AI-Powered Noncontact In-Home Gait Monitoring and Activity Recognition System Based on mm-Wave FMCW Radar and Cloud Computing

In this work, we present a cloud-based system for noncontact, real-time recognition, and monitoring of physical activities and walking periods within a domestic environment. The proposed system employs standalone Internet of Things (IoT)-based millimeter wave radar devices and deep learning models t...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 10; no. 11; pp. 9465 - 9481
Main Authors Abedi, Hajar, Ansariyan, Ahmad, Morita, Plinio P., Wong, Alexander, Boger, Jennifer, Shaker, George
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2327-4662
2327-4662
DOI10.1109/JIOT.2023.3235268

Cover

Loading…
Abstract In this work, we present a cloud-based system for noncontact, real-time recognition, and monitoring of physical activities and walking periods within a domestic environment. The proposed system employs standalone Internet of Things (IoT)-based millimeter wave radar devices and deep learning models to enable autonomous, free-living activity recognition, and gait analysis. To train deep learning models, we utilize range-Doppler maps generated from a data set of real-life in-home activities. The performance of several deep learning models is evaluated based on accuracy and prediction time, with the gated recurrent network [gated recurrent unit (GRU)] model selected for real-time deployment due to its balance of speed and accuracy compared to 2-D convolutional neural network long short-term memory (2D-CNNLSTM) and long short-term memory (LSTM) models. The overall accuracy of the GRU model for classifying in-home physical activities of trained subjects is 93%, with 86% accuracy for a new subject. In addition to recognizing and differentiating various activities and walking periods, the system also records the subject's activity level over time, washroom use frequency, sleep/sedentary/active/out-of-home durations, current state, and gait parameters. Importantly, the system maintains privacy by not requiring the subject to wear or carry any additional devices.
AbstractList In this work, we present a cloud-based system for noncontact, real-time recognition, and monitoring of physical activities and walking periods within a domestic environment. The proposed system employs standalone Internet of Things (IoT)-based millimeter wave radar devices and deep learning models to enable autonomous, free-living activity recognition, and gait analysis. To train deep learning models, we utilize range-Doppler maps generated from a data set of real-life in-home activities. The performance of several deep learning models is evaluated based on accuracy and prediction time, with the gated recurrent network [gated recurrent unit (GRU)] model selected for real-time deployment due to its balance of speed and accuracy compared to 2-D convolutional neural network long short-term memory (2D-CNNLSTM) and long short-term memory (LSTM) models. The overall accuracy of the GRU model for classifying in-home physical activities of trained subjects is 93%, with 86% accuracy for a new subject. In addition to recognizing and differentiating various activities and walking periods, the system also records the subject's activity level over time, washroom use frequency, sleep/sedentary/active/out-of-home durations, current state, and gait parameters. Importantly, the system maintains privacy by not requiring the subject to wear or carry any additional devices.
Author Ansariyan, Ahmad
Morita, Plinio P.
Wong, Alexander
Abedi, Hajar
Shaker, George
Boger, Jennifer
Author_xml – sequence: 1
  givenname: Hajar
  orcidid: 0000-0002-4089-0373
  surname: Abedi
  fullname: Abedi, Hajar
  email: habedifi@uwaterloo.ca
  organization: Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
– sequence: 2
  givenname: Ahmad
  surname: Ansariyan
  fullname: Ansariyan, Ahmad
  email: ahmad.ansariyan@uwaterloo.ca
  organization: Electrical Engineering Department, University of Waterloo, Waterloo, ON, Canada
– sequence: 3
  givenname: Plinio P.
  surname: Morita
  fullname: Morita, Plinio P.
  email: plinio.morita@uwaterloo.ca
  organization: School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
– sequence: 4
  givenname: Alexander
  surname: Wong
  fullname: Wong, Alexander
  email: alexander.wong@uwaterloo.ca
  organization: Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
– sequence: 5
  givenname: Jennifer
  orcidid: 0000-0001-6150-151X
  surname: Boger
  fullname: Boger, Jennifer
  email: jboger@uwaterloo.ca
  organization: Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
– sequence: 6
  givenname: George
  orcidid: 0000-0002-1450-2138
  surname: Shaker
  fullname: Shaker, George
  email: gshaker@uwaterloo.ca
  organization: Electrical Engineering Department, University of Waterloo, Waterloo, ON, Canada
BookMark eNp9kE1PAjEQhhujiZ8_wMRDE8-L_diyu0ckghgQgxqPm247a0rYFrsFw8H_bhEPxIOXTpuZ553mOUWH1llA6JKSDqWkuHkYTV86jDDe4YwL1s0P0AnjLEvSbpcd7t2P0UXbzgkhERO06J6gr94oeXKf4EHjR2eVs0GqgEc2uXcN4KE0AU-cNcF5Y9-xtBr3VDBrEzZ4Bsq9x5ZxFj9v2gANvpVtDIrvpkne5BrwYNJ_wzOppf9h-wu3iqdrlqsQ887RUS0XLVz81jP0Orh76d8n4-lw1O-NE8V5FpKKCF4UuapoyqWuCGSapgI0EK14DRkRjBfAAaSqKyGLVHAudCGqmhPKdM7P0PUud-ndxwraUM7dytu4smR5jMpoLmicorsp5V3beqjLpTeN9JuSknIrutyKLreiy1_Rkcn-MMoEuVUSvDSLf8mrHWkAYG9T_DERKf8GjEuNBg
CODEN IITJAU
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3485499
crossref_primary_10_1016_j_compbiomed_2024_108232
crossref_primary_10_1109_JSEN_2023_3270043
crossref_primary_10_1109_JSEN_2024_3514072
crossref_primary_10_1145_3670854
crossref_primary_10_1109_JSEN_2024_3523903
crossref_primary_10_1109_JIOT_2024_3485614
crossref_primary_10_1016_j_jamda_2024_105105
crossref_primary_10_1109_JIOT_2023_3344100
crossref_primary_10_1109_TMC_2024_3461672
crossref_primary_10_1109_COMST_2024_3398004
crossref_primary_10_1109_TMTT_2024_3400889
crossref_primary_10_1038_s41598_024_77683_1
crossref_primary_10_4103_ipj_ipj_157_23
crossref_primary_10_1016_j_inffus_2023_101984
crossref_primary_10_3390_technologies12120264
crossref_primary_10_3390_s23010071
crossref_primary_10_1109_COMST_2024_3409556
Cites_doi 10.1049/iet-rsn.2013.0165
10.1109/BHI.2018.8333371
10.1109/ACCESS.2020.3029247
10.1145/3025453.3025937
10.1109/LGRS.2019.2942097
10.1109/TIFS.2020.2985628
10.1117/12.607176
10.1049/iet-rsn.2018.5054
10.1109/SENSORS43011.2019.8956880
10.1109/MetroAeroSpace48742.2020.9160199
10.1109/ACCESS.2019.2912956
10.1093/gerona/gls174
10.1002/eng2.12413
10.1109/ACSSC.2001.987041
10.1126/scitranslmed.adc9669
10.1117/12.719800
10.1109/SENSORS52175.2022.9967327
10.1123/japa.2013-0236
10.1109/JBHI.2016.2608720
10.1109/TBME.2019.2893528
10.1109/BTAS.2009.5339049
10.1109/ACCESS.2021.3138051
10.1109/JSEN.2022.3184188
10.1038/s41928-019-0258-6
10.1109/RBME.2018.2807182
10.2522/ptj.20130299
10.1109/ACCESS.2019.2900303
10.2478/v10177-011-0003-1
10.1093/gerona/glr177
10.1109/GSMM.2012.6314067
10.3390/s140203362
10.1109/JSEN.2021.3068388
10.1016/j.gaitpost.2004.10.005
10.3390/s21020381
10.1016/j.gaitpost.2016.06.028
10.3390/s19112598
10.1109/JERM.2018.2881238
10.3109/03091902.2014.909540
10.34297/AJBSR.2019.06.001009
10.1109/COMST.2021.3058333
10.5194/ars-6-67-2008
10.1109/ISCAS45731.2020.9181233
10.1093/gerona/glu047
10.1049/iet-rsn.2016.0055
10.1109/SIRF46766.2020.9040191
10.3390/s120202255
10.1561/2000000039
10.1007/s00415-013-7189-3
10.1016/j.gaitpost.2012.04.020
10.1093/ageing/afr055
10.23919/WMNC.2019.8881354
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2023.3235268
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 9481
ExternalDocumentID 10_1109_JIOT_2023_3235268
10012054
Genre orig-research
GrantInformation_xml – fundername: Microsoft Inc.
  funderid: 10.13039/100004318
– fundername: Texas Instrument
– fundername: MITACS
– fundername: NSERC
  funderid: 10.13039/501100000038
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c337t-b053998cb143adb0e7d145ede0dc3fe705239e3eeacfb5a945335d95bf3012d83
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Thu Jul 17 12:11:11 EDT 2025
Tue Jul 01 04:08:27 EDT 2025
Thu Apr 24 23:03:08 EDT 2025
Wed Aug 27 02:50:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-b053998cb143adb0e7d145ede0dc3fe705239e3eeacfb5a945335d95bf3012d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4089-0373
0000-0002-1450-2138
0000-0001-6150-151X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10012054
PQID 2814571851
PQPubID 2040421
PageCount 17
ParticipantIDs proquest_journals_2814571851
crossref_primary_10_1109_JIOT_2023_3235268
ieee_primary_10012054
crossref_citationtrail_10_1109_JIOT_2023_3235268
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref15
ref59
perry (ref5) 2010; 9
ref14
ref58
ref53
abedi (ref25) 0
ref11
ref10
ref17
ref16
ref19
ref18
ref51
(ref27) 2021
ref46
ref45
ref48
ref47
ref42
ref41
(ref62) 2020
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
(ref56) 2021
ref40
ref35
(ref61) 2020
ref34
ref37
ref36
ref31
ref30
ref33
ref32
deng (ref54) 2013; 7
ref2
ref1
ref39
ref38
(ref55) 2022
abedi (ref24) 2022
ref23
(ref52) 2021
ref26
ref20
abedi (ref22) 2019; 5
ref21
ref28
ref29
edemekong (ref50) 2021
ref60
References_xml – ident: ref46
  doi: 10.1049/iet-rsn.2013.0165
– ident: ref39
  doi: 10.1109/BHI.2018.8333371
– ident: ref47
  doi: 10.1109/ACCESS.2020.3029247
– ident: ref10
  doi: 10.1145/3025453.3025937
– volume: 9
  start-page: 353
  year: 2010
  ident: ref5
  article-title: Gait analysis: Normal and pathological function
  publication-title: J Sports Sci Med
– ident: ref44
  doi: 10.1109/LGRS.2019.2942097
– ident: ref32
  doi: 10.1109/TIFS.2020.2985628
– ident: ref29
  doi: 10.1117/12.607176
– ident: ref48
  doi: 10.1049/iet-rsn.2018.5054
– ident: ref40
  doi: 10.1109/SENSORS43011.2019.8956880
– ident: ref33
  doi: 10.1109/MetroAeroSpace48742.2020.9160199
– ident: ref58
  doi: 10.1109/ACCESS.2019.2912956
– ident: ref2
  doi: 10.1093/gerona/gls174
– ident: ref51
  doi: 10.1002/eng2.12413
– ident: ref34
  doi: 10.1109/ACSSC.2001.987041
– ident: ref15
  doi: 10.1126/scitranslmed.adc9669
– ident: ref37
  doi: 10.1117/12.719800
– year: 2021
  ident: ref27
  publication-title: Google's new smart display tracks your sleep using radar-Google assistant
– ident: ref49
  doi: 10.1109/SENSORS52175.2022.9967327
– ident: ref3
  doi: 10.1123/japa.2013-0236
– ident: ref1
  doi: 10.1109/JBHI.2016.2608720
– ident: ref19
  doi: 10.1109/TBME.2019.2893528
– ident: ref38
  doi: 10.1109/BTAS.2009.5339049
– ident: ref42
  doi: 10.1109/ACCESS.2021.3138051
– ident: ref26
  doi: 10.1109/JSEN.2022.3184188
– start-page: 47
  year: 2021
  ident: ref50
  article-title: Activities of daily living
  publication-title: Encyclopedia of the Neurological Sciences
– year: 2020
  ident: ref62
  publication-title: How to capture IoT data in Azure
– ident: ref57
  doi: 10.1038/s41928-019-0258-6
– ident: ref4
  doi: 10.1109/RBME.2018.2807182
– ident: ref59
  doi: 10.2522/ptj.20130299
– ident: ref20
  doi: 10.1109/ACCESS.2019.2900303
– ident: ref18
  doi: 10.2478/v10177-011-0003-1
– ident: ref7
  doi: 10.1093/gerona/glr177
– ident: ref30
  doi: 10.1109/GSMM.2012.6314067
– ident: ref14
  doi: 10.3390/s140203362
– ident: ref21
  doi: 10.1109/JSEN.2021.3068388
– year: 2021
  ident: ref56
  publication-title: Ansys HFSS-3D high frequency simulation software
– ident: ref11
  doi: 10.1016/j.gaitpost.2004.10.005
– ident: ref28
  doi: 10.3390/s21020381
– ident: ref60
  doi: 10.1016/j.gaitpost.2016.06.028
– ident: ref17
  doi: 10.3390/s19112598
– volume: 5
  start-page: 2
  year: 2019
  ident: ref22
  article-title: Integration of random forests and MM-wave FMCW radar technology for gait recognition
  publication-title: J Comput Vis Imag Syst
– ident: ref43
  doi: 10.1109/JERM.2018.2881238
– ident: ref12
  doi: 10.3109/03091902.2014.909540
– ident: ref23
  doi: 10.34297/AJBSR.2019.06.001009
– year: 2022
  ident: ref55
  publication-title: Single-Chip 76-GHz to 81-GHz Automotive Radar Sensor Integrating MCU and Hardware Accelerator
– ident: ref53
  doi: 10.1109/COMST.2021.3058333
– ident: ref35
  doi: 10.5194/ars-6-67-2008
– ident: ref45
  doi: 10.1109/ISCAS45731.2020.9181233
– ident: ref6
  doi: 10.1093/gerona/glu047
– year: 2021
  ident: ref52
  publication-title: Azure Machine Learning Documentation
– ident: ref16
  doi: 10.1049/iet-rsn.2016.0055
– ident: ref41
  doi: 10.1109/SIRF46766.2020.9040191
– ident: ref13
  doi: 10.3390/s120202255
– volume: 7
  start-page: 197
  year: 2013
  ident: ref54
  article-title: Deep learning: Methods and applications
  publication-title: Found Trends Signal Process
  doi: 10.1561/2000000039
– start-page: 1795
  year: 2022
  ident: ref24
  article-title: In-package integrated dielectric lens paired with a MIMO mm-Wave radar for corridor gait monitoring
  publication-title: Proc IEEE Int Symp Antennas Propag USNC-URSI Radio Sci Meeting (APS/URSI)
– year: 0
  ident: ref25
  article-title: In-package integrated 3D-printed dielectric lens for a milimiter-wave radar
  publication-title: IEEE Trans Compon Packag Manuf Technol
– year: 2020
  ident: ref61
  publication-title: Azure IoT Edge Documentation
– ident: ref8
  doi: 10.1007/s00415-013-7189-3
– ident: ref36
  doi: 10.1016/j.gaitpost.2012.04.020
– ident: ref9
  doi: 10.1093/ageing/afr055
– ident: ref31
  doi: 10.23919/WMNC.2019.8881354
SSID ssj0001105196
Score 2.4198484
Snippet In this work, we present a cloud-based system for noncontact, real-time recognition, and monitoring of physical activities and walking periods within a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9465
SubjectTerms Accuracy
Activity recognition
Artificial neural networks
autonomous systems
Biomedical monitoring
Cloud computing
Deep learning
Gait
gait monitoring
Gait recognition
Internet of Things
Legged locomotion
Machine learning
Millimeter waves
mm-wave radar
Monitoring
Radar
Radar equipment
Radar signal processing
Real time
sequential deep learning
Signal processing
Signal processing algorithms
Washrooms
Title AI-Powered Noncontact In-Home Gait Monitoring and Activity Recognition System Based on mm-Wave FMCW Radar and Cloud Computing
URI https://ieeexplore.ieee.org/document/10012054
https://www.proquest.com/docview/2814571851
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swELZGn_YyYGNa-SU_7GmS0yR22uSxVBSK1A4hqvYtiu2rhIBkYikPSPzv3NkJG0NMvESJZFuOzr47n---j7HvKjIO50mEidVCDawRaARjoWMtwUaxSV1t1XTWP52rs2WybIrVXS0MALjkMwjo1d3l28qsKVTWi1ypZ6I22Aae3Hyx1p-ASkTeSL-5uYzCrHc2-XkZED14IGOCgU9f2B5HpvJKAzuzMt5ks3ZCPpvkOljXOjAP_2A1vnvGW-xT42DyoV8R2-wDlJ_ZZkvewJu9_IU9DifinCjSwPJZVVLKemFqPikFMafzk-Kq5n7DU-SPF6XlQ-OpJvhFm3VUldxDnvMjtIaW4_ftrVgU98DH09GCXxS2uHN9RzfVGp9uGjjeDpuPjy9Hp6LhYhBGykEtdEgQtqnR6F8VVocwsJFKwEJojVzBgKLLGUhAPb7SSZEpdCMTmyV6hRoktqn8yjplVcI3xiNAnyij0iW5UiD7qFMU3fegplCoDXSXha2UctMAlRNfxk3uDixhlpNgcxJs3gi2y348d_nlUTr-13iHBPVXQy-jLttv10LebOTfeZzib6L9TqLdN7rtsY80uk8f22ed-m4NB-io1PrQLdAn_C_jOg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4xeNheYGxM68aGH_Y0ySGJ7TZ5LBWlZbSbUBG8RbF9lSYgQZDuYdL-9_nsBPZDQ3uJEslOHJ19dz7fdx_AB5kYX-eJx8pqLgfWcGcEU65TLdAmqck8tmo270_O5PGFumjB6h4Lg4g--QwjuvVn-bY2KwqV7Sce6qnkE9hQhMYNcK2HkEpC_ki_PbtM4nz_ePp5ERFBeCRSKgSf_WZ9PJ3KXzrYG5bxFsy7IYV8ksto1ejIfP-jWuN_j_k5bLYuJhuGObENa1i9gK2OvoG1q_kl_BhO-RciSUPL5nVFSeuladi04sSdzo7Krw0LS55if6ysLBuaQDbBTru8o7pioeg5O3D20DL3fH3Nz8tvyMaz0Tk7LW156_uOruqVu_phuPftwNn4cDGa8JaNgRshBg3XMRWxzYx2HlZpdYwDm0iFFmNrxBIHFF_OUaDT5Eutylw6R1LZXOml0yGpzcQrWK_qCl8DS9B5RTmBl8RSoug7rSLpxMfpCun0ge5B3EmpMG2pcmLMuCr8liXOCxJsQYItWsH24ON9l5tQp-OxxjskqF8aBhn1YLebC0W7lO-KNHO_6Sy4St78o9sePJ0sZifFyXT-6S08oy-FZLJdWG9uV_jOuS2Nfu8n60_7bOaC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-Powered+Noncontact+In-Home+Gait+Monitoring+and+Activity+Recognition+System+Based+on+mm-Wave+FMCW+Radar+and+Cloud+Computing&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Abedi%2C+Hajar&rft.au=Ansariyan%2C+Ahmad&rft.au=Morita%2C+Plinio+P.&rft.au=Wong%2C+Alexander&rft.date=2023-06-01&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=10&rft.issue=11&rft.spage=9465&rft.epage=9481&rft_id=info:doi/10.1109%2FJIOT.2023.3235268&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2023_3235268
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon