosted cascade of simple features. – reference: A. Schindler, T. Lidy, S. Karner, M. Hecker, 2018. Fashion and apparel classification using convolutional neural networks. arXiv preprint arXiv:1811.04374 – reference: L.N. Smith, 2018. A disciplined approach to neural network hyper-parameters: Part 1 -- Learning rate, batch size, momentum, and weight decay. arXiv, 1803.09820 – volume: 132 start-page: 114 year: 2018 end-page: 124 ident: b0045 article-title: Personal comfort models – a new paradigm in thermal comfort for occupant-centric environmental control publication-title: Build. Environ. – volume: 121 start-page: 130 year: 2017 end-page: 147 ident: b0075 article-title: Study of data-driven thermal sensation prediction model as a function of local body skin temperatures in a built environment publication-title: Build. Environ. – volume: 169 start-page: 106579 year: 2020 ident: b0080 article-title: Intelligent models to predict the indoor thermal sensation and thermal demand in steady state based on occupants’ skin temperature publication-title: Build. Environ. – volume: 143 start-page: 36 year: 2018 end-page: 47 ident: b0120 article-title: Thermal comfort modeling in transient conditions using real-time local body temperature extraction with a thermographic camera publication-title: Build. Environ. – volume: 77 start-page: 247 issue: 1 year: 1971 ident: 10.1016/j.enbuild.2021.110859_b0170 article-title: An effective temperature scale based on a simple model of human physiological regulatory response publication-title: ASHRAE Trans. – volume: 84 start-page: 101 year: 1978 ident: 10.1016/j.enbuild.2021.110859_b0030 article-title: Three approaches to thermal comfort publication-title: ASHRAE Trans. – year: 2018 ident: 10.1016/j.enbuild.2021.110859_b0010 – start-page: 117 year: 2015 ident: 10.1016/j.enbuild.2021.110859_b0090 article-title: Facial skin temperature as a proactive variable in a building thermal comfort control system publication-title: Sustainable Human-Build. Ecosystems doi: 10.1061/9780784479681.013 – volume: 135 start-page: 142 year: 2018 ident: 10.1016/j.enbuild.2021.110859_b0180 article-title: Indoor clothing insulation and thermal history: a clothing model based on logistic function and running mean outdoor temperature publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.03.015 – ident: 10.1016/j.enbuild.2021.110859_b0205 – year: 1982 ident: 10.1016/j.enbuild.2021.110859_b0025 – volume: 143 start-page: 36 year: 2018 ident: 10.1016/j.enbuild.2021.110859_b0120 article-title: Thermal comfort modeling in transient conditions using real-time local body temperature extraction with a thermographic camera publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.06.052 – volume: 44 start-page: 2089 issue: 10 year: 2009 ident: 10.1016/j.enbuild.2021.110859_b0165 article-title: A theoretical adaptive model of thermal comfort – Adaptive Predicted Mean Vote (aPMV) publication-title: Build. Environ. doi: 10.1016/j.buildenv.2009.02.014 – volume: 34 start-page: 563 issue: 6 year: 2002 ident: 10.1016/j.enbuild.2021.110859_b0145 article-title: Adaptive thermal comfort and sustainable thermal standards for buildings publication-title: Energy Build. doi: 10.1016/S0378-7788(02)00006-3 – volume: 34 start-page: 533 issue: 6 year: 2002 ident: 10.1016/j.enbuild.2021.110859_b0055 article-title: Extension of the PMV model to non-air-conditioned buildings in warm climates publication-title: Energy Build. doi: 10.1016/S0378-7788(02)00003-8 – volume: 132 start-page: 114 year: 2018 ident: 10.1016/j.enbuild.2021.110859_b0045 article-title: Personal comfort models – a new paradigm in thermal comfort for occupant-centric environmental control publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.01.023 – volume: 46 start-page: 2529 issue: 12 year: 2011 ident: 10.1016/j.enbuild.2021.110859_b0155 article-title: How people use thermostats in homes: a review publication-title: Build. Environ. doi: 10.1016/j.buildenv.2011.06.002 – ident: 10.1016/j.enbuild.2021.110859_b0220 – volume: 169 start-page: 106579 year: 2020 ident: 10.1016/j.enbuild.2021.110859_b0080 article-title: Intelligent models to predict the indoor thermal sensation and thermal demand in steady state based on occupants’ skin temperature publication-title: Build. Environ. doi: 10.1016/j.buildenv.2019.106579 – ident: 10.1016/j.enbuild.2021.110859_b0195 doi: 10.1109/CVPR.2018.00474 – volume: 23 start-page: 442 issue: 6 year: 2013 ident: 10.1016/j.enbuild.2021.110859_b0040 article-title: Progress in thermal comfort research over the last twenty years publication-title: Indoor Air doi: 10.1111/ina.12046 – volume: 220 start-page: 829 year: 2018 ident: 10.1016/j.enbuild.2021.110859_b0085 article-title: Personalized thermal comfort inference using RGB video images for distributed HVAC control publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.02.049 – volume: 108 start-page: 304 year: 2015 ident: 10.1016/j.enbuild.2021.110859_b0160 article-title: The cost of over-cooling commercial buildings in the United States publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.09.022 – volume: 40 start-page: 1954 issue: 10 year: 2008 ident: 10.1016/j.enbuild.2021.110859_b0035 article-title: Energy saving and improved comfort by increased air movement publication-title: Energy Build. doi: 10.1016/j.enbuild.2008.05.001 – volume: 59 start-page: 250 year: 2013 ident: 10.1016/j.enbuild.2021.110859_b0175 article-title: Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures publication-title: Build. Environ. doi: 10.1016/j.buildenv.2012.08.024 – volume: 176 start-page: 246 year: 2018 ident: 10.1016/j.enbuild.2021.110859_b0115 article-title: Non-intrusive interpretation of human thermal comfort through analysis of facial infrared thermography publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.07.025 – volume: 43 start-page: 274 issue: 3 year: 2015 ident: 10.1016/j.enbuild.2021.110859_b0150 article-title: Evolving opportunities for providing thermal comfort publication-title: Build. Res. Information doi: 10.1080/09613218.2015.993536 – volume: 11 start-page: 231 issue: 3 year: 2001 ident: 10.1016/j.enbuild.2021.110859_b0005 article-title: The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants publication-title: J. Exposure Sci. Environ. Epidemiol. doi: 10.1038/sj.jea.7500165 – volume: 113 start-page: 87 year: 2016 ident: 10.1016/j.enbuild.2021.110859_b0095 article-title: Potential indicators for the effect of temperature steps on human health and thermal comfort publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.12.031 – year: 2010 ident: 10.1016/j.enbuild.2021.110859_b0060 article-title: An adaptive Predicted Mean Vote (aPMV) model in office – volume: 148 start-page: 372 year: 2019 ident: 10.1016/j.enbuild.2021.110859_b0125 article-title: Machine learning method for real-time non-invasive prediction of individual thermal preference in transient conditions publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.11.017 – ident: 10.1016/j.enbuild.2021.110859_b0015 – volume: 50 start-page: 165 year: 2012 ident: 10.1016/j.enbuild.2021.110859_b0100 article-title: Investigation of the possibility of the use of heart rate as a human factor for thermal sensation models publication-title: Build. Environ. doi: 10.1016/j.buildenv.2011.10.009 – volume: 9 start-page: 1465 issue: 5 year: 2018 ident: 10.1016/j.enbuild.2021.110859_b0105 article-title: Heart rate variability as a predictive biomarker of thermal comfort publication-title: J. Ambient Intell. Hum. Comput. doi: 10.1007/s12652-017-0567-4 – volume: 10 start-page: 1368 issue: 9 year: 2017 ident: 10.1016/j.enbuild.2021.110859_b0135 article-title: Using thermostats for indoor climate control in office buildings: the effect on thermal comfort publication-title: Energies doi: 10.3390/en10091368 – ident: 10.1016/j.enbuild.2021.110859_b0225 – volume: 162 start-page: 106281 year: 2019 ident: 10.1016/j.enbuild.2021.110859_b0110 article-title: Personal thermal comfort models with wearable sensors publication-title: Build. Environ. doi: 10.1016/j.buildenv.2019.106281 – volume: 59 start-page: 38 year: 2013 ident: 10.1016/j.enbuild.2021.110859_b0185 article-title: Influence of weather and indoor climate on clothing of occupants in naturally ventilated school buildings publication-title: Build. Environ. doi: 10.1016/j.buildenv.2012.08.005 – volume: 74 start-page: 39 year: 2014 ident: 10.1016/j.enbuild.2021.110859_b0050 article-title: Adaptive model of thermal comfort for offices in hot and humid climates of India publication-title: Build. Environ. doi: 10.1016/j.buildenv.2014.01.002 – ident: 10.1016/j.enbuild.2021.110859_b0200 – volume: 79 start-page: 1353 year: 2017 ident: 10.1016/j.enbuild.2021.110859_b0020 article-title: A review of thermal comfort models and indicators for indoor environments publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.05.175 – volume: 73 start-page: 232 year: 2014 ident: 10.1016/j.enbuild.2021.110859_b0210 article-title: The response of human thermal perception and skin temperature to step-change transient thermal environments publication-title: Build. Environ. doi: 10.1016/j.buildenv.2013.12.007 – volume: 58 start-page: 258 year: 2012 ident: 10.1016/j.enbuild.2021.110859_b0070 article-title: Investigation of human body skin temperatures as a bio-signal to indicate overall thermal sensations publication-title: Build. Environ. doi: 10.1016/j.buildenv.2012.07.003 – year: 2017 ident: 10.1016/j.enbuild.2021.110859_b0130 article-title: Smart control of indoor thermal environment based on online learned thermal comfort model using infrared thermal imaging – volume: 121 start-page: 130 year: 2017 ident: 10.1016/j.enbuild.2021.110859_b0075 article-title: Study of data-driven thermal sensation prediction model as a function of local body skin temperatures in a built environment publication-title: Build. Environ. doi: 10.1016/j.buildenv.2017.05.004 – volume: 85 start-page: 1 issue: 1 year: 2008 ident: 10.1016/j.enbuild.2021.110859_b0065 article-title: Thermal comfort in sub-Saharan Africa: Field study report in Jos-Nigeria publication-title: Appl. Energy doi: 10.1016/j.apenergy.2007.06.005 – volume: 45 start-page: 4 issue: 1 year: 2010 ident: 10.1016/j.enbuild.2021.110859_b0140 article-title: Are ‘class A’ temperature requirements realistic or desirable? publication-title: Build. Environ. doi: 10.1016/j.buildenv.2009.03.014 – ident: 10.1016/j.enbuild.2021.110859_b0190 – ident: 10.1016/j.enbuild.2021.110859_b0215 |
SSID | ssj0006571 |
Score | 2.4984276 |
Snippet | [Display omitted]
•An image classification model based on a convolutional neural network (CNN) was used to determine clothing level.•Comfortable air... People spend most of their time indoors, and thus it is important to provide occupants with a comfortable indoor thermal environment. However, inappropriate... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 110859 |
SubjectTerms | Air temperature Artificial neural networks Clothing level HVAC HVAC equipment Image classification Indoor environments Infrared cameras Infrared thermography Neural networks Skin Skin temperature Temperature Thermal comfort Thermal environments Thermostat setpoint |
Title | Development of a novel method to detect clothing level and facial skin temperature for controlling HVAC systems |
URI | https://dx.doi.org/10.1016/j.enbuild.2021.110859 https://www.proquest.com/docview/2532192925 |
Volume | 239 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEF5KfdEH8cSjyjz4mrbZI8djKUq8injh25JjA9WSFBtf_e3OJButIgi-5GInhNnZmdnsN98ydpJyjqNGuI6SiXBkzH0cUgadYZJ7w8z4igdUKHw98aIHefGknjps3NbCEKzS-v7Gp9fe2j4ZWG0O5tPp4G4o0NhwBseJRkgK8sNS-mTl_fcvmIen6kkXNXao9VcVz-C5T_QC0xkRhnK3BsQTZenv8emHp67Dz9kGW7d5I4yaT9tkHVNssbUlNsFtVi4BgKDMIYaixAfQbBINVQmZoSUDSGfYPSgCMxKAuMggj-nXOSxepgUQW5WlWgZMacGi2aluHaLH0Rga9ufFDns4O70fR47dT8FJhfArJ8lUkIXE3z70uWcSKRMqZsqHYebHAaaKAV4r6WYqzfHIcXLjYrBSqZCejDFX22XdoizMHgM_xERKuNIoD5uGXpBJE8s85zEtAvtqn8lWizq1ZOO058VMt6iyZ22Vr0n5ulH-Put_is0bto2_BIK2i_Q3s9EYEf4S7bVdqu24XWiuBLpwHnJ18P83H7JVuiOMgat6rFu9vpkjTF2q5Li2zWO2MhrfXt3Q-fwymnwAMxvuWg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcgAOiFUUCsyBa9rGS5ZjVVGlLL2wqDcriyO1VElFy_8z0zhsQqrEJYocTxSN7Tcz8cwzY9cp57hqhOsomQhHxtzHJWUQDJPc62XGVzygQuGHsRc9y9uJmjTYoK6FobRKi_0Vpq_R2rZ0rTa7i-m0-9gTONkwguNEIyQF4vAWsVOpJtvqj-6i8Scge2odd1F_hwS-Cnm6sw4xDEznxBnK3XVOPLGW_m2ifoH12gIN99medR2hX33dAWuY4pDtfiMUPGLltxwgKHOIoSixAapzomFVQmZo1wDSOY4QisCcBCAuMshj-nsOy9dpAURYZdmWAb1asAntVLoO0Ut_ABUB9PKYPQ9vngaRY49UcFIh_JWTZCrIQqJw7_ncM4mUCdUz5b0w8-MAvcUA75V0M5XmeOUY37hor1QqpCdjdNdOWLMoC3PKwA_RlxKuNMrDrqEXZNLEMs95TPvAvmoxWWtRp5ZvnI69mOs6sWymrfI1KV9Xym-xzqfYoiLc2CQQ1EOkf8wcjUZhk2i7HlJtl-5ScyUQxXnI1dn_33zFtqOnh3t9PxrfnbMdekIpB65qs-bq7d1coCezSi7tTP0A6jLvdg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+novel+method+to+detect+clothing+level+and+facial+skin+temperature+for+controlling+HVAC+systems&rft.jtitle=Energy+and+buildings&rft.au=Li%2C+Xuan&rft.au=Chen%2C+Qingyan&rft.date=2021-05-15&rft.issn=0378-7788&rft.volume=239&rft.spage=110859&rft_id=info:doi/10.1016%2Fj.enbuild.2021.110859&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enbuild_2021_110859 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon |