Enhanced hydrogen desorption properties of MgH2 by highly dispersed Ni: The role of in-situ hydrogenolysis of nickelocene in ball milling process
•Highly dispersed Ni in MgH2 matrix is obtained by in-situ hydrogenolysis of NiCp2.•The as-prepared MgH2–NiCp2 sample has enhanced hydrogen desorption kinetics.•The as-prepared MgH2–NiCp2 sample exhibits superior cycle stability.•Improvement of properties is attributed to highly dispersive catalytic...
Saved in:
Published in | Journal of alloys and compounds Vol. 900; p. 163547 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.04.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Highly dispersed Ni in MgH2 matrix is obtained by in-situ hydrogenolysis of NiCp2.•The as-prepared MgH2–NiCp2 sample has enhanced hydrogen desorption kinetics.•The as-prepared MgH2–NiCp2 sample exhibits superior cycle stability.•Improvement of properties is attributed to highly dispersive catalytic phase.
[Display omitted]
Magnesium hydride is a promising hydrogen storage material and how to improve its sorption kinetics is one of challenges in practical applications. In this paper, a new approach is proposed to catalyze MgH2 with highly dispersed Ni nanoparticles by in-situ hydrogenolysis of nickelocene (NiCp2) in ball milling process. After ball milling under 4 MPa hydrogen atmosphere for 15 h, the MgH2–16.1 wt% NiCp2 sample exhibits a homogeneous morphology where the in-situ formed Ni nanoparticles with size of ~8 nm are highly dispersed in MgH2 matrix. During initial dehydrogenation, Ni would react with MgH2 to form Mg2Ni which inherits the configuration of its high dispersion. In the subsequent hydrogen absorption and desorption cycles, the much fine and highly dispersed Ni-based catalytic phase contributes to the superior hydrogen desorption kinetics of MgH2 with a high-capacity retention rate of ~96% after 50 cycles. This work demonstrates that the in-situ formation of highly dispersed catalytic species is beneficial for improving hydrogen storage properties of MgH2. |
---|---|
AbstractList | •Highly dispersed Ni in MgH2 matrix is obtained by in-situ hydrogenolysis of NiCp2.•The as-prepared MgH2–NiCp2 sample has enhanced hydrogen desorption kinetics.•The as-prepared MgH2–NiCp2 sample exhibits superior cycle stability.•Improvement of properties is attributed to highly dispersive catalytic phase.
[Display omitted]
Magnesium hydride is a promising hydrogen storage material and how to improve its sorption kinetics is one of challenges in practical applications. In this paper, a new approach is proposed to catalyze MgH2 with highly dispersed Ni nanoparticles by in-situ hydrogenolysis of nickelocene (NiCp2) in ball milling process. After ball milling under 4 MPa hydrogen atmosphere for 15 h, the MgH2–16.1 wt% NiCp2 sample exhibits a homogeneous morphology where the in-situ formed Ni nanoparticles with size of ~8 nm are highly dispersed in MgH2 matrix. During initial dehydrogenation, Ni would react with MgH2 to form Mg2Ni which inherits the configuration of its high dispersion. In the subsequent hydrogen absorption and desorption cycles, the much fine and highly dispersed Ni-based catalytic phase contributes to the superior hydrogen desorption kinetics of MgH2 with a high-capacity retention rate of ~96% after 50 cycles. This work demonstrates that the in-situ formation of highly dispersed catalytic species is beneficial for improving hydrogen storage properties of MgH2. Magnesium hydride is a promising hydrogen storage material and how to improve its sorption kinetics is one of challenges in practical applications. In this paper, a new approach is proposed to catalyze MgH2 with highly dispersed Ni nanoparticles by in-situ hydrogenolysis of nickelocene (NiCp2) in ball milling process. After ball milling under 4 MPa hydrogen atmosphere for 15 h, the MgH2–16.1 wt% NiCp2 sample exhibits a homogeneous morphology where the in-situ formed Ni nanoparticles with size of ~8 nm are highly dispersed in MgH2 matrix. During initial dehydrogenation, Ni would react with MgH2 to form Mg2Ni which inherits the configuration of its high dispersion. In the subsequent hydrogen absorption and desorption cycles, the much fine and highly dispersed Ni-based catalytic phase contributes to the superior hydrogen desorption kinetics of MgH2 with a high-capacity retention rate of ~96% after 50 cycles. This work demonstrates that the in-situ formation of highly dispersed catalytic species is beneficial for improving hydrogen storage properties of MgH2. |
ArticleNumber | 163547 |
Author | Peng, Cong Li, Yongtao Zhang, Qingan |
Author_xml | – sequence: 1 givenname: Cong surname: Peng fullname: Peng, Cong – sequence: 2 givenname: Yongtao surname: Li fullname: Li, Yongtao – sequence: 3 givenname: Qingan surname: Zhang fullname: Zhang, Qingan email: qazhang@ahut.edu.cn |
BookMark | eNqFkMtKxDAUhoMoOF4eQQi47phL20ndiIg6gpeNrkOank5TM8mYdIQ-hm9s6ohbNzmQ_Jec7wjtO-8AoTNK5pTQ8qKf98pa7ddzRhid05IX-WIPzahY8Cwvy2ofzUjFikxwIQ7RUYw9IYRWnM7Q163rlNPQ4G5sgl-Bww1EHzaD8Q5vgt9AGAxE7Fv8tFoyXI-4M6vOjrgxMT3GZH02l_i1Axy8hUloXBbNsP2L9HaM5ifCGf0O1mtwkFS4Tv_Ga2OtcaupTEOMJ-igVTbC6e88Rm93t683y-zx5f7h5vox05wvhqyu27IogHAgeVO3oqQ054pBle5rWhVac50rAoUApVWbp4MzWjHFqNCiZvwYne9yU-_HFuIge78NLlVKVnLBKpozkVTFTqWDjzFAKzfBrFUYJSVyoi97-UtfTvTljn7yXe18kFb4NBBk1AYm0CaAHmTjzT8J3_DMlUk |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2022_167317 crossref_primary_10_2139_ssrn_4151588 crossref_primary_10_1016_j_est_2024_110612 crossref_primary_10_1039_D2QI00863G crossref_primary_10_1016_j_jallcom_2023_171914 crossref_primary_10_1016_j_mtadv_2023_100387 crossref_primary_10_1039_D2TA02958H crossref_primary_10_1039_D3TA06177A crossref_primary_10_1007_s12613_022_2529_x crossref_primary_10_1007_s12274_024_6713_y crossref_primary_10_1007_s40820_023_01041_5 crossref_primary_10_1016_j_ijhydene_2023_04_214 crossref_primary_10_1016_j_fuel_2023_129726 crossref_primary_10_1016_j_ijhydene_2023_01_185 crossref_primary_10_1016_j_ijhydene_2023_04_078 crossref_primary_10_1016_j_ijhydene_2023_10_141 crossref_primary_10_3390_molecules27238261 crossref_primary_10_1007_s12274_023_5800_1 crossref_primary_10_1016_j_scriptamat_2022_115052 crossref_primary_10_1021_acsami_2c06642 crossref_primary_10_1021_acsanm_3c03261 crossref_primary_10_1016_j_ijhydene_2023_05_203 crossref_primary_10_1016_j_scriptamat_2024_116149 crossref_primary_10_1016_j_jmst_2022_10_057 crossref_primary_10_1016_j_ijhydene_2022_12_363 crossref_primary_10_1016_j_jma_2023_07_011 crossref_primary_10_1016_j_ijhydene_2023_04_022 crossref_primary_10_1016_j_jallcom_2024_174822 crossref_primary_10_1016_j_est_2023_107773 crossref_primary_10_1016_j_cplett_2022_139573 crossref_primary_10_1016_j_cej_2024_149434 crossref_primary_10_1016_j_ijhydene_2023_08_243 crossref_primary_10_1016_j_jallcom_2022_164969 crossref_primary_10_1016_j_jmst_2022_11_044 crossref_primary_10_1016_j_jma_2024_04_020 crossref_primary_10_3390_ma15051823 |
Cites_doi | 10.1021/jp044576c 10.1063/1.1750631 10.1016/j.jallcom.2018.12.217 10.1016/j.jallcom.2020.156874 10.1039/C1CP23030A 10.1016/j.actamat.2014.11.047 10.1016/j.jallcom.2020.158004 10.1007/s12598-018-1087-x 10.1016/j.pnsc.2020.02.003 10.1016/j.ijhydene.2012.04.038 10.1016/j.actamat.2009.05.004 10.1016/j.jallcom.2021.161520 10.1016/j.ijhydene.2011.02.141 10.1016/j.ijhydene.2011.04.153 10.1016/j.jallcom.2003.10.049 10.1016/j.ijhydene.2010.02.107 10.1039/C4TA00221K 10.4028/www.scientific.net/MSF.321-324.198 10.1021/jp2005293 10.1016/j.ijhydene.2018.12.212 10.1021/jp0541563 10.1016/j.ijhydene.2009.08.088 10.1016/j.ssc.2007.03.052 10.1063/1.1750380 10.1016/j.ijhydene.2019.09.173 10.1016/j.jmst.2020.01.063 10.1016/j.jallcom.2010.02.128 10.1016/j.ijhydene.2016.03.205 10.3390/catal2030400 10.1039/C2NR33347C 10.1016/S0925-8388(98)00829-9 10.1016/0022-2860(73)85275-5 10.1021/acs.jpcc.8b05483 10.1016/S0925-8388(02)00120-2 10.1149/1.2946723 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Apr 15, 2022 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Apr 15, 2022 |
DBID | AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1016/j.jallcom.2021.163547 |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1873-4669 |
ExternalDocumentID | 10_1016_j_jallcom_2021_163547 S0925838821049574 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- 29J AAQXK AAXKI AAYXX ABXDB ACNNM ADMUD AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SMS T9H WUQ 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c337t-bbf655e03e04dbf861143a2e9bf6b195cc3c4a0e58eacaf4aca32192a218c8b23 |
IEDL.DBID | AIKHN |
ISSN | 0925-8388 |
IngestDate | Thu Oct 10 19:58:04 EDT 2024 Thu Sep 26 16:53:19 EDT 2024 Fri Feb 23 02:43:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nickelocene Hydrogen storage Magnesium hydride Catalysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-bbf655e03e04dbf861143a2e9bf6b195cc3c4a0e58eacaf4aca32192a218c8b23 |
PQID | 2638291428 |
PQPubID | 2045454 |
ParticipantIDs | proquest_journals_2638291428 crossref_primary_10_1016_j_jallcom_2021_163547 elsevier_sciencedirect_doi_10_1016_j_jallcom_2021_163547 |
PublicationCentury | 2000 |
PublicationDate | 2022-04-15 |
PublicationDateYYYYMMDD | 2022-04-15 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Journal of alloys and compounds |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Zhao, Zhu, Liu, Ma, Zhang, Liu, Li, Li (bib25) 2021; 862 Kimel’fel’d, Smirnoa, Aleksanyan (bib21) 1973; 19 Zhang, Cuevas, Zaidi, Bonnet, Aymard, Bobet, Latroche (bib12) 2011; 115 Peng, Spagnola, Parsons (bib20) 2008; 155 Zhou, Peng, Zhang (bib8) 2020; 50 Lieutenant, Borissova (bib4) 2020; 45 Denys, Riabov, Maehlen, Lototsky, Solberg, Yartys (bib6) 2009; 57 Hanada, Ichikawa, Fujii (bib15) 2005; 109 Amirkhiz, Zahiri, Kalisvaart, Mitlin (bib5) 2011; 36 Ferrari (bib22) 2007; 143 Shriniwasan, Kar, Neergat, Tatiparti (bib23) 2018; 122 Zhang, Jiang, Liu (bib10) 2012; 37 Avrami (bib28) 1940; 8 Liu, Wang, Li, Wang, Yuan (bib14) 2016; 41 Fuster, Castro, Troiani, Urretavizcaya (bib11) 2011; 36 Zhou, Hu, Li, Zhang (bib30) 2020; 30 Curves, Korablov, Latroche (bib35) 2012; 14 Jain, Lal, Jain (bib3) 2010; 35 Mao, Guo, Yu, Liu, Wu, Ni (bib26) 2010; 35 Avrami (bib27) 1939; 7 Montone, Aurora, Gattia, Antisari (bib34) 2012; 2 Izumi, Ikeda (bib19) 2000; 321-324 Nakamura, Bowman, Akiba (bib24) 2004; 373 Kalinichenka, Rontzsch, Baehtz, Kieback (bib13) 2010; 496 Meng, Huang, Ye, Xia, Wang, Dong, Yang, Yu (bib31) 2021; 851 Yartys, Lototskyy, Akiba, Albert, Antonov, Ares, Baricco, Bourgeois, Buckley, Bellosta von Colbe, Crivello, Cuevas, Denys, Dornheim, Felderhoff, Grant, Hauback, Humphries, Jacob, Jensen, de Jongh, Joubert, Kuzovnikov, Latroche, Paskevicius, Pasquini, Popilevsky, Skripnyuk, Rabkin, Sofianos, Stuart, Walker, Wang, Webb, Zhu (bib1) 2019; 44 House, Vajo, Ren, Rockett, Robertson (bib17) 2015; 86 Cui, Liu, Wang, Ouyang, Sun, Zhu, Yao (bib18) 2014; 2 Bogdanovic, Bohmhammel, Christ, Reiser, Schlichte, Vehlen, Wolf (bib2) 1999; 282 Si, Zhang, Feng, Ding, Li (bib16) 2021; 40 Gao, Li, Liu (bib32) 2021; 888 Zhang, Zhu, Yao, Xu, Liu, Li (bib7) 2019; 782 Barkhordarian, Klassen, Bormann (bib9) 2006; 110 Fernandez, Sanchez (bib29) 2002; 340 Liu, Wang, Xu, Qiu, An, Li, Jiao, Yuan (bib33) 2013; 5 Jain (10.1016/j.jallcom.2021.163547_bib3) 2010; 35 Zhao (10.1016/j.jallcom.2021.163547_bib25) 2021; 862 Izumi (10.1016/j.jallcom.2021.163547_bib19) 2000; 321-324 Kalinichenka (10.1016/j.jallcom.2021.163547_bib13) 2010; 496 House (10.1016/j.jallcom.2021.163547_bib17) 2015; 86 Ferrari (10.1016/j.jallcom.2021.163547_bib22) 2007; 143 Lieutenant (10.1016/j.jallcom.2021.163547_bib4) 2020; 45 Zhou (10.1016/j.jallcom.2021.163547_bib8) 2020; 50 Gao (10.1016/j.jallcom.2021.163547_bib32) 2021; 888 Hanada (10.1016/j.jallcom.2021.163547_bib15) 2005; 109 Montone (10.1016/j.jallcom.2021.163547_bib34) 2012; 2 Yartys (10.1016/j.jallcom.2021.163547_bib1) 2019; 44 Fuster (10.1016/j.jallcom.2021.163547_bib11) 2011; 36 Bogdanovic (10.1016/j.jallcom.2021.163547_bib2) 1999; 282 Zhang (10.1016/j.jallcom.2021.163547_bib12) 2011; 115 Liu (10.1016/j.jallcom.2021.163547_bib33) 2013; 5 Meng (10.1016/j.jallcom.2021.163547_bib31) 2021; 851 Liu (10.1016/j.jallcom.2021.163547_bib14) 2016; 41 Peng (10.1016/j.jallcom.2021.163547_bib20) 2008; 155 Kimel’fel’d (10.1016/j.jallcom.2021.163547_bib21) 1973; 19 Shriniwasan (10.1016/j.jallcom.2021.163547_bib23) 2018; 122 Nakamura (10.1016/j.jallcom.2021.163547_bib24) 2004; 373 Mao (10.1016/j.jallcom.2021.163547_bib26) 2010; 35 Zhou (10.1016/j.jallcom.2021.163547_bib30) 2020; 30 Avrami (10.1016/j.jallcom.2021.163547_bib28) 1940; 8 Curves (10.1016/j.jallcom.2021.163547_bib35) 2012; 14 Barkhordarian (10.1016/j.jallcom.2021.163547_bib9) 2006; 110 Avrami (10.1016/j.jallcom.2021.163547_bib27) 1939; 7 Denys (10.1016/j.jallcom.2021.163547_bib6) 2009; 57 Cui (10.1016/j.jallcom.2021.163547_bib18) 2014; 2 Zhang (10.1016/j.jallcom.2021.163547_bib10) 2012; 37 Zhang (10.1016/j.jallcom.2021.163547_bib7) 2019; 782 Amirkhiz (10.1016/j.jallcom.2021.163547_bib5) 2011; 36 Fernandez (10.1016/j.jallcom.2021.163547_bib29) 2002; 340 Si (10.1016/j.jallcom.2021.163547_bib16) 2021; 40 |
References_xml | – volume: 50 start-page: 178 year: 2020 end-page: 183 ident: bib8 article-title: Growth kinetics of MgH publication-title: J. Mater. Sci. Technol. contributor: fullname: Zhang – volume: 14 start-page: 1200 year: 2012 end-page: 1211 ident: bib35 article-title: Synthesis, structural and hydrogenation properties of Mg-rich MgH publication-title: Phys. Chem. Chem. Phys. contributor: fullname: Latroche – volume: 36 start-page: 9051 year: 2011 end-page: 9061 ident: bib11 article-title: Characterization of graphite catalytic effect in reactively ball-milled MgH publication-title: Int. J. Hydrog. Energy contributor: fullname: Urretavizcaya – volume: 282 start-page: 84 year: 1999 end-page: 92 ident: bib2 article-title: Thermodynamic investigation of the magnesium-hydrogen system publication-title: J. Alloy. Compd. contributor: fullname: Wolf – volume: 7 start-page: 1103 year: 1939 end-page: 1112 ident: bib27 article-title: Kinetics of phase change, I general theory publication-title: J. Chem. Phys. contributor: fullname: Avrami – volume: 37 start-page: 10709 year: 2012 end-page: 10714 ident: bib10 article-title: Comparative investigations on the hydrogenation characteristics and hydrogen storage kinetics of melt-spun Mg publication-title: Int. J. Hydrog. Energy contributor: fullname: Liu – volume: 373 start-page: 183 year: 2004 end-page: 193 ident: bib24 article-title: Strain formation and lattice parameter change in LaNi publication-title: J. Alloy. Compd. contributor: fullname: Akiba – volume: 45 start-page: 2954 year: 2020 end-page: 2966 ident: bib4 article-title: A landscape of hydride compounds for off-board refilling of transport vehicles publication-title: Int. J. Hydrog. Energy contributor: fullname: Borissova – volume: 109 start-page: 7188 year: 2005 end-page: 7194 ident: bib15 article-title: Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH publication-title: J. Phys. Chem. B contributor: fullname: Fujii – volume: 155 start-page: D580 year: 2008 end-page: D582 ident: bib20 article-title: Self-catalyzed hydrogenolysis of nickelocene: functional metal coating of three-dimensional nanosystems at low temperature publication-title: J. Electrochem. Soc. contributor: fullname: Parsons – volume: 40 start-page: 995 year: 2021 end-page: 1002 ident: bib16 article-title: Enhancing hydrogen desorption in MgH publication-title: Rare Met. contributor: fullname: Li – volume: 321-324 start-page: 198 year: 2000 end-page: 205 ident: bib19 article-title: A Rietveld-analysis program RIETAN-98 and its applications to zeolites publication-title: Mater. Sci. Forum contributor: fullname: Ikeda – volume: 30 start-page: 246 year: 2020 end-page: 250 ident: bib30 article-title: Crystallite growth characteristics of Mg during hydrogen desorption of MgH publication-title: Prog. Nat. Sci. Mater. contributor: fullname: Zhang – volume: 496 start-page: 608 year: 2010 end-page: 613 ident: bib13 article-title: Hydrogen desorption kinetics of melt-spun and hydrogenated Mg publication-title: J. Alloy. Compd. contributor: fullname: Kieback – volume: 115 start-page: 4971 year: 2011 end-page: 4979 ident: bib12 article-title: Highlighting of a single reaction path during reactive ball milling of Mg and TM by quantitative H publication-title: J. Phys. Chem. C contributor: fullname: Latroche – volume: 862 year: 2021 ident: bib25 article-title: Enhancing hydrogen storage properties of MgH publication-title: J. Alloy. Compd. contributor: fullname: Li – volume: 340 start-page: 189 year: 2002 end-page: 198 ident: bib29 article-title: Rate determining step in the absorption and desorption of hydrogen by magnesium publication-title: J. Alloy. Compd. contributor: fullname: Sanchez – volume: 44 start-page: 7809 year: 2019 end-page: 7859 ident: bib1 article-title: Magnesium based materials for hydrogen based energy storage: past, present and future publication-title: Int. J. Hydrog. Energy contributor: fullname: Zhu – volume: 5 start-page: 1074 year: 2013 end-page: 1081 ident: bib33 article-title: Excellent catalytic effects of highly crumpled graphene nanosheets on hydrogenation/dehydrogenation of magnesium hydride publication-title: Nanoscale contributor: fullname: Yuan – volume: 122 start-page: 22389 year: 2018 end-page: 22396 ident: bib23 article-title: Mg-C interaction induced hydrogen uptake and enhanced hydrogen release kinetics in MgH publication-title: J. Phys. Chem. C contributor: fullname: Tatiparti – volume: 86 start-page: 55 year: 2015 end-page: 68 ident: bib17 article-title: Effect of ball-milling duration and dehydrogenation on the morphology, microstructure and catalyst dispersion in Ni-catalyzed MgH publication-title: Acta Mater. contributor: fullname: Robertson – volume: 35 start-page: 4569 year: 2010 end-page: 4575 ident: bib26 article-title: Enhanced hydrogen sorption properties of Ni and Co-catalyzed MgH publication-title: Int. J. Hydrog. Energy contributor: fullname: Ni – volume: 851 year: 2021 ident: bib31 article-title: Electrospun carbon nanofibers with in-situ encapsulated Ni nanoparticles as catalyst for enhanced hydrogen storage of MgH publication-title: J. Alloy. Compd. contributor: fullname: Yu – volume: 8 start-page: 212 year: 1940 end-page: 224 ident: bib28 article-title: Kinetics of phase change, II Transformation-time relations for random distribution of nuclei publication-title: J. Chem. Phys. contributor: fullname: Avrami – volume: 19 start-page: 329 year: 1973 end-page: 346 ident: bib21 article-title: The vibrational spectra of molecular crystals of ferrocene, ruthenocene, osmocene and nickelocene publication-title: J. Mol. Struct. contributor: fullname: Aleksanyan – volume: 110 start-page: 11020 year: 2006 end-page: 11024 ident: bib9 article-title: Catalytic mechanism of transition-metal compounds on Mg hydrogen sorption reaction publication-title: J. Phys. Chem. B contributor: fullname: Bormann – volume: 143 start-page: 47 year: 2007 end-page: 57 ident: bib22 article-title: Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects publication-title: Solid State Commun. contributor: fullname: Ferrari – volume: 41 start-page: 10786 year: 2016 end-page: 10794 ident: bib14 article-title: Enhancement of hydrogen desorption in magnesium hydride catalyzed by graphene nanosheets supported Ni-CeO publication-title: Int. J. Hydrog. Energy contributor: fullname: Yuan – volume: 888 year: 2021 ident: bib32 article-title: Thermally stable La-Ni-B amorphous additives for enhancing hydrogen storage performance of MgH publication-title: J. Alloy. Compd. contributor: fullname: Liu – volume: 2 start-page: 9645 year: 2014 end-page: 9655 ident: bib18 article-title: Mg-TM (TM: Ti, Nb, V, Co, Mo or Ni) core-shell like nanostructures: synthesis, hydrogen storage performance and catalytic mechanism publication-title: J. Mater. Chem. A contributor: fullname: Yao – volume: 57 start-page: 3989 year: 2009 end-page: 4000 ident: bib6 article-title: In situ synchrotron X-ray diffraction studies of hydrogen desorption and absorption properties of Mg and Mg-Mm-Ni after reactive ball milling in hydrogen publication-title: Acta Mater. contributor: fullname: Yartys – volume: 35 start-page: 5133 year: 2010 end-page: 5144 ident: bib3 article-title: Hydrogen storage in Mg: a most promising material publication-title: Int. J. Hydrog. Energy contributor: fullname: Jain – volume: 36 start-page: 6711 year: 2011 end-page: 6722 ident: bib5 article-title: Synergy of elemental Fe and Ti promoting low temperature hydrogen sorption cycling of magnesium publication-title: Int. J. Hydrog. Energy contributor: fullname: Mitlin – volume: 782 start-page: 796 year: 2019 end-page: 823 ident: bib7 article-title: State of the art multi-strategy improvement of Mg-based hydrides for hydrogen storage publication-title: J. Alloy. Compd. contributor: fullname: Li – volume: 2 start-page: 400 year: 2012 end-page: 411 ident: bib34 article-title: Microstructral and kinetic evolution of Fe doped MgH publication-title: Catalysts contributor: fullname: Antisari – volume: 109 start-page: 7188 year: 2005 ident: 10.1016/j.jallcom.2021.163547_bib15 article-title: Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling publication-title: J. Phys. Chem. B doi: 10.1021/jp044576c contributor: fullname: Hanada – volume: 8 start-page: 212 year: 1940 ident: 10.1016/j.jallcom.2021.163547_bib28 article-title: Kinetics of phase change, II Transformation-time relations for random distribution of nuclei publication-title: J. Chem. Phys. doi: 10.1063/1.1750631 contributor: fullname: Avrami – volume: 782 start-page: 796 year: 2019 ident: 10.1016/j.jallcom.2021.163547_bib7 article-title: State of the art multi-strategy improvement of Mg-based hydrides for hydrogen storage publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2018.12.217 contributor: fullname: Zhang – volume: 851 year: 2021 ident: 10.1016/j.jallcom.2021.163547_bib31 article-title: Electrospun carbon nanofibers with in-situ encapsulated Ni nanoparticles as catalyst for enhanced hydrogen storage of MgH2 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2020.156874 contributor: fullname: Meng – volume: 14 start-page: 1200 year: 2012 ident: 10.1016/j.jallcom.2021.163547_bib35 article-title: Synthesis, structural and hydrogenation properties of Mg-rich MgH2-TiH2 nanocomposites prepared by reactive ball milling under hydrogen gas publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C1CP23030A contributor: fullname: Curves – volume: 86 start-page: 55 year: 2015 ident: 10.1016/j.jallcom.2021.163547_bib17 article-title: Effect of ball-milling duration and dehydrogenation on the morphology, microstructure and catalyst dispersion in Ni-catalyzed MgH2 hydrogen storage materials publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.11.047 contributor: fullname: House – volume: 862 year: 2021 ident: 10.1016/j.jallcom.2021.163547_bib25 article-title: Enhancing hydrogen storage properties of MgH2 by core-shell CoNi@C publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2020.158004 contributor: fullname: Zhao – volume: 40 start-page: 995 year: 2021 ident: 10.1016/j.jallcom.2021.163547_bib16 article-title: Enhancing hydrogen desorption in MgH2 by controlling particle size and contact of Ni catalysts publication-title: Rare Met. doi: 10.1007/s12598-018-1087-x contributor: fullname: Si – volume: 30 start-page: 246 year: 2020 ident: 10.1016/j.jallcom.2021.163547_bib30 article-title: Crystallite growth characteristics of Mg during hydrogen desorption of MgH2 publication-title: Prog. Nat. Sci. Mater. doi: 10.1016/j.pnsc.2020.02.003 contributor: fullname: Zhou – volume: 37 start-page: 10709 year: 2012 ident: 10.1016/j.jallcom.2021.163547_bib10 article-title: Comparative investigations on the hydrogenation characteristics and hydrogen storage kinetics of melt-spun Mg10NiR (R = La, Nd and Sm) alloys publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2012.04.038 contributor: fullname: Zhang – volume: 57 start-page: 3989 year: 2009 ident: 10.1016/j.jallcom.2021.163547_bib6 article-title: In situ synchrotron X-ray diffraction studies of hydrogen desorption and absorption properties of Mg and Mg-Mm-Ni after reactive ball milling in hydrogen publication-title: Acta Mater. doi: 10.1016/j.actamat.2009.05.004 contributor: fullname: Denys – volume: 888 year: 2021 ident: 10.1016/j.jallcom.2021.163547_bib32 article-title: Thermally stable La-Ni-B amorphous additives for enhancing hydrogen storage performance of MgH2 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2021.161520 contributor: fullname: Gao – volume: 36 start-page: 6711 year: 2011 ident: 10.1016/j.jallcom.2021.163547_bib5 article-title: Synergy of elemental Fe and Ti promoting low temperature hydrogen sorption cycling of magnesium publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2011.02.141 contributor: fullname: Amirkhiz – volume: 36 start-page: 9051 year: 2011 ident: 10.1016/j.jallcom.2021.163547_bib11 article-title: Characterization of graphite catalytic effect in reactively ball-milled MgH2-C and Mg-C composites publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2011.04.153 contributor: fullname: Fuster – volume: 373 start-page: 183 year: 2004 ident: 10.1016/j.jallcom.2021.163547_bib24 article-title: Strain formation and lattice parameter change in LaNi4.75Sn0.25–H system during the initial activation process publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2003.10.049 contributor: fullname: Nakamura – volume: 35 start-page: 4569 year: 2010 ident: 10.1016/j.jallcom.2021.163547_bib26 article-title: Enhanced hydrogen sorption properties of Ni and Co-catalyzed MgH2 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2010.02.107 contributor: fullname: Mao – volume: 2 start-page: 9645 year: 2014 ident: 10.1016/j.jallcom.2021.163547_bib18 article-title: Mg-TM (TM: Ti, Nb, V, Co, Mo or Ni) core-shell like nanostructures: synthesis, hydrogen storage performance and catalytic mechanism publication-title: J. Mater. Chem. A doi: 10.1039/C4TA00221K contributor: fullname: Cui – volume: 321-324 start-page: 198 year: 2000 ident: 10.1016/j.jallcom.2021.163547_bib19 article-title: A Rietveld-analysis program RIETAN-98 and its applications to zeolites publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.321-324.198 contributor: fullname: Izumi – volume: 115 start-page: 4971 year: 2011 ident: 10.1016/j.jallcom.2021.163547_bib12 article-title: Highlighting of a single reaction path during reactive ball milling of Mg and TM by quantitative H2 gas sorption analysis to form ternary complex hydrides (TM = Fe, Co, Ni) publication-title: J. Phys. Chem. C doi: 10.1021/jp2005293 contributor: fullname: Zhang – volume: 44 start-page: 7809 year: 2019 ident: 10.1016/j.jallcom.2021.163547_bib1 article-title: Magnesium based materials for hydrogen based energy storage: past, present and future publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2018.12.212 contributor: fullname: Yartys – volume: 110 start-page: 11020 year: 2006 ident: 10.1016/j.jallcom.2021.163547_bib9 article-title: Catalytic mechanism of transition-metal compounds on Mg hydrogen sorption reaction publication-title: J. Phys. Chem. B doi: 10.1021/jp0541563 contributor: fullname: Barkhordarian – volume: 35 start-page: 5133 year: 2010 ident: 10.1016/j.jallcom.2021.163547_bib3 article-title: Hydrogen storage in Mg: a most promising material publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2009.08.088 contributor: fullname: Jain – volume: 143 start-page: 47 year: 2007 ident: 10.1016/j.jallcom.2021.163547_bib22 article-title: Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects publication-title: Solid State Commun. doi: 10.1016/j.ssc.2007.03.052 contributor: fullname: Ferrari – volume: 7 start-page: 1103 year: 1939 ident: 10.1016/j.jallcom.2021.163547_bib27 article-title: Kinetics of phase change, I general theory publication-title: J. Chem. Phys. doi: 10.1063/1.1750380 contributor: fullname: Avrami – volume: 45 start-page: 2954 year: 2020 ident: 10.1016/j.jallcom.2021.163547_bib4 article-title: A landscape of hydride compounds for off-board refilling of transport vehicles publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.09.173 contributor: fullname: Lieutenant – volume: 50 start-page: 178 year: 2020 ident: 10.1016/j.jallcom.2021.163547_bib8 article-title: Growth kinetics of MgH2 nanocrystallites prepared by ball milling publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.01.063 contributor: fullname: Zhou – volume: 496 start-page: 608 year: 2010 ident: 10.1016/j.jallcom.2021.163547_bib13 article-title: Hydrogen desorption kinetics of melt-spun and hydrogenated Mg90Ni10 and Mg80Ni10Y10 using in situ synchrotron, X-ray diffraction and thermogravimetry publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2010.02.128 contributor: fullname: Kalinichenka – volume: 41 start-page: 10786 year: 2016 ident: 10.1016/j.jallcom.2021.163547_bib14 article-title: Enhancement of hydrogen desorption in magnesium hydride catalyzed by graphene nanosheets supported Ni-CeOx hybrid nanocatalyst publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2016.03.205 contributor: fullname: Liu – volume: 2 start-page: 400 year: 2012 ident: 10.1016/j.jallcom.2021.163547_bib34 article-title: Microstructral and kinetic evolution of Fe doped MgH2 during H2 cycling publication-title: Catalysts doi: 10.3390/catal2030400 contributor: fullname: Montone – volume: 5 start-page: 1074 year: 2013 ident: 10.1016/j.jallcom.2021.163547_bib33 article-title: Excellent catalytic effects of highly crumpled graphene nanosheets on hydrogenation/dehydrogenation of magnesium hydride publication-title: Nanoscale doi: 10.1039/C2NR33347C contributor: fullname: Liu – volume: 282 start-page: 84 year: 1999 ident: 10.1016/j.jallcom.2021.163547_bib2 article-title: Thermodynamic investigation of the magnesium-hydrogen system publication-title: J. Alloy. Compd. doi: 10.1016/S0925-8388(98)00829-9 contributor: fullname: Bogdanovic – volume: 19 start-page: 329 year: 1973 ident: 10.1016/j.jallcom.2021.163547_bib21 article-title: The vibrational spectra of molecular crystals of ferrocene, ruthenocene, osmocene and nickelocene publication-title: J. Mol. Struct. doi: 10.1016/0022-2860(73)85275-5 contributor: fullname: Kimel’fel’d – volume: 122 start-page: 22389 year: 2018 ident: 10.1016/j.jallcom.2021.163547_bib23 article-title: Mg-C interaction induced hydrogen uptake and enhanced hydrogen release kinetics in MgH2-rGO nanocomposites publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b05483 contributor: fullname: Shriniwasan – volume: 340 start-page: 189 year: 2002 ident: 10.1016/j.jallcom.2021.163547_bib29 article-title: Rate determining step in the absorption and desorption of hydrogen by magnesium publication-title: J. Alloy. Compd. doi: 10.1016/S0925-8388(02)00120-2 contributor: fullname: Fernandez – volume: 155 start-page: D580 year: 2008 ident: 10.1016/j.jallcom.2021.163547_bib20 article-title: Self-catalyzed hydrogenolysis of nickelocene: functional metal coating of three-dimensional nanosystems at low temperature publication-title: J. Electrochem. Soc. doi: 10.1149/1.2946723 contributor: fullname: Peng |
SSID | ssj0001931 |
Score | 2.5590932 |
Snippet | •Highly dispersed Ni in MgH2 matrix is obtained by in-situ hydrogenolysis of NiCp2.•The as-prepared MgH2–NiCp2 sample has enhanced hydrogen desorption... Magnesium hydride is a promising hydrogen storage material and how to improve its sorption kinetics is one of challenges in practical applications. In this... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 163547 |
SubjectTerms | Ball milling Catalysis Dehydrogenation Desorption Dispersion Hydrogen Hydrogen storage Hydrogen storage materials Hydrogenolysis Kinetics Magnesium Magnesium hydride Nanoparticles Nickelocene |
Title | Enhanced hydrogen desorption properties of MgH2 by highly dispersed Ni: The role of in-situ hydrogenolysis of nickelocene in ball milling process |
URI | https://dx.doi.org/10.1016/j.jallcom.2021.163547 https://www.proquest.com/docview/2638291428 |
Volume | 900 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH7aOiHgMEFhYmxMPnBNm9pO6uw2VZsKiF5g0m5W_CMsVZVUTXfohf-B_3jvOckYCGkSlxwc23L87O89x-99D-CjjT23aOhHE-dsJIvM4JZK8sjlqcltpoT0wUF2kc6v5eeb5GYPZn0sDLlVdtjfYnpA665k3M3meF2W429xxunOT-GhBa38qdyHg3BJNICDi09f5osHQEYbJSTOw_oRNfgdyDNejpb5akV-IxyV3QiNk4QSrfxbRf0F1kEDXb2Cw850ZBft6F7Dnq-G8HzWZ2wbwstH5IJDeBacO23zBn5dVrfhop_d7tymxiXDnG_qTUALtqbf8RviVWV1wb7-mHNmdoxojFc75kpiEm-w6aI8Z7imGLkjUsWyippye_fQZR24TehNVSIyoI5EFMVazOCnM0puhKNi6zYu4S1cX11-n82jLhVDZIWYbiNjijRJfCx8LJ0pVIrHKJFzn2G5mWSJtcLKPPaJQiDPC4kPgVjIc7QgrDJcHMGgqiv_DlimlFHcc6X8VFo5yVzsbJp6L7AjJe0xjPrZ1-uWcUP3rmhL3YlLk7h0K65jUL2M9B9LR6NWeKrpaS9T3e3dRnOEJJ4RE937_-_5BF5wCpQgVsjkFAbbzZ3_gObL1pzB_ujn5KxbpPcrY_It |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVqhwQLCAKBTwgWt2s7aTtblVq1YpbfdCK_VmxY_QrFbJarM97M_gHzOTR3kICYlLDo5tOZ7xN5_j8QzAJxcH7pDoR1PvXSQLbXFJJXnk89TmTishQ-sgu0izG_nlNrndg_lwF4bcKnvs7zC9Reu-ZNLP5mRdlpOvseZ05qdw04IsfyYfwQGyAY3KfnByfpEtHgAZOUqbOA_rR9Tg50WeyXK8zFcr8hvhaOzGSE4SSrTydxP1B1i3FujsOTzrqSM76Ub3AvZCNYLD-ZCxbQRPfwkuOILHrXOna17C99Pqrj3oZ3c7v6lRZZgPTb1p0YKt6Xf8huKqsrpgV98yzuyOURjj1Y75kiKJN9h0UX5mqFOM3BGpYllFTbm9f-iybmOb0JuqRGRAG4koirWYxU9nlNwIR8XW3b2EV3Bzdno9z6I-FUPkhJhtI2uLNElCLEIsvS1UitsokfOgsdxOdeKccDKPQ6IQyPNC4kMgFvIcGYRTlovXsF_VVXgDTCtlFQ9cqTCTTk61j71L0xAEdqSkO4LxMPtm3UXcMIMr2tL04jIkLtOJ6wjUICPzm-oYtAr_ano8yNT0a7cxHCGJa4pE9_b_e_4Ih9n11aW5PF9cvIMnnC5NUITI5Bj2t5v78B6pzNZ-6FX1Bx-t9Co |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+hydrogen+desorption+properties+of+MgH2+by+highly+dispersed+Ni%3A+The+role+of+in-situ+hydrogenolysis+of+nickelocene+in+ball+milling+process&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Peng%2C+Cong&rft.au=Li%2C+Yongtao&rft.au=Zhang%2C+Qingan&rft.date=2022-04-15&rft.issn=0925-8388&rft.volume=900&rft.spage=163547&rft_id=info:doi/10.1016%2Fj.jallcom.2021.163547&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2021_163547 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |