Improved Weed Detection in Cotton Fields Using Enhanced YOLOv8s with Modified Feature Extraction Modules
Weed detection plays a crucial role in enhancing cotton agricultural productivity. However, the detection process is subject to challenges such as target scale diversity and loss of leaf symmetry due to leaf shading. Hence, this research presents an enhanced model, EY8-MFEM, for detecting weeds in c...
Saved in:
Published in | Symmetry (Basel) Vol. 16; no. 4; p. 450 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2073-8994 2073-8994 |
DOI | 10.3390/sym16040450 |
Cover
Loading…
Abstract | Weed detection plays a crucial role in enhancing cotton agricultural productivity. However, the detection process is subject to challenges such as target scale diversity and loss of leaf symmetry due to leaf shading. Hence, this research presents an enhanced model, EY8-MFEM, for detecting weeds in cotton fields. Firstly, the ALGA module is proposed, which combines the local and global information of feature maps through weighting operations to better focus on the spatial information of feature maps. Following this, the C2F-ALGA module was developed to augment the feature extraction capability of the underlying backbone network. Secondly, the MDPM module is proposed to generate attention matrices by capturing the horizontal and vertical information of feature maps, reducing duplicate information in the feature maps. Finally, we will replace the upsampling module of YOLOv8 with the CARAFE module to provide better upsampling performance. Extensive experiments on two publicly available datasets showed that the F1, mAP50 and mAP75 metrics improved by 1.2%, 5.1%, 2.9% and 3.8%, 1.3%, 2.2%, respectively, compared to the baseline model. This study showcases the algorithm’s potential for practical applications in weed detection within cotton fields, promoting the significant development of artificial intelligence in the field of agriculture. |
---|---|
AbstractList | Weed detection plays a crucial role in enhancing cotton agricultural productivity. However, the detection process is subject to challenges such as target scale diversity and loss of leaf symmetry due to leaf shading. Hence, this research presents an enhanced model, EY8-MFEM, for detecting weeds in cotton fields. Firstly, the ALGA module is proposed, which combines the local and global information of feature maps through weighting operations to better focus on the spatial information of feature maps. Following this, the C2F-ALGA module was developed to augment the feature extraction capability of the underlying backbone network. Secondly, the MDPM module is proposed to generate attention matrices by capturing the horizontal and vertical information of feature maps, reducing duplicate information in the feature maps. Finally, we will replace the upsampling module of YOLOv8 with the CARAFE module to provide better upsampling performance. Extensive experiments on two publicly available datasets showed that the F1, mAP50 and mAP75 metrics improved by 1.2%, 5.1%, 2.9% and 3.8%, 1.3%, 2.2%, respectively, compared to the baseline model. This study showcases the algorithm’s potential for practical applications in weed detection within cotton fields, promoting the significant development of artificial intelligence in the field of agriculture. Weed detection plays a crucial role in enhancing cotton agricultural productivity. However, the detection process is subject to challenges such as target scale diversity and loss of leaf symmetry due to leaf shading. Hence, this research presents an enhanced model, EY8-MFEM, for detecting weeds in cotton fields. Firstly, the ALGA module is proposed, which combines the local and global information of feature maps through weighting operations to better focus on the spatial information of feature maps. Following this, the C2F-ALGA module was developed to augment the feature extraction capability of the underlying backbone network. Secondly, the MDPM module is proposed to generate attention matrices by capturing the horizontal and vertical information of feature maps, reducing duplicate information in the feature maps. Finally, we will replace the upsampling module of YOLOv8 with the CARAFE module to provide better upsampling performance. Extensive experiments on two publicly available datasets showed that the F1, mAP[sub.50] and mAP[sub.75] metrics improved by 1.2%, 5.1%, 2.9% and 3.8%, 1.3%, 2.2%, respectively, compared to the baseline model. This study showcases the algorithm’s potential for practical applications in weed detection within cotton fields, promoting the significant development of artificial intelligence in the field of agriculture. |
Audience | Academic |
Author | Yang, Wenzhong Lu, Zhifeng Chen, Danny Ren, Doudou Shi, Houwang |
Author_xml | – sequence: 1 givenname: Doudou surname: Ren fullname: Ren, Doudou – sequence: 2 givenname: Wenzhong surname: Yang fullname: Yang, Wenzhong – sequence: 3 givenname: Zhifeng surname: Lu fullname: Lu, Zhifeng – sequence: 4 givenname: Danny surname: Chen fullname: Chen, Danny – sequence: 5 givenname: Houwang surname: Shi fullname: Shi, Houwang |
BookMark | eNptUU1PAjEQbQwmInLyD2zi0YDtdr96JAhKguEiMZ4223YWSpYubgvKv3c268EYO0k7efPedD6uSc_WFgi5ZXTMuaAP7rxnCY1oFNML0g9pykeZEFHvl39Fhs7tKJ6YxlFC-2S72B-a-gQ6eAO8HsGD8qa2gbHBtPYevbmBSrtg7YzdBDO7LaxC5vtquTplLvg0fhu81NqUBtE5FP7YQDD78k3RJcLYsQJ3Qy7LonIw_HkHZD2fvU6fR8vV02I6WY4U56kfyURSLTMZa8awoFJDmUrgsoiTTOpM8TRLolJHioUMcSFZmKZSxFJwSLQCPiB3XV5s6-MIzue7-thY_DLnNEopFzgrZI071qaoIDe2rNt60TTsjcK5lgbxSSp4HIsobAWsE6imdq6BMlfGF22DKDRVzmjeLiH_tQTU3P_RHBqzL5rzv-xv5w-K6g |
CitedBy_id | crossref_primary_10_1038_s41598_024_84748_8 crossref_primary_10_1016_j_compag_2025_109914 |
Cites_doi | 10.1109/CVPR52729.2023.00721 10.1007/s10462-022-10266-6 10.1016/j.compag.2023.107994 10.1109/CVPR52729.2023.01800 10.1016/j.compag.2022.107194 10.1109/ACCESS.2023.3312191 10.1109/CVPR52729.2023.00599 10.1016/j.compag.2022.107179 10.3390/rs13224606 10.1109/ACCESS.2023.3242604 10.1109/CVPR52729.2023.00995 10.1080/03650340.2019.1579904 10.1109/CVPRW59228.2023.00046 10.1109/CVPR52729.2023.00487 10.1109/CVPR52729.2023.00464 10.1016/j.biosystemseng.2023.02.006 10.1016/j.compag.2023.107830 10.1109/ACCESS.2021.3109015 10.32604/csse.2023.027647 10.1109/CVPR.2018.00745 10.3390/rs14112674 10.1109/ACCESS.2023.3330886 10.1016/j.eswa.2023.121352 10.1109/CVPR.2017.690 10.1109/CVPR42600.2020.01155 10.1109/ACCESS.2023.3315606 10.1109/ACCESS.2023.3258439 10.1007/s43154-020-00001-w 10.3390/s21010212 10.1016/j.engappai.2023.106442 10.3390/sym15071377 10.1016/j.compag.2022.107412 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ JG9 JQ2 L6V L7M L~C L~D M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
DOI | 10.3390/sym16040450 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea Aerospace Database ProQuest SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Agriculture |
EISSN | 2073-8994 |
ExternalDocumentID | A793559420 10_3390_sym16040450 |
GroupedDBID | 5VS 8FE 8FG AADQD AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV BENPR BGLVJ CCPQU CITATION E3Z ESX GX1 HCIFZ IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7SC 7SR 7U5 8BQ 8FD ABUWG AZQEC DWQXO H8D JG9 JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c337t-b6b0db8b5d11eedfdef7be3ba568bd8c37864fd4c121be39b1277b95b93e6dce3 |
IEDL.DBID | BENPR |
ISSN | 2073-8994 |
IngestDate | Fri Jul 25 12:01:08 EDT 2025 Tue Jun 10 21:07:21 EDT 2025 Tue Jul 01 03:48:20 EDT 2025 Thu Apr 24 22:52:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-b6b0db8b5d11eedfdef7be3ba568bd8c37864fd4c121be39b1277b95b93e6dce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3047039390?pq-origsite=%requestingapplication% |
PQID | 3047039390 |
PQPubID | 2032326 |
ParticipantIDs | proquest_journals_3047039390 gale_infotracacademiconefile_A793559420 crossref_citationtrail_10_3390_sym16040450 crossref_primary_10_3390_sym16040450 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Symmetry (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Punithavathi (ref_22) 2023; 44 Wan (ref_13) 2023; 123 Ren (ref_42) 2015; 28 Lau (ref_31) 2024; 236 Liu (ref_5) 2020; 1 Chen (ref_19) 2022; 202 Iqbal (ref_4) 2019; 65 ref_14 ref_36 ref_35 ref_34 ref_33 ref_32 ref_30 Wang (ref_11) 2022; 199 Raja (ref_6) 2023; 228 Phang (ref_2) 2023; 11 Arsa (ref_21) 2023; 209 ref_39 ref_16 ref_38 ref_15 ref_37 Wang (ref_12) 2023; 11 Li (ref_9) 2023; 11 ref_25 ref_24 ref_23 ref_45 ref_43 Tian (ref_44) 2022; 35 Xu (ref_18) 2023; 211 ref_41 ref_40 Moazzam (ref_10) 2021; 9 Kwaghtyo (ref_1) 2023; 56 Zhou (ref_3) 2023; 11 ref_29 ref_28 ref_27 Peng (ref_20) 2022; 199 ref_26 ref_8 ref_7 Naveed (ref_17) 2023; 11 |
References_xml | – ident: ref_28 – ident: ref_29 doi: 10.1109/CVPR52729.2023.00721 – volume: 56 start-page: 5729 year: 2023 ident: ref_1 article-title: Smart farming prediction models for precision agriculture: A comprehensive survey publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10266-6 – ident: ref_30 – volume: 211 start-page: 107994 year: 2023 ident: ref_18 article-title: Instance segmentation method for weed detection using UAV imagery in soybean fields publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.107994 – ident: ref_33 doi: 10.1109/CVPR52729.2023.01800 – volume: 199 start-page: 107194 year: 2022 ident: ref_11 article-title: A deep learning approach incorporating YOLO v5 and attention mechanisms for field real-time detection of the invasive weed Solanum rostratum Dunal seedlings publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107194 – volume: 11 start-page: 98244 year: 2023 ident: ref_9 article-title: Weed Density Detection Method Based on a High Weed Pressure Dataset and Improved PSP Net publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3312191 – ident: ref_26 – ident: ref_32 doi: 10.1109/CVPR52729.2023.00599 – volume: 199 start-page: 107179 year: 2022 ident: ref_20 article-title: Weed detection in paddy field using an improved RetinaNet network publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107179 – ident: ref_7 doi: 10.3390/rs13224606 – volume: 11 start-page: 11991 year: 2023 ident: ref_17 article-title: Saliency-Based Semantic Weeds Detection and Classification Using UAV Multispectral Imaging publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3242604 – ident: ref_37 doi: 10.1109/CVPR52729.2023.00995 – volume: 65 start-page: 1885 year: 2019 ident: ref_4 article-title: Investigation of alternate herbicides for effective weed management in glyphosate-tolerant cotton publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2019.1579904 – ident: ref_34 doi: 10.1109/CVPRW59228.2023.00046 – ident: ref_40 – ident: ref_35 doi: 10.1109/CVPR52729.2023.00487 – ident: ref_23 – ident: ref_36 doi: 10.1109/CVPR52729.2023.00464 – volume: 228 start-page: 31 year: 2023 ident: ref_6 article-title: Real-time control of high-resolution micro-jet sprayer integrated with machine vision for precision weed control publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2023.02.006 – volume: 209 start-page: 107830 year: 2023 ident: ref_21 article-title: Eco-friendly weeding through precise detection of growing points via efficient multi-branch convolutional neural networks publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.107830 – volume: 9 start-page: 121698 year: 2021 ident: ref_10 article-title: A patch-image based classification approach for detection of weeds in sugar beet crop publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3109015 – volume: 44 start-page: 2759 year: 2023 ident: ref_22 article-title: Computer Vision and Deep Learning-enabled Weed Detection Model for Precision Agriculture publication-title: Comput. Syst. Sci. Eng. doi: 10.32604/csse.2023.027647 – ident: ref_39 doi: 10.1109/CVPR.2018.00745 – ident: ref_25 – ident: ref_16 doi: 10.3390/rs14112674 – volume: 11 start-page: 127057 year: 2023 ident: ref_2 article-title: From Satellite to UAV-based Remote Sensing: A Review on Precision Agriculture publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3330886 – ident: ref_27 – volume: 236 start-page: 121352 year: 2024 ident: ref_31 article-title: Large separable kernel attention: Rethinking the large kernel attention design in cnn publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121352 – ident: ref_24 doi: 10.1109/CVPR.2017.690 – ident: ref_38 doi: 10.1109/CVPR42600.2020.01155 – volume: 11 start-page: 103863 year: 2023 ident: ref_3 article-title: Digital agriculture: Mapping knowledge structure and trends publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3315606 – volume: 11 start-page: 29868 year: 2023 ident: ref_12 article-title: Accurate detection and precision spraying of corn and weeds using the improved YOLOv5 model publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3258439 – ident: ref_41 – ident: ref_15 – ident: ref_45 – volume: 1 start-page: 19 year: 2020 ident: ref_5 article-title: Weed detection for selective spraying: A review publication-title: Curr. Robot. Rep. doi: 10.1007/s43154-020-00001-w – ident: ref_43 – volume: 35 start-page: 34899 year: 2022 ident: ref_44 article-title: Fully convolutional one-stage 3d object detection on lidar range images publication-title: Adv. Neural Inf. Process. Syst. – volume: 28 start-page: 1 year: 2015 ident: ref_42 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_8 doi: 10.3390/s21010212 – volume: 123 start-page: 106442 year: 2023 ident: ref_13 article-title: Mixed local channel attention for object detection publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106442 – ident: ref_14 doi: 10.3390/sym15071377 – volume: 202 start-page: 107412 year: 2022 ident: ref_19 article-title: Weed detection in sesame fields using a YOLO model with an enhanced attention mechanism and feature fusion publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107412 |
SSID | ssj0000505460 |
Score | 2.3300073 |
Snippet | Weed detection plays a crucial role in enhancing cotton agricultural productivity. However, the detection process is subject to challenges such as target scale... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 450 |
SubjectTerms | Accuracy Agricultural production Agriculture Algorithms Artificial intelligence Computer networks Cotton Crops Deep learning Feature extraction Feature maps Kitchenware Methods Modules Morphology Remote sensing Spatial data Symmetry Vegetation Weeds |
Title | Improved Weed Detection in Cotton Fields Using Enhanced YOLOv8s with Modified Feature Extraction Modules |
URI | https://www.proquest.com/docview/3047039390 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI54XOCAYIB4K4dJPKSKpWnT9ITG2ECIlxCIcaqaJgEk6GAtCP49dpsNDohj27RN4kccx_5MSJMDXYFVpGeN5l4gWOqlAnYpLE6tMjyTvELnP78QJ7fBaT_sO4db4cIqRzqxUtR6kKGPfB-PhzCPNG4dvL55WDUKT1ddCY1JMg0qWMLma_qwe3F1PfayYJ22QLTqxDwOL-8XXy9MAOcGmGn_ayn6WyFXq0xvnsw585C2a3oukAmTN8hs-2HoIDJMgyw4cSzojsOM3l0kj7VzwGh6B8sRPTJlFWKV06ecdgYlGHi0h7FqBa1iBGg3f6yO_un95dnlhywo-mPp-UA_WbBJKRqG8DPa_SyHdeYDPnt_NsUSue11bzonniui4GWcR6WnhGppJVWoGYMOWG1sBERQaSik0jLjkRSB1UHGfAb3Y8X8KFJxqGJuhM4MXyZT-SA3K4RGwnJjta9SrkD0larw0OD7NowDncpVsjeazyRzCONY6OI5gZ0GTn7ya_JXSXPc-LUG1vi72TYSJkFxwxGnLmsAeoTAVUk7QoD4OPCh5caIdomTwyL54Zq1_x-vkxkfhlPH5GyQqXL4bjbB3CjVFpmUveMtx1lwddxn3wp32Fc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BPRQOFdBWhULrA1UfUsQmdhzngNAKdlnKLlxApac0jm1AgixsAi1_it_ITB6UA-LGNbYcex72eDzzDcAaR76iqCjPWcM9If3USyXeUvw4ddryTPEKnX-0LwdH4udxeDwFd20uDIVVtntitVGbcUY-8nV6HqI80rizeXnlUdUoel1tS2jUYrFnb__ila3Y2N1G_n4Jgn7vcGvgNVUFvIzzqPS01B2jlQ6N7-MB4Yx1Ec5Kp6FU2qiMR0oKZ0TmBz5-j7UfRJGOQx1zK01mOY47Da8E5zFplOrvPPh0qCqckJ06DRDbO-vF7YUvUU8E5fU_Ovie3v6rM60_D28aY5R1a-lZgCmbL8Jc92TSAHLYRVholL9g3xqE6u9v4bR2RVjDfuHa2LYtq4CunJ3lbGtcojnJ-hQZV7AqIoH18tMq0ID9Phge3KiCkfeXjcbmzKEFzMgMxZ-x3r9yUudZUNv1uS3ewdGLEPc9zOTj3H4AFknHrTOBTrnGjUbrCn0Nx3dhLEyqluBHS88ka_DMqazGeYL3GiJ-8oj4S7D20PmyhvF4uttXYkxCyk0rTpscBZwRwWQl3Yjg6GMRYM-VlndJo_VF8l9Gl59v_gyvB4ejYTLc3d_7CLMBLq2OBlqBmXJybVfR0Cn1p0q6GPx5aXG-B1A8FOU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTtwwcASLhOBQ8aoKpa0PVAWkiE2cOMmhQlt2VzwXhECFUxrHNiBBlm5CgV_r13UmcSgHxI1rbDn2zHhengfACke8IqlEjtGKO75wUycVaKW4cWqk5lnEq-r8BwOxfervngVnY_C3yYWhsMqGJ1aMWg0z8pFv0PMQ5ZHG7Q1jwyKOuv3N298OdZCil9amnUZNInv68R7Nt-L7Thdx_dXz-r2TrW3HdhhwMs7D0pFCtpWMZKBcF4WFUdqEuEOZBiKSKsp4GAnfKD9zPRe_x9L1wlDGgYy5FirTHNcdh4kQraJ2CyZ-9AZHx08eHuoR54t2nRTIaePF440r8Nb4lOX_TAy-LAwqCdefgXdWNWWdmpZmYUznczDduRjZ8hx6DmYtKyjYqq1XvTYPl7VjQiv2E0_HurqswrtydpWzrWGJyiXrU5xcwar4BNbLL6uwA3Z-uH_4JyoY-YLZwVBdGdSHGSml-DPWeyhHddYFjd1d62IBTt8EvO-hlQ9z_QFYKAzXRnky5RLZjpRVLTZc3wSxr9JoEdYbeCaZrW5OTTauE7RyCPjJM-AvwsrT5Nu6qMfL074RYhK66nTi1GYs4I6oaFbSCak4fex7OHO5wV1ieUCR_KfYpdeHv8AkknKyvzPY-whTHp6sDg1ahlY5utOfUOsp5WdLXgx-vTVF_wNkVRp3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Weed+Detection+in+Cotton+Fields+Using+Enhanced+YOLOv8s+with+Modified+Feature+Extraction+Modules&rft.jtitle=Symmetry+%28Basel%29&rft.au=Ren%2C+Doudou&rft.au=Yang%2C+Wenzhong&rft.au=Lu%2C+Zhifeng&rft.au=Chen%2C+Danny&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.issn=2073-8994&rft.eissn=2073-8994&rft.volume=16&rft.issue=4&rft_id=info:doi/10.3390%2Fsym16040450&rft.externalDocID=A793559420 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon |