Enhanced hydrogen desorption properties of MgH2 by highly dispersed Ni: The role of in-situ hydrogenolysis of nickelocene in ball milling process

•Highly dispersed Ni in MgH2 matrix is obtained by in-situ hydrogenolysis of NiCp2.•The as-prepared MgH2–NiCp2 sample has enhanced hydrogen desorption kinetics.•The as-prepared MgH2–NiCp2 sample exhibits superior cycle stability.•Improvement of properties is attributed to highly dispersive catalytic...

Full description

Saved in:
Bibliographic Details
Published inJournal of alloys and compounds Vol. 900; p. 163547
Main Authors Peng, Cong, Li, Yongtao, Zhang, Qingan
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 15.04.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Highly dispersed Ni in MgH2 matrix is obtained by in-situ hydrogenolysis of NiCp2.•The as-prepared MgH2–NiCp2 sample has enhanced hydrogen desorption kinetics.•The as-prepared MgH2–NiCp2 sample exhibits superior cycle stability.•Improvement of properties is attributed to highly dispersive catalytic phase. [Display omitted] Magnesium hydride is a promising hydrogen storage material and how to improve its sorption kinetics is one of challenges in practical applications. In this paper, a new approach is proposed to catalyze MgH2 with highly dispersed Ni nanoparticles by in-situ hydrogenolysis of nickelocene (NiCp2) in ball milling process. After ball milling under 4 MPa hydrogen atmosphere for 15 h, the MgH2–16.1 wt% NiCp2 sample exhibits a homogeneous morphology where the in-situ formed Ni nanoparticles with size of ~8 nm are highly dispersed in MgH2 matrix. During initial dehydrogenation, Ni would react with MgH2 to form Mg2Ni which inherits the configuration of its high dispersion. In the subsequent hydrogen absorption and desorption cycles, the much fine and highly dispersed Ni-based catalytic phase contributes to the superior hydrogen desorption kinetics of MgH2 with a high-capacity retention rate of ~96% after 50 cycles. This work demonstrates that the in-situ formation of highly dispersed catalytic species is beneficial for improving hydrogen storage properties of MgH2.
AbstractList •Highly dispersed Ni in MgH2 matrix is obtained by in-situ hydrogenolysis of NiCp2.•The as-prepared MgH2–NiCp2 sample has enhanced hydrogen desorption kinetics.•The as-prepared MgH2–NiCp2 sample exhibits superior cycle stability.•Improvement of properties is attributed to highly dispersive catalytic phase. [Display omitted] Magnesium hydride is a promising hydrogen storage material and how to improve its sorption kinetics is one of challenges in practical applications. In this paper, a new approach is proposed to catalyze MgH2 with highly dispersed Ni nanoparticles by in-situ hydrogenolysis of nickelocene (NiCp2) in ball milling process. After ball milling under 4 MPa hydrogen atmosphere for 15 h, the MgH2–16.1 wt% NiCp2 sample exhibits a homogeneous morphology where the in-situ formed Ni nanoparticles with size of ~8 nm are highly dispersed in MgH2 matrix. During initial dehydrogenation, Ni would react with MgH2 to form Mg2Ni which inherits the configuration of its high dispersion. In the subsequent hydrogen absorption and desorption cycles, the much fine and highly dispersed Ni-based catalytic phase contributes to the superior hydrogen desorption kinetics of MgH2 with a high-capacity retention rate of ~96% after 50 cycles. This work demonstrates that the in-situ formation of highly dispersed catalytic species is beneficial for improving hydrogen storage properties of MgH2.
Magnesium hydride is a promising hydrogen storage material and how to improve its sorption kinetics is one of challenges in practical applications. In this paper, a new approach is proposed to catalyze MgH2 with highly dispersed Ni nanoparticles by in-situ hydrogenolysis of nickelocene (NiCp2) in ball milling process. After ball milling under 4 MPa hydrogen atmosphere for 15 h, the MgH2–16.1 wt% NiCp2 sample exhibits a homogeneous morphology where the in-situ formed Ni nanoparticles with size of ~8 nm are highly dispersed in MgH2 matrix. During initial dehydrogenation, Ni would react with MgH2 to form Mg2Ni which inherits the configuration of its high dispersion. In the subsequent hydrogen absorption and desorption cycles, the much fine and highly dispersed Ni-based catalytic phase contributes to the superior hydrogen desorption kinetics of MgH2 with a high-capacity retention rate of ~96% after 50 cycles. This work demonstrates that the in-situ formation of highly dispersed catalytic species is beneficial for improving hydrogen storage properties of MgH2.
ArticleNumber 163547
Author Peng, Cong
Li, Yongtao
Zhang, Qingan
Author_xml – sequence: 1
  givenname: Cong
  surname: Peng
  fullname: Peng, Cong
– sequence: 2
  givenname: Yongtao
  surname: Li
  fullname: Li, Yongtao
– sequence: 3
  givenname: Qingan
  surname: Zhang
  fullname: Zhang, Qingan
  email: qazhang@ahut.edu.cn
BookMark eNqFkMtKxDAUhoMoOF4eQQi47phL20ndiIg6gpeNrkOank5TM8mYdIQ-hm9s6ohbNzmQ_Jec7wjtO-8AoTNK5pTQ8qKf98pa7ddzRhid05IX-WIPzahY8Cwvy2ofzUjFikxwIQ7RUYw9IYRWnM7Q163rlNPQ4G5sgl-Bww1EHzaD8Q5vgt9AGAxE7Fv8tFoyXI-4M6vOjrgxMT3GZH02l_i1Axy8hUloXBbNsP2L9HaM5ifCGf0O1mtwkFS4Tv_Ga2OtcaupTEOMJ-igVTbC6e88Rm93t683y-zx5f7h5vox05wvhqyu27IogHAgeVO3oqQ054pBle5rWhVac50rAoUApVWbp4MzWjHFqNCiZvwYne9yU-_HFuIge78NLlVKVnLBKpozkVTFTqWDjzFAKzfBrFUYJSVyoi97-UtfTvTljn7yXe18kFb4NBBk1AYm0CaAHmTjzT8J3_DMlUk
CitedBy_id crossref_primary_10_1016_j_jallcom_2022_167317
crossref_primary_10_2139_ssrn_4151588
crossref_primary_10_1016_j_est_2024_110612
crossref_primary_10_1039_D2QI00863G
crossref_primary_10_1016_j_jallcom_2023_171914
crossref_primary_10_1016_j_mtadv_2023_100387
crossref_primary_10_1039_D2TA02958H
crossref_primary_10_1039_D3TA06177A
crossref_primary_10_1007_s12613_022_2529_x
crossref_primary_10_1007_s12274_024_6713_y
crossref_primary_10_1007_s40820_023_01041_5
crossref_primary_10_1016_j_ijhydene_2023_04_214
crossref_primary_10_1016_j_fuel_2023_129726
crossref_primary_10_1016_j_ijhydene_2023_01_185
crossref_primary_10_1016_j_ijhydene_2023_04_078
crossref_primary_10_1016_j_ijhydene_2023_10_141
crossref_primary_10_3390_molecules27238261
crossref_primary_10_1007_s12274_023_5800_1
crossref_primary_10_1016_j_scriptamat_2022_115052
crossref_primary_10_1021_acsami_2c06642
crossref_primary_10_1021_acsanm_3c03261
crossref_primary_10_1016_j_ijhydene_2023_05_203
crossref_primary_10_1016_j_scriptamat_2024_116149
crossref_primary_10_1016_j_jmst_2022_10_057
crossref_primary_10_1016_j_ijhydene_2022_12_363
crossref_primary_10_1016_j_jma_2023_07_011
crossref_primary_10_1016_j_ijhydene_2023_04_022
crossref_primary_10_1016_j_jallcom_2024_174822
crossref_primary_10_1016_j_est_2023_107773
crossref_primary_10_1016_j_cplett_2022_139573
crossref_primary_10_1016_j_cej_2024_149434
crossref_primary_10_1016_j_ijhydene_2023_08_243
crossref_primary_10_1016_j_jallcom_2022_164969
crossref_primary_10_1016_j_jmst_2022_11_044
crossref_primary_10_1016_j_jma_2024_04_020
crossref_primary_10_3390_ma15051823
Cites_doi 10.1021/jp044576c
10.1063/1.1750631
10.1016/j.jallcom.2018.12.217
10.1016/j.jallcom.2020.156874
10.1039/C1CP23030A
10.1016/j.actamat.2014.11.047
10.1016/j.jallcom.2020.158004
10.1007/s12598-018-1087-x
10.1016/j.pnsc.2020.02.003
10.1016/j.ijhydene.2012.04.038
10.1016/j.actamat.2009.05.004
10.1016/j.jallcom.2021.161520
10.1016/j.ijhydene.2011.02.141
10.1016/j.ijhydene.2011.04.153
10.1016/j.jallcom.2003.10.049
10.1016/j.ijhydene.2010.02.107
10.1039/C4TA00221K
10.4028/www.scientific.net/MSF.321-324.198
10.1021/jp2005293
10.1016/j.ijhydene.2018.12.212
10.1021/jp0541563
10.1016/j.ijhydene.2009.08.088
10.1016/j.ssc.2007.03.052
10.1063/1.1750380
10.1016/j.ijhydene.2019.09.173
10.1016/j.jmst.2020.01.063
10.1016/j.jallcom.2010.02.128
10.1016/j.ijhydene.2016.03.205
10.3390/catal2030400
10.1039/C2NR33347C
10.1016/S0925-8388(98)00829-9
10.1016/0022-2860(73)85275-5
10.1021/acs.jpcc.8b05483
10.1016/S0925-8388(02)00120-2
10.1149/1.2946723
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Apr 15, 2022
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Apr 15, 2022
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/j.jallcom.2021.163547
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4669
ExternalDocumentID 10_1016_j_jallcom_2021_163547
S0925838821049574
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~G-
29J
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ADMUD
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SMS
T9H
WUQ
8BQ
8FD
JG9
ID FETCH-LOGICAL-c337t-bbf655e03e04dbf861143a2e9bf6b195cc3c4a0e58eacaf4aca32192a218c8b23
IEDL.DBID AIKHN
ISSN 0925-8388
IngestDate Thu Oct 10 19:58:04 EDT 2024
Thu Sep 26 16:53:19 EDT 2024
Fri Feb 23 02:43:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nickelocene
Hydrogen storage
Magnesium hydride
Catalysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-bbf655e03e04dbf861143a2e9bf6b195cc3c4a0e58eacaf4aca32192a218c8b23
PQID 2638291428
PQPubID 2045454
ParticipantIDs proquest_journals_2638291428
crossref_primary_10_1016_j_jallcom_2021_163547
elsevier_sciencedirect_doi_10_1016_j_jallcom_2021_163547
PublicationCentury 2000
PublicationDate 2022-04-15
PublicationDateYYYYMMDD 2022-04-15
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-15
  day: 15
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Journal of alloys and compounds
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Zhao, Zhu, Liu, Ma, Zhang, Liu, Li, Li (bib25) 2021; 862
Kimel’fel’d, Smirnoa, Aleksanyan (bib21) 1973; 19
Zhang, Cuevas, Zaidi, Bonnet, Aymard, Bobet, Latroche (bib12) 2011; 115
Peng, Spagnola, Parsons (bib20) 2008; 155
Zhou, Peng, Zhang (bib8) 2020; 50
Lieutenant, Borissova (bib4) 2020; 45
Denys, Riabov, Maehlen, Lototsky, Solberg, Yartys (bib6) 2009; 57
Hanada, Ichikawa, Fujii (bib15) 2005; 109
Amirkhiz, Zahiri, Kalisvaart, Mitlin (bib5) 2011; 36
Ferrari (bib22) 2007; 143
Shriniwasan, Kar, Neergat, Tatiparti (bib23) 2018; 122
Zhang, Jiang, Liu (bib10) 2012; 37
Avrami (bib28) 1940; 8
Liu, Wang, Li, Wang, Yuan (bib14) 2016; 41
Fuster, Castro, Troiani, Urretavizcaya (bib11) 2011; 36
Zhou, Hu, Li, Zhang (bib30) 2020; 30
Curves, Korablov, Latroche (bib35) 2012; 14
Jain, Lal, Jain (bib3) 2010; 35
Mao, Guo, Yu, Liu, Wu, Ni (bib26) 2010; 35
Avrami (bib27) 1939; 7
Montone, Aurora, Gattia, Antisari (bib34) 2012; 2
Izumi, Ikeda (bib19) 2000; 321-324
Nakamura, Bowman, Akiba (bib24) 2004; 373
Kalinichenka, Rontzsch, Baehtz, Kieback (bib13) 2010; 496
Meng, Huang, Ye, Xia, Wang, Dong, Yang, Yu (bib31) 2021; 851
Yartys, Lototskyy, Akiba, Albert, Antonov, Ares, Baricco, Bourgeois, Buckley, Bellosta von Colbe, Crivello, Cuevas, Denys, Dornheim, Felderhoff, Grant, Hauback, Humphries, Jacob, Jensen, de Jongh, Joubert, Kuzovnikov, Latroche, Paskevicius, Pasquini, Popilevsky, Skripnyuk, Rabkin, Sofianos, Stuart, Walker, Wang, Webb, Zhu (bib1) 2019; 44
House, Vajo, Ren, Rockett, Robertson (bib17) 2015; 86
Cui, Liu, Wang, Ouyang, Sun, Zhu, Yao (bib18) 2014; 2
Bogdanovic, Bohmhammel, Christ, Reiser, Schlichte, Vehlen, Wolf (bib2) 1999; 282
Si, Zhang, Feng, Ding, Li (bib16) 2021; 40
Gao, Li, Liu (bib32) 2021; 888
Zhang, Zhu, Yao, Xu, Liu, Li (bib7) 2019; 782
Barkhordarian, Klassen, Bormann (bib9) 2006; 110
Fernandez, Sanchez (bib29) 2002; 340
Liu, Wang, Xu, Qiu, An, Li, Jiao, Yuan (bib33) 2013; 5
Jain (10.1016/j.jallcom.2021.163547_bib3) 2010; 35
Zhao (10.1016/j.jallcom.2021.163547_bib25) 2021; 862
Izumi (10.1016/j.jallcom.2021.163547_bib19) 2000; 321-324
Kalinichenka (10.1016/j.jallcom.2021.163547_bib13) 2010; 496
House (10.1016/j.jallcom.2021.163547_bib17) 2015; 86
Ferrari (10.1016/j.jallcom.2021.163547_bib22) 2007; 143
Lieutenant (10.1016/j.jallcom.2021.163547_bib4) 2020; 45
Zhou (10.1016/j.jallcom.2021.163547_bib8) 2020; 50
Gao (10.1016/j.jallcom.2021.163547_bib32) 2021; 888
Hanada (10.1016/j.jallcom.2021.163547_bib15) 2005; 109
Montone (10.1016/j.jallcom.2021.163547_bib34) 2012; 2
Yartys (10.1016/j.jallcom.2021.163547_bib1) 2019; 44
Fuster (10.1016/j.jallcom.2021.163547_bib11) 2011; 36
Bogdanovic (10.1016/j.jallcom.2021.163547_bib2) 1999; 282
Zhang (10.1016/j.jallcom.2021.163547_bib12) 2011; 115
Liu (10.1016/j.jallcom.2021.163547_bib33) 2013; 5
Meng (10.1016/j.jallcom.2021.163547_bib31) 2021; 851
Liu (10.1016/j.jallcom.2021.163547_bib14) 2016; 41
Peng (10.1016/j.jallcom.2021.163547_bib20) 2008; 155
Kimel’fel’d (10.1016/j.jallcom.2021.163547_bib21) 1973; 19
Shriniwasan (10.1016/j.jallcom.2021.163547_bib23) 2018; 122
Nakamura (10.1016/j.jallcom.2021.163547_bib24) 2004; 373
Mao (10.1016/j.jallcom.2021.163547_bib26) 2010; 35
Zhou (10.1016/j.jallcom.2021.163547_bib30) 2020; 30
Avrami (10.1016/j.jallcom.2021.163547_bib28) 1940; 8
Curves (10.1016/j.jallcom.2021.163547_bib35) 2012; 14
Barkhordarian (10.1016/j.jallcom.2021.163547_bib9) 2006; 110
Avrami (10.1016/j.jallcom.2021.163547_bib27) 1939; 7
Denys (10.1016/j.jallcom.2021.163547_bib6) 2009; 57
Cui (10.1016/j.jallcom.2021.163547_bib18) 2014; 2
Zhang (10.1016/j.jallcom.2021.163547_bib10) 2012; 37
Zhang (10.1016/j.jallcom.2021.163547_bib7) 2019; 782
Amirkhiz (10.1016/j.jallcom.2021.163547_bib5) 2011; 36
Fernandez (10.1016/j.jallcom.2021.163547_bib29) 2002; 340
Si (10.1016/j.jallcom.2021.163547_bib16) 2021; 40
References_xml – volume: 50
  start-page: 178
  year: 2020
  end-page: 183
  ident: bib8
  article-title: Growth kinetics of MgH
  publication-title: J. Mater. Sci. Technol.
  contributor:
    fullname: Zhang
– volume: 14
  start-page: 1200
  year: 2012
  end-page: 1211
  ident: bib35
  article-title: Synthesis, structural and hydrogenation properties of Mg-rich MgH
  publication-title: Phys. Chem. Chem. Phys.
  contributor:
    fullname: Latroche
– volume: 36
  start-page: 9051
  year: 2011
  end-page: 9061
  ident: bib11
  article-title: Characterization of graphite catalytic effect in reactively ball-milled MgH
  publication-title: Int. J. Hydrog. Energy
  contributor:
    fullname: Urretavizcaya
– volume: 282
  start-page: 84
  year: 1999
  end-page: 92
  ident: bib2
  article-title: Thermodynamic investigation of the magnesium-hydrogen system
  publication-title: J. Alloy. Compd.
  contributor:
    fullname: Wolf
– volume: 7
  start-page: 1103
  year: 1939
  end-page: 1112
  ident: bib27
  article-title: Kinetics of phase change, I general theory
  publication-title: J. Chem. Phys.
  contributor:
    fullname: Avrami
– volume: 37
  start-page: 10709
  year: 2012
  end-page: 10714
  ident: bib10
  article-title: Comparative investigations on the hydrogenation characteristics and hydrogen storage kinetics of melt-spun Mg
  publication-title: Int. J. Hydrog. Energy
  contributor:
    fullname: Liu
– volume: 373
  start-page: 183
  year: 2004
  end-page: 193
  ident: bib24
  article-title: Strain formation and lattice parameter change in LaNi
  publication-title: J. Alloy. Compd.
  contributor:
    fullname: Akiba
– volume: 45
  start-page: 2954
  year: 2020
  end-page: 2966
  ident: bib4
  article-title: A landscape of hydride compounds for off-board refilling of transport vehicles
  publication-title: Int. J. Hydrog. Energy
  contributor:
    fullname: Borissova
– volume: 109
  start-page: 7188
  year: 2005
  end-page: 7194
  ident: bib15
  article-title: Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH
  publication-title: J. Phys. Chem. B
  contributor:
    fullname: Fujii
– volume: 155
  start-page: D580
  year: 2008
  end-page: D582
  ident: bib20
  article-title: Self-catalyzed hydrogenolysis of nickelocene: functional metal coating of three-dimensional nanosystems at low temperature
  publication-title: J. Electrochem. Soc.
  contributor:
    fullname: Parsons
– volume: 40
  start-page: 995
  year: 2021
  end-page: 1002
  ident: bib16
  article-title: Enhancing hydrogen desorption in MgH
  publication-title: Rare Met.
  contributor:
    fullname: Li
– volume: 321-324
  start-page: 198
  year: 2000
  end-page: 205
  ident: bib19
  article-title: A Rietveld-analysis program RIETAN-98 and its applications to zeolites
  publication-title: Mater. Sci. Forum
  contributor:
    fullname: Ikeda
– volume: 30
  start-page: 246
  year: 2020
  end-page: 250
  ident: bib30
  article-title: Crystallite growth characteristics of Mg during hydrogen desorption of MgH
  publication-title: Prog. Nat. Sci. Mater.
  contributor:
    fullname: Zhang
– volume: 496
  start-page: 608
  year: 2010
  end-page: 613
  ident: bib13
  article-title: Hydrogen desorption kinetics of melt-spun and hydrogenated Mg
  publication-title: J. Alloy. Compd.
  contributor:
    fullname: Kieback
– volume: 115
  start-page: 4971
  year: 2011
  end-page: 4979
  ident: bib12
  article-title: Highlighting of a single reaction path during reactive ball milling of Mg and TM by quantitative H
  publication-title: J. Phys. Chem. C
  contributor:
    fullname: Latroche
– volume: 862
  year: 2021
  ident: bib25
  article-title: Enhancing hydrogen storage properties of MgH
  publication-title: J. Alloy. Compd.
  contributor:
    fullname: Li
– volume: 340
  start-page: 189
  year: 2002
  end-page: 198
  ident: bib29
  article-title: Rate determining step in the absorption and desorption of hydrogen by magnesium
  publication-title: J. Alloy. Compd.
  contributor:
    fullname: Sanchez
– volume: 44
  start-page: 7809
  year: 2019
  end-page: 7859
  ident: bib1
  article-title: Magnesium based materials for hydrogen based energy storage: past, present and future
  publication-title: Int. J. Hydrog. Energy
  contributor:
    fullname: Zhu
– volume: 5
  start-page: 1074
  year: 2013
  end-page: 1081
  ident: bib33
  article-title: Excellent catalytic effects of highly crumpled graphene nanosheets on hydrogenation/dehydrogenation of magnesium hydride
  publication-title: Nanoscale
  contributor:
    fullname: Yuan
– volume: 122
  start-page: 22389
  year: 2018
  end-page: 22396
  ident: bib23
  article-title: Mg-C interaction induced hydrogen uptake and enhanced hydrogen release kinetics in MgH
  publication-title: J. Phys. Chem. C
  contributor:
    fullname: Tatiparti
– volume: 86
  start-page: 55
  year: 2015
  end-page: 68
  ident: bib17
  article-title: Effect of ball-milling duration and dehydrogenation on the morphology, microstructure and catalyst dispersion in Ni-catalyzed MgH
  publication-title: Acta Mater.
  contributor:
    fullname: Robertson
– volume: 35
  start-page: 4569
  year: 2010
  end-page: 4575
  ident: bib26
  article-title: Enhanced hydrogen sorption properties of Ni and Co-catalyzed MgH
  publication-title: Int. J. Hydrog. Energy
  contributor:
    fullname: Ni
– volume: 851
  year: 2021
  ident: bib31
  article-title: Electrospun carbon nanofibers with in-situ encapsulated Ni nanoparticles as catalyst for enhanced hydrogen storage of MgH
  publication-title: J. Alloy. Compd.
  contributor:
    fullname: Yu
– volume: 8
  start-page: 212
  year: 1940
  end-page: 224
  ident: bib28
  article-title: Kinetics of phase change, II Transformation-time relations for random distribution of nuclei
  publication-title: J. Chem. Phys.
  contributor:
    fullname: Avrami
– volume: 19
  start-page: 329
  year: 1973
  end-page: 346
  ident: bib21
  article-title: The vibrational spectra of molecular crystals of ferrocene, ruthenocene, osmocene and nickelocene
  publication-title: J. Mol. Struct.
  contributor:
    fullname: Aleksanyan
– volume: 110
  start-page: 11020
  year: 2006
  end-page: 11024
  ident: bib9
  article-title: Catalytic mechanism of transition-metal compounds on Mg hydrogen sorption reaction
  publication-title: J. Phys. Chem. B
  contributor:
    fullname: Bormann
– volume: 143
  start-page: 47
  year: 2007
  end-page: 57
  ident: bib22
  article-title: Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects
  publication-title: Solid State Commun.
  contributor:
    fullname: Ferrari
– volume: 41
  start-page: 10786
  year: 2016
  end-page: 10794
  ident: bib14
  article-title: Enhancement of hydrogen desorption in magnesium hydride catalyzed by graphene nanosheets supported Ni-CeO
  publication-title: Int. J. Hydrog. Energy
  contributor:
    fullname: Yuan
– volume: 888
  year: 2021
  ident: bib32
  article-title: Thermally stable La-Ni-B amorphous additives for enhancing hydrogen storage performance of MgH
  publication-title: J. Alloy. Compd.
  contributor:
    fullname: Liu
– volume: 2
  start-page: 9645
  year: 2014
  end-page: 9655
  ident: bib18
  article-title: Mg-TM (TM: Ti, Nb, V, Co, Mo or Ni) core-shell like nanostructures: synthesis, hydrogen storage performance and catalytic mechanism
  publication-title: J. Mater. Chem. A
  contributor:
    fullname: Yao
– volume: 57
  start-page: 3989
  year: 2009
  end-page: 4000
  ident: bib6
  article-title: In situ synchrotron X-ray diffraction studies of hydrogen desorption and absorption properties of Mg and Mg-Mm-Ni after reactive ball milling in hydrogen
  publication-title: Acta Mater.
  contributor:
    fullname: Yartys
– volume: 35
  start-page: 5133
  year: 2010
  end-page: 5144
  ident: bib3
  article-title: Hydrogen storage in Mg: a most promising material
  publication-title: Int. J. Hydrog. Energy
  contributor:
    fullname: Jain
– volume: 36
  start-page: 6711
  year: 2011
  end-page: 6722
  ident: bib5
  article-title: Synergy of elemental Fe and Ti promoting low temperature hydrogen sorption cycling of magnesium
  publication-title: Int. J. Hydrog. Energy
  contributor:
    fullname: Mitlin
– volume: 782
  start-page: 796
  year: 2019
  end-page: 823
  ident: bib7
  article-title: State of the art multi-strategy improvement of Mg-based hydrides for hydrogen storage
  publication-title: J. Alloy. Compd.
  contributor:
    fullname: Li
– volume: 2
  start-page: 400
  year: 2012
  end-page: 411
  ident: bib34
  article-title: Microstructral and kinetic evolution of Fe doped MgH
  publication-title: Catalysts
  contributor:
    fullname: Antisari
– volume: 109
  start-page: 7188
  year: 2005
  ident: 10.1016/j.jallcom.2021.163547_bib15
  article-title: Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp044576c
  contributor:
    fullname: Hanada
– volume: 8
  start-page: 212
  year: 1940
  ident: 10.1016/j.jallcom.2021.163547_bib28
  article-title: Kinetics of phase change, II Transformation-time relations for random distribution of nuclei
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1750631
  contributor:
    fullname: Avrami
– volume: 782
  start-page: 796
  year: 2019
  ident: 10.1016/j.jallcom.2021.163547_bib7
  article-title: State of the art multi-strategy improvement of Mg-based hydrides for hydrogen storage
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2018.12.217
  contributor:
    fullname: Zhang
– volume: 851
  year: 2021
  ident: 10.1016/j.jallcom.2021.163547_bib31
  article-title: Electrospun carbon nanofibers with in-situ encapsulated Ni nanoparticles as catalyst for enhanced hydrogen storage of MgH2
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2020.156874
  contributor:
    fullname: Meng
– volume: 14
  start-page: 1200
  year: 2012
  ident: 10.1016/j.jallcom.2021.163547_bib35
  article-title: Synthesis, structural and hydrogenation properties of Mg-rich MgH2-TiH2 nanocomposites prepared by reactive ball milling under hydrogen gas
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C1CP23030A
  contributor:
    fullname: Curves
– volume: 86
  start-page: 55
  year: 2015
  ident: 10.1016/j.jallcom.2021.163547_bib17
  article-title: Effect of ball-milling duration and dehydrogenation on the morphology, microstructure and catalyst dispersion in Ni-catalyzed MgH2 hydrogen storage materials
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.11.047
  contributor:
    fullname: House
– volume: 862
  year: 2021
  ident: 10.1016/j.jallcom.2021.163547_bib25
  article-title: Enhancing hydrogen storage properties of MgH2 by core-shell CoNi@C
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2020.158004
  contributor:
    fullname: Zhao
– volume: 40
  start-page: 995
  year: 2021
  ident: 10.1016/j.jallcom.2021.163547_bib16
  article-title: Enhancing hydrogen desorption in MgH2 by controlling particle size and contact of Ni catalysts
  publication-title: Rare Met.
  doi: 10.1007/s12598-018-1087-x
  contributor:
    fullname: Si
– volume: 30
  start-page: 246
  year: 2020
  ident: 10.1016/j.jallcom.2021.163547_bib30
  article-title: Crystallite growth characteristics of Mg during hydrogen desorption of MgH2
  publication-title: Prog. Nat. Sci. Mater.
  doi: 10.1016/j.pnsc.2020.02.003
  contributor:
    fullname: Zhou
– volume: 37
  start-page: 10709
  year: 2012
  ident: 10.1016/j.jallcom.2021.163547_bib10
  article-title: Comparative investigations on the hydrogenation characteristics and hydrogen storage kinetics of melt-spun Mg10NiR (R = La, Nd and Sm) alloys
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2012.04.038
  contributor:
    fullname: Zhang
– volume: 57
  start-page: 3989
  year: 2009
  ident: 10.1016/j.jallcom.2021.163547_bib6
  article-title: In situ synchrotron X-ray diffraction studies of hydrogen desorption and absorption properties of Mg and Mg-Mm-Ni after reactive ball milling in hydrogen
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2009.05.004
  contributor:
    fullname: Denys
– volume: 888
  year: 2021
  ident: 10.1016/j.jallcom.2021.163547_bib32
  article-title: Thermally stable La-Ni-B amorphous additives for enhancing hydrogen storage performance of MgH2
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2021.161520
  contributor:
    fullname: Gao
– volume: 36
  start-page: 6711
  year: 2011
  ident: 10.1016/j.jallcom.2021.163547_bib5
  article-title: Synergy of elemental Fe and Ti promoting low temperature hydrogen sorption cycling of magnesium
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2011.02.141
  contributor:
    fullname: Amirkhiz
– volume: 36
  start-page: 9051
  year: 2011
  ident: 10.1016/j.jallcom.2021.163547_bib11
  article-title: Characterization of graphite catalytic effect in reactively ball-milled MgH2-C and Mg-C composites
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2011.04.153
  contributor:
    fullname: Fuster
– volume: 373
  start-page: 183
  year: 2004
  ident: 10.1016/j.jallcom.2021.163547_bib24
  article-title: Strain formation and lattice parameter change in LaNi4.75Sn0.25–H system during the initial activation process
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2003.10.049
  contributor:
    fullname: Nakamura
– volume: 35
  start-page: 4569
  year: 2010
  ident: 10.1016/j.jallcom.2021.163547_bib26
  article-title: Enhanced hydrogen sorption properties of Ni and Co-catalyzed MgH2
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2010.02.107
  contributor:
    fullname: Mao
– volume: 2
  start-page: 9645
  year: 2014
  ident: 10.1016/j.jallcom.2021.163547_bib18
  article-title: Mg-TM (TM: Ti, Nb, V, Co, Mo or Ni) core-shell like nanostructures: synthesis, hydrogen storage performance and catalytic mechanism
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA00221K
  contributor:
    fullname: Cui
– volume: 321-324
  start-page: 198
  year: 2000
  ident: 10.1016/j.jallcom.2021.163547_bib19
  article-title: A Rietveld-analysis program RIETAN-98 and its applications to zeolites
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.321-324.198
  contributor:
    fullname: Izumi
– volume: 115
  start-page: 4971
  year: 2011
  ident: 10.1016/j.jallcom.2021.163547_bib12
  article-title: Highlighting of a single reaction path during reactive ball milling of Mg and TM by quantitative H2 gas sorption analysis to form ternary complex hydrides (TM = Fe, Co, Ni)
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2005293
  contributor:
    fullname: Zhang
– volume: 44
  start-page: 7809
  year: 2019
  ident: 10.1016/j.jallcom.2021.163547_bib1
  article-title: Magnesium based materials for hydrogen based energy storage: past, present and future
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2018.12.212
  contributor:
    fullname: Yartys
– volume: 110
  start-page: 11020
  year: 2006
  ident: 10.1016/j.jallcom.2021.163547_bib9
  article-title: Catalytic mechanism of transition-metal compounds on Mg hydrogen sorption reaction
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0541563
  contributor:
    fullname: Barkhordarian
– volume: 35
  start-page: 5133
  year: 2010
  ident: 10.1016/j.jallcom.2021.163547_bib3
  article-title: Hydrogen storage in Mg: a most promising material
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2009.08.088
  contributor:
    fullname: Jain
– volume: 143
  start-page: 47
  year: 2007
  ident: 10.1016/j.jallcom.2021.163547_bib22
  article-title: Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2007.03.052
  contributor:
    fullname: Ferrari
– volume: 7
  start-page: 1103
  year: 1939
  ident: 10.1016/j.jallcom.2021.163547_bib27
  article-title: Kinetics of phase change, I general theory
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1750380
  contributor:
    fullname: Avrami
– volume: 45
  start-page: 2954
  year: 2020
  ident: 10.1016/j.jallcom.2021.163547_bib4
  article-title: A landscape of hydride compounds for off-board refilling of transport vehicles
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.09.173
  contributor:
    fullname: Lieutenant
– volume: 50
  start-page: 178
  year: 2020
  ident: 10.1016/j.jallcom.2021.163547_bib8
  article-title: Growth kinetics of MgH2 nanocrystallites prepared by ball milling
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.01.063
  contributor:
    fullname: Zhou
– volume: 496
  start-page: 608
  year: 2010
  ident: 10.1016/j.jallcom.2021.163547_bib13
  article-title: Hydrogen desorption kinetics of melt-spun and hydrogenated Mg90Ni10 and Mg80Ni10Y10 using in situ synchrotron, X-ray diffraction and thermogravimetry
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2010.02.128
  contributor:
    fullname: Kalinichenka
– volume: 41
  start-page: 10786
  year: 2016
  ident: 10.1016/j.jallcom.2021.163547_bib14
  article-title: Enhancement of hydrogen desorption in magnesium hydride catalyzed by graphene nanosheets supported Ni-CeOx hybrid nanocatalyst
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2016.03.205
  contributor:
    fullname: Liu
– volume: 2
  start-page: 400
  year: 2012
  ident: 10.1016/j.jallcom.2021.163547_bib34
  article-title: Microstructral and kinetic evolution of Fe doped MgH2 during H2 cycling
  publication-title: Catalysts
  doi: 10.3390/catal2030400
  contributor:
    fullname: Montone
– volume: 5
  start-page: 1074
  year: 2013
  ident: 10.1016/j.jallcom.2021.163547_bib33
  article-title: Excellent catalytic effects of highly crumpled graphene nanosheets on hydrogenation/dehydrogenation of magnesium hydride
  publication-title: Nanoscale
  doi: 10.1039/C2NR33347C
  contributor:
    fullname: Liu
– volume: 282
  start-page: 84
  year: 1999
  ident: 10.1016/j.jallcom.2021.163547_bib2
  article-title: Thermodynamic investigation of the magnesium-hydrogen system
  publication-title: J. Alloy. Compd.
  doi: 10.1016/S0925-8388(98)00829-9
  contributor:
    fullname: Bogdanovic
– volume: 19
  start-page: 329
  year: 1973
  ident: 10.1016/j.jallcom.2021.163547_bib21
  article-title: The vibrational spectra of molecular crystals of ferrocene, ruthenocene, osmocene and nickelocene
  publication-title: J. Mol. Struct.
  doi: 10.1016/0022-2860(73)85275-5
  contributor:
    fullname: Kimel’fel’d
– volume: 122
  start-page: 22389
  year: 2018
  ident: 10.1016/j.jallcom.2021.163547_bib23
  article-title: Mg-C interaction induced hydrogen uptake and enhanced hydrogen release kinetics in MgH2-rGO nanocomposites
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b05483
  contributor:
    fullname: Shriniwasan
– volume: 340
  start-page: 189
  year: 2002
  ident: 10.1016/j.jallcom.2021.163547_bib29
  article-title: Rate determining step in the absorption and desorption of hydrogen by magnesium
  publication-title: J. Alloy. Compd.
  doi: 10.1016/S0925-8388(02)00120-2
  contributor:
    fullname: Fernandez
– volume: 155
  start-page: D580
  year: 2008
  ident: 10.1016/j.jallcom.2021.163547_bib20
  article-title: Self-catalyzed hydrogenolysis of nickelocene: functional metal coating of three-dimensional nanosystems at low temperature
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2946723
  contributor:
    fullname: Peng
SSID ssj0001931
Score 2.5590932
Snippet •Highly dispersed Ni in MgH2 matrix is obtained by in-situ hydrogenolysis of NiCp2.•The as-prepared MgH2–NiCp2 sample has enhanced hydrogen desorption...
Magnesium hydride is a promising hydrogen storage material and how to improve its sorption kinetics is one of challenges in practical applications. In this...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 163547
SubjectTerms Ball milling
Catalysis
Dehydrogenation
Desorption
Dispersion
Hydrogen
Hydrogen storage
Hydrogen storage materials
Hydrogenolysis
Kinetics
Magnesium
Magnesium hydride
Nanoparticles
Nickelocene
Title Enhanced hydrogen desorption properties of MgH2 by highly dispersed Ni: The role of in-situ hydrogenolysis of nickelocene in ball milling process
URI https://dx.doi.org/10.1016/j.jallcom.2021.163547
https://www.proquest.com/docview/2638291428
Volume 900
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH7aOiHgMEFhYmxMPnBNm9pO6uw2VZsKiF5g0m5W_CMsVZVUTXfohf-B_3jvOckYCGkSlxwc23L87O89x-99D-CjjT23aOhHE-dsJIvM4JZK8sjlqcltpoT0wUF2kc6v5eeb5GYPZn0sDLlVdtjfYnpA665k3M3meF2W429xxunOT-GhBa38qdyHg3BJNICDi09f5osHQEYbJSTOw_oRNfgdyDNejpb5akV-IxyV3QiNk4QSrfxbRf0F1kEDXb2Cw850ZBft6F7Dnq-G8HzWZ2wbwstH5IJDeBacO23zBn5dVrfhop_d7tymxiXDnG_qTUALtqbf8RviVWV1wb7-mHNmdoxojFc75kpiEm-w6aI8Z7imGLkjUsWyippye_fQZR24TehNVSIyoI5EFMVazOCnM0puhKNi6zYu4S1cX11-n82jLhVDZIWYbiNjijRJfCx8LJ0pVIrHKJFzn2G5mWSJtcLKPPaJQiDPC4kPgVjIc7QgrDJcHMGgqiv_DlimlFHcc6X8VFo5yVzsbJp6L7AjJe0xjPrZ1-uWcUP3rmhL3YlLk7h0K65jUL2M9B9LR6NWeKrpaS9T3e3dRnOEJJ4RE937_-_5BF5wCpQgVsjkFAbbzZ3_gObL1pzB_ujn5KxbpPcrY_It
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVqhwQLCAKBTwgWt2s7aTtblVq1YpbfdCK_VmxY_QrFbJarM97M_gHzOTR3kICYlLDo5tOZ7xN5_j8QzAJxcH7pDoR1PvXSQLbXFJJXnk89TmTishQ-sgu0izG_nlNrndg_lwF4bcKnvs7zC9Reu-ZNLP5mRdlpOvseZ05qdw04IsfyYfwQGyAY3KfnByfpEtHgAZOUqbOA_rR9Tg50WeyXK8zFcr8hvhaOzGSE4SSrTydxP1B1i3FujsOTzrqSM76Ub3AvZCNYLD-ZCxbQRPfwkuOILHrXOna17C99Pqrj3oZ3c7v6lRZZgPTb1p0YKt6Xf8huKqsrpgV98yzuyOURjj1Y75kiKJN9h0UX5mqFOM3BGpYllFTbm9f-iybmOb0JuqRGRAG4koirWYxU9nlNwIR8XW3b2EV3Bzdno9z6I-FUPkhJhtI2uLNElCLEIsvS1UitsokfOgsdxOdeKccDKPQ6IQyPNC4kMgFvIcGYRTlovXsF_VVXgDTCtlFQ9cqTCTTk61j71L0xAEdqSkO4LxMPtm3UXcMIMr2tL04jIkLtOJ6wjUICPzm-oYtAr_ano8yNT0a7cxHCGJa4pE9_b_e_4Ih9n11aW5PF9cvIMnnC5NUITI5Bj2t5v78B6pzNZ-6FX1Bx-t9Co
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+hydrogen+desorption+properties+of+MgH2+by+highly+dispersed+Ni%3A+The+role+of+in-situ+hydrogenolysis+of+nickelocene+in+ball+milling+process&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Peng%2C+Cong&rft.au=Li%2C+Yongtao&rft.au=Zhang%2C+Qingan&rft.date=2022-04-15&rft.issn=0925-8388&rft.volume=900&rft.spage=163547&rft_id=info:doi/10.1016%2Fj.jallcom.2021.163547&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2021_163547
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon