Diffusion layer model for condensation of vapor with the presence of noncondensable gas under natural convective condensation
A diffusion layer model was developed for condensation heat transfer of a vapor with noncondensable gases. The model predicts the heat transfer coefficient for free convection condensation over a vertical surface in the presence of air with consideration of the effect of the variation of the mixture...
Saved in:
Published in | Progress in nuclear energy (New series) Vol. 118; p. 103078 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.01.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0149-1970 1878-4224 |
DOI | 10.1016/j.pnucene.2019.103078 |
Cover
Abstract | A diffusion layer model was developed for condensation heat transfer of a vapor with noncondensable gases. The model predicts the heat transfer coefficient for free convection condensation over a vertical surface in the presence of air with consideration of the effect of the variation of the mixture molecular weight and density across the diffusion layer on the vapor diffusion. The model also takes into account the effect of the suction due to the condensation on the sensible heat transfer and fog formation. The model predictions compare well with previous experimental data and correlations. This model more accurately predicts the convection and condensation heat transfer of steam and air along a vertical surface with an average error of 14.74% and with almost all the points within ±20% error bands. The results show that the suction and fog formation significantly affect the heat transfer. For high noncondensable mass fractions, the fog formation should be considered, especially at high pressures. |
---|---|
AbstractList | A diffusion layer model was developed for condensation heat transfer of a vapor with noncondensable gases. The model predicts the heat transfer coefficient for free convection condensation over a vertical surface in the presence of air with consideration of the effect of the variation of the mixture molecular weight and density across the diffusion layer on the vapor diffusion. The model also takes into account the effect of the suction due to the condensation on the sensible heat transfer and fog formation. The model predictions compare well with previous experimental data and correlations. This model more accurately predicts the convection and condensation heat transfer of steam and air along a vertical surface with an average error of 14.74% and with almost all the points within ±20% error bands. The results show that the suction and fog formation significantly affect the heat transfer. For high noncondensable mass fractions, the fog formation should be considered, especially at high pressures. |
ArticleNumber | 103078 |
Author | Lu, Junhui Li, Junming Cao, Haishan |
Author_xml | – sequence: 1 givenname: Junhui surname: Lu fullname: Lu, Junhui – sequence: 2 givenname: Haishan orcidid: 0000-0002-3307-3017 surname: Cao fullname: Cao, Haishan – sequence: 3 givenname: Junming surname: Li fullname: Li, Junming email: lijm@tsinghua.edu.cn |
BookMark | eNqFkE1L5DAYx4O44Di7H2Eh4LljXtqmxYOIL6sgeNk9hzR56mSoSU3SkTn43U139KAXIRDy_F_y8DtGh847QOg3JStKaH26WY1u0uBgxQht84wT0RygBW1EU5SMlYdoQWjZFrQV5Agdx7ghhApaVQv0emX7forWOzyoHQT85A0MuPcBa-8MuKjSLPoeb9WYpy82rXFaAx4DRHAaZikv9OHuBsCPKuIpPwN2Kk1BDXPXFnSyW_hU-xP96NUQ4df7vUT_bq7_Xt4W9w9_7i4v7gvNuUhFx0SjGRcAgumS6JayhpnedGU-BJpO69JQXta0I6pugGRVVLw1hJqu1jVfopN97xj88wQxyY2fgstfSsZ5ySipuMius71LBx9jgF5qm_7vmYKyg6REzrzlRr7zljNvueed09WX9Bjskwq7b3Pn-xxkAFsLQUZtZ7DGhoxMGm-_aXgDB0uiYw |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2022_118631 crossref_primary_10_1016_j_icheatmasstransfer_2023_106665 crossref_primary_10_1016_j_nucengdes_2023_112366 crossref_primary_10_1016_j_icheatmasstransfer_2021_105218 crossref_primary_10_1016_j_nucengdes_2023_112272 crossref_primary_10_1016_j_anucene_2024_110562 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121738 crossref_primary_10_1080_00223131_2020_1736200 crossref_primary_10_1016_j_pnucene_2020_103591 crossref_primary_10_1016_j_pnucene_2021_103777 crossref_primary_10_1016_j_ijthermalsci_2024_109379 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119384 crossref_primary_10_1016_j_applthermaleng_2022_118807 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124418 crossref_primary_10_1016_j_nucengdes_2020_110968 |
Cites_doi | 10.1115/1.2824052 10.1016/j.nucengdes.2015.11.034 10.1016/j.anucene.2015.11.039 10.1115/1.2728907 10.1016/j.applthermaleng.2006.01.009 10.1021/ie50546a056 10.1016/S0029-5493(98)00232-5 10.1016/j.ijheatmasstransfer.2012.10.051 10.1016/S0029-5493(00)00278-8 10.1016/j.pnucene.2016.01.013 10.1016/j.desal.2012.10.026 10.1115/1.2911397 10.1016/j.nucengdes.2016.02.009 10.1016/0017-9310(66)90035-4 10.1016/j.nucengdes.2014.07.022 10.1016/S0029-5493(00)00229-6 10.1016/j.applthermaleng.2013.08.013 10.1007/s00231-006-0216-5 10.1016/j.nucengdes.2013.02.002 10.1016/j.expthermflusci.2016.02.008 10.1007/s00231-004-0606-5 10.1016/j.nucengdes.2013.05.002 10.1016/j.ijheatmasstransfer.2015.02.034 10.1080/01457630801891557 10.1016/j.ijheatmasstransfer.2019.05.049 10.13182/NT93-A17037 10.1016/j.nucengdes.2008.02.016 10.1016/S0029-5493(98)00164-2 10.1063/1.1747673 10.1016/0017-9310(67)90053-1 10.1016/j.nucengdes.2014.03.007 10.1016/j.nucengdes.2013.07.014 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Jan 2020 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Jan 2020 |
DBID | AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1016/j.pnucene.2019.103078 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-4224 |
ExternalDocumentID | 10_1016_j_pnucene_2019_103078 S0149197019301799 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABEFU ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SEW SPC SPCBC SPD SSR SSZ T5K TN5 WUQ ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TB 8FD EFKBS FR3 KR7 |
ID | FETCH-LOGICAL-c337t-b278c237ee72c40c91282dfdb4db40e8bcc4d13461b0a68e082d7539d01db6c63 |
IEDL.DBID | AIKHN |
ISSN | 0149-1970 |
IngestDate | Sun Sep 07 03:22:49 EDT 2025 Thu Apr 24 23:11:37 EDT 2025 Tue Jul 01 01:01:52 EDT 2025 Fri Feb 23 02:49:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Condensation heat transfer Free convection Noncondensable gases Vertical surface |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-b278c237ee72c40c91282dfdb4db40e8bcc4d13461b0a68e082d7539d01db6c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3307-3017 |
PQID | 2334210537 |
PQPubID | 2045411 |
ParticipantIDs | proquest_journals_2334210537 crossref_citationtrail_10_1016_j_pnucene_2019_103078 crossref_primary_10_1016_j_pnucene_2019_103078 elsevier_sciencedirect_doi_10_1016_j_pnucene_2019_103078 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Progress in nuclear energy (New series) |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Wilke, Lee (bib34) 1955; 47 Sparrow, Minkowycz, Saddy (bib32) 1967; 10 Bird, Stewart, Lightfoot (bib3) 1960 Pan, Su, Fan, Sun (bib25) 2015; 36 Tagami (bib101) 1965 Liao, Vierow (bib20) 2007; 129 Minkowycz, Sparrow (bib24) 1966; 9 Dehbi (bib9) 2013; 265 Fu, Li, Wu, Corradini (bib13) 2016; 297 Herranz, Anderson, Corradini (bib18) 1998; 183 Anderson (bib2) 1998 Uchida, Oyama, Togo (bib100) 1964; vol. 13 Yan, Yang, Hu, Zhen, Liu (bib37) 2007; 44 Dehbi (bib11) 2015; 86 Poling, Prausnitz, John Paul, Reid (bib27) 2001; vol. 5 Xu, Sun, Gu, Li (bib36) 2016; 88 Li (bib21) 2013; 57 Ge, Zhao, Wang (bib15) 2013; 61 Herranz, Anderson, Corradini (bib17) 1998; 6 Martin-Valdepenas, Jimenez, Martin-Fuertes, Benítez (bib23) 2005; 41 Dehbi (bib8) 1991 Su, Sun, Fan, Ding (bib30) 2013; 262 Cebeci (bib6) 1974; vol. 3 Brouwers (bib5) 1996; 118 Ge, Wang, Zhao, Zhao, Liu (bib16) 2016; 75 Peterson, Schrock, Kageyama (bib26) 1993; 115 Liu, Todreas, Driscoll (bib22) 2000; 199 Su, Sun, Ding, Fan (bib31) 2014; 278 Siddique, Golay, Kazimi (bib29) 1993; 102 Xu, Sun, Gu, Li (bib35) 2016; 90 Herranz, Muñoz-Cobo, Palomo (bib19) 2000; 201 Dehbi, Janasz, Bell (bib10) 2013; 258 Dehbi (bib12) 2016; 300 Ganguli, Patel, Maheshwari, Pandit (bib14) 2008; 238 Wilke (bib33) 1950; 18 Anderson, Herranz, Corradini (bib1) 1998; 185 Caruso, Di Maio, Naviglio (bib7) 2013; 309 Zschaeck, Frank, Burns (bib38) 2014; 279 Lu, Cao, Li (bib102) 2019; 139 Popiel (bib28) 2008; 29 Bohdal, Matysko (bib4) 2006; 26 Dehbi (10.1016/j.pnucene.2019.103078_bib9) 2013; 265 Li (10.1016/j.pnucene.2019.103078_bib21) 2013; 57 Xu (10.1016/j.pnucene.2019.103078_bib36) 2016; 88 Anderson (10.1016/j.pnucene.2019.103078_bib2) 1998 Xu (10.1016/j.pnucene.2019.103078_bib35) 2016; 90 Zschaeck (10.1016/j.pnucene.2019.103078_bib38) 2014; 279 Ge (10.1016/j.pnucene.2019.103078_bib16) 2016; 75 Pan (10.1016/j.pnucene.2019.103078_bib25) 2015; 36 Dehbi (10.1016/j.pnucene.2019.103078_bib8) 1991 Lu (10.1016/j.pnucene.2019.103078_bib102) 2019; 139 Tagami (10.1016/j.pnucene.2019.103078_bib101) 1965 Su (10.1016/j.pnucene.2019.103078_bib31) 2014; 278 Liu (10.1016/j.pnucene.2019.103078_bib22) 2000; 199 Herranz (10.1016/j.pnucene.2019.103078_bib18) 1998; 183 Dehbi (10.1016/j.pnucene.2019.103078_bib11) 2015; 86 Su (10.1016/j.pnucene.2019.103078_bib30) 2013; 262 Uchida (10.1016/j.pnucene.2019.103078_bib100) 1964; vol. 13 Caruso (10.1016/j.pnucene.2019.103078_bib7) 2013; 309 Yan (10.1016/j.pnucene.2019.103078_bib37) 2007; 44 Herranz (10.1016/j.pnucene.2019.103078_bib17) 1998; 6 Dehbi (10.1016/j.pnucene.2019.103078_bib10) 2013; 258 Peterson (10.1016/j.pnucene.2019.103078_bib26) 1993; 115 Bird (10.1016/j.pnucene.2019.103078_bib3) 1960 Martin-Valdepenas (10.1016/j.pnucene.2019.103078_bib23) 2005; 41 Siddique (10.1016/j.pnucene.2019.103078_bib29) 1993; 102 Sparrow (10.1016/j.pnucene.2019.103078_bib32) 1967; 10 Dehbi (10.1016/j.pnucene.2019.103078_bib12) 2016; 300 Poling (10.1016/j.pnucene.2019.103078_bib27) 2001; vol. 5 Herranz (10.1016/j.pnucene.2019.103078_bib19) 2000; 201 Minkowycz (10.1016/j.pnucene.2019.103078_bib24) 1966; 9 Ganguli (10.1016/j.pnucene.2019.103078_bib14) 2008; 238 Wilke (10.1016/j.pnucene.2019.103078_bib34) 1955; 47 Liao (10.1016/j.pnucene.2019.103078_bib20) 2007; 129 Brouwers (10.1016/j.pnucene.2019.103078_bib5) 1996; 118 Fu (10.1016/j.pnucene.2019.103078_bib13) 2016; 297 Popiel (10.1016/j.pnucene.2019.103078_bib28) 2008; 29 Ge (10.1016/j.pnucene.2019.103078_bib15) 2013; 61 Anderson (10.1016/j.pnucene.2019.103078_bib1) 1998; 185 Cebeci (10.1016/j.pnucene.2019.103078_bib6) 1974; vol. 3 Bohdal (10.1016/j.pnucene.2019.103078_bib4) 2006; 26 Wilke (10.1016/j.pnucene.2019.103078_bib33) 1950; 18 |
References_xml | – volume: vol. 5 year: 2001 ident: bib27 publication-title: The Properties of Gases and Liquids – volume: 102 start-page: 386 year: 1993 end-page: 402 ident: bib29 article-title: Local heat transfer coefficients for forced-convection condensation of steam in a vertical tube in the presence of a noncondensable gas publication-title: Nucl. Technol. – volume: 61 start-page: 334 year: 2013 end-page: 343 ident: bib15 article-title: Experimental investigation of steam condensation with high concentration CO publication-title: Appl. Therm. Eng. – year: 1991 ident: bib8 article-title: The Effects of Noncondensable Gases on Steam Condensation Under Turbulent Natural Convection Conditions – volume: 201 start-page: 273 year: 2000 end-page: 288 ident: bib19 article-title: Modeling condensation heat transfer on a horizontal finned tube in the presence of noncondensable gases publication-title: Nucl. Eng. Des. – year: 1960 ident: bib3 article-title: Transport Phenomena. Madison, USA – volume: 26 start-page: 1942 year: 2006 end-page: 1950 ident: bib4 article-title: Condensation of a refrigeration medium in the presence of an inert gas publication-title: Appl. Therm. Eng. – volume: 185 start-page: 153 year: 1998 end-page: 172 ident: bib1 article-title: Experimental analysis of heat transfer within the AP600 containment under postulated accident conditions publication-title: Nucl. Eng. Des. – volume: 118 start-page: 243 year: 1996 end-page: 245 ident: bib5 article-title: Effect of fog formation on turbulent vapor condensation with noncondensable gases publication-title: J. Heat Transf. – volume: 300 start-page: 601 year: 2016 end-page: 609 ident: bib12 article-title: A unified correlation for steam condensation rates in the presence of air–helium mixtures under naturally driven flows publication-title: Nucl. Eng. Des. – volume: 41 start-page: 961 year: 2005 end-page: 976 ident: bib23 article-title: Comparison of film condensation models in presence of non-condensable gases implemented in a CFD Code publication-title: Heat Mass Transf. – volume: 47 start-page: 1253 year: 1955 end-page: 1257 ident: bib34 article-title: Estimation of diffusion coefficients for gases and vapors publication-title: Ind. Eng. Chem. – volume: 309 start-page: 247 year: 2013 end-page: 253 ident: bib7 article-title: Condensation heat transfer coefficient with noncondensable gases inside near horizontal tubes publication-title: Desalination – volume: 57 start-page: 2708 year: 2013 end-page: 2721 ident: bib21 article-title: CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers publication-title: Int. J. Heat Mass Transf. – year: 1998 ident: bib2 article-title: Steam Condensation on Cold Walls of Advanced PWR Containments – volume: 183 start-page: 133 year: 1998 end-page: 150 ident: bib18 article-title: A diffusion layer model for steam condensation within the AP600 containment publication-title: Nucl. Eng. Des. – volume: 29 start-page: 521 year: 2008 end-page: 536 ident: bib28 article-title: Free convection heat transfer from vertical slender cylinders: a review publication-title: Heat Transf. Eng. – volume: 278 start-page: 644 year: 2014 end-page: 650 ident: bib31 article-title: Analysis of experiments for the effect of noncondensable gases on steam condensation over a vertical tube external surface under low wall subcooling publication-title: Nucl. Eng. Des. – volume: 6 start-page: 415 year: 1998 end-page: 420 ident: bib17 article-title: The effect of light gases in noncondensable mixtures on condensation heat transfer publication-title: Heat Transf. – volume: 279 start-page: 137 year: 2014 end-page: 146 ident: bib38 article-title: CFD modelling and validation of wall condensation in the presence of non-condensable gases publication-title: Nucl. Eng. Des. – volume: 297 start-page: 197 year: 2016 end-page: 207 ident: bib13 article-title: Numerical investigation of convective condensation with the presence of non-condensable gases in a vertical tube publication-title: Nucl. Eng. Des. – volume: 86 start-page: 1 year: 2015 end-page: 15 ident: bib11 article-title: A generalized correlation for steam condensation rates in the presence of air under turbulent free convection publication-title: Int. J. Heat Mass Transf. – volume: 262 start-page: 201 year: 2013 end-page: 208 ident: bib30 article-title: Experimental study of the effect of non-condensable gases on steam condensation over a vertical tube external surface publication-title: Nucl. Eng. Des. – year: 1965 ident: bib101 article-title: Interim Report on Safety Assessments and Facilities Establishment Project for June, No. 1 – volume: 75 start-page: 147 year: 2016 end-page: 155 ident: bib16 article-title: Condensation of steam with high CO publication-title: Exp. Therm. Fluid Sci. – volume: 44 start-page: 51 year: 2007 end-page: 60 ident: bib37 article-title: Effects of vapor pressure/velocity and concentration on condensation heat transfer for steam–ethanol vapor mixture publication-title: Heat Mass Transf. – volume: 88 start-page: 340 year: 2016 end-page: 351 ident: bib36 article-title: Forced convection condensation in the presence of noncondensable gas in a horizontal tube; experimental and theoretical study publication-title: Prog. Nucl. Energy – volume: 199 start-page: 243 year: 2000 end-page: 255 ident: bib22 article-title: An experimental investigation of a passive cooling unit for nuclear plant containment publication-title: Nucl. Eng. Des. – volume: 9 start-page: 1125 year: 1966 end-page: 1144 ident: bib24 article-title: Condensation heat transfer in the presence of noncondensables, interfacial resistance, superheating, variable properties, and diffusion publication-title: Int. J. Heat Mass Transf. – volume: 115 start-page: 998 year: 1993 end-page: 1003 ident: bib26 article-title: Diffusion layer theory for turbulent vapor condensation with noncondensable gases publication-title: J. Heat Transf. – volume: 265 start-page: 25 year: 2013 end-page: 34 ident: bib9 article-title: On the adequacy of wall functions to predict condensation rates from steam-noncondensable gas mixtures publication-title: Nucl. Eng. Des. – volume: 129 start-page: 988 year: 2007 end-page: 994 ident: bib20 article-title: A generalized diffusion layer model for condensation of vapor with noncondensable gases publication-title: J. Heat Transf. – volume: 139 start-page: 564 year: 2019 end-page: 576 ident: bib102 article-title: Condensation heat and mass transfer of steam with non-condensable gases outside a horizontal tube under free convection publication-title: Int. J. Heat Mass Transf – volume: 238 start-page: 2328 year: 2008 end-page: 2340 ident: bib14 article-title: Theoretical modeling of condensation of steam outside different vertical geometries (tube, flat plates) in the presence of noncondensable gases like air and helium publication-title: Nucl. Eng. Des. – volume: vol. 3 start-page: 15 year: 1974 end-page: 19 ident: bib6 article-title: Laminar-free-convective-heat transfer from the outer surface of a vertical slender circular cylinder publication-title: Heat Transfer 1974 – volume: 36 start-page: 45 year: 2015 end-page: 50 ident: bib25 article-title: Study on steam/air condensation heat transfer model publication-title: Nucl. Poert. Eng (Chinese) – volume: 10 start-page: 1829 year: 1967 end-page: 1845 ident: bib32 article-title: Forced convection condensation in the presence of noncondensables and interfacial resistance publication-title: Int. J. Heat Mass Transf. – volume: 18 start-page: 517 year: 1950 end-page: 519 ident: bib33 article-title: A viscosity equation for gas mixtures publication-title: J. Chem. Phys. – volume: 258 start-page: 199 year: 2013 end-page: 210 ident: bib10 article-title: Prediction of steam condensation in the presence of noncondensable gases using a CFD-based approach publication-title: Nucl. Eng. Des. – volume: vol. 13 start-page: 93 year: 1964 end-page: 102 ident: bib100 article-title: Evaluation of post-incident cooling systems of light water power reactors publication-title: Proc Int Conf on Peaceful Uses of Atomic Energy – volume: 90 start-page: 9 year: 2016 end-page: 21 ident: bib35 article-title: Experimental study on the effect of wall-subcooling on condensation heat transfer in the presence of noncondensable gases in a horizontal tube publication-title: Ann. Nucl. Energy – volume: 118 start-page: 243 issue: 1 year: 1996 ident: 10.1016/j.pnucene.2019.103078_bib5 article-title: Effect of fog formation on turbulent vapor condensation with noncondensable gases publication-title: J. Heat Transf. doi: 10.1115/1.2824052 – volume: 297 start-page: 197 year: 2016 ident: 10.1016/j.pnucene.2019.103078_bib13 article-title: Numerical investigation of convective condensation with the presence of non-condensable gases in a vertical tube publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2015.11.034 – volume: 90 start-page: 9 year: 2016 ident: 10.1016/j.pnucene.2019.103078_bib35 article-title: Experimental study on the effect of wall-subcooling on condensation heat transfer in the presence of noncondensable gases in a horizontal tube publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2015.11.039 – volume: 6 start-page: 415 year: 1998 ident: 10.1016/j.pnucene.2019.103078_bib17 article-title: The effect of light gases in noncondensable mixtures on condensation heat transfer publication-title: Heat Transf. – volume: 129 start-page: 988 issue: 8 year: 2007 ident: 10.1016/j.pnucene.2019.103078_bib20 article-title: A generalized diffusion layer model for condensation of vapor with noncondensable gases publication-title: J. Heat Transf. doi: 10.1115/1.2728907 – volume: 26 start-page: 1942 issue: 16 year: 2006 ident: 10.1016/j.pnucene.2019.103078_bib4 article-title: Condensation of a refrigeration medium in the presence of an inert gas publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2006.01.009 – volume: 47 start-page: 1253 issue: 6 year: 1955 ident: 10.1016/j.pnucene.2019.103078_bib34 article-title: Estimation of diffusion coefficients for gases and vapors publication-title: Ind. Eng. Chem. doi: 10.1021/ie50546a056 – year: 1998 ident: 10.1016/j.pnucene.2019.103078_bib2 – volume: 185 start-page: 153 issue: 2 year: 1998 ident: 10.1016/j.pnucene.2019.103078_bib1 article-title: Experimental analysis of heat transfer within the AP600 containment under postulated accident conditions publication-title: Nucl. Eng. Des. doi: 10.1016/S0029-5493(98)00232-5 – volume: vol. 3 start-page: 15 year: 1974 ident: 10.1016/j.pnucene.2019.103078_bib6 article-title: Laminar-free-convective-heat transfer from the outer surface of a vertical slender circular cylinder – volume: 57 start-page: 2708 year: 2013 ident: 10.1016/j.pnucene.2019.103078_bib21 article-title: CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2012.10.051 – volume: 201 start-page: 273 issue: 2 year: 2000 ident: 10.1016/j.pnucene.2019.103078_bib19 article-title: Modeling condensation heat transfer on a horizontal finned tube in the presence of noncondensable gases publication-title: Nucl. Eng. Des. doi: 10.1016/S0029-5493(00)00278-8 – volume: 88 start-page: 340 year: 2016 ident: 10.1016/j.pnucene.2019.103078_bib36 article-title: Forced convection condensation in the presence of noncondensable gas in a horizontal tube; experimental and theoretical study publication-title: Prog. Nucl. Energy doi: 10.1016/j.pnucene.2016.01.013 – volume: 309 start-page: 247 year: 2013 ident: 10.1016/j.pnucene.2019.103078_bib7 article-title: Condensation heat transfer coefficient with noncondensable gases inside near horizontal tubes publication-title: Desalination doi: 10.1016/j.desal.2012.10.026 – volume: 115 start-page: 998 year: 1993 ident: 10.1016/j.pnucene.2019.103078_bib26 article-title: Diffusion layer theory for turbulent vapor condensation with noncondensable gases publication-title: J. Heat Transf. doi: 10.1115/1.2911397 – volume: 300 start-page: 601 year: 2016 ident: 10.1016/j.pnucene.2019.103078_bib12 article-title: A unified correlation for steam condensation rates in the presence of air–helium mixtures under naturally driven flows publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2016.02.009 – volume: vol. 5 year: 2001 ident: 10.1016/j.pnucene.2019.103078_bib27 – volume: 9 start-page: 1125 issue: 10 year: 1966 ident: 10.1016/j.pnucene.2019.103078_bib24 article-title: Condensation heat transfer in the presence of noncondensables, interfacial resistance, superheating, variable properties, and diffusion publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(66)90035-4 – volume: 278 start-page: 644 year: 2014 ident: 10.1016/j.pnucene.2019.103078_bib31 article-title: Analysis of experiments for the effect of noncondensable gases on steam condensation over a vertical tube external surface under low wall subcooling publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2014.07.022 – volume: 199 start-page: 243 issue: 3 year: 2000 ident: 10.1016/j.pnucene.2019.103078_bib22 article-title: An experimental investigation of a passive cooling unit for nuclear plant containment publication-title: Nucl. Eng. Des. doi: 10.1016/S0029-5493(00)00229-6 – volume: 61 start-page: 334 issue: 2 year: 2013 ident: 10.1016/j.pnucene.2019.103078_bib15 article-title: Experimental investigation of steam condensation with high concentration CO2 on a horizontal tube publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2013.08.013 – volume: 44 start-page: 51 issue: 1 year: 2007 ident: 10.1016/j.pnucene.2019.103078_bib37 article-title: Effects of vapor pressure/velocity and concentration on condensation heat transfer for steam–ethanol vapor mixture publication-title: Heat Mass Transf. doi: 10.1007/s00231-006-0216-5 – year: 1965 ident: 10.1016/j.pnucene.2019.103078_bib101 – volume: 258 start-page: 199 year: 2013 ident: 10.1016/j.pnucene.2019.103078_bib10 article-title: Prediction of steam condensation in the presence of noncondensable gases using a CFD-based approach publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2013.02.002 – volume: 75 start-page: 147 year: 2016 ident: 10.1016/j.pnucene.2019.103078_bib16 article-title: Condensation of steam with high CO2 concentration on a vertical plate publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2016.02.008 – volume: 41 start-page: 961 issue: 11 year: 2005 ident: 10.1016/j.pnucene.2019.103078_bib23 article-title: Comparison of film condensation models in presence of non-condensable gases implemented in a CFD Code publication-title: Heat Mass Transf. doi: 10.1007/s00231-004-0606-5 – volume: 262 start-page: 201 year: 2013 ident: 10.1016/j.pnucene.2019.103078_bib30 article-title: Experimental study of the effect of non-condensable gases on steam condensation over a vertical tube external surface publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2013.05.002 – volume: 86 start-page: 1 year: 2015 ident: 10.1016/j.pnucene.2019.103078_bib11 article-title: A generalized correlation for steam condensation rates in the presence of air under turbulent free convection publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.02.034 – year: 1991 ident: 10.1016/j.pnucene.2019.103078_bib8 – volume: 29 start-page: 521 issue: 6 year: 2008 ident: 10.1016/j.pnucene.2019.103078_bib28 article-title: Free convection heat transfer from vertical slender cylinders: a review publication-title: Heat Transf. Eng. doi: 10.1080/01457630801891557 – year: 1960 ident: 10.1016/j.pnucene.2019.103078_bib3 – volume: 139 start-page: 564 year: 2019 ident: 10.1016/j.pnucene.2019.103078_bib102 article-title: Condensation heat and mass transfer of steam with non-condensable gases outside a horizontal tube under free convection publication-title: Int. J. Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2019.05.049 – volume: vol. 13 start-page: 93 year: 1964 ident: 10.1016/j.pnucene.2019.103078_bib100 article-title: Evaluation of post-incident cooling systems of light water power reactors – volume: 102 start-page: 386 issue: 3 year: 1993 ident: 10.1016/j.pnucene.2019.103078_bib29 article-title: Local heat transfer coefficients for forced-convection condensation of steam in a vertical tube in the presence of a noncondensable gas publication-title: Nucl. Technol. doi: 10.13182/NT93-A17037 – volume: 238 start-page: 2328 issue: 9 year: 2008 ident: 10.1016/j.pnucene.2019.103078_bib14 article-title: Theoretical modeling of condensation of steam outside different vertical geometries (tube, flat plates) in the presence of noncondensable gases like air and helium publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2008.02.016 – volume: 183 start-page: 133 issue: 1–2 year: 1998 ident: 10.1016/j.pnucene.2019.103078_bib18 article-title: A diffusion layer model for steam condensation within the AP600 containment publication-title: Nucl. Eng. Des. doi: 10.1016/S0029-5493(98)00164-2 – volume: 18 start-page: 517 issue: 4 year: 1950 ident: 10.1016/j.pnucene.2019.103078_bib33 article-title: A viscosity equation for gas mixtures publication-title: J. Chem. Phys. doi: 10.1063/1.1747673 – volume: 10 start-page: 1829 issue: 12 year: 1967 ident: 10.1016/j.pnucene.2019.103078_bib32 article-title: Forced convection condensation in the presence of noncondensables and interfacial resistance publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(67)90053-1 – volume: 36 start-page: 45 issue: 6 year: 2015 ident: 10.1016/j.pnucene.2019.103078_bib25 article-title: Study on steam/air condensation heat transfer model publication-title: Nucl. Poert. Eng (Chinese) – volume: 279 start-page: 137 year: 2014 ident: 10.1016/j.pnucene.2019.103078_bib38 article-title: CFD modelling and validation of wall condensation in the presence of non-condensable gases publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2014.03.007 – volume: 265 start-page: 25 year: 2013 ident: 10.1016/j.pnucene.2019.103078_bib9 article-title: On the adequacy of wall functions to predict condensation rates from steam-noncondensable gas mixtures publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2013.07.014 |
SSID | ssj0017155 ssib019626759 |
Score | 2.2961047 |
Snippet | A diffusion layer model was developed for condensation heat transfer of a vapor with noncondensable gases. The model predicts the heat transfer coefficient for... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103078 |
SubjectTerms | Condensation Condensation heat transfer Diffusion Diffusion layers Enthalpy Free convection Heat transfer Heat transfer coefficients Natural gas Noncondensable gases Suction Vapors Vertical surface |
Title | Diffusion layer model for condensation of vapor with the presence of noncondensable gas under natural convective condensation |
URI | https://dx.doi.org/10.1016/j.pnucene.2019.103078 https://www.proquest.com/docview/2334210537 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vehBfOKbHLx2t03SpjmKD1ZFTwreQvOorCx1WVdv-tudpKkvBEHoqe2EkElmvpnMA-DQ8jLX1PCkMDpPOBUVnrlaJ9JUpmZCmzS4Lq6ui-Etv7jL7-bguMuF8WGVUfa3Mj1I6_hmEFdzMBmNBj4sSWbSlxNnflvJeVigTBZ5DxaOzi-H1x-XCSLLYySjTDzBZyLP4KE_aXAJG18wM5M-Az31Ddd-V1E_hHXQQGcrsByhIzlqZ7cKc65Zg6UvBQXX4fVkVNfP3gFGxhWCaRIa3RAEpgTtXhQxbewOeazJS4XIm3g3LEEMSCYhDck4_6l5bLq_9diR--qJ-FSzKQlVQHEKIVQ9CMpvw27A7dnpzfEwiQ0WEsOYmCWaitJQJpwTyK7USFRW1NZWc3xSV2pjuM0YLzKdVkXpEC5YNG-kTTOrC1OwTejhlNwWEEnrNHPCIkK0nCOnPRIrNIJJ4bim9Tbwbk2VidXHfROMserCzB5UZIXyrFAtK7ah_0E2actv_EVQdgxT3_aRQhXxF-lex2AVD_KTooxxtIpzJnb-P_IuLFJvpgfPzR70ZtNnt49YZqYPYL7_lh3EHfsOdPf2WA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHCiHCigVUFp84JpNYjtxfKxoV1see1okblb8SLVoFaJl4db-dmYch0JVCQkpp8SOLM945vPomxlCTpyoCsOsSEprikQwWcOZa0yibG0bLo3NQujiclpOrsTZdXG9Rk6HXBikVUbb39v0YK3jmzTuZtrN5ynSklSusJw4R7VS78iGKLhEXt_ozxPPI5d5EXmMKsHhf9N40ptR18IGtlguM1eYf55hu7X_O6h_THXwP-Nt8iECR_qtX9sOWfPtLtl6Vk7wI_n9fd409xj-oosaoDQNbW4owFIKt14wMD1zh9429KEG3E0xCEsBAdIuJCFZj5_a23YYbRae_qrvKCaaLWmoAQpLCET1YCZf_HaPXI1_zE4nSWyvkFjO5SoxTFaWcem9BGFlVoGrYq5xRsCT-cpYK1zORZmbrC4rD2DBweVGuSx3prQl_0TWYUl-n1DFmiz30gE-dEKAnBGHlQagpPTCsOaAiGFPtY21x7EFxkIPJLMbHUWhURS6F8UBGT1N6_riG69NqAaB6RdapMFBvDb1aBCwjsf4TjPOBdyJQasO3_7nY7I5mV1e6Iuf0_PP5D3DC3uI4RyR9dXy3n8BVLMyX4PWPgKPTvcj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diffusion+layer+model+for+condensation+of+vapor+with+the+presence+of+noncondensable+gas+under+natural+convective+condensation&rft.jtitle=Progress+in+nuclear+energy+%28New+series%29&rft.au=Lu%2C+Junhui&rft.au=Cao%2C+Haishan&rft.au=Li%2C+Junming&rft.date=2020-01-01&rft.issn=0149-1970&rft.volume=118&rft.spage=103078&rft_id=info:doi/10.1016%2Fj.pnucene.2019.103078&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_pnucene_2019_103078 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0149-1970&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0149-1970&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0149-1970&client=summon |