Development of a novel method to detect clothing level and facial skin temperature for controlling HVAC systems

[Display omitted] •An image classification model based on a convolutional neural network (CNN) was used to determine clothing level.•Comfortable air temperature was correlated with clothing level.•Thermal sensation was linked to facial skin temperature.•Facial skin temperature was used to control an...

Full description

Saved in:
Bibliographic Details
Published inEnergy and buildings Vol. 239; p. 110859
Main Authors Li, Xuan, Chen, Qingyan
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 15.05.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •An image classification model based on a convolutional neural network (CNN) was used to determine clothing level.•Comfortable air temperature was correlated with clothing level.•Thermal sensation was linked to facial skin temperature.•Facial skin temperature was used to control an HVAC system for a comfortable indoor environment. People spend most of their time indoors, and thus it is important to provide occupants with a comfortable indoor thermal environment. However, inappropriate thermostat temperature settings in offices make occupants less comfortable. This study developed a new control strategy for HVAC systems that adjusts the thermostat setpoint according to clothing level and mean facial skin temperature. An image-classification model was trained on the basis of a convolutional neural network (CNN) to classify the clothing level of occupants, which was then used to calculate a comfortable air temperature. This investigation used a long-wave infrared (LWIR) camera with a face-detection program to obtain occupants’ mean facial skin temperature. This study performed experimental tests to correlate mean facial skin temperature with thermal sensation votes. The mean facial skin temperature was then used to develop a control strategy for an HVAC system in a single-occupant office. With the use of the control strategy, 91% of the subjects tested in this investigation felt thermally neutral in the office.
AbstractList [Display omitted] •An image classification model based on a convolutional neural network (CNN) was used to determine clothing level.•Comfortable air temperature was correlated with clothing level.•Thermal sensation was linked to facial skin temperature.•Facial skin temperature was used to control an HVAC system for a comfortable indoor environment. People spend most of their time indoors, and thus it is important to provide occupants with a comfortable indoor thermal environment. However, inappropriate thermostat temperature settings in offices make occupants less comfortable. This study developed a new control strategy for HVAC systems that adjusts the thermostat setpoint according to clothing level and mean facial skin temperature. An image-classification model was trained on the basis of a convolutional neural network (CNN) to classify the clothing level of occupants, which was then used to calculate a comfortable air temperature. This investigation used a long-wave infrared (LWIR) camera with a face-detection program to obtain occupants’ mean facial skin temperature. This study performed experimental tests to correlate mean facial skin temperature with thermal sensation votes. The mean facial skin temperature was then used to develop a control strategy for an HVAC system in a single-occupant office. With the use of the control strategy, 91% of the subjects tested in this investigation felt thermally neutral in the office.
People spend most of their time indoors, and thus it is important to provide occupants with a comfortable indoor thermal environment. However, inappropriate thermostat temperature settings in offices make occupants less comfortable. This study developed a new control strategy for HVAC systems that adjusts the thermostat setpoint according to clothing level and mean facial skin temperature. An image-classification model was trained on the basis of a convolutional neural network (CNN) to classify the clothing level of occupants, which was then used to calculate a comfortable air temperature. This investigation used a long-wave infrared (LWIR) camera with a face-detection program to obtain occupants' mean facial skin temperature. This study performed experimental tests to correlate mean facial skin temperature with thermal sensation votes. The mean facial skin temperature was then used to develop a control strategy for an HVAC system in a single-occupant office. With the use of the control strategy, 91% of the subjects tested in this investigation felt thermally neutral in the office.
ArticleNumber 110859
Author Li, Xuan
Chen, Qingyan
Author_xml – sequence: 1
  givenname: Xuan
  orcidid: 0000-0003-4164-4980
  surname: Li
  fullname: Li, Xuan
– sequence: 2
  givenname: Qingyan
  surname: Chen
  fullname: Chen, Qingyan
  email: yanchen@purdue.edu
BookMark eNqFkEFPHCEUx0ljk65bP0ITEs-zBWYYID0Ys7bVxMSLeiUsvKlsWViBNfHby2Q9efHCI-T_e-_xO0UnMUVA6AclK0ro-HO7grg5-OBWjDC6opRIrr6gBZWCdSMV8gQtSC9kJ4SU39BpKVtCyMgFXaB0BS8Q0n4HseI0YYNjag94B_UpOVwTdlDBVmxDqk8-_sNhBrCJDk_GehNw-e8jrrDbQzb1kAFPKWObYs0phJm4frxc4_JaWqZ8R18nEwqcvdclevjz-3593d3e_b1ZX952tu9F7TaOS6cYGUci2AibYdi0n_KJKCeMJErJducDddxO7WRqJFQpwm0_jIMhsl-i82PffU7PByhVb9MhxzZSM94zqphqdYl-HVM2p1IyTNr6aqqflzc-aEr0bFhv9bthPRvWR8ON5h_offY7k18_5S6OHDQBLx6yLtZDtOB8bqq1S_6TDm_i0ppb
CitedBy_id crossref_primary_10_3390_app122312105
crossref_primary_10_1016_j_buildenv_2025_112750
crossref_primary_10_3390_app12115473
crossref_primary_10_1016_j_measurement_2024_115879
crossref_primary_10_1111_ina_13138
crossref_primary_10_3390_en15186726
crossref_primary_10_3390_ijerph19052866
crossref_primary_10_1016_j_jtherbio_2023_103600
crossref_primary_10_1016_j_enbuild_2023_113771
crossref_primary_10_1016_j_buildenv_2024_111882
crossref_primary_10_1016_j_enbuild_2022_112682
crossref_primary_10_3390_su14127349
crossref_primary_10_1016_j_jobe_2024_110445
crossref_primary_10_1155_2024_5584960
crossref_primary_10_1007_s12273_021_0861_0
crossref_primary_10_1016_j_enbuild_2023_113325
crossref_primary_10_1016_j_enbuild_2023_113666
crossref_primary_10_1016_j_rineng_2024_103765
crossref_primary_10_1016_j_enbuild_2023_112899
crossref_primary_10_1016_j_buildenv_2023_110558
crossref_primary_10_1016_j_buildenv_2023_110736
crossref_primary_10_1016_j_buildenv_2024_111229
crossref_primary_10_1016_j_decarb_2023_100023
crossref_primary_10_3390_buildings12020170
crossref_primary_10_1016_j_buildenv_2024_111578
crossref_primary_10_1007_s12273_024_1114_9
crossref_primary_10_1016_j_buildenv_2022_109811
Cites_doi 10.1061/9780784479681.013
10.1016/j.buildenv.2018.03.015
10.1016/j.buildenv.2018.06.052
10.1016/j.buildenv.2009.02.014
10.1016/S0378-7788(02)00006-3
10.1016/S0378-7788(02)00003-8
10.1016/j.buildenv.2018.01.023
10.1016/j.buildenv.2011.06.002
10.1016/j.buildenv.2019.106579
10.1109/CVPR.2018.00474
10.1111/ina.12046
10.1016/j.apenergy.2018.02.049
10.1016/j.enbuild.2015.09.022
10.1016/j.enbuild.2008.05.001
10.1016/j.buildenv.2012.08.024
10.1016/j.enbuild.2018.07.025
10.1080/09613218.2015.993536
10.1038/sj.jea.7500165
10.1016/j.enbuild.2015.12.031
10.1016/j.buildenv.2018.11.017
10.1016/j.buildenv.2011.10.009
10.1007/s12652-017-0567-4
10.3390/en10091368
10.1016/j.buildenv.2019.106281
10.1016/j.buildenv.2012.08.005
10.1016/j.buildenv.2014.01.002
10.1016/j.rser.2017.05.175
10.1016/j.buildenv.2013.12.007
10.1016/j.buildenv.2012.07.003
10.1016/j.buildenv.2017.05.004
10.1016/j.apenergy.2007.06.005
10.1016/j.buildenv.2009.03.014
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV May 15, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV May 15, 2021
DBID AAYXX
CITATION
7ST
8FD
C1K
F28
FR3
KR7
SOI
DOI 10.1016/j.enbuild.2021.110859
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-6178
ExternalDocumentID 10_1016_j_enbuild_2021_110859
S0378778821001432
GroupedDBID --M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
SDF
SDG
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~02
~G-
--K
29G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
RPZ
SAC
SET
SEW
SSH
WUQ
ZMT
ZY4
7ST
8FD
C1K
EFKBS
F28
FR3
KR7
SOI
ID FETCH-LOGICAL-c337t-bd58d920660726eb44b0165f09d7a809985f0541d5cf41d296019905c3464a083
IEDL.DBID .~1
ISSN 0378-7788
IngestDate Wed Aug 13 08:16:30 EDT 2025
Tue Jul 01 01:13:04 EDT 2025
Thu Apr 24 23:13:30 EDT 2025
Fri Feb 23 02:44:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Infrared thermography
Thermal comfort
Clothing level
Skin temperature
Thermostat setpoint
Image classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-bd58d920660726eb44b0165f09d7a809985f0541d5cf41d296019905c3464a083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4164-4980
PQID 2532192925
PQPubID 2045483
ParticipantIDs proquest_journals_2532192925
crossref_citationtrail_10_1016_j_enbuild_2021_110859
crossref_primary_10_1016_j_enbuild_2021_110859
elsevier_sciencedirect_doi_10_1016_j_enbuild_2021_110859
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-15
PublicationDateYYYYMMDD 2021-05-15
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-15
  day: 15
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Energy and buildings
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Salehi, Ghanbaran, Maerefat (b0080) 2020; 169
A. Schindler, T. Lidy, S. Karner, M. Hecker, 2018. Fashion and apparel classification using convolutional neural networks. arXiv preprint arXiv:1811.04374
ANSI/ASHRAE. (2017). Standard 55: 2017, Thermal Environmental Conditions for Human Occupancy. ASHRAE.
Choi, Loftness, Lee (b0100) 2012; 50
Földváry Ličina, Cheung, Zhang, de Dear, Parkinson, Arens, Chun, Schiavon, Luo, Brager, Li, Kaam (b0010) 2018
Xu, Chen, Zhao (b0060) 2010
Yi, Choi (b0090) 2015
Choi, Yeom (b0075) 2017; 121
Liu, Schiavon, Das, Jin, Spanos (b0110) 2019; 162
Wang, Zhu, Li, Han, Sun, Moon, Yu (b0130) 2017
Liu, Yang, Shen, Yang (b0180) 2018; 135
Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.
Cosma, Simha (b0120) 2018; 143
Enescu (b0020) 2017; 79
Ole Fanger, Toftum (b0055) 2002; 34
Indraganti, Ooka, Rijal, Brager (b0050) 2014; 74
Jazizadeh, Jung (b0085) 2018; 220
Arens, Humphreys, de Dear, Zhang (b0140) 2010; 45
Kontes, Giannakis, Horn, Steiger, Rovas (b0135) 2017; 10
Derrible, Reeder (b0160) 2015; 108
Liu, Liao, Yang, Du, Hu, Yang, Li (b0210) 2014; 73
Xiong, Lian, Zhou, You, Lin (b0095) 2016; 113
Brager, Zhang, Arens (b0150) 2015; 43
TensorFlow (n.d.). Transfer learning with a pretrained ConvNet, TensorFlow, https://www.tensorflow.org/tutorials/images/transfer_learning.
Schiavon, Melikov (b0035) 2008; 40
de Carvalho, da Silva, Ramos (b0185) 2013; 59
Klepeis, Nelson, Ott, Robinson, Tsang, Switzer (b0005) 2001; 11
McIntyre (b0030) 1978; 84
Schiavon, Lee (b0175) 2013; 59
Cosma, Simha (b0125) 2019; 148
P. Viola, M. Jones, n.d. Rapid object detection using a boosted cascade of simple features.
FlIR Systems, n.d. Technical Documentation: FLIR Lepton with Radiometry QuickStart Guide https://www.flir.com/products/lepton/.
Fanger (b0025) 1982
Ogbonna, Harris (b0065) 2008; 85
de Dear, Akimoto, Arens, Brager, Candido, Cheong (b0040) 2013; 23
Choi, Loftness (b0070) 2012; 58
Kim, Schiavon, Brager (b0045) 2018; 132
Li, Menassa, Kamat (b0115) 2018; 176
L.N. Smith, 2018. A disciplined approach to neural network hyper-parameters: Part 1 -- Learning rate, batch size, momentum, and weight decay. arXiv, 1803.09820
M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, 2018. MobileNetV2: Inverted residuals and linear bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
Yao, Li, Liu (b0165) 2009; 44
Nkurikiyeyezu, Suzuki, Lopez (b0105) 2018; 9
Peffer, Pritoni, Meier, Aragon, Perry (b0155) 2011; 46
Gagge, Stolwijk, Nishi (b0170) 1971; 77
Nicol, Humphreys (b0145) 2002; 34
S.J. Russell, P. Norvig, 2015. Artificial intelligence: A modern approach.
Schiavon (10.1016/j.enbuild.2021.110859_b0035) 2008; 40
Wang (10.1016/j.enbuild.2021.110859_b0130) 2017
Kontes (10.1016/j.enbuild.2021.110859_b0135) 2017; 10
Derrible (10.1016/j.enbuild.2021.110859_b0160) 2015; 108
de Carvalho (10.1016/j.enbuild.2021.110859_b0185) 2013; 59
10.1016/j.enbuild.2021.110859_b0195
Peffer (10.1016/j.enbuild.2021.110859_b0155) 2011; 46
Fanger (10.1016/j.enbuild.2021.110859_b0025) 1982
Arens (10.1016/j.enbuild.2021.110859_b0140) 2010; 45
Schiavon (10.1016/j.enbuild.2021.110859_b0175) 2013; 59
10.1016/j.enbuild.2021.110859_b0215
10.1016/j.enbuild.2021.110859_b0015
Enescu (10.1016/j.enbuild.2021.110859_b0020) 2017; 79
Xu (10.1016/j.enbuild.2021.110859_b0060) 2010
Jazizadeh (10.1016/j.enbuild.2021.110859_b0085) 2018; 220
de Dear (10.1016/j.enbuild.2021.110859_b0040) 2013; 23
10.1016/j.enbuild.2021.110859_b0190
Ole Fanger (10.1016/j.enbuild.2021.110859_b0055) 2002; 34
Choi (10.1016/j.enbuild.2021.110859_b0075) 2017; 121
10.1016/j.enbuild.2021.110859_b0220
Klepeis (10.1016/j.enbuild.2021.110859_b0005) 2001; 11
Földváry Ličina (10.1016/j.enbuild.2021.110859_b0010) 2018
Nicol (10.1016/j.enbuild.2021.110859_b0145) 2002; 34
Nkurikiyeyezu (10.1016/j.enbuild.2021.110859_b0105) 2018; 9
Ogbonna (10.1016/j.enbuild.2021.110859_b0065) 2008; 85
Choi (10.1016/j.enbuild.2021.110859_b0100) 2012; 50
Cosma (10.1016/j.enbuild.2021.110859_b0120) 2018; 143
Brager (10.1016/j.enbuild.2021.110859_b0150) 2015; 43
10.1016/j.enbuild.2021.110859_b0205
Liu (10.1016/j.enbuild.2021.110859_b0180) 2018; 135
Li (10.1016/j.enbuild.2021.110859_b0115) 2018; 176
10.1016/j.enbuild.2021.110859_b0225
Gagge (10.1016/j.enbuild.2021.110859_b0170) 1971; 77
10.1016/j.enbuild.2021.110859_b0200
Choi (10.1016/j.enbuild.2021.110859_b0070) 2012; 58
Yi (10.1016/j.enbuild.2021.110859_b0090) 2015
Xiong (10.1016/j.enbuild.2021.110859_b0095) 2016; 113
Kim (10.1016/j.enbuild.2021.110859_b0045) 2018; 132
Indraganti (10.1016/j.enbuild.2021.110859_b0050) 2014; 74
Liu (10.1016/j.enbuild.2021.110859_b0110) 2019; 162
McIntyre (10.1016/j.enbuild.2021.110859_b0030) 1978; 84
Yao (10.1016/j.enbuild.2021.110859_b0165) 2009; 44
Salehi (10.1016/j.enbuild.2021.110859_b0080) 2020; 169
Cosma (10.1016/j.enbuild.2021.110859_b0125) 2019; 148
Liu (10.1016/j.enbuild.2021.110859_b0210) 2014; 73
References_xml – volume: 59
  start-page: 38
  year: 2013
  end-page: 46
  ident: b0185
  article-title: Influence of weather and indoor climate on clothing of occupants in naturally ventilated school buildings
  publication-title: Build. Environ.
– volume: 79
  start-page: 1353
  year: 2017
  end-page: 1379
  ident: b0020
  article-title: A review of thermal comfort models and indicators for indoor environments
  publication-title: Renew. Sustain. Energy Rev.
– volume: 113
  start-page: 87
  year: 2016
  end-page: 98
  ident: b0095
  article-title: Potential indicators for the effect of temperature steps on human health and thermal comfort
  publication-title: Energy Build.
– volume: 34
  start-page: 563
  year: 2002
  end-page: 572
  ident: b0145
  article-title: Adaptive thermal comfort and sustainable thermal standards for buildings
  publication-title: Energy Build.
– volume: 43
  start-page: 274
  year: 2015
  end-page: 287
  ident: b0150
  article-title: Evolving opportunities for providing thermal comfort
  publication-title: Build. Res. Information
– volume: 74
  start-page: 39
  year: 2014
  end-page: 53
  ident: b0050
  article-title: Adaptive model of thermal comfort for offices in hot and humid climates of India
  publication-title: Build. Environ.
– reference: M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, 2018. MobileNetV2: Inverted residuals and linear bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
– volume: 84
  start-page: 101
  year: 1978
  end-page: 109
  ident: b0030
  article-title: Three approaches to thermal comfort
  publication-title: ASHRAE Trans.
– volume: 77
  start-page: 247
  year: 1971
  end-page: 262
  ident: b0170
  article-title: An effective temperature scale based on a simple model of human physiological regulatory response
  publication-title: ASHRAE Trans.
– volume: 73
  start-page: 232
  year: 2014
  end-page: 238
  ident: b0210
  article-title: The response of human thermal perception and skin temperature to step-change transient thermal environments
  publication-title: Build. Environ.
– reference: ANSI/ASHRAE. (2017). Standard 55: 2017, Thermal Environmental Conditions for Human Occupancy. ASHRAE.
– year: 2017
  ident: b0130
  article-title: Smart control of indoor thermal environment based on online learned thermal comfort model using infrared thermal imaging
  publication-title: 2017 13th IEEE Conference on Automation Science and Engineering (CASE)
– volume: 9
  start-page: 1465
  year: 2018
  end-page: 1477
  ident: b0105
  article-title: Heart rate variability as a predictive biomarker of thermal comfort
  publication-title: J. Ambient Intell. Hum. Comput.
– year: 1982
  ident: b0025
  article-title: Thermal Comfort: Analysis and Applications in Environmental Engineering
– volume: 162
  start-page: 106281
  year: 2019
  ident: b0110
  article-title: Personal thermal comfort models with wearable sensors
  publication-title: Build. Environ.
– reference: TensorFlow (n.d.). Transfer learning with a pretrained ConvNet, TensorFlow, https://www.tensorflow.org/tutorials/images/transfer_learning.
– volume: 34
  start-page: 533
  year: 2002
  end-page: 536
  ident: b0055
  article-title: Extension of the PMV model to non-air-conditioned buildings in warm climates
  publication-title: Energy Build.
– reference: S.J. Russell, P. Norvig, 2015. Artificial intelligence: A modern approach.
– volume: 59
  start-page: 250
  year: 2013
  end-page: 260
  ident: b0175
  article-title: Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures
  publication-title: Build. Environ.
– year: 2018
  ident: b0010
  article-title: ASHRAE Global Thermal Comfort Database II, v4
– volume: 176
  start-page: 246
  year: 2018
  end-page: 261
  ident: b0115
  article-title: Non-intrusive interpretation of human thermal comfort through analysis of facial infrared thermography
  publication-title: Energy Build.
– volume: 135
  start-page: 142
  year: 2018
  end-page: 152
  ident: b0180
  article-title: Indoor clothing insulation and thermal history: a clothing model based on logistic function and running mean outdoor temperature
  publication-title: Build. Environ.
– volume: 45
  start-page: 4
  year: 2010
  end-page: 10
  ident: b0140
  article-title: Are ‘class A’ temperature requirements realistic or desirable?
  publication-title: Build. Environ.
– year: 2010
  ident: b0060
  article-title: An adaptive Predicted Mean Vote (aPMV) model in office
  publication-title: 2010 International Conference on Mechanic Automation and Control Engineering
– volume: 46
  start-page: 2529
  year: 2011
  end-page: 2541
  ident: b0155
  article-title: How people use thermostats in homes: a review
  publication-title: Build. Environ.
– volume: 220
  start-page: 829
  year: 2018
  end-page: 841
  ident: b0085
  article-title: Personalized thermal comfort inference using RGB video images for distributed HVAC control
  publication-title: Appl. Energy
– start-page: 117
  year: 2015
  end-page: 125
  ident: b0090
  article-title: Facial skin temperature as a proactive variable in a building thermal comfort control system
  publication-title: Sustainable Human-Build. Ecosystems
– volume: 148
  start-page: 372
  year: 2019
  end-page: 383
  ident: b0125
  article-title: Machine learning method for real-time non-invasive prediction of individual thermal preference in transient conditions
  publication-title: Build. Environ.
– reference: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.
– volume: 50
  start-page: 165
  year: 2012
  end-page: 175
  ident: b0100
  article-title: Investigation of the possibility of the use of heart rate as a human factor for thermal sensation models
  publication-title: Build. Environ.
– volume: 40
  start-page: 1954
  year: 2008
  end-page: 1960
  ident: b0035
  article-title: Energy saving and improved comfort by increased air movement
  publication-title: Energy Build.
– volume: 85
  start-page: 1
  year: 2008
  end-page: 11
  ident: b0065
  article-title: Thermal comfort in sub-Saharan Africa: Field study report in Jos-Nigeria
  publication-title: Appl. Energy
– volume: 108
  start-page: 304
  year: 2015
  end-page: 306
  ident: b0160
  article-title: The cost of over-cooling commercial buildings in the United States
  publication-title: Energy Build.
– volume: 11
  start-page: 231
  year: 2001
  end-page: 252
  ident: b0005
  article-title: The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants
  publication-title: J. Exposure Sci. Environ. Epidemiol.
– volume: 44
  start-page: 2089
  year: 2009
  end-page: 2096
  ident: b0165
  article-title: A theoretical adaptive model of thermal comfort – Adaptive Predicted Mean Vote (aPMV)
  publication-title: Build. Environ.
– reference: FlIR Systems, n.d. Technical Documentation: FLIR Lepton with Radiometry QuickStart Guide https://www.flir.com/products/lepton/.
– volume: 10
  start-page: 1368
  year: 2017
  ident: b0135
  article-title: Using thermostats for indoor climate control in office buildings: the effect on thermal comfort
  publication-title: Energies
– volume: 23
  start-page: 442
  year: 2013
  end-page: 461
  ident: b0040
  article-title: Progress in thermal comfort research over the last twenty years
  publication-title: Indoor Air
– volume: 58
  start-page: 258
  year: 2012
  end-page: 269
  ident: b0070
  article-title: Investigation of human body skin temperatures as a bio-signal to indicate overall thermal sensations
  publication-title: Build. Environ.
– reference: P. Viola, M. Jones, n.d. Rapid object detection using a boosted cascade of simple features.
– reference: A. Schindler, T. Lidy, S. Karner, M. Hecker, 2018. Fashion and apparel classification using convolutional neural networks. arXiv preprint arXiv:1811.04374
– reference: L.N. Smith, 2018. A disciplined approach to neural network hyper-parameters: Part 1 -- Learning rate, batch size, momentum, and weight decay. arXiv, 1803.09820
– volume: 132
  start-page: 114
  year: 2018
  end-page: 124
  ident: b0045
  article-title: Personal comfort models – a new paradigm in thermal comfort for occupant-centric environmental control
  publication-title: Build. Environ.
– volume: 121
  start-page: 130
  year: 2017
  end-page: 147
  ident: b0075
  article-title: Study of data-driven thermal sensation prediction model as a function of local body skin temperatures in a built environment
  publication-title: Build. Environ.
– volume: 169
  start-page: 106579
  year: 2020
  ident: b0080
  article-title: Intelligent models to predict the indoor thermal sensation and thermal demand in steady state based on occupants’ skin temperature
  publication-title: Build. Environ.
– volume: 143
  start-page: 36
  year: 2018
  end-page: 47
  ident: b0120
  article-title: Thermal comfort modeling in transient conditions using real-time local body temperature extraction with a thermographic camera
  publication-title: Build. Environ.
– volume: 77
  start-page: 247
  issue: 1
  year: 1971
  ident: 10.1016/j.enbuild.2021.110859_b0170
  article-title: An effective temperature scale based on a simple model of human physiological regulatory response
  publication-title: ASHRAE Trans.
– volume: 84
  start-page: 101
  year: 1978
  ident: 10.1016/j.enbuild.2021.110859_b0030
  article-title: Three approaches to thermal comfort
  publication-title: ASHRAE Trans.
– year: 2018
  ident: 10.1016/j.enbuild.2021.110859_b0010
– start-page: 117
  year: 2015
  ident: 10.1016/j.enbuild.2021.110859_b0090
  article-title: Facial skin temperature as a proactive variable in a building thermal comfort control system
  publication-title: Sustainable Human-Build. Ecosystems
  doi: 10.1061/9780784479681.013
– volume: 135
  start-page: 142
  year: 2018
  ident: 10.1016/j.enbuild.2021.110859_b0180
  article-title: Indoor clothing insulation and thermal history: a clothing model based on logistic function and running mean outdoor temperature
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.03.015
– ident: 10.1016/j.enbuild.2021.110859_b0205
– year: 1982
  ident: 10.1016/j.enbuild.2021.110859_b0025
– volume: 143
  start-page: 36
  year: 2018
  ident: 10.1016/j.enbuild.2021.110859_b0120
  article-title: Thermal comfort modeling in transient conditions using real-time local body temperature extraction with a thermographic camera
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.06.052
– volume: 44
  start-page: 2089
  issue: 10
  year: 2009
  ident: 10.1016/j.enbuild.2021.110859_b0165
  article-title: A theoretical adaptive model of thermal comfort – Adaptive Predicted Mean Vote (aPMV)
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2009.02.014
– volume: 34
  start-page: 563
  issue: 6
  year: 2002
  ident: 10.1016/j.enbuild.2021.110859_b0145
  article-title: Adaptive thermal comfort and sustainable thermal standards for buildings
  publication-title: Energy Build.
  doi: 10.1016/S0378-7788(02)00006-3
– volume: 34
  start-page: 533
  issue: 6
  year: 2002
  ident: 10.1016/j.enbuild.2021.110859_b0055
  article-title: Extension of the PMV model to non-air-conditioned buildings in warm climates
  publication-title: Energy Build.
  doi: 10.1016/S0378-7788(02)00003-8
– volume: 132
  start-page: 114
  year: 2018
  ident: 10.1016/j.enbuild.2021.110859_b0045
  article-title: Personal comfort models – a new paradigm in thermal comfort for occupant-centric environmental control
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.01.023
– volume: 46
  start-page: 2529
  issue: 12
  year: 2011
  ident: 10.1016/j.enbuild.2021.110859_b0155
  article-title: How people use thermostats in homes: a review
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2011.06.002
– ident: 10.1016/j.enbuild.2021.110859_b0220
– volume: 169
  start-page: 106579
  year: 2020
  ident: 10.1016/j.enbuild.2021.110859_b0080
  article-title: Intelligent models to predict the indoor thermal sensation and thermal demand in steady state based on occupants’ skin temperature
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.106579
– ident: 10.1016/j.enbuild.2021.110859_b0195
  doi: 10.1109/CVPR.2018.00474
– volume: 23
  start-page: 442
  issue: 6
  year: 2013
  ident: 10.1016/j.enbuild.2021.110859_b0040
  article-title: Progress in thermal comfort research over the last twenty years
  publication-title: Indoor Air
  doi: 10.1111/ina.12046
– volume: 220
  start-page: 829
  year: 2018
  ident: 10.1016/j.enbuild.2021.110859_b0085
  article-title: Personalized thermal comfort inference using RGB video images for distributed HVAC control
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.02.049
– volume: 108
  start-page: 304
  year: 2015
  ident: 10.1016/j.enbuild.2021.110859_b0160
  article-title: The cost of over-cooling commercial buildings in the United States
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.09.022
– volume: 40
  start-page: 1954
  issue: 10
  year: 2008
  ident: 10.1016/j.enbuild.2021.110859_b0035
  article-title: Energy saving and improved comfort by increased air movement
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2008.05.001
– volume: 59
  start-page: 250
  year: 2013
  ident: 10.1016/j.enbuild.2021.110859_b0175
  article-title: Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2012.08.024
– volume: 176
  start-page: 246
  year: 2018
  ident: 10.1016/j.enbuild.2021.110859_b0115
  article-title: Non-intrusive interpretation of human thermal comfort through analysis of facial infrared thermography
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.07.025
– volume: 43
  start-page: 274
  issue: 3
  year: 2015
  ident: 10.1016/j.enbuild.2021.110859_b0150
  article-title: Evolving opportunities for providing thermal comfort
  publication-title: Build. Res. Information
  doi: 10.1080/09613218.2015.993536
– volume: 11
  start-page: 231
  issue: 3
  year: 2001
  ident: 10.1016/j.enbuild.2021.110859_b0005
  article-title: The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants
  publication-title: J. Exposure Sci. Environ. Epidemiol.
  doi: 10.1038/sj.jea.7500165
– volume: 113
  start-page: 87
  year: 2016
  ident: 10.1016/j.enbuild.2021.110859_b0095
  article-title: Potential indicators for the effect of temperature steps on human health and thermal comfort
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.12.031
– year: 2010
  ident: 10.1016/j.enbuild.2021.110859_b0060
  article-title: An adaptive Predicted Mean Vote (aPMV) model in office
– volume: 148
  start-page: 372
  year: 2019
  ident: 10.1016/j.enbuild.2021.110859_b0125
  article-title: Machine learning method for real-time non-invasive prediction of individual thermal preference in transient conditions
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.11.017
– ident: 10.1016/j.enbuild.2021.110859_b0015
– volume: 50
  start-page: 165
  year: 2012
  ident: 10.1016/j.enbuild.2021.110859_b0100
  article-title: Investigation of the possibility of the use of heart rate as a human factor for thermal sensation models
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2011.10.009
– volume: 9
  start-page: 1465
  issue: 5
  year: 2018
  ident: 10.1016/j.enbuild.2021.110859_b0105
  article-title: Heart rate variability as a predictive biomarker of thermal comfort
  publication-title: J. Ambient Intell. Hum. Comput.
  doi: 10.1007/s12652-017-0567-4
– volume: 10
  start-page: 1368
  issue: 9
  year: 2017
  ident: 10.1016/j.enbuild.2021.110859_b0135
  article-title: Using thermostats for indoor climate control in office buildings: the effect on thermal comfort
  publication-title: Energies
  doi: 10.3390/en10091368
– ident: 10.1016/j.enbuild.2021.110859_b0225
– volume: 162
  start-page: 106281
  year: 2019
  ident: 10.1016/j.enbuild.2021.110859_b0110
  article-title: Personal thermal comfort models with wearable sensors
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.106281
– volume: 59
  start-page: 38
  year: 2013
  ident: 10.1016/j.enbuild.2021.110859_b0185
  article-title: Influence of weather and indoor climate on clothing of occupants in naturally ventilated school buildings
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2012.08.005
– volume: 74
  start-page: 39
  year: 2014
  ident: 10.1016/j.enbuild.2021.110859_b0050
  article-title: Adaptive model of thermal comfort for offices in hot and humid climates of India
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2014.01.002
– ident: 10.1016/j.enbuild.2021.110859_b0200
– volume: 79
  start-page: 1353
  year: 2017
  ident: 10.1016/j.enbuild.2021.110859_b0020
  article-title: A review of thermal comfort models and indicators for indoor environments
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.05.175
– volume: 73
  start-page: 232
  year: 2014
  ident: 10.1016/j.enbuild.2021.110859_b0210
  article-title: The response of human thermal perception and skin temperature to step-change transient thermal environments
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2013.12.007
– volume: 58
  start-page: 258
  year: 2012
  ident: 10.1016/j.enbuild.2021.110859_b0070
  article-title: Investigation of human body skin temperatures as a bio-signal to indicate overall thermal sensations
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2012.07.003
– year: 2017
  ident: 10.1016/j.enbuild.2021.110859_b0130
  article-title: Smart control of indoor thermal environment based on online learned thermal comfort model using infrared thermal imaging
– volume: 121
  start-page: 130
  year: 2017
  ident: 10.1016/j.enbuild.2021.110859_b0075
  article-title: Study of data-driven thermal sensation prediction model as a function of local body skin temperatures in a built environment
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.05.004
– volume: 85
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.enbuild.2021.110859_b0065
  article-title: Thermal comfort in sub-Saharan Africa: Field study report in Jos-Nigeria
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2007.06.005
– volume: 45
  start-page: 4
  issue: 1
  year: 2010
  ident: 10.1016/j.enbuild.2021.110859_b0140
  article-title: Are ‘class A’ temperature requirements realistic or desirable?
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2009.03.014
– ident: 10.1016/j.enbuild.2021.110859_b0190
– ident: 10.1016/j.enbuild.2021.110859_b0215
SSID ssj0006571
Score 2.4984276
Snippet [Display omitted] •An image classification model based on a convolutional neural network (CNN) was used to determine clothing level.•Comfortable air...
People spend most of their time indoors, and thus it is important to provide occupants with a comfortable indoor thermal environment. However, inappropriate...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110859
SubjectTerms Air temperature
Artificial neural networks
Clothing level
HVAC
HVAC equipment
Image classification
Indoor environments
Infrared cameras
Infrared thermography
Neural networks
Skin
Skin temperature
Temperature
Thermal comfort
Thermal environments
Thermostat setpoint
Title Development of a novel method to detect clothing level and facial skin temperature for controlling HVAC systems
URI https://dx.doi.org/10.1016/j.enbuild.2021.110859
https://www.proquest.com/docview/2532192925
Volume 239
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEF5KfdEH8cSjyjz4mrbZI8djKUq8injh25JjA9WSFBtf_e3OJButIgi-5GInhNnZmdnsN98ydpJyjqNGuI6SiXBkzH0cUgadYZJ7w8z4igdUKHw98aIHefGknjps3NbCEKzS-v7Gp9fe2j4ZWG0O5tPp4G4o0NhwBseJRkgK8sNS-mTl_fcvmIen6kkXNXao9VcVz-C5T_QC0xkRhnK3BsQTZenv8emHp67Dz9kGW7d5I4yaT9tkHVNssbUlNsFtVi4BgKDMIYaixAfQbBINVQmZoSUDSGfYPSgCMxKAuMggj-nXOSxepgUQW5WlWgZMacGi2aluHaLH0Rga9ufFDns4O70fR47dT8FJhfArJ8lUkIXE3z70uWcSKRMqZsqHYebHAaaKAV4r6WYqzfHIcXLjYrBSqZCejDFX22XdoizMHgM_xERKuNIoD5uGXpBJE8s85zEtAvtqn8lWizq1ZOO058VMt6iyZ22Vr0n5ulH-Put_is0bto2_BIK2i_Q3s9EYEf4S7bVdqu24XWiuBLpwHnJ18P83H7JVuiOMgat6rFu9vpkjTF2q5Li2zWO2MhrfXt3Q-fwymnwAMxvuWg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcgAOiFUUCsyBa9rGS5ZjVVGlLL2wqDcriyO1VElFy_8z0zhsQqrEJYocTxSN7Tcz8cwzY9cp57hqhOsomQhHxtzHJWUQDJPc62XGVzygQuGHsRc9y9uJmjTYoK6FobRKi_0Vpq_R2rZ0rTa7i-m0-9gTONkwguNEIyQF4vAWsVOpJtvqj-6i8Scge2odd1F_hwS-Cnm6sw4xDEznxBnK3XVOPLGW_m2ifoH12gIN99medR2hX33dAWuY4pDtfiMUPGLltxwgKHOIoSixAapzomFVQmZo1wDSOY4QisCcBCAuMshj-nsOy9dpAURYZdmWAb1asAntVLoO0Ut_ABUB9PKYPQ9vngaRY49UcFIh_JWTZCrIQqJw7_ncM4mUCdUz5b0w8-MAvcUA75V0M5XmeOUY37hor1QqpCdjdNdOWLMoC3PKwA_RlxKuNMrDrqEXZNLEMs95TPvAvmoxWWtRp5ZvnI69mOs6sWymrfI1KV9Xym-xzqfYoiLc2CQQ1EOkf8wcjUZhk2i7HlJtl-5ScyUQxXnI1dn_33zFtqOnh3t9PxrfnbMdekIpB65qs-bq7d1coCezSi7tTP0A6jLvdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+novel+method+to+detect+clothing+level+and+facial+skin+temperature+for+controlling+HVAC+systems&rft.jtitle=Energy+and+buildings&rft.au=Li%2C+Xuan&rft.au=Chen%2C+Qingyan&rft.date=2021-05-15&rft.issn=0378-7788&rft.volume=239&rft.spage=110859&rft_id=info:doi/10.1016%2Fj.enbuild.2021.110859&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enbuild_2021_110859
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon