Diffusion layer model for condensation of vapor with the presence of noncondensable gas under natural convective condensation

A diffusion layer model was developed for condensation heat transfer of a vapor with noncondensable gases. The model predicts the heat transfer coefficient for free convection condensation over a vertical surface in the presence of air with consideration of the effect of the variation of the mixture...

Full description

Saved in:
Bibliographic Details
Published inProgress in nuclear energy (New series) Vol. 118; p. 103078
Main Authors Lu, Junhui, Cao, Haishan, Li, Junming
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.01.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0149-1970
1878-4224
DOI10.1016/j.pnucene.2019.103078

Cover

Abstract A diffusion layer model was developed for condensation heat transfer of a vapor with noncondensable gases. The model predicts the heat transfer coefficient for free convection condensation over a vertical surface in the presence of air with consideration of the effect of the variation of the mixture molecular weight and density across the diffusion layer on the vapor diffusion. The model also takes into account the effect of the suction due to the condensation on the sensible heat transfer and fog formation. The model predictions compare well with previous experimental data and correlations. This model more accurately predicts the convection and condensation heat transfer of steam and air along a vertical surface with an average error of 14.74% and with almost all the points within ±20% error bands. The results show that the suction and fog formation significantly affect the heat transfer. For high noncondensable mass fractions, the fog formation should be considered, especially at high pressures.
AbstractList A diffusion layer model was developed for condensation heat transfer of a vapor with noncondensable gases. The model predicts the heat transfer coefficient for free convection condensation over a vertical surface in the presence of air with consideration of the effect of the variation of the mixture molecular weight and density across the diffusion layer on the vapor diffusion. The model also takes into account the effect of the suction due to the condensation on the sensible heat transfer and fog formation. The model predictions compare well with previous experimental data and correlations. This model more accurately predicts the convection and condensation heat transfer of steam and air along a vertical surface with an average error of 14.74% and with almost all the points within ±20% error bands. The results show that the suction and fog formation significantly affect the heat transfer. For high noncondensable mass fractions, the fog formation should be considered, especially at high pressures.
ArticleNumber 103078
Author Lu, Junhui
Li, Junming
Cao, Haishan
Author_xml – sequence: 1
  givenname: Junhui
  surname: Lu
  fullname: Lu, Junhui
– sequence: 2
  givenname: Haishan
  orcidid: 0000-0002-3307-3017
  surname: Cao
  fullname: Cao, Haishan
– sequence: 3
  givenname: Junming
  surname: Li
  fullname: Li, Junming
  email: lijm@tsinghua.edu.cn
BookMark eNqFkE1L5DAYx4O44Di7H2Eh4LljXtqmxYOIL6sgeNk9hzR56mSoSU3SkTn43U139KAXIRDy_F_y8DtGh847QOg3JStKaH26WY1u0uBgxQht84wT0RygBW1EU5SMlYdoQWjZFrQV5Agdx7ghhApaVQv0emX7forWOzyoHQT85A0MuPcBa-8MuKjSLPoeb9WYpy82rXFaAx4DRHAaZikv9OHuBsCPKuIpPwN2Kk1BDXPXFnSyW_hU-xP96NUQ4df7vUT_bq7_Xt4W9w9_7i4v7gvNuUhFx0SjGRcAgumS6JayhpnedGU-BJpO69JQXta0I6pugGRVVLw1hJqu1jVfopN97xj88wQxyY2fgstfSsZ5ySipuMius71LBx9jgF5qm_7vmYKyg6REzrzlRr7zljNvueed09WX9Bjskwq7b3Pn-xxkAFsLQUZtZ7DGhoxMGm-_aXgDB0uiYw
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2022_118631
crossref_primary_10_1016_j_icheatmasstransfer_2023_106665
crossref_primary_10_1016_j_nucengdes_2023_112366
crossref_primary_10_1016_j_icheatmasstransfer_2021_105218
crossref_primary_10_1016_j_nucengdes_2023_112272
crossref_primary_10_1016_j_anucene_2024_110562
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121738
crossref_primary_10_1080_00223131_2020_1736200
crossref_primary_10_1016_j_pnucene_2020_103591
crossref_primary_10_1016_j_pnucene_2021_103777
crossref_primary_10_1016_j_ijthermalsci_2024_109379
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119384
crossref_primary_10_1016_j_applthermaleng_2022_118807
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124418
crossref_primary_10_1016_j_nucengdes_2020_110968
Cites_doi 10.1115/1.2824052
10.1016/j.nucengdes.2015.11.034
10.1016/j.anucene.2015.11.039
10.1115/1.2728907
10.1016/j.applthermaleng.2006.01.009
10.1021/ie50546a056
10.1016/S0029-5493(98)00232-5
10.1016/j.ijheatmasstransfer.2012.10.051
10.1016/S0029-5493(00)00278-8
10.1016/j.pnucene.2016.01.013
10.1016/j.desal.2012.10.026
10.1115/1.2911397
10.1016/j.nucengdes.2016.02.009
10.1016/0017-9310(66)90035-4
10.1016/j.nucengdes.2014.07.022
10.1016/S0029-5493(00)00229-6
10.1016/j.applthermaleng.2013.08.013
10.1007/s00231-006-0216-5
10.1016/j.nucengdes.2013.02.002
10.1016/j.expthermflusci.2016.02.008
10.1007/s00231-004-0606-5
10.1016/j.nucengdes.2013.05.002
10.1016/j.ijheatmasstransfer.2015.02.034
10.1080/01457630801891557
10.1016/j.ijheatmasstransfer.2019.05.049
10.13182/NT93-A17037
10.1016/j.nucengdes.2008.02.016
10.1016/S0029-5493(98)00164-2
10.1063/1.1747673
10.1016/0017-9310(67)90053-1
10.1016/j.nucengdes.2014.03.007
10.1016/j.nucengdes.2013.07.014
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Jan 2020
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 2020
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.pnucene.2019.103078
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-4224
ExternalDocumentID 10_1016_j_pnucene_2019_103078
S0149197019301799
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABEFU
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSR
SSZ
T5K
TN5
WUQ
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TB
8FD
EFKBS
FR3
KR7
ID FETCH-LOGICAL-c337t-b278c237ee72c40c91282dfdb4db40e8bcc4d13461b0a68e082d7539d01db6c63
IEDL.DBID AIKHN
ISSN 0149-1970
IngestDate Sun Sep 07 03:22:49 EDT 2025
Thu Apr 24 23:11:37 EDT 2025
Tue Jul 01 01:01:52 EDT 2025
Fri Feb 23 02:49:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Condensation heat transfer
Free convection
Noncondensable gases
Vertical surface
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-b278c237ee72c40c91282dfdb4db40e8bcc4d13461b0a68e082d7539d01db6c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3307-3017
PQID 2334210537
PQPubID 2045411
ParticipantIDs proquest_journals_2334210537
crossref_citationtrail_10_1016_j_pnucene_2019_103078
crossref_primary_10_1016_j_pnucene_2019_103078
elsevier_sciencedirect_doi_10_1016_j_pnucene_2019_103078
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Progress in nuclear energy (New series)
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Wilke, Lee (bib34) 1955; 47
Sparrow, Minkowycz, Saddy (bib32) 1967; 10
Bird, Stewart, Lightfoot (bib3) 1960
Pan, Su, Fan, Sun (bib25) 2015; 36
Tagami (bib101) 1965
Liao, Vierow (bib20) 2007; 129
Minkowycz, Sparrow (bib24) 1966; 9
Dehbi (bib9) 2013; 265
Fu, Li, Wu, Corradini (bib13) 2016; 297
Herranz, Anderson, Corradini (bib18) 1998; 183
Anderson (bib2) 1998
Uchida, Oyama, Togo (bib100) 1964; vol. 13
Yan, Yang, Hu, Zhen, Liu (bib37) 2007; 44
Dehbi (bib11) 2015; 86
Poling, Prausnitz, John Paul, Reid (bib27) 2001; vol. 5
Xu, Sun, Gu, Li (bib36) 2016; 88
Li (bib21) 2013; 57
Ge, Zhao, Wang (bib15) 2013; 61
Herranz, Anderson, Corradini (bib17) 1998; 6
Martin-Valdepenas, Jimenez, Martin-Fuertes, Benítez (bib23) 2005; 41
Dehbi (bib8) 1991
Su, Sun, Fan, Ding (bib30) 2013; 262
Cebeci (bib6) 1974; vol. 3
Brouwers (bib5) 1996; 118
Ge, Wang, Zhao, Zhao, Liu (bib16) 2016; 75
Peterson, Schrock, Kageyama (bib26) 1993; 115
Liu, Todreas, Driscoll (bib22) 2000; 199
Su, Sun, Ding, Fan (bib31) 2014; 278
Siddique, Golay, Kazimi (bib29) 1993; 102
Xu, Sun, Gu, Li (bib35) 2016; 90
Herranz, Muñoz-Cobo, Palomo (bib19) 2000; 201
Dehbi, Janasz, Bell (bib10) 2013; 258
Dehbi (bib12) 2016; 300
Ganguli, Patel, Maheshwari, Pandit (bib14) 2008; 238
Wilke (bib33) 1950; 18
Anderson, Herranz, Corradini (bib1) 1998; 185
Caruso, Di Maio, Naviglio (bib7) 2013; 309
Zschaeck, Frank, Burns (bib38) 2014; 279
Lu, Cao, Li (bib102) 2019; 139
Popiel (bib28) 2008; 29
Bohdal, Matysko (bib4) 2006; 26
Dehbi (10.1016/j.pnucene.2019.103078_bib9) 2013; 265
Li (10.1016/j.pnucene.2019.103078_bib21) 2013; 57
Xu (10.1016/j.pnucene.2019.103078_bib36) 2016; 88
Anderson (10.1016/j.pnucene.2019.103078_bib2) 1998
Xu (10.1016/j.pnucene.2019.103078_bib35) 2016; 90
Zschaeck (10.1016/j.pnucene.2019.103078_bib38) 2014; 279
Ge (10.1016/j.pnucene.2019.103078_bib16) 2016; 75
Pan (10.1016/j.pnucene.2019.103078_bib25) 2015; 36
Dehbi (10.1016/j.pnucene.2019.103078_bib8) 1991
Lu (10.1016/j.pnucene.2019.103078_bib102) 2019; 139
Tagami (10.1016/j.pnucene.2019.103078_bib101) 1965
Su (10.1016/j.pnucene.2019.103078_bib31) 2014; 278
Liu (10.1016/j.pnucene.2019.103078_bib22) 2000; 199
Herranz (10.1016/j.pnucene.2019.103078_bib18) 1998; 183
Dehbi (10.1016/j.pnucene.2019.103078_bib11) 2015; 86
Su (10.1016/j.pnucene.2019.103078_bib30) 2013; 262
Uchida (10.1016/j.pnucene.2019.103078_bib100) 1964; vol. 13
Caruso (10.1016/j.pnucene.2019.103078_bib7) 2013; 309
Yan (10.1016/j.pnucene.2019.103078_bib37) 2007; 44
Herranz (10.1016/j.pnucene.2019.103078_bib17) 1998; 6
Dehbi (10.1016/j.pnucene.2019.103078_bib10) 2013; 258
Peterson (10.1016/j.pnucene.2019.103078_bib26) 1993; 115
Bird (10.1016/j.pnucene.2019.103078_bib3) 1960
Martin-Valdepenas (10.1016/j.pnucene.2019.103078_bib23) 2005; 41
Siddique (10.1016/j.pnucene.2019.103078_bib29) 1993; 102
Sparrow (10.1016/j.pnucene.2019.103078_bib32) 1967; 10
Dehbi (10.1016/j.pnucene.2019.103078_bib12) 2016; 300
Poling (10.1016/j.pnucene.2019.103078_bib27) 2001; vol. 5
Herranz (10.1016/j.pnucene.2019.103078_bib19) 2000; 201
Minkowycz (10.1016/j.pnucene.2019.103078_bib24) 1966; 9
Ganguli (10.1016/j.pnucene.2019.103078_bib14) 2008; 238
Wilke (10.1016/j.pnucene.2019.103078_bib34) 1955; 47
Liao (10.1016/j.pnucene.2019.103078_bib20) 2007; 129
Brouwers (10.1016/j.pnucene.2019.103078_bib5) 1996; 118
Fu (10.1016/j.pnucene.2019.103078_bib13) 2016; 297
Popiel (10.1016/j.pnucene.2019.103078_bib28) 2008; 29
Ge (10.1016/j.pnucene.2019.103078_bib15) 2013; 61
Anderson (10.1016/j.pnucene.2019.103078_bib1) 1998; 185
Cebeci (10.1016/j.pnucene.2019.103078_bib6) 1974; vol. 3
Bohdal (10.1016/j.pnucene.2019.103078_bib4) 2006; 26
Wilke (10.1016/j.pnucene.2019.103078_bib33) 1950; 18
References_xml – volume: vol. 5
  year: 2001
  ident: bib27
  publication-title: The Properties of Gases and Liquids
– volume: 102
  start-page: 386
  year: 1993
  end-page: 402
  ident: bib29
  article-title: Local heat transfer coefficients for forced-convection condensation of steam in a vertical tube in the presence of a noncondensable gas
  publication-title: Nucl. Technol.
– volume: 61
  start-page: 334
  year: 2013
  end-page: 343
  ident: bib15
  article-title: Experimental investigation of steam condensation with high concentration CO
  publication-title: Appl. Therm. Eng.
– year: 1991
  ident: bib8
  article-title: The Effects of Noncondensable Gases on Steam Condensation Under Turbulent Natural Convection Conditions
– volume: 201
  start-page: 273
  year: 2000
  end-page: 288
  ident: bib19
  article-title: Modeling condensation heat transfer on a horizontal finned tube in the presence of noncondensable gases
  publication-title: Nucl. Eng. Des.
– year: 1960
  ident: bib3
  article-title: Transport Phenomena. Madison, USA
– volume: 26
  start-page: 1942
  year: 2006
  end-page: 1950
  ident: bib4
  article-title: Condensation of a refrigeration medium in the presence of an inert gas
  publication-title: Appl. Therm. Eng.
– volume: 185
  start-page: 153
  year: 1998
  end-page: 172
  ident: bib1
  article-title: Experimental analysis of heat transfer within the AP600 containment under postulated accident conditions
  publication-title: Nucl. Eng. Des.
– volume: 118
  start-page: 243
  year: 1996
  end-page: 245
  ident: bib5
  article-title: Effect of fog formation on turbulent vapor condensation with noncondensable gases
  publication-title: J. Heat Transf.
– volume: 300
  start-page: 601
  year: 2016
  end-page: 609
  ident: bib12
  article-title: A unified correlation for steam condensation rates in the presence of air–helium mixtures under naturally driven flows
  publication-title: Nucl. Eng. Des.
– volume: 41
  start-page: 961
  year: 2005
  end-page: 976
  ident: bib23
  article-title: Comparison of film condensation models in presence of non-condensable gases implemented in a CFD Code
  publication-title: Heat Mass Transf.
– volume: 47
  start-page: 1253
  year: 1955
  end-page: 1257
  ident: bib34
  article-title: Estimation of diffusion coefficients for gases and vapors
  publication-title: Ind. Eng. Chem.
– volume: 309
  start-page: 247
  year: 2013
  end-page: 253
  ident: bib7
  article-title: Condensation heat transfer coefficient with noncondensable gases inside near horizontal tubes
  publication-title: Desalination
– volume: 57
  start-page: 2708
  year: 2013
  end-page: 2721
  ident: bib21
  article-title: CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers
  publication-title: Int. J. Heat Mass Transf.
– year: 1998
  ident: bib2
  article-title: Steam Condensation on Cold Walls of Advanced PWR Containments
– volume: 183
  start-page: 133
  year: 1998
  end-page: 150
  ident: bib18
  article-title: A diffusion layer model for steam condensation within the AP600 containment
  publication-title: Nucl. Eng. Des.
– volume: 29
  start-page: 521
  year: 2008
  end-page: 536
  ident: bib28
  article-title: Free convection heat transfer from vertical slender cylinders: a review
  publication-title: Heat Transf. Eng.
– volume: 278
  start-page: 644
  year: 2014
  end-page: 650
  ident: bib31
  article-title: Analysis of experiments for the effect of noncondensable gases on steam condensation over a vertical tube external surface under low wall subcooling
  publication-title: Nucl. Eng. Des.
– volume: 6
  start-page: 415
  year: 1998
  end-page: 420
  ident: bib17
  article-title: The effect of light gases in noncondensable mixtures on condensation heat transfer
  publication-title: Heat Transf.
– volume: 279
  start-page: 137
  year: 2014
  end-page: 146
  ident: bib38
  article-title: CFD modelling and validation of wall condensation in the presence of non-condensable gases
  publication-title: Nucl. Eng. Des.
– volume: 297
  start-page: 197
  year: 2016
  end-page: 207
  ident: bib13
  article-title: Numerical investigation of convective condensation with the presence of non-condensable gases in a vertical tube
  publication-title: Nucl. Eng. Des.
– volume: 86
  start-page: 1
  year: 2015
  end-page: 15
  ident: bib11
  article-title: A generalized correlation for steam condensation rates in the presence of air under turbulent free convection
  publication-title: Int. J. Heat Mass Transf.
– volume: 262
  start-page: 201
  year: 2013
  end-page: 208
  ident: bib30
  article-title: Experimental study of the effect of non-condensable gases on steam condensation over a vertical tube external surface
  publication-title: Nucl. Eng. Des.
– year: 1965
  ident: bib101
  article-title: Interim Report on Safety Assessments and Facilities Establishment Project for June, No. 1
– volume: 75
  start-page: 147
  year: 2016
  end-page: 155
  ident: bib16
  article-title: Condensation of steam with high CO
  publication-title: Exp. Therm. Fluid Sci.
– volume: 44
  start-page: 51
  year: 2007
  end-page: 60
  ident: bib37
  article-title: Effects of vapor pressure/velocity and concentration on condensation heat transfer for steam–ethanol vapor mixture
  publication-title: Heat Mass Transf.
– volume: 88
  start-page: 340
  year: 2016
  end-page: 351
  ident: bib36
  article-title: Forced convection condensation in the presence of noncondensable gas in a horizontal tube; experimental and theoretical study
  publication-title: Prog. Nucl. Energy
– volume: 199
  start-page: 243
  year: 2000
  end-page: 255
  ident: bib22
  article-title: An experimental investigation of a passive cooling unit for nuclear plant containment
  publication-title: Nucl. Eng. Des.
– volume: 9
  start-page: 1125
  year: 1966
  end-page: 1144
  ident: bib24
  article-title: Condensation heat transfer in the presence of noncondensables, interfacial resistance, superheating, variable properties, and diffusion
  publication-title: Int. J. Heat Mass Transf.
– volume: 115
  start-page: 998
  year: 1993
  end-page: 1003
  ident: bib26
  article-title: Diffusion layer theory for turbulent vapor condensation with noncondensable gases
  publication-title: J. Heat Transf.
– volume: 265
  start-page: 25
  year: 2013
  end-page: 34
  ident: bib9
  article-title: On the adequacy of wall functions to predict condensation rates from steam-noncondensable gas mixtures
  publication-title: Nucl. Eng. Des.
– volume: 129
  start-page: 988
  year: 2007
  end-page: 994
  ident: bib20
  article-title: A generalized diffusion layer model for condensation of vapor with noncondensable gases
  publication-title: J. Heat Transf.
– volume: 139
  start-page: 564
  year: 2019
  end-page: 576
  ident: bib102
  article-title: Condensation heat and mass transfer of steam with non-condensable gases outside a horizontal tube under free convection
  publication-title: Int. J. Heat Mass Transf
– volume: 238
  start-page: 2328
  year: 2008
  end-page: 2340
  ident: bib14
  article-title: Theoretical modeling of condensation of steam outside different vertical geometries (tube, flat plates) in the presence of noncondensable gases like air and helium
  publication-title: Nucl. Eng. Des.
– volume: vol. 3
  start-page: 15
  year: 1974
  end-page: 19
  ident: bib6
  article-title: Laminar-free-convective-heat transfer from the outer surface of a vertical slender circular cylinder
  publication-title: Heat Transfer 1974
– volume: 36
  start-page: 45
  year: 2015
  end-page: 50
  ident: bib25
  article-title: Study on steam/air condensation heat transfer model
  publication-title: Nucl. Poert. Eng (Chinese)
– volume: 10
  start-page: 1829
  year: 1967
  end-page: 1845
  ident: bib32
  article-title: Forced convection condensation in the presence of noncondensables and interfacial resistance
  publication-title: Int. J. Heat Mass Transf.
– volume: 18
  start-page: 517
  year: 1950
  end-page: 519
  ident: bib33
  article-title: A viscosity equation for gas mixtures
  publication-title: J. Chem. Phys.
– volume: 258
  start-page: 199
  year: 2013
  end-page: 210
  ident: bib10
  article-title: Prediction of steam condensation in the presence of noncondensable gases using a CFD-based approach
  publication-title: Nucl. Eng. Des.
– volume: vol. 13
  start-page: 93
  year: 1964
  end-page: 102
  ident: bib100
  article-title: Evaluation of post-incident cooling systems of light water power reactors
  publication-title: Proc Int Conf on Peaceful Uses of Atomic Energy
– volume: 90
  start-page: 9
  year: 2016
  end-page: 21
  ident: bib35
  article-title: Experimental study on the effect of wall-subcooling on condensation heat transfer in the presence of noncondensable gases in a horizontal tube
  publication-title: Ann. Nucl. Energy
– volume: 118
  start-page: 243
  issue: 1
  year: 1996
  ident: 10.1016/j.pnucene.2019.103078_bib5
  article-title: Effect of fog formation on turbulent vapor condensation with noncondensable gases
  publication-title: J. Heat Transf.
  doi: 10.1115/1.2824052
– volume: 297
  start-page: 197
  year: 2016
  ident: 10.1016/j.pnucene.2019.103078_bib13
  article-title: Numerical investigation of convective condensation with the presence of non-condensable gases in a vertical tube
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2015.11.034
– volume: 90
  start-page: 9
  year: 2016
  ident: 10.1016/j.pnucene.2019.103078_bib35
  article-title: Experimental study on the effect of wall-subcooling on condensation heat transfer in the presence of noncondensable gases in a horizontal tube
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2015.11.039
– volume: 6
  start-page: 415
  year: 1998
  ident: 10.1016/j.pnucene.2019.103078_bib17
  article-title: The effect of light gases in noncondensable mixtures on condensation heat transfer
  publication-title: Heat Transf.
– volume: 129
  start-page: 988
  issue: 8
  year: 2007
  ident: 10.1016/j.pnucene.2019.103078_bib20
  article-title: A generalized diffusion layer model for condensation of vapor with noncondensable gases
  publication-title: J. Heat Transf.
  doi: 10.1115/1.2728907
– volume: 26
  start-page: 1942
  issue: 16
  year: 2006
  ident: 10.1016/j.pnucene.2019.103078_bib4
  article-title: Condensation of a refrigeration medium in the presence of an inert gas
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2006.01.009
– volume: 47
  start-page: 1253
  issue: 6
  year: 1955
  ident: 10.1016/j.pnucene.2019.103078_bib34
  article-title: Estimation of diffusion coefficients for gases and vapors
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50546a056
– year: 1998
  ident: 10.1016/j.pnucene.2019.103078_bib2
– volume: 185
  start-page: 153
  issue: 2
  year: 1998
  ident: 10.1016/j.pnucene.2019.103078_bib1
  article-title: Experimental analysis of heat transfer within the AP600 containment under postulated accident conditions
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/S0029-5493(98)00232-5
– volume: vol. 3
  start-page: 15
  year: 1974
  ident: 10.1016/j.pnucene.2019.103078_bib6
  article-title: Laminar-free-convective-heat transfer from the outer surface of a vertical slender circular cylinder
– volume: 57
  start-page: 2708
  year: 2013
  ident: 10.1016/j.pnucene.2019.103078_bib21
  article-title: CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2012.10.051
– volume: 201
  start-page: 273
  issue: 2
  year: 2000
  ident: 10.1016/j.pnucene.2019.103078_bib19
  article-title: Modeling condensation heat transfer on a horizontal finned tube in the presence of noncondensable gases
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/S0029-5493(00)00278-8
– volume: 88
  start-page: 340
  year: 2016
  ident: 10.1016/j.pnucene.2019.103078_bib36
  article-title: Forced convection condensation in the presence of noncondensable gas in a horizontal tube; experimental and theoretical study
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2016.01.013
– volume: 309
  start-page: 247
  year: 2013
  ident: 10.1016/j.pnucene.2019.103078_bib7
  article-title: Condensation heat transfer coefficient with noncondensable gases inside near horizontal tubes
  publication-title: Desalination
  doi: 10.1016/j.desal.2012.10.026
– volume: 115
  start-page: 998
  year: 1993
  ident: 10.1016/j.pnucene.2019.103078_bib26
  article-title: Diffusion layer theory for turbulent vapor condensation with noncondensable gases
  publication-title: J. Heat Transf.
  doi: 10.1115/1.2911397
– volume: 300
  start-page: 601
  year: 2016
  ident: 10.1016/j.pnucene.2019.103078_bib12
  article-title: A unified correlation for steam condensation rates in the presence of air–helium mixtures under naturally driven flows
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2016.02.009
– volume: vol. 5
  year: 2001
  ident: 10.1016/j.pnucene.2019.103078_bib27
– volume: 9
  start-page: 1125
  issue: 10
  year: 1966
  ident: 10.1016/j.pnucene.2019.103078_bib24
  article-title: Condensation heat transfer in the presence of noncondensables, interfacial resistance, superheating, variable properties, and diffusion
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(66)90035-4
– volume: 278
  start-page: 644
  year: 2014
  ident: 10.1016/j.pnucene.2019.103078_bib31
  article-title: Analysis of experiments for the effect of noncondensable gases on steam condensation over a vertical tube external surface under low wall subcooling
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2014.07.022
– volume: 199
  start-page: 243
  issue: 3
  year: 2000
  ident: 10.1016/j.pnucene.2019.103078_bib22
  article-title: An experimental investigation of a passive cooling unit for nuclear plant containment
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/S0029-5493(00)00229-6
– volume: 61
  start-page: 334
  issue: 2
  year: 2013
  ident: 10.1016/j.pnucene.2019.103078_bib15
  article-title: Experimental investigation of steam condensation with high concentration CO2 on a horizontal tube
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2013.08.013
– volume: 44
  start-page: 51
  issue: 1
  year: 2007
  ident: 10.1016/j.pnucene.2019.103078_bib37
  article-title: Effects of vapor pressure/velocity and concentration on condensation heat transfer for steam–ethanol vapor mixture
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-006-0216-5
– year: 1965
  ident: 10.1016/j.pnucene.2019.103078_bib101
– volume: 258
  start-page: 199
  year: 2013
  ident: 10.1016/j.pnucene.2019.103078_bib10
  article-title: Prediction of steam condensation in the presence of noncondensable gases using a CFD-based approach
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2013.02.002
– volume: 75
  start-page: 147
  year: 2016
  ident: 10.1016/j.pnucene.2019.103078_bib16
  article-title: Condensation of steam with high CO2 concentration on a vertical plate
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2016.02.008
– volume: 41
  start-page: 961
  issue: 11
  year: 2005
  ident: 10.1016/j.pnucene.2019.103078_bib23
  article-title: Comparison of film condensation models in presence of non-condensable gases implemented in a CFD Code
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-004-0606-5
– volume: 262
  start-page: 201
  year: 2013
  ident: 10.1016/j.pnucene.2019.103078_bib30
  article-title: Experimental study of the effect of non-condensable gases on steam condensation over a vertical tube external surface
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2013.05.002
– volume: 86
  start-page: 1
  year: 2015
  ident: 10.1016/j.pnucene.2019.103078_bib11
  article-title: A generalized correlation for steam condensation rates in the presence of air under turbulent free convection
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.02.034
– year: 1991
  ident: 10.1016/j.pnucene.2019.103078_bib8
– volume: 29
  start-page: 521
  issue: 6
  year: 2008
  ident: 10.1016/j.pnucene.2019.103078_bib28
  article-title: Free convection heat transfer from vertical slender cylinders: a review
  publication-title: Heat Transf. Eng.
  doi: 10.1080/01457630801891557
– year: 1960
  ident: 10.1016/j.pnucene.2019.103078_bib3
– volume: 139
  start-page: 564
  year: 2019
  ident: 10.1016/j.pnucene.2019.103078_bib102
  article-title: Condensation heat and mass transfer of steam with non-condensable gases outside a horizontal tube under free convection
  publication-title: Int. J. Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2019.05.049
– volume: vol. 13
  start-page: 93
  year: 1964
  ident: 10.1016/j.pnucene.2019.103078_bib100
  article-title: Evaluation of post-incident cooling systems of light water power reactors
– volume: 102
  start-page: 386
  issue: 3
  year: 1993
  ident: 10.1016/j.pnucene.2019.103078_bib29
  article-title: Local heat transfer coefficients for forced-convection condensation of steam in a vertical tube in the presence of a noncondensable gas
  publication-title: Nucl. Technol.
  doi: 10.13182/NT93-A17037
– volume: 238
  start-page: 2328
  issue: 9
  year: 2008
  ident: 10.1016/j.pnucene.2019.103078_bib14
  article-title: Theoretical modeling of condensation of steam outside different vertical geometries (tube, flat plates) in the presence of noncondensable gases like air and helium
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2008.02.016
– volume: 183
  start-page: 133
  issue: 1–2
  year: 1998
  ident: 10.1016/j.pnucene.2019.103078_bib18
  article-title: A diffusion layer model for steam condensation within the AP600 containment
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/S0029-5493(98)00164-2
– volume: 18
  start-page: 517
  issue: 4
  year: 1950
  ident: 10.1016/j.pnucene.2019.103078_bib33
  article-title: A viscosity equation for gas mixtures
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1747673
– volume: 10
  start-page: 1829
  issue: 12
  year: 1967
  ident: 10.1016/j.pnucene.2019.103078_bib32
  article-title: Forced convection condensation in the presence of noncondensables and interfacial resistance
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(67)90053-1
– volume: 36
  start-page: 45
  issue: 6
  year: 2015
  ident: 10.1016/j.pnucene.2019.103078_bib25
  article-title: Study on steam/air condensation heat transfer model
  publication-title: Nucl. Poert. Eng (Chinese)
– volume: 279
  start-page: 137
  year: 2014
  ident: 10.1016/j.pnucene.2019.103078_bib38
  article-title: CFD modelling and validation of wall condensation in the presence of non-condensable gases
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2014.03.007
– volume: 265
  start-page: 25
  year: 2013
  ident: 10.1016/j.pnucene.2019.103078_bib9
  article-title: On the adequacy of wall functions to predict condensation rates from steam-noncondensable gas mixtures
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2013.07.014
SSID ssj0017155
ssib019626759
Score 2.2961047
Snippet A diffusion layer model was developed for condensation heat transfer of a vapor with noncondensable gases. The model predicts the heat transfer coefficient for...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103078
SubjectTerms Condensation
Condensation heat transfer
Diffusion
Diffusion layers
Enthalpy
Free convection
Heat transfer
Heat transfer coefficients
Natural gas
Noncondensable gases
Suction
Vapors
Vertical surface
Title Diffusion layer model for condensation of vapor with the presence of noncondensable gas under natural convective condensation
URI https://dx.doi.org/10.1016/j.pnucene.2019.103078
https://www.proquest.com/docview/2334210537
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vehBfOKbHLx2t03SpjmKD1ZFTwreQvOorCx1WVdv-tudpKkvBEHoqe2EkElmvpnMA-DQ8jLX1PCkMDpPOBUVnrlaJ9JUpmZCmzS4Lq6ui-Etv7jL7-bguMuF8WGVUfa3Mj1I6_hmEFdzMBmNBj4sSWbSlxNnflvJeVigTBZ5DxaOzi-H1x-XCSLLYySjTDzBZyLP4KE_aXAJG18wM5M-Az31Ddd-V1E_hHXQQGcrsByhIzlqZ7cKc65Zg6UvBQXX4fVkVNfP3gFGxhWCaRIa3RAEpgTtXhQxbewOeazJS4XIm3g3LEEMSCYhDck4_6l5bLq_9diR--qJ-FSzKQlVQHEKIVQ9CMpvw27A7dnpzfEwiQ0WEsOYmCWaitJQJpwTyK7USFRW1NZWc3xSV2pjuM0YLzKdVkXpEC5YNG-kTTOrC1OwTejhlNwWEEnrNHPCIkK0nCOnPRIrNIJJ4bim9Tbwbk2VidXHfROMserCzB5UZIXyrFAtK7ah_0E2actv_EVQdgxT3_aRQhXxF-lex2AVD_KTooxxtIpzJnb-P_IuLFJvpgfPzR70ZtNnt49YZqYPYL7_lh3EHfsOdPf2WA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHCiHCigVUFp84JpNYjtxfKxoV1see1okblb8SLVoFaJl4db-dmYch0JVCQkpp8SOLM945vPomxlCTpyoCsOsSEprikQwWcOZa0yibG0bLo3NQujiclpOrsTZdXG9Rk6HXBikVUbb39v0YK3jmzTuZtrN5ynSklSusJw4R7VS78iGKLhEXt_ozxPPI5d5EXmMKsHhf9N40ptR18IGtlguM1eYf55hu7X_O6h_THXwP-Nt8iECR_qtX9sOWfPtLtl6Vk7wI_n9fd409xj-oosaoDQNbW4owFIKt14wMD1zh9429KEG3E0xCEsBAdIuJCFZj5_a23YYbRae_qrvKCaaLWmoAQpLCET1YCZf_HaPXI1_zE4nSWyvkFjO5SoxTFaWcem9BGFlVoGrYq5xRsCT-cpYK1zORZmbrC4rD2DBweVGuSx3prQl_0TWYUl-n1DFmiz30gE-dEKAnBGHlQagpPTCsOaAiGFPtY21x7EFxkIPJLMbHUWhURS6F8UBGT1N6_riG69NqAaB6RdapMFBvDb1aBCwjsf4TjPOBdyJQasO3_7nY7I5mV1e6Iuf0_PP5D3DC3uI4RyR9dXy3n8BVLMyX4PWPgKPTvcj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diffusion+layer+model+for+condensation+of+vapor+with+the+presence+of+noncondensable+gas+under+natural+convective+condensation&rft.jtitle=Progress+in+nuclear+energy+%28New+series%29&rft.au=Lu%2C+Junhui&rft.au=Cao%2C+Haishan&rft.au=Li%2C+Junming&rft.date=2020-01-01&rft.issn=0149-1970&rft.volume=118&rft.spage=103078&rft_id=info:doi/10.1016%2Fj.pnucene.2019.103078&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_pnucene_2019_103078
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0149-1970&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0149-1970&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0149-1970&client=summon