Improved Weed Detection in Cotton Fields Using Enhanced YOLOv8s with Modified Feature Extraction Modules

Weed detection plays a crucial role in enhancing cotton agricultural productivity. However, the detection process is subject to challenges such as target scale diversity and loss of leaf symmetry due to leaf shading. Hence, this research presents an enhanced model, EY8-MFEM, for detecting weeds in c...

Full description

Saved in:
Bibliographic Details
Published inSymmetry (Basel) Vol. 16; no. 4; p. 450
Main Authors Ren, Doudou, Yang, Wenzhong, Lu, Zhifeng, Chen, Danny, Shi, Houwang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2024
Subjects
Online AccessGet full text
ISSN2073-8994
2073-8994
DOI10.3390/sym16040450

Cover

Loading…
Abstract Weed detection plays a crucial role in enhancing cotton agricultural productivity. However, the detection process is subject to challenges such as target scale diversity and loss of leaf symmetry due to leaf shading. Hence, this research presents an enhanced model, EY8-MFEM, for detecting weeds in cotton fields. Firstly, the ALGA module is proposed, which combines the local and global information of feature maps through weighting operations to better focus on the spatial information of feature maps. Following this, the C2F-ALGA module was developed to augment the feature extraction capability of the underlying backbone network. Secondly, the MDPM module is proposed to generate attention matrices by capturing the horizontal and vertical information of feature maps, reducing duplicate information in the feature maps. Finally, we will replace the upsampling module of YOLOv8 with the CARAFE module to provide better upsampling performance. Extensive experiments on two publicly available datasets showed that the F1, mAP50 and mAP75 metrics improved by 1.2%, 5.1%, 2.9% and 3.8%, 1.3%, 2.2%, respectively, compared to the baseline model. This study showcases the algorithm’s potential for practical applications in weed detection within cotton fields, promoting the significant development of artificial intelligence in the field of agriculture.
AbstractList Weed detection plays a crucial role in enhancing cotton agricultural productivity. However, the detection process is subject to challenges such as target scale diversity and loss of leaf symmetry due to leaf shading. Hence, this research presents an enhanced model, EY8-MFEM, for detecting weeds in cotton fields. Firstly, the ALGA module is proposed, which combines the local and global information of feature maps through weighting operations to better focus on the spatial information of feature maps. Following this, the C2F-ALGA module was developed to augment the feature extraction capability of the underlying backbone network. Secondly, the MDPM module is proposed to generate attention matrices by capturing the horizontal and vertical information of feature maps, reducing duplicate information in the feature maps. Finally, we will replace the upsampling module of YOLOv8 with the CARAFE module to provide better upsampling performance. Extensive experiments on two publicly available datasets showed that the F1, mAP50 and mAP75 metrics improved by 1.2%, 5.1%, 2.9% and 3.8%, 1.3%, 2.2%, respectively, compared to the baseline model. This study showcases the algorithm’s potential for practical applications in weed detection within cotton fields, promoting the significant development of artificial intelligence in the field of agriculture.
Weed detection plays a crucial role in enhancing cotton agricultural productivity. However, the detection process is subject to challenges such as target scale diversity and loss of leaf symmetry due to leaf shading. Hence, this research presents an enhanced model, EY8-MFEM, for detecting weeds in cotton fields. Firstly, the ALGA module is proposed, which combines the local and global information of feature maps through weighting operations to better focus on the spatial information of feature maps. Following this, the C2F-ALGA module was developed to augment the feature extraction capability of the underlying backbone network. Secondly, the MDPM module is proposed to generate attention matrices by capturing the horizontal and vertical information of feature maps, reducing duplicate information in the feature maps. Finally, we will replace the upsampling module of YOLOv8 with the CARAFE module to provide better upsampling performance. Extensive experiments on two publicly available datasets showed that the F1, mAP[sub.50] and mAP[sub.75] metrics improved by 1.2%, 5.1%, 2.9% and 3.8%, 1.3%, 2.2%, respectively, compared to the baseline model. This study showcases the algorithm’s potential for practical applications in weed detection within cotton fields, promoting the significant development of artificial intelligence in the field of agriculture.
Audience Academic
Author Yang, Wenzhong
Lu, Zhifeng
Chen, Danny
Ren, Doudou
Shi, Houwang
Author_xml – sequence: 1
  givenname: Doudou
  surname: Ren
  fullname: Ren, Doudou
– sequence: 2
  givenname: Wenzhong
  surname: Yang
  fullname: Yang, Wenzhong
– sequence: 3
  givenname: Zhifeng
  surname: Lu
  fullname: Lu, Zhifeng
– sequence: 4
  givenname: Danny
  surname: Chen
  fullname: Chen, Danny
– sequence: 5
  givenname: Houwang
  surname: Shi
  fullname: Shi, Houwang
BookMark eNptUU1PAjEQbQwmInLyD2zi0YDtdr96JAhKguEiMZ4223YWSpYubgvKv3c268EYO0k7efPedD6uSc_WFgi5ZXTMuaAP7rxnCY1oFNML0g9pykeZEFHvl39Fhs7tKJ6YxlFC-2S72B-a-gQ6eAO8HsGD8qa2gbHBtPYevbmBSrtg7YzdBDO7LaxC5vtquTplLvg0fhu81NqUBtE5FP7YQDD78k3RJcLYsQJ3Qy7LonIw_HkHZD2fvU6fR8vV02I6WY4U56kfyURSLTMZa8awoFJDmUrgsoiTTOpM8TRLolJHioUMcSFZmKZSxFJwSLQCPiB3XV5s6-MIzue7-thY_DLnNEopFzgrZI071qaoIDe2rNt60TTsjcK5lgbxSSp4HIsobAWsE6imdq6BMlfGF22DKDRVzmjeLiH_tQTU3P_RHBqzL5rzv-xv5w-K6g
CitedBy_id crossref_primary_10_1038_s41598_024_84748_8
crossref_primary_10_1016_j_compag_2025_109914
Cites_doi 10.1109/CVPR52729.2023.00721
10.1007/s10462-022-10266-6
10.1016/j.compag.2023.107994
10.1109/CVPR52729.2023.01800
10.1016/j.compag.2022.107194
10.1109/ACCESS.2023.3312191
10.1109/CVPR52729.2023.00599
10.1016/j.compag.2022.107179
10.3390/rs13224606
10.1109/ACCESS.2023.3242604
10.1109/CVPR52729.2023.00995
10.1080/03650340.2019.1579904
10.1109/CVPRW59228.2023.00046
10.1109/CVPR52729.2023.00487
10.1109/CVPR52729.2023.00464
10.1016/j.biosystemseng.2023.02.006
10.1016/j.compag.2023.107830
10.1109/ACCESS.2021.3109015
10.32604/csse.2023.027647
10.1109/CVPR.2018.00745
10.3390/rs14112674
10.1109/ACCESS.2023.3330886
10.1016/j.eswa.2023.121352
10.1109/CVPR.2017.690
10.1109/CVPR42600.2020.01155
10.1109/ACCESS.2023.3315606
10.1109/ACCESS.2023.3258439
10.1007/s43154-020-00001-w
10.3390/s21010212
10.1016/j.engappai.2023.106442
10.3390/sym15071377
10.1016/j.compag.2022.107412
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
JG9
JQ2
L6V
L7M
L~C
L~D
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.3390/sym16040450
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Aerospace Database
ProQuest SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Agriculture
EISSN 2073-8994
ExternalDocumentID A793559420
10_3390_sym16040450
GroupedDBID 5VS
8FE
8FG
AADQD
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
ESX
GX1
HCIFZ
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
PMFND
7SC
7SR
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
H8D
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c337t-b6b0db8b5d11eedfdef7be3ba568bd8c37864fd4c121be39b1277b95b93e6dce3
IEDL.DBID BENPR
ISSN 2073-8994
IngestDate Fri Jul 25 12:01:08 EDT 2025
Tue Jun 10 21:07:21 EDT 2025
Tue Jul 01 03:48:20 EDT 2025
Thu Apr 24 22:52:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-b6b0db8b5d11eedfdef7be3ba568bd8c37864fd4c121be39b1277b95b93e6dce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3047039390?pq-origsite=%requestingapplication%
PQID 3047039390
PQPubID 2032326
ParticipantIDs proquest_journals_3047039390
gale_infotracacademiconefile_A793559420
crossref_citationtrail_10_3390_sym16040450
crossref_primary_10_3390_sym16040450
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Symmetry (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Punithavathi (ref_22) 2023; 44
Wan (ref_13) 2023; 123
Ren (ref_42) 2015; 28
Lau (ref_31) 2024; 236
Liu (ref_5) 2020; 1
Chen (ref_19) 2022; 202
Iqbal (ref_4) 2019; 65
ref_14
ref_36
ref_35
ref_34
ref_33
ref_32
ref_30
Wang (ref_11) 2022; 199
Raja (ref_6) 2023; 228
Phang (ref_2) 2023; 11
Arsa (ref_21) 2023; 209
ref_39
ref_16
ref_38
ref_15
ref_37
Wang (ref_12) 2023; 11
Li (ref_9) 2023; 11
ref_25
ref_24
ref_23
ref_45
ref_43
Tian (ref_44) 2022; 35
Xu (ref_18) 2023; 211
ref_41
ref_40
Moazzam (ref_10) 2021; 9
Kwaghtyo (ref_1) 2023; 56
Zhou (ref_3) 2023; 11
ref_29
ref_28
ref_27
Peng (ref_20) 2022; 199
ref_26
ref_8
ref_7
Naveed (ref_17) 2023; 11
References_xml – ident: ref_28
– ident: ref_29
  doi: 10.1109/CVPR52729.2023.00721
– volume: 56
  start-page: 5729
  year: 2023
  ident: ref_1
  article-title: Smart farming prediction models for precision agriculture: A comprehensive survey
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10266-6
– ident: ref_30
– volume: 211
  start-page: 107994
  year: 2023
  ident: ref_18
  article-title: Instance segmentation method for weed detection using UAV imagery in soybean fields
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.107994
– ident: ref_33
  doi: 10.1109/CVPR52729.2023.01800
– volume: 199
  start-page: 107194
  year: 2022
  ident: ref_11
  article-title: A deep learning approach incorporating YOLO v5 and attention mechanisms for field real-time detection of the invasive weed Solanum rostratum Dunal seedlings
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107194
– volume: 11
  start-page: 98244
  year: 2023
  ident: ref_9
  article-title: Weed Density Detection Method Based on a High Weed Pressure Dataset and Improved PSP Net
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3312191
– ident: ref_26
– ident: ref_32
  doi: 10.1109/CVPR52729.2023.00599
– volume: 199
  start-page: 107179
  year: 2022
  ident: ref_20
  article-title: Weed detection in paddy field using an improved RetinaNet network
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107179
– ident: ref_7
  doi: 10.3390/rs13224606
– volume: 11
  start-page: 11991
  year: 2023
  ident: ref_17
  article-title: Saliency-Based Semantic Weeds Detection and Classification Using UAV Multispectral Imaging
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3242604
– ident: ref_37
  doi: 10.1109/CVPR52729.2023.00995
– volume: 65
  start-page: 1885
  year: 2019
  ident: ref_4
  article-title: Investigation of alternate herbicides for effective weed management in glyphosate-tolerant cotton
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340.2019.1579904
– ident: ref_34
  doi: 10.1109/CVPRW59228.2023.00046
– ident: ref_40
– ident: ref_35
  doi: 10.1109/CVPR52729.2023.00487
– ident: ref_23
– ident: ref_36
  doi: 10.1109/CVPR52729.2023.00464
– volume: 228
  start-page: 31
  year: 2023
  ident: ref_6
  article-title: Real-time control of high-resolution micro-jet sprayer integrated with machine vision for precision weed control
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2023.02.006
– volume: 209
  start-page: 107830
  year: 2023
  ident: ref_21
  article-title: Eco-friendly weeding through precise detection of growing points via efficient multi-branch convolutional neural networks
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.107830
– volume: 9
  start-page: 121698
  year: 2021
  ident: ref_10
  article-title: A patch-image based classification approach for detection of weeds in sugar beet crop
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3109015
– volume: 44
  start-page: 2759
  year: 2023
  ident: ref_22
  article-title: Computer Vision and Deep Learning-enabled Weed Detection Model for Precision Agriculture
  publication-title: Comput. Syst. Sci. Eng.
  doi: 10.32604/csse.2023.027647
– ident: ref_39
  doi: 10.1109/CVPR.2018.00745
– ident: ref_25
– ident: ref_16
  doi: 10.3390/rs14112674
– volume: 11
  start-page: 127057
  year: 2023
  ident: ref_2
  article-title: From Satellite to UAV-based Remote Sensing: A Review on Precision Agriculture
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3330886
– ident: ref_27
– volume: 236
  start-page: 121352
  year: 2024
  ident: ref_31
  article-title: Large separable kernel attention: Rethinking the large kernel attention design in cnn
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121352
– ident: ref_24
  doi: 10.1109/CVPR.2017.690
– ident: ref_38
  doi: 10.1109/CVPR42600.2020.01155
– volume: 11
  start-page: 103863
  year: 2023
  ident: ref_3
  article-title: Digital agriculture: Mapping knowledge structure and trends
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3315606
– volume: 11
  start-page: 29868
  year: 2023
  ident: ref_12
  article-title: Accurate detection and precision spraying of corn and weeds using the improved YOLOv5 model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3258439
– ident: ref_41
– ident: ref_15
– ident: ref_45
– volume: 1
  start-page: 19
  year: 2020
  ident: ref_5
  article-title: Weed detection for selective spraying: A review
  publication-title: Curr. Robot. Rep.
  doi: 10.1007/s43154-020-00001-w
– ident: ref_43
– volume: 35
  start-page: 34899
  year: 2022
  ident: ref_44
  article-title: Fully convolutional one-stage 3d object detection on lidar range images
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 28
  start-page: 1
  year: 2015
  ident: ref_42
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_8
  doi: 10.3390/s21010212
– volume: 123
  start-page: 106442
  year: 2023
  ident: ref_13
  article-title: Mixed local channel attention for object detection
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106442
– ident: ref_14
  doi: 10.3390/sym15071377
– volume: 202
  start-page: 107412
  year: 2022
  ident: ref_19
  article-title: Weed detection in sesame fields using a YOLO model with an enhanced attention mechanism and feature fusion
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107412
SSID ssj0000505460
Score 2.3300073
Snippet Weed detection plays a crucial role in enhancing cotton agricultural productivity. However, the detection process is subject to challenges such as target scale...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 450
SubjectTerms Accuracy
Agricultural production
Agriculture
Algorithms
Artificial intelligence
Computer networks
Cotton
Crops
Deep learning
Feature extraction
Feature maps
Kitchenware
Methods
Modules
Morphology
Remote sensing
Spatial data
Symmetry
Vegetation
Weeds
Title Improved Weed Detection in Cotton Fields Using Enhanced YOLOv8s with Modified Feature Extraction Modules
URI https://www.proquest.com/docview/3047039390
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI54XOCAYIB4K4dJPKSKpWnT9ITG2ECIlxCIcaqaJgEk6GAtCP49dpsNDohj27RN4kccx_5MSJMDXYFVpGeN5l4gWOqlAnYpLE6tMjyTvELnP78QJ7fBaT_sO4db4cIqRzqxUtR6kKGPfB-PhzCPNG4dvL55WDUKT1ddCY1JMg0qWMLma_qwe3F1PfayYJ22QLTqxDwOL-8XXy9MAOcGmGn_ayn6WyFXq0xvnsw585C2a3oukAmTN8hs-2HoIDJMgyw4cSzojsOM3l0kj7VzwGh6B8sRPTJlFWKV06ecdgYlGHi0h7FqBa1iBGg3f6yO_un95dnlhywo-mPp-UA_WbBJKRqG8DPa_SyHdeYDPnt_NsUSue11bzonniui4GWcR6WnhGppJVWoGYMOWG1sBERQaSik0jLjkRSB1UHGfAb3Y8X8KFJxqGJuhM4MXyZT-SA3K4RGwnJjta9SrkD0larw0OD7NowDncpVsjeazyRzCONY6OI5gZ0GTn7ya_JXSXPc-LUG1vi72TYSJkFxwxGnLmsAeoTAVUk7QoD4OPCh5caIdomTwyL54Zq1_x-vkxkfhlPH5GyQqXL4bjbB3CjVFpmUveMtx1lwddxn3wp32Fc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BPRQOFdBWhULrA1UfUsQmdhzngNAKdlnKLlxApac0jm1AgixsAi1_it_ITB6UA-LGNbYcex72eDzzDcAaR76iqCjPWcM9If3USyXeUvw4ddryTPEKnX-0LwdH4udxeDwFd20uDIVVtntitVGbcUY-8nV6HqI80rizeXnlUdUoel1tS2jUYrFnb__ila3Y2N1G_n4Jgn7vcGvgNVUFvIzzqPS01B2jlQ6N7-MB4Yx1Ec5Kp6FU2qiMR0oKZ0TmBz5-j7UfRJGOQx1zK01mOY47Da8E5zFplOrvPPh0qCqckJ06DRDbO-vF7YUvUU8E5fU_Ovie3v6rM60_D28aY5R1a-lZgCmbL8Jc92TSAHLYRVholL9g3xqE6u9v4bR2RVjDfuHa2LYtq4CunJ3lbGtcojnJ-hQZV7AqIoH18tMq0ID9Phge3KiCkfeXjcbmzKEFzMgMxZ-x3r9yUudZUNv1uS3ewdGLEPc9zOTj3H4AFknHrTOBTrnGjUbrCn0Nx3dhLEyqluBHS88ka_DMqazGeYL3GiJ-8oj4S7D20PmyhvF4uttXYkxCyk0rTpscBZwRwWQl3Yjg6GMRYM-VlndJo_VF8l9Gl59v_gyvB4ejYTLc3d_7CLMBLq2OBlqBmXJybVfR0Cn1p0q6GPx5aXG-B1A8FOU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTtwwcASLhOBQ8aoKpa0PVAWkiE2cOMmhQlt2VzwXhECFUxrHNiBBlm5CgV_r13UmcSgHxI1rbDn2zHhengfACke8IqlEjtGKO75wUycVaKW4cWqk5lnEq-r8BwOxfervngVnY_C3yYWhsMqGJ1aMWg0z8pFv0PMQ5ZHG7Q1jwyKOuv3N298OdZCil9amnUZNInv68R7Nt-L7Thdx_dXz-r2TrW3HdhhwMs7D0pFCtpWMZKBcF4WFUdqEuEOZBiKSKsp4GAnfKD9zPRe_x9L1wlDGgYy5FirTHNcdh4kQraJ2CyZ-9AZHx08eHuoR54t2nRTIaePF440r8Nb4lOX_TAy-LAwqCdefgXdWNWWdmpZmYUznczDduRjZ8hx6DmYtKyjYqq1XvTYPl7VjQiv2E0_HurqswrtydpWzrWGJyiXrU5xcwar4BNbLL6uwA3Z-uH_4JyoY-YLZwVBdGdSHGSml-DPWeyhHddYFjd1d62IBTt8EvO-hlQ9z_QFYKAzXRnky5RLZjpRVLTZc3wSxr9JoEdYbeCaZrW5OTTauE7RyCPjJM-AvwsrT5Nu6qMfL074RYhK66nTi1GYs4I6oaFbSCak4fex7OHO5wV1ieUCR_KfYpdeHv8AkknKyvzPY-whTHp6sDg1ahlY5utOfUOsp5WdLXgx-vTVF_wNkVRp3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Weed+Detection+in+Cotton+Fields+Using+Enhanced+YOLOv8s+with+Modified+Feature+Extraction+Modules&rft.jtitle=Symmetry+%28Basel%29&rft.au=Ren%2C+Doudou&rft.au=Yang%2C+Wenzhong&rft.au=Lu%2C+Zhifeng&rft.au=Chen%2C+Danny&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.issn=2073-8994&rft.eissn=2073-8994&rft.volume=16&rft.issue=4&rft_id=info:doi/10.3390%2Fsym16040450&rft.externalDocID=A793559420
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon