An Efficient USE-Net Deep Learning Model for Cancer Detection
Breast cancer (BrCa) is the most common disease in women worldwide. Classifying the BrCa image is extremely important for finding BrCa at an earlier stage and monitoring BrCa during treatment. The computer-aided detection methods have been used to interpret BrCa and improve the detection of BrCa dur...
Saved in:
Published in | International journal of intelligent systems Vol. 2023; no. 1 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Hindawi
2023
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Breast cancer (BrCa) is the most common disease in women worldwide. Classifying the BrCa image is extremely important for finding BrCa at an earlier stage and monitoring BrCa during treatment. The computer-aided detection methods have been used to interpret BrCa and improve the detection of BrCa during the screening and treatment stages. However, if a new BrCa image is generated for the treatment, it will not classify correctly. The main objective of this research is to classify the BrCa images for newly generated images. The model performs preprocessing, segmentation, feature extraction, and classification. In preprocessing, a hybrid median filtering (HMF) is used to eliminate the noise in the images. The contrast of the images is enhanced using quadrant dynamic histogram equalization (QDHE). Then, ROI segmentation is performed using the USE-Net deep learning model. The CaffeNet model is used for feature extraction on the segmented images, and finally, classification is made using the improved random forest (IRF) with extreme gradient boosting (XGB). The model obtained 97.87% accuracy, 98.45% sensitivity, 95.24% specificity, 98.96% precision, and 98.70% f1-score for ultrasound images. The model gives 98.31% accuracy, 99.29% sensitivity, 90.20% specificity, 98.82% precision, and 99.05% f1-score for mammogram images. |
---|---|
AbstractList | Breast cancer (BrCa) is the most common disease in women worldwide. Classifying the BrCa image is extremely important for finding BrCa at an earlier stage and monitoring BrCa during treatment. The computer‐aided detection methods have been used to interpret BrCa and improve the detection of BrCa during the screening and treatment stages. However, if a new BrCa image is generated for the treatment, it will not classify correctly. The main objective of this research is to classify the BrCa images for newly generated images. The model performs preprocessing, segmentation, feature extraction, and classification. In preprocessing, a hybrid median filtering (HMF) is used to eliminate the noise in the images. The contrast of the images is enhanced using quadrant dynamic histogram equalization (QDHE). Then, ROI segmentation is performed using the USE‐Net deep learning model. The CaffeNet model is used for feature extraction on the segmented images, and finally, classification is made using the improved random forest (IRF) with extreme gradient boosting (XGB). The model obtained 97.87% accuracy, 98.45% sensitivity, 95.24% specificity, 98.96% precision, and 98.70% f1‐score for ultrasound images. The model gives 98.31% accuracy, 99.29% sensitivity, 90.20% specificity, 98.82% precision, and 99.05% f1‐score for mammogram images. |
Author | Aborokbah, Majed M. Karthikeyan, P. Narmatha, C. Manimurugan, S. Almutairi, Saad M. Ganesan, Subramaniam |
Author_xml | – sequence: 1 givenname: Saad M. orcidid: 0000-0002-1320-4665 surname: Almutairi fullname: Almutairi, Saad M. organization: Industrial Innovation & Robotics CenterFaculty of Computers and Information TechnologyUniversity of TabukTabuk 71491Saudi Arabiaut.edu.sa – sequence: 2 givenname: S. orcidid: 0000-0003-1837-6797 surname: Manimurugan fullname: Manimurugan, S. organization: Industrial Innovation & Robotics CenterFaculty of Computers and Information TechnologyUniversity of TabukTabuk 71491Saudi Arabiaut.edu.sa – sequence: 3 givenname: Majed M. orcidid: 0000-0001-7376-1458 surname: Aborokbah fullname: Aborokbah, Majed M. organization: Industrial Innovation & Robotics CenterFaculty of Computers and Information TechnologyUniversity of TabukTabuk 71491Saudi Arabiaut.edu.sa – sequence: 4 givenname: C. orcidid: 0000-0003-4411-4045 surname: Narmatha fullname: Narmatha, C. organization: Industrial Innovation & Robotics CenterFaculty of Computers and Information TechnologyUniversity of TabukTabuk 71491Saudi Arabiaut.edu.sa – sequence: 5 givenname: Subramaniam orcidid: 0000-0003-0233-9940 surname: Ganesan fullname: Ganesan, Subramaniam organization: Department of Electrical and Computer EngineeringOakland UniversityRochester 112345USAoakland.edu – sequence: 6 givenname: P. orcidid: 0000-0001-8977-5520 surname: Karthikeyan fullname: Karthikeyan, P. organization: Department of Computer Science and Information EngineeringNational Chung Cheng UniversityChiayiTaiwanccu.edu.tw |
BookMark | eNp9kD1PwzAQhi1UJNrCxg-wxAih_oydgaEK5UMqMEAltshxzuCqOMVxhfj3pGonJJhuuOd97_SM0CC0ARA6peSSUiknjDA-0ZIUgvMDNKSk0Bml9HWAhkRrkWmq-BEadd2SEEqVkEN0NQ145py3HkLCi-dZ9ggJXwOs8RxMDD684Ye2gRV2bcSlCRZiv05gk2_DMTp0ZtXByX6O0eJm9lLeZfOn2_tyOs8s5yplxrHcgXRcEGZqUDUxHBojC1kLRkzNcpkr24iiBilUQ-raKukaUljgueDAx-hs17uO7ecGulQt200M_cmKacKEVlrInmI7ysa26yK4yvpktn-maPyqoqTaaqq2mqq9pj508Su0jv7DxO-_8PMd_u5DY778__QPBTd1MQ |
CitedBy_id | crossref_primary_10_1007_s00432_023_05216_w crossref_primary_10_1615_CritRevBiomedEng_2024051166 crossref_primary_10_1007_s42979_023_02205_1 crossref_primary_10_1109_ACCESS_2024_3524633 crossref_primary_10_1007_s11831_024_10219_y crossref_primary_10_59681_2175_4411_v16_iEspecial_2024_1353 crossref_primary_10_1155_int_6528752 |
Cites_doi | 10.1016/j.cmpb.2020.105361 10.3390/app12073273 10.1016/j.compbiomed.2018.01.008 10.1016/j.clinimag.2012.09.024 10.7717/peerj-cs.805 10.1109/access.2021.3079204 10.1007/s11831-021-09620-8 10.1016/j.dib.2019.104863 10.1109/ICEDSS.2016.7587786 10.1109/ICEAST.2018.8434402 10.1007/s11280-017-0522-5 10.3390/app112412122 10.1016/j.ejrad.2017.01.021 10.1088/1742-6596/1748/3/032041 10.3390/s20174747 10.3390/cancers14020277 10.3390/app12010148 10.1016/j.cmpb.2019.05.020 10.1155/2020/9162464 10.3390/s22030807 10.3390/biology11030439 10.1053/j.semnuclmed.2022.02.003 10.1016/j.compmedimag.2021.101908 10.1109/access.2021.3104627 10.1002/spe.2921 10.1016/j.ejrad.2012.03.005 10.1016/j.matpr.2020.08.381 10.1016/j.procs.2019.12.112 10.1016/j.aej.2021.03.048 10.1155/2021/8666693 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Saad M. Almutairi et al. Copyright © 2023 Saad M. Almutairi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2023 Saad M. Almutairi et al. – notice: Copyright © 2023 Saad M. Almutairi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | RHU RHW RHX AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U |
DOI | 10.1155/2023/8509433 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1098-111X |
Editor | Prakash, Surya |
Editor_xml | – sequence: 1 givenname: Surya surname: Prakash fullname: Prakash, Surya |
ExternalDocumentID | 10_1155_2023_8509433 |
GrantInformation_xml | – fundername: Ministry of Education – Kingdom of Saudi Arabia grantid: 0075-1442-S |
GroupedDBID | -~X .3N .4S .DC .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJCF ABJNI ABPVW ABUWG ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXME ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ARAPS ARCSS ATUGU AUFTA AZBYB AZQEC AZVAB BAFTC BENPR BGLVJ BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DWQXO EBS EDO F00 F01 F04 G-S G.N GNP GNUQQ GODZA H.T H.X HBH HCIFZ HHY HZ~ I-F IX1 J0M JPC K7- KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES M7S MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PIMPY PQQKQ PTHSS Q.N Q11 QB0 QRW R.K RHU RHW RHX RWI RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WWI WXSBR WYISQ WZISG XG1 XPP XV2 ZZTAW ~IA ~WT .Y3 24P 31~ AANHP AASGY AAYOK AAYXX ABDPE ABEML ACBWZ ACCMX ACRPL ACSCC ACXQS ACYXJ ADMLS ADNMO AFZJQ AGQPQ AI. AIURR ALUQN ASPBG AVWKF AZFZN BDRZF BFHJK CITATION CMOOK EJD FEDTE H13 HF~ HVGLF LH4 LW6 M59 MVM PALCI PHGZM PHGZT RIWAO RJQFR ROL SAMSI VH1 ZY4 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L6V L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c337t-af26fe5f3402abe7b0a3eda595b420ab26567cd49be547d0bbc75fd09ce3643e3 |
IEDL.DBID | RHX |
ISSN | 0884-8173 |
IngestDate | Fri Jul 25 12:11:14 EDT 2025 Tue Jul 01 02:44:38 EDT 2025 Thu Apr 24 23:06:36 EDT 2025 Sun Jun 02 19:22:43 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-af26fe5f3402abe7b0a3eda595b420ab26567cd49be547d0bbc75fd09ce3643e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0233-9940 0000-0002-1320-4665 0000-0003-4411-4045 0000-0001-7376-1458 0000-0003-1837-6797 0000-0001-8977-5520 |
OpenAccessLink | https://dx.doi.org/10.1155/2023/8509433 |
PQID | 2802487845 |
PQPubID | 1026350 |
ParticipantIDs | proquest_journals_2802487845 crossref_citationtrail_10_1155_2023_8509433 crossref_primary_10_1155_2023_8509433 hindawi_primary_10_1155_2023_8509433 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-00-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023-00-00 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | International journal of intelligent systems |
PublicationYear | 2023 |
Publisher | Hindawi John Wiley & Sons, Inc |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
References | e_1_2_10_22_2 e_1_2_10_23_2 e_1_2_10_20_2 Sreejith S. (e_1_2_10_24_2) 2020; 1706 Asmaa S. A. (e_1_2_10_21_2) 2021; 6 e_1_2_10_19_2 e_1_2_10_1_2 Ahila A. (e_1_2_10_12_2) 2022; 12 e_1_2_10_3_2 e_1_2_10_17_2 e_1_2_10_2_2 e_1_2_10_18_2 e_1_2_10_5_2 e_1_2_10_15_2 e_1_2_10_4_2 e_1_2_10_16_2 e_1_2_10_7_2 e_1_2_10_13_2 e_1_2_10_6_2 e_1_2_10_14_2 e_1_2_10_9_2 e_1_2_10_11_2 e_1_2_10_8_2 e_1_2_10_33_2 e_1_2_10_32_2 e_1_2_10_10_2 e_1_2_10_31_2 e_1_2_10_30_2 e_1_2_10_28_2 e_1_2_10_29_2 e_1_2_10_26_2 e_1_2_10_27_2 e_1_2_10_25_2 |
References_xml | – ident: e_1_2_10_9_2 doi: 10.1016/j.cmpb.2020.105361 – ident: e_1_2_10_18_2 doi: 10.3390/app12073273 – ident: e_1_2_10_28_2 doi: 10.1016/j.compbiomed.2018.01.008 – ident: e_1_2_10_4_2 doi: 10.1016/j.clinimag.2012.09.024 – ident: e_1_2_10_20_2 doi: 10.7717/peerj-cs.805 – ident: e_1_2_10_13_2 doi: 10.1109/access.2021.3079204 – ident: e_1_2_10_5_2 doi: 10.1007/s11831-021-09620-8 – ident: e_1_2_10_22_2 doi: 10.1016/j.dib.2019.104863 – ident: e_1_2_10_23_2 doi: 10.1109/ICEDSS.2016.7587786 – ident: e_1_2_10_30_2 doi: 10.1109/ICEAST.2018.8434402 – ident: e_1_2_10_7_2 doi: 10.1007/s11280-017-0522-5 – ident: e_1_2_10_17_2 doi: 10.3390/app112412122 – ident: e_1_2_10_2_2 doi: 10.1016/j.ejrad.2017.01.021 – ident: e_1_2_10_32_2 doi: 10.1088/1742-6596/1748/3/032041 – ident: e_1_2_10_33_2 doi: 10.3390/s20174747 – ident: e_1_2_10_11_2 doi: 10.3390/cancers14020277 – ident: e_1_2_10_14_2 doi: 10.3390/app12010148 – ident: e_1_2_10_29_2 doi: 10.1016/j.cmpb.2019.05.020 – ident: e_1_2_10_1_2 doi: 10.1155/2020/9162464 – volume: 12 start-page: 1 year: 2022 ident: e_1_2_10_12_2 article-title: Meta-HeuristicAlgorithm-Tuned Neural Network for Breast Cancer Diagnosis Using Ultrasound Images publication-title: Frontiers in Oncology – ident: e_1_2_10_19_2 doi: 10.3390/s22030807 – ident: e_1_2_10_10_2 doi: 10.3390/biology11030439 – ident: e_1_2_10_3_2 doi: 10.1053/j.semnuclmed.2022.02.003 – ident: e_1_2_10_26_2 doi: 10.1016/j.compmedimag.2021.101908 – volume: 1706 start-page: 1 year: 2020 ident: e_1_2_10_24_2 article-title: Study of hybrid median filter for the removal of various noises in digital image publication-title: Journal de Physique: Conf. Ser – volume: 6 year: 2021 ident: e_1_2_10_21_2 article-title: king Abdulaziz university breast cancer mammogram dataset (KAU-BCMD) publication-title: Data – ident: e_1_2_10_16_2 doi: 10.1109/access.2021.3104627 – ident: e_1_2_10_31_2 doi: 10.1002/spe.2921 – ident: e_1_2_10_6_2 doi: 10.1016/j.ejrad.2012.03.005 – ident: e_1_2_10_8_2 doi: 10.1016/j.matpr.2020.08.381 – ident: e_1_2_10_25_2 doi: 10.1016/j.procs.2019.12.112 – ident: e_1_2_10_15_2 doi: 10.1016/j.aej.2021.03.048 – ident: e_1_2_10_27_2 doi: 10.1155/2021/8666693 |
SSID | ssj0011745 |
Score | 2.3867865 |
Snippet | Breast cancer (BrCa) is the most common disease in women worldwide. Classifying the BrCa image is extremely important for finding BrCa at an earlier stage and... |
SourceID | proquest crossref hindawi |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Accuracy Algorithms Automation Breasts Cancer Classification Decision trees Deep learning Feature extraction Image classification Image contrast Image enhancement Image segmentation Intelligent systems Machine learning Mammography Medical imaging Methods Neural networks Preprocessing Sensitivity Ultrasonic imaging |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3PS8MwFA66IXjxtzidksM8SbBtkiY9ic6O4WGIOtit5FdVGN3cKv77Jm06EVHPefTwXvLe95LX7wOgR3nCBcfY_RxDEQlFgriMDRKCKAs4VKhkNW0xiodjcjehE3_htvRjlU1OrBK1nil3R34Zcce-xTihV_M35FSj3Ouql9BYB22bgrltvto36ej-YfWOYPE2rXEkQTxkuBl9p9R1_fiSO_44jL8VpY0X1w1_vP7IzlXJGeyALY8V4XUd3F2wZoo9sN3oMEB_LPeB7eFhWlFB2AoCx48pGpkS3hozh54-9Rk6zbMptAgV9l2cF3a5rKawigMwHqRP_SHysghIYcxKJPIozg3NsW39hDRMBgIbLWhCJYkCISML0ZjSJJGGEqYDKRWjuQ4SZbDFHwYfglYxK8wRgLEUOsZCB3keEmkjRcM8sYAGM5v2BBcdcNH4JVOeM9xJV0yzqnegNHNezLwXO-B8ZT2vuTJ-set5F_9j1m38n_mDtcy-tsHx38snYNN9rL4t6YJWuXg3pxY_lPLMb5JP0q-_fw priority: 102 providerName: ProQuest |
Title | An Efficient USE-Net Deep Learning Model for Cancer Detection |
URI | https://dx.doi.org/10.1155/2023/8509433 https://www.proquest.com/docview/2802487845 |
Volume | 2023 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46Ebz4W5zOkcM8SbFtkiY9zq1ziA5xDnYrSZuqMOrYKv77vrTpQIfoqZS-9vDeS973Ncn3EOowEQopCDGHY5hDPRk6QgXakZImADgSL1HlbotRMJzQuymbWpGk5foSPlQ7Q8_JtTBCb4Rsok1IMEPKh9PVYgGAalaBReoIj5N6f_uPd79Vnu1XQ3k_39am4LKuDPbRrgWEuFtF8ABt6PwQ7dXNFrAde0cIiDqOSr0HKBN4Mo6ckS5wX-s5thqpL9g0NpthgKG4Z4K5gMdFudUqP0aTQfTcGzq294GTEMILR2Z-kGmWEeB3UmmuXEl0KlnIFPVdqXzAYTxJaag0ozx1lUo4y1I3TDQBkKHJCWrk77k-RThQMg2ITN0s86iCcDAvCwG1EA5zmxSyia5qv8SJFQY3_SlmcUkQGIuNF2PrxSa6XFnPK0GMX-w61sV_mLVq_8d29CxjXxilNS4oO_vfV87Rjrmtfo20UKNYfOgLAAuFakPCDG7baKvbf7gfw_UmGj0-tcsE-gKCcrfh |
linkProvider | Hindawi Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLYGCMGFN2I8c4ATimibpE0PCE1jY7CxC5vErSRpCkhTN6AI8af4jSR9gBACTpxj5eB8sT87jg2wz3jIBSfEfo5hmLoixFz6GgtBlSEcylUyr7bo-50hvbhm1zV4q_7C2LLKyibmhjoeK5sjP_K47b4VcMpOJg_YTo2yr6vVCI0CFl39-mJCtqfj81Nzvgee124Nmh1cThXAipAgwyLx_ESzhJjISUgdSEcQHQsWMkk9R0jPMJxAxTSUmtEgdqRUAUtiJ1SaGPetidl3CmYoIaG9Ubx99vFqYdg9K1grxdwNSFVoz5jNMZAjbrvVEfLFBc7e2dj75f6bL8gdXHsJFkpmihoFlJahptMVWKymPqDSCKzCcSNFrbzxhPFXaHjVwn2doVOtJ6hs1nqL7IS1ETJ8GDUtqh7NcpbXfKVrMPwXda3DdDpO9QYgX4rYJyJ2ksSl0uCCuUlo6BMJjJEVXNThsNJLpMoO5XZQxijKIxXGIqvFqNRiHQ4-pCdFZ44f5PZLFf8htl3pPyqv8VP0CbrN35f3YK4zuOxFvfN-dwvm7cZFnmYbprPHZ71jmEsmd3O4ILj5b3y-A29c_Is |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3BoqJeCv1A0C7UBzgha5PYjp3DCgG7KyjVCrWsxC21HadFQmELQYi_1l_HOHGoUNX2xNkjH15eZt7Y4xmAbaEypRVj_nGMoDzWGVUmdVRrblFw2Niaptpimh7N-Kdzcb4Av7q3ML6ssvOJjaMurqw_Ix8kynffkoqLQRnKIk5Hk735T-onSPmb1m6cRkuRE3d_h-nbzfB4hN96J0km47PDIxomDFDLmKypLpO0dKJkmEVp46SJNHOFFpkwPIm0SVDtSFvwzDjBZREZY6UoiyizjmEodwz3XYQliVlR1IOlg_H09MvjHQZqfdFqWE5VLFlXdi-EP3FgA-V71zH2JCC--OEz8buLPyJDE-4mq_Aq6FSy3xLrNSy46g2sdDMgSHAJb2G4X5Fx04YCoxeZfR3TqavJyLk5Ca1bvxM_b-2SoDomh55j17hcNxVg1TuYPQtga9Crriq3DiQ1ukiZLqKyjLlBloi4zFBMMYkuVyu9AbsdLrkN_cr92IzLvMlbhMg9inlAcQN2Hq3nbZ-Ov9htB4j_Y9bv8M_DT32T_6bg-38vf4Rl5Gb--Xh68gFe-n3bQ5s-9OrrW7eJMqY2W4EvBL49N0UfAHWsAiw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+USE-Net+Deep+Learning+Model+for+Cancer+Detection&rft.jtitle=International+journal+of+intelligent+systems&rft.au=Almutairi%2C+Saad+M.&rft.au=Manimurugan%2C+S.&rft.au=Aborokbah%2C+Majed+M.&rft.au=Narmatha%2C+C.&rft.date=2023&rft.pub=Hindawi&rft.issn=0884-8173&rft.eissn=1098-111X&rft.volume=2023&rft_id=info:doi/10.1155%2F2023%2F8509433&rft.externalDocID=10_1155_2023_8509433 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8173&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8173&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8173&client=summon |