AI-Powered Noncontact In-Home Gait Monitoring and Activity Recognition System Based on mm-Wave FMCW Radar and Cloud Computing
In this work, we present a cloud-based system for noncontact, real-time recognition, and monitoring of physical activities and walking periods within a domestic environment. The proposed system employs standalone Internet of Things (IoT)-based millimeter wave radar devices and deep learning models t...
Saved in:
Published in | IEEE internet of things journal Vol. 10; no. 11; pp. 9465 - 9481 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2327-4662 2327-4662 |
DOI | 10.1109/JIOT.2023.3235268 |
Cover
Loading…
Abstract | In this work, we present a cloud-based system for noncontact, real-time recognition, and monitoring of physical activities and walking periods within a domestic environment. The proposed system employs standalone Internet of Things (IoT)-based millimeter wave radar devices and deep learning models to enable autonomous, free-living activity recognition, and gait analysis. To train deep learning models, we utilize range-Doppler maps generated from a data set of real-life in-home activities. The performance of several deep learning models is evaluated based on accuracy and prediction time, with the gated recurrent network [gated recurrent unit (GRU)] model selected for real-time deployment due to its balance of speed and accuracy compared to 2-D convolutional neural network long short-term memory (2D-CNNLSTM) and long short-term memory (LSTM) models. The overall accuracy of the GRU model for classifying in-home physical activities of trained subjects is 93%, with 86% accuracy for a new subject. In addition to recognizing and differentiating various activities and walking periods, the system also records the subject's activity level over time, washroom use frequency, sleep/sedentary/active/out-of-home durations, current state, and gait parameters. Importantly, the system maintains privacy by not requiring the subject to wear or carry any additional devices. |
---|---|
AbstractList | In this work, we present a cloud-based system for noncontact, real-time recognition, and monitoring of physical activities and walking periods within a domestic environment. The proposed system employs standalone Internet of Things (IoT)-based millimeter wave radar devices and deep learning models to enable autonomous, free-living activity recognition, and gait analysis. To train deep learning models, we utilize range-Doppler maps generated from a data set of real-life in-home activities. The performance of several deep learning models is evaluated based on accuracy and prediction time, with the gated recurrent network [gated recurrent unit (GRU)] model selected for real-time deployment due to its balance of speed and accuracy compared to 2-D convolutional neural network long short-term memory (2D-CNNLSTM) and long short-term memory (LSTM) models. The overall accuracy of the GRU model for classifying in-home physical activities of trained subjects is 93%, with 86% accuracy for a new subject. In addition to recognizing and differentiating various activities and walking periods, the system also records the subject's activity level over time, washroom use frequency, sleep/sedentary/active/out-of-home durations, current state, and gait parameters. Importantly, the system maintains privacy by not requiring the subject to wear or carry any additional devices. |
Author | Ansariyan, Ahmad Morita, Plinio P. Wong, Alexander Abedi, Hajar Shaker, George Boger, Jennifer |
Author_xml | – sequence: 1 givenname: Hajar orcidid: 0000-0002-4089-0373 surname: Abedi fullname: Abedi, Hajar email: habedifi@uwaterloo.ca organization: Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada – sequence: 2 givenname: Ahmad surname: Ansariyan fullname: Ansariyan, Ahmad email: ahmad.ansariyan@uwaterloo.ca organization: Electrical Engineering Department, University of Waterloo, Waterloo, ON, Canada – sequence: 3 givenname: Plinio P. surname: Morita fullname: Morita, Plinio P. email: plinio.morita@uwaterloo.ca organization: School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada – sequence: 4 givenname: Alexander surname: Wong fullname: Wong, Alexander email: alexander.wong@uwaterloo.ca organization: Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada – sequence: 5 givenname: Jennifer orcidid: 0000-0001-6150-151X surname: Boger fullname: Boger, Jennifer email: jboger@uwaterloo.ca organization: Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada – sequence: 6 givenname: George orcidid: 0000-0002-1450-2138 surname: Shaker fullname: Shaker, George email: gshaker@uwaterloo.ca organization: Electrical Engineering Department, University of Waterloo, Waterloo, ON, Canada |
BookMark | eNp9kE1PAjEQhhujiZ8_wMRDE8-L_diyu0ckghgQgxqPm247a0rYFrsFw8H_bhEPxIOXTpuZ553mOUWH1llA6JKSDqWkuHkYTV86jDDe4YwL1s0P0AnjLEvSbpcd7t2P0UXbzgkhERO06J6gr94oeXKf4EHjR2eVs0GqgEc2uXcN4KE0AU-cNcF5Y9-xtBr3VDBrEzZ4Bsq9x5ZxFj9v2gANvpVtDIrvpkne5BrwYNJ_wzOppf9h-wu3iqdrlqsQ887RUS0XLVz81jP0Orh76d8n4-lw1O-NE8V5FpKKCF4UuapoyqWuCGSapgI0EK14DRkRjBfAAaSqKyGLVHAudCGqmhPKdM7P0PUud-ndxwraUM7dytu4smR5jMpoLmicorsp5V3beqjLpTeN9JuSknIrutyKLreiy1_Rkcn-MMoEuVUSvDSLf8mrHWkAYG9T_DERKf8GjEuNBg |
CODEN | IITJAU |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3485499 crossref_primary_10_1016_j_compbiomed_2024_108232 crossref_primary_10_1109_JSEN_2023_3270043 crossref_primary_10_1109_JSEN_2024_3514072 crossref_primary_10_1145_3670854 crossref_primary_10_1109_JSEN_2024_3523903 crossref_primary_10_1109_JIOT_2024_3485614 crossref_primary_10_1016_j_jamda_2024_105105 crossref_primary_10_1109_JIOT_2023_3344100 crossref_primary_10_1109_TMC_2024_3461672 crossref_primary_10_1109_COMST_2024_3398004 crossref_primary_10_1109_TMTT_2024_3400889 crossref_primary_10_1038_s41598_024_77683_1 crossref_primary_10_4103_ipj_ipj_157_23 crossref_primary_10_1016_j_inffus_2023_101984 crossref_primary_10_3390_technologies12120264 crossref_primary_10_3390_s23010071 crossref_primary_10_1109_COMST_2024_3409556 |
Cites_doi | 10.1049/iet-rsn.2013.0165 10.1109/BHI.2018.8333371 10.1109/ACCESS.2020.3029247 10.1145/3025453.3025937 10.1109/LGRS.2019.2942097 10.1109/TIFS.2020.2985628 10.1117/12.607176 10.1049/iet-rsn.2018.5054 10.1109/SENSORS43011.2019.8956880 10.1109/MetroAeroSpace48742.2020.9160199 10.1109/ACCESS.2019.2912956 10.1093/gerona/gls174 10.1002/eng2.12413 10.1109/ACSSC.2001.987041 10.1126/scitranslmed.adc9669 10.1117/12.719800 10.1109/SENSORS52175.2022.9967327 10.1123/japa.2013-0236 10.1109/JBHI.2016.2608720 10.1109/TBME.2019.2893528 10.1109/BTAS.2009.5339049 10.1109/ACCESS.2021.3138051 10.1109/JSEN.2022.3184188 10.1038/s41928-019-0258-6 10.1109/RBME.2018.2807182 10.2522/ptj.20130299 10.1109/ACCESS.2019.2900303 10.2478/v10177-011-0003-1 10.1093/gerona/glr177 10.1109/GSMM.2012.6314067 10.3390/s140203362 10.1109/JSEN.2021.3068388 10.1016/j.gaitpost.2004.10.005 10.3390/s21020381 10.1016/j.gaitpost.2016.06.028 10.3390/s19112598 10.1109/JERM.2018.2881238 10.3109/03091902.2014.909540 10.34297/AJBSR.2019.06.001009 10.1109/COMST.2021.3058333 10.5194/ars-6-67-2008 10.1109/ISCAS45731.2020.9181233 10.1093/gerona/glu047 10.1049/iet-rsn.2016.0055 10.1109/SIRF46766.2020.9040191 10.3390/s120202255 10.1561/2000000039 10.1007/s00415-013-7189-3 10.1016/j.gaitpost.2012.04.020 10.1093/ageing/afr055 10.23919/WMNC.2019.8881354 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/JIOT.2023.3235268 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2327-4662 |
EndPage | 9481 |
ExternalDocumentID | 10_1109_JIOT_2023_3235268 10012054 |
Genre | orig-research |
GrantInformation_xml | – fundername: Microsoft Inc. funderid: 10.13039/100004318 – fundername: Texas Instrument – fundername: MITACS – fundername: NSERC funderid: 10.13039/501100000038 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c337t-b053998cb143adb0e7d145ede0dc3fe705239e3eeacfb5a945335d95bf3012d83 |
IEDL.DBID | RIE |
ISSN | 2327-4662 |
IngestDate | Thu Jul 17 12:11:11 EDT 2025 Tue Jul 01 04:08:27 EDT 2025 Thu Apr 24 23:03:08 EDT 2025 Wed Aug 27 02:50:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-b053998cb143adb0e7d145ede0dc3fe705239e3eeacfb5a945335d95bf3012d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4089-0373 0000-0002-1450-2138 0000-0001-6150-151X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10012054 |
PQID | 2814571851 |
PQPubID | 2040421 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2814571851 crossref_primary_10_1109_JIOT_2023_3235268 ieee_primary_10012054 crossref_citationtrail_10_1109_JIOT_2023_3235268 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE internet of things journal |
PublicationTitleAbbrev | JIoT |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref15 ref59 perry (ref5) 2010; 9 ref14 ref58 ref53 abedi (ref25) 0 ref11 ref10 ref17 ref16 ref19 ref18 ref51 (ref27) 2021 ref46 ref45 ref48 ref47 ref42 ref41 (ref62) 2020 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 (ref56) 2021 ref40 ref35 (ref61) 2020 ref34 ref37 ref36 ref31 ref30 ref33 ref32 deng (ref54) 2013; 7 ref2 ref1 ref39 ref38 (ref55) 2022 abedi (ref24) 2022 ref23 (ref52) 2021 ref26 ref20 abedi (ref22) 2019; 5 ref21 ref28 ref29 edemekong (ref50) 2021 ref60 |
References_xml | – ident: ref46 doi: 10.1049/iet-rsn.2013.0165 – ident: ref39 doi: 10.1109/BHI.2018.8333371 – ident: ref47 doi: 10.1109/ACCESS.2020.3029247 – ident: ref10 doi: 10.1145/3025453.3025937 – volume: 9 start-page: 353 year: 2010 ident: ref5 article-title: Gait analysis: Normal and pathological function publication-title: J Sports Sci Med – ident: ref44 doi: 10.1109/LGRS.2019.2942097 – ident: ref32 doi: 10.1109/TIFS.2020.2985628 – ident: ref29 doi: 10.1117/12.607176 – ident: ref48 doi: 10.1049/iet-rsn.2018.5054 – ident: ref40 doi: 10.1109/SENSORS43011.2019.8956880 – ident: ref33 doi: 10.1109/MetroAeroSpace48742.2020.9160199 – ident: ref58 doi: 10.1109/ACCESS.2019.2912956 – ident: ref2 doi: 10.1093/gerona/gls174 – ident: ref51 doi: 10.1002/eng2.12413 – ident: ref34 doi: 10.1109/ACSSC.2001.987041 – ident: ref15 doi: 10.1126/scitranslmed.adc9669 – ident: ref37 doi: 10.1117/12.719800 – year: 2021 ident: ref27 publication-title: Google's new smart display tracks your sleep using radar-Google assistant – ident: ref49 doi: 10.1109/SENSORS52175.2022.9967327 – ident: ref3 doi: 10.1123/japa.2013-0236 – ident: ref1 doi: 10.1109/JBHI.2016.2608720 – ident: ref19 doi: 10.1109/TBME.2019.2893528 – ident: ref38 doi: 10.1109/BTAS.2009.5339049 – ident: ref42 doi: 10.1109/ACCESS.2021.3138051 – ident: ref26 doi: 10.1109/JSEN.2022.3184188 – start-page: 47 year: 2021 ident: ref50 article-title: Activities of daily living publication-title: Encyclopedia of the Neurological Sciences – year: 2020 ident: ref62 publication-title: How to capture IoT data in Azure – ident: ref57 doi: 10.1038/s41928-019-0258-6 – ident: ref4 doi: 10.1109/RBME.2018.2807182 – ident: ref59 doi: 10.2522/ptj.20130299 – ident: ref20 doi: 10.1109/ACCESS.2019.2900303 – ident: ref18 doi: 10.2478/v10177-011-0003-1 – ident: ref7 doi: 10.1093/gerona/glr177 – ident: ref30 doi: 10.1109/GSMM.2012.6314067 – ident: ref14 doi: 10.3390/s140203362 – ident: ref21 doi: 10.1109/JSEN.2021.3068388 – year: 2021 ident: ref56 publication-title: Ansys HFSS-3D high frequency simulation software – ident: ref11 doi: 10.1016/j.gaitpost.2004.10.005 – ident: ref28 doi: 10.3390/s21020381 – ident: ref60 doi: 10.1016/j.gaitpost.2016.06.028 – ident: ref17 doi: 10.3390/s19112598 – volume: 5 start-page: 2 year: 2019 ident: ref22 article-title: Integration of random forests and MM-wave FMCW radar technology for gait recognition publication-title: J Comput Vis Imag Syst – ident: ref43 doi: 10.1109/JERM.2018.2881238 – ident: ref12 doi: 10.3109/03091902.2014.909540 – ident: ref23 doi: 10.34297/AJBSR.2019.06.001009 – year: 2022 ident: ref55 publication-title: Single-Chip 76-GHz to 81-GHz Automotive Radar Sensor Integrating MCU and Hardware Accelerator – ident: ref53 doi: 10.1109/COMST.2021.3058333 – ident: ref35 doi: 10.5194/ars-6-67-2008 – ident: ref45 doi: 10.1109/ISCAS45731.2020.9181233 – ident: ref6 doi: 10.1093/gerona/glu047 – year: 2021 ident: ref52 publication-title: Azure Machine Learning Documentation – ident: ref16 doi: 10.1049/iet-rsn.2016.0055 – ident: ref41 doi: 10.1109/SIRF46766.2020.9040191 – ident: ref13 doi: 10.3390/s120202255 – volume: 7 start-page: 197 year: 2013 ident: ref54 article-title: Deep learning: Methods and applications publication-title: Found Trends Signal Process doi: 10.1561/2000000039 – start-page: 1795 year: 2022 ident: ref24 article-title: In-package integrated dielectric lens paired with a MIMO mm-Wave radar for corridor gait monitoring publication-title: Proc IEEE Int Symp Antennas Propag USNC-URSI Radio Sci Meeting (APS/URSI) – year: 0 ident: ref25 article-title: In-package integrated 3D-printed dielectric lens for a milimiter-wave radar publication-title: IEEE Trans Compon Packag Manuf Technol – year: 2020 ident: ref61 publication-title: Azure IoT Edge Documentation – ident: ref8 doi: 10.1007/s00415-013-7189-3 – ident: ref36 doi: 10.1016/j.gaitpost.2012.04.020 – ident: ref9 doi: 10.1093/ageing/afr055 – ident: ref31 doi: 10.23919/WMNC.2019.8881354 |
SSID | ssj0001105196 |
Score | 2.4198484 |
Snippet | In this work, we present a cloud-based system for noncontact, real-time recognition, and monitoring of physical activities and walking periods within a... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9465 |
SubjectTerms | Accuracy Activity recognition Artificial neural networks autonomous systems Biomedical monitoring Cloud computing Deep learning Gait gait monitoring Gait recognition Internet of Things Legged locomotion Machine learning Millimeter waves mm-wave radar Monitoring Radar Radar equipment Radar signal processing Real time sequential deep learning Signal processing Signal processing algorithms Washrooms |
Title | AI-Powered Noncontact In-Home Gait Monitoring and Activity Recognition System Based on mm-Wave FMCW Radar and Cloud Computing |
URI | https://ieeexplore.ieee.org/document/10012054 https://www.proquest.com/docview/2814571851 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swELZGn_YyYGNa-SU_7GmS0yR22uSxVBSK1A4hqvYtiu2rhIBkYikPSPzv3NkJG0NMvESJZFuOzr47n---j7HvKjIO50mEidVCDawRaARjoWMtwUaxSV1t1XTWP52rs2WybIrVXS0MALjkMwjo1d3l28qsKVTWi1ypZ6I22Aae3Hyx1p-ASkTeSL-5uYzCrHc2-XkZED14IGOCgU9f2B5HpvJKAzuzMt5ks3ZCPpvkOljXOjAP_2A1vnvGW-xT42DyoV8R2-wDlJ_ZZkvewJu9_IU9DifinCjSwPJZVVLKemFqPikFMafzk-Kq5n7DU-SPF6XlQ-OpJvhFm3VUldxDnvMjtIaW4_ftrVgU98DH09GCXxS2uHN9RzfVGp9uGjjeDpuPjy9Hp6LhYhBGykEtdEgQtqnR6F8VVocwsJFKwEJojVzBgKLLGUhAPb7SSZEpdCMTmyV6hRoktqn8yjplVcI3xiNAnyij0iW5UiD7qFMU3fegplCoDXSXha2UctMAlRNfxk3uDixhlpNgcxJs3gi2y348d_nlUTr-13iHBPVXQy-jLttv10LebOTfeZzib6L9TqLdN7rtsY80uk8f22ed-m4NB-io1PrQLdAn_C_jOg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4xeNheYGxM68aGH_Y0ySGJ7TZ5LBWlZbSbUBG8RbF9lSYgQZDuYdL-9_nsBPZDQ3uJEslOHJ19dz7fdx_AB5kYX-eJx8pqLgfWcGcEU65TLdAmqck8tmo270_O5PGFumjB6h4Lg4g--QwjuvVn-bY2KwqV7Sce6qnkE9hQhMYNcK2HkEpC_ki_PbtM4nz_ePp5ERFBeCRSKgSf_WZ9PJ3KXzrYG5bxFsy7IYV8ksto1ejIfP-jWuN_j_k5bLYuJhuGObENa1i9gK2OvoG1q_kl_BhO-RciSUPL5nVFSeuladi04sSdzo7Krw0LS55if6ysLBuaQDbBTru8o7pioeg5O3D20DL3fH3Nz8tvyMaz0Tk7LW156_uOruqVu_phuPftwNn4cDGa8JaNgRshBg3XMRWxzYx2HlZpdYwDm0iFFmNrxBIHFF_OUaDT5Eutylw6R1LZXOml0yGpzcQrWK_qCl8DS9B5RTmBl8RSoug7rSLpxMfpCun0ge5B3EmpMG2pcmLMuCr8liXOCxJsQYItWsH24ON9l5tQp-OxxjskqF8aBhn1YLebC0W7lO-KNHO_6Sy4St78o9sePJ0sZifFyXT-6S08oy-FZLJdWG9uV_jOuS2Nfu8n60_7bOaC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-Powered+Noncontact+In-Home+Gait+Monitoring+and+Activity+Recognition+System+Based+on+mm-Wave+FMCW+Radar+and+Cloud+Computing&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Abedi%2C+Hajar&rft.au=Ansariyan%2C+Ahmad&rft.au=Morita%2C+Plinio+P.&rft.au=Wong%2C+Alexander&rft.date=2023-06-01&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=10&rft.issue=11&rft.spage=9465&rft.epage=9481&rft_id=info:doi/10.1109%2FJIOT.2023.3235268&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2023_3235268 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |