An Efficient USE-Net Deep Learning Model for Cancer Detection

Breast cancer (BrCa) is the most common disease in women worldwide. Classifying the BrCa image is extremely important for finding BrCa at an earlier stage and monitoring BrCa during treatment. The computer-aided detection methods have been used to interpret BrCa and improve the detection of BrCa dur...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of intelligent systems Vol. 2023; no. 1
Main Authors Almutairi, Saad M., Manimurugan, S., Aborokbah, Majed M., Narmatha, C., Ganesan, Subramaniam, Karthikeyan, P.
Format Journal Article
LanguageEnglish
Published New York Hindawi 2023
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Breast cancer (BrCa) is the most common disease in women worldwide. Classifying the BrCa image is extremely important for finding BrCa at an earlier stage and monitoring BrCa during treatment. The computer-aided detection methods have been used to interpret BrCa and improve the detection of BrCa during the screening and treatment stages. However, if a new BrCa image is generated for the treatment, it will not classify correctly. The main objective of this research is to classify the BrCa images for newly generated images. The model performs preprocessing, segmentation, feature extraction, and classification. In preprocessing, a hybrid median filtering (HMF) is used to eliminate the noise in the images. The contrast of the images is enhanced using quadrant dynamic histogram equalization (QDHE). Then, ROI segmentation is performed using the USE-Net deep learning model. The CaffeNet model is used for feature extraction on the segmented images, and finally, classification is made using the improved random forest (IRF) with extreme gradient boosting (XGB). The model obtained 97.87% accuracy, 98.45% sensitivity, 95.24% specificity, 98.96% precision, and 98.70% f1-score for ultrasound images. The model gives 98.31% accuracy, 99.29% sensitivity, 90.20% specificity, 98.82% precision, and 99.05% f1-score for mammogram images.
AbstractList Breast cancer (BrCa) is the most common disease in women worldwide. Classifying the BrCa image is extremely important for finding BrCa at an earlier stage and monitoring BrCa during treatment. The computer‐aided detection methods have been used to interpret BrCa and improve the detection of BrCa during the screening and treatment stages. However, if a new BrCa image is generated for the treatment, it will not classify correctly. The main objective of this research is to classify the BrCa images for newly generated images. The model performs preprocessing, segmentation, feature extraction, and classification. In preprocessing, a hybrid median filtering (HMF) is used to eliminate the noise in the images. The contrast of the images is enhanced using quadrant dynamic histogram equalization (QDHE). Then, ROI segmentation is performed using the USE‐Net deep learning model. The CaffeNet model is used for feature extraction on the segmented images, and finally, classification is made using the improved random forest (IRF) with extreme gradient boosting (XGB). The model obtained 97.87% accuracy, 98.45% sensitivity, 95.24% specificity, 98.96% precision, and 98.70% f1‐score for ultrasound images. The model gives 98.31% accuracy, 99.29% sensitivity, 90.20% specificity, 98.82% precision, and 99.05% f1‐score for mammogram images.
Author Aborokbah, Majed M.
Karthikeyan, P.
Narmatha, C.
Manimurugan, S.
Almutairi, Saad M.
Ganesan, Subramaniam
Author_xml – sequence: 1
  givenname: Saad M.
  orcidid: 0000-0002-1320-4665
  surname: Almutairi
  fullname: Almutairi, Saad M.
  organization: Industrial Innovation & Robotics CenterFaculty of Computers and Information TechnologyUniversity of TabukTabuk 71491Saudi Arabiaut.edu.sa
– sequence: 2
  givenname: S.
  orcidid: 0000-0003-1837-6797
  surname: Manimurugan
  fullname: Manimurugan, S.
  organization: Industrial Innovation & Robotics CenterFaculty of Computers and Information TechnologyUniversity of TabukTabuk 71491Saudi Arabiaut.edu.sa
– sequence: 3
  givenname: Majed M.
  orcidid: 0000-0001-7376-1458
  surname: Aborokbah
  fullname: Aborokbah, Majed M.
  organization: Industrial Innovation & Robotics CenterFaculty of Computers and Information TechnologyUniversity of TabukTabuk 71491Saudi Arabiaut.edu.sa
– sequence: 4
  givenname: C.
  orcidid: 0000-0003-4411-4045
  surname: Narmatha
  fullname: Narmatha, C.
  organization: Industrial Innovation & Robotics CenterFaculty of Computers and Information TechnologyUniversity of TabukTabuk 71491Saudi Arabiaut.edu.sa
– sequence: 5
  givenname: Subramaniam
  orcidid: 0000-0003-0233-9940
  surname: Ganesan
  fullname: Ganesan, Subramaniam
  organization: Department of Electrical and Computer EngineeringOakland UniversityRochester 112345USAoakland.edu
– sequence: 6
  givenname: P.
  orcidid: 0000-0001-8977-5520
  surname: Karthikeyan
  fullname: Karthikeyan, P.
  organization: Department of Computer Science and Information EngineeringNational Chung Cheng UniversityChiayiTaiwanccu.edu.tw
BookMark eNp9kD1PwzAQhi1UJNrCxg-wxAih_oydgaEK5UMqMEAltshxzuCqOMVxhfj3pGonJJhuuOd97_SM0CC0ARA6peSSUiknjDA-0ZIUgvMDNKSk0Bml9HWAhkRrkWmq-BEadd2SEEqVkEN0NQ145py3HkLCi-dZ9ggJXwOs8RxMDD684Ye2gRV2bcSlCRZiv05gk2_DMTp0ZtXByX6O0eJm9lLeZfOn2_tyOs8s5yplxrHcgXRcEGZqUDUxHBojC1kLRkzNcpkr24iiBilUQ-raKukaUljgueDAx-hs17uO7ecGulQt200M_cmKacKEVlrInmI7ysa26yK4yvpktn-maPyqoqTaaqq2mqq9pj508Su0jv7DxO-_8PMd_u5DY778__QPBTd1MQ
CitedBy_id crossref_primary_10_1007_s00432_023_05216_w
crossref_primary_10_1615_CritRevBiomedEng_2024051166
crossref_primary_10_1007_s42979_023_02205_1
crossref_primary_10_1109_ACCESS_2024_3524633
crossref_primary_10_1007_s11831_024_10219_y
crossref_primary_10_59681_2175_4411_v16_iEspecial_2024_1353
crossref_primary_10_1155_int_6528752
Cites_doi 10.1016/j.cmpb.2020.105361
10.3390/app12073273
10.1016/j.compbiomed.2018.01.008
10.1016/j.clinimag.2012.09.024
10.7717/peerj-cs.805
10.1109/access.2021.3079204
10.1007/s11831-021-09620-8
10.1016/j.dib.2019.104863
10.1109/ICEDSS.2016.7587786
10.1109/ICEAST.2018.8434402
10.1007/s11280-017-0522-5
10.3390/app112412122
10.1016/j.ejrad.2017.01.021
10.1088/1742-6596/1748/3/032041
10.3390/s20174747
10.3390/cancers14020277
10.3390/app12010148
10.1016/j.cmpb.2019.05.020
10.1155/2020/9162464
10.3390/s22030807
10.3390/biology11030439
10.1053/j.semnuclmed.2022.02.003
10.1016/j.compmedimag.2021.101908
10.1109/access.2021.3104627
10.1002/spe.2921
10.1016/j.ejrad.2012.03.005
10.1016/j.matpr.2020.08.381
10.1016/j.procs.2019.12.112
10.1016/j.aej.2021.03.048
10.1155/2021/8666693
ContentType Journal Article
Copyright Copyright © 2023 Saad M. Almutairi et al.
Copyright © 2023 Saad M. Almutairi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2023 Saad M. Almutairi et al.
– notice: Copyright © 2023 Saad M. Almutairi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1155/2023/8509433
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1098-111X
Editor Prakash, Surya
Editor_xml – sequence: 1
  givenname: Surya
  surname: Prakash
  fullname: Prakash, Surya
ExternalDocumentID 10_1155_2023_8509433
GrantInformation_xml – fundername: Ministry of Education – Kingdom of Saudi Arabia
  grantid: 0075-1442-S
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXME
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ARAPS
ARCSS
ATUGU
AUFTA
AZBYB
AZQEC
AZVAB
BAFTC
BENPR
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EDO
F00
F01
F04
G-S
G.N
GNP
GNUQQ
GODZA
H.T
H.X
HBH
HCIFZ
HHY
HZ~
I-F
IX1
J0M
JPC
K7-
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M7S
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PIMPY
PQQKQ
PTHSS
Q.N
Q11
QB0
QRW
R.K
RHU
RHW
RHX
RWI
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
WZISG
XG1
XPP
XV2
ZZTAW
~IA
~WT
.Y3
24P
31~
AANHP
AASGY
AAYOK
AAYXX
ABDPE
ABEML
ACBWZ
ACCMX
ACRPL
ACSCC
ACXQS
ACYXJ
ADMLS
ADNMO
AFZJQ
AGQPQ
AI.
AIURR
ALUQN
ASPBG
AVWKF
AZFZN
BDRZF
BFHJK
CITATION
CMOOK
EJD
FEDTE
H13
HF~
HVGLF
LH4
LW6
M59
MVM
PALCI
PHGZM
PHGZT
RIWAO
RJQFR
ROL
SAMSI
VH1
ZY4
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L6V
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c337t-af26fe5f3402abe7b0a3eda595b420ab26567cd49be547d0bbc75fd09ce3643e3
IEDL.DBID RHX
ISSN 0884-8173
IngestDate Fri Jul 25 12:11:14 EDT 2025
Tue Jul 01 02:44:38 EDT 2025
Thu Apr 24 23:06:36 EDT 2025
Sun Jun 02 19:22:43 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-af26fe5f3402abe7b0a3eda595b420ab26567cd49be547d0bbc75fd09ce3643e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0233-9940
0000-0002-1320-4665
0000-0003-4411-4045
0000-0001-7376-1458
0000-0003-1837-6797
0000-0001-8977-5520
OpenAccessLink https://dx.doi.org/10.1155/2023/8509433
PQID 2802487845
PQPubID 1026350
ParticipantIDs proquest_journals_2802487845
crossref_citationtrail_10_1155_2023_8509433
crossref_primary_10_1155_2023_8509433
hindawi_primary_10_1155_2023_8509433
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of intelligent systems
PublicationYear 2023
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References e_1_2_10_22_2
e_1_2_10_23_2
e_1_2_10_20_2
Sreejith S. (e_1_2_10_24_2) 2020; 1706
Asmaa S. A. (e_1_2_10_21_2) 2021; 6
e_1_2_10_19_2
e_1_2_10_1_2
Ahila A. (e_1_2_10_12_2) 2022; 12
e_1_2_10_3_2
e_1_2_10_17_2
e_1_2_10_2_2
e_1_2_10_18_2
e_1_2_10_5_2
e_1_2_10_15_2
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_7_2
e_1_2_10_13_2
e_1_2_10_6_2
e_1_2_10_14_2
e_1_2_10_9_2
e_1_2_10_11_2
e_1_2_10_8_2
e_1_2_10_33_2
e_1_2_10_32_2
e_1_2_10_10_2
e_1_2_10_31_2
e_1_2_10_30_2
e_1_2_10_28_2
e_1_2_10_29_2
e_1_2_10_26_2
e_1_2_10_27_2
e_1_2_10_25_2
References_xml – ident: e_1_2_10_9_2
  doi: 10.1016/j.cmpb.2020.105361
– ident: e_1_2_10_18_2
  doi: 10.3390/app12073273
– ident: e_1_2_10_28_2
  doi: 10.1016/j.compbiomed.2018.01.008
– ident: e_1_2_10_4_2
  doi: 10.1016/j.clinimag.2012.09.024
– ident: e_1_2_10_20_2
  doi: 10.7717/peerj-cs.805
– ident: e_1_2_10_13_2
  doi: 10.1109/access.2021.3079204
– ident: e_1_2_10_5_2
  doi: 10.1007/s11831-021-09620-8
– ident: e_1_2_10_22_2
  doi: 10.1016/j.dib.2019.104863
– ident: e_1_2_10_23_2
  doi: 10.1109/ICEDSS.2016.7587786
– ident: e_1_2_10_30_2
  doi: 10.1109/ICEAST.2018.8434402
– ident: e_1_2_10_7_2
  doi: 10.1007/s11280-017-0522-5
– ident: e_1_2_10_17_2
  doi: 10.3390/app112412122
– ident: e_1_2_10_2_2
  doi: 10.1016/j.ejrad.2017.01.021
– ident: e_1_2_10_32_2
  doi: 10.1088/1742-6596/1748/3/032041
– ident: e_1_2_10_33_2
  doi: 10.3390/s20174747
– ident: e_1_2_10_11_2
  doi: 10.3390/cancers14020277
– ident: e_1_2_10_14_2
  doi: 10.3390/app12010148
– ident: e_1_2_10_29_2
  doi: 10.1016/j.cmpb.2019.05.020
– ident: e_1_2_10_1_2
  doi: 10.1155/2020/9162464
– volume: 12
  start-page: 1
  year: 2022
  ident: e_1_2_10_12_2
  article-title: Meta-HeuristicAlgorithm-Tuned Neural Network for Breast Cancer Diagnosis Using Ultrasound Images
  publication-title: Frontiers in Oncology
– ident: e_1_2_10_19_2
  doi: 10.3390/s22030807
– ident: e_1_2_10_10_2
  doi: 10.3390/biology11030439
– ident: e_1_2_10_3_2
  doi: 10.1053/j.semnuclmed.2022.02.003
– ident: e_1_2_10_26_2
  doi: 10.1016/j.compmedimag.2021.101908
– volume: 1706
  start-page: 1
  year: 2020
  ident: e_1_2_10_24_2
  article-title: Study of hybrid median filter for the removal of various noises in digital image
  publication-title: Journal de Physique: Conf. Ser
– volume: 6
  year: 2021
  ident: e_1_2_10_21_2
  article-title: king Abdulaziz university breast cancer mammogram dataset (KAU-BCMD)
  publication-title: Data
– ident: e_1_2_10_16_2
  doi: 10.1109/access.2021.3104627
– ident: e_1_2_10_31_2
  doi: 10.1002/spe.2921
– ident: e_1_2_10_6_2
  doi: 10.1016/j.ejrad.2012.03.005
– ident: e_1_2_10_8_2
  doi: 10.1016/j.matpr.2020.08.381
– ident: e_1_2_10_25_2
  doi: 10.1016/j.procs.2019.12.112
– ident: e_1_2_10_15_2
  doi: 10.1016/j.aej.2021.03.048
– ident: e_1_2_10_27_2
  doi: 10.1155/2021/8666693
SSID ssj0011745
Score 2.3867865
Snippet Breast cancer (BrCa) is the most common disease in women worldwide. Classifying the BrCa image is extremely important for finding BrCa at an earlier stage and...
SourceID proquest
crossref
hindawi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Algorithms
Automation
Breasts
Cancer
Classification
Decision trees
Deep learning
Feature extraction
Image classification
Image contrast
Image enhancement
Image segmentation
Intelligent systems
Machine learning
Mammography
Medical imaging
Methods
Neural networks
Preprocessing
Sensitivity
Ultrasonic imaging
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3PS8MwFA66IXjxtzidksM8SbBtkiY9ic6O4WGIOtit5FdVGN3cKv77Jm06EVHPefTwXvLe95LX7wOgR3nCBcfY_RxDEQlFgriMDRKCKAs4VKhkNW0xiodjcjehE3_htvRjlU1OrBK1nil3R34Zcce-xTihV_M35FSj3Ouql9BYB22bgrltvto36ej-YfWOYPE2rXEkQTxkuBl9p9R1_fiSO_44jL8VpY0X1w1_vP7IzlXJGeyALY8V4XUd3F2wZoo9sN3oMEB_LPeB7eFhWlFB2AoCx48pGpkS3hozh54-9Rk6zbMptAgV9l2cF3a5rKawigMwHqRP_SHysghIYcxKJPIozg3NsW39hDRMBgIbLWhCJYkCISML0ZjSJJGGEqYDKRWjuQ4SZbDFHwYfglYxK8wRgLEUOsZCB3keEmkjRcM8sYAGM5v2BBcdcNH4JVOeM9xJV0yzqnegNHNezLwXO-B8ZT2vuTJ-set5F_9j1m38n_mDtcy-tsHx38snYNN9rL4t6YJWuXg3pxY_lPLMb5JP0q-_fw
  priority: 102
  providerName: ProQuest
Title An Efficient USE-Net Deep Learning Model for Cancer Detection
URI https://dx.doi.org/10.1155/2023/8509433
https://www.proquest.com/docview/2802487845
Volume 2023
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46Ebz4W5zOkcM8SbFtkiY9zq1ziA5xDnYrSZuqMOrYKv77vrTpQIfoqZS-9vDeS973Ncn3EOowEQopCDGHY5hDPRk6QgXakZImADgSL1HlbotRMJzQuymbWpGk5foSPlQ7Q8_JtTBCb4Rsok1IMEPKh9PVYgGAalaBReoIj5N6f_uPd79Vnu1XQ3k_39am4LKuDPbRrgWEuFtF8ABt6PwQ7dXNFrAde0cIiDqOSr0HKBN4Mo6ckS5wX-s5thqpL9g0NpthgKG4Z4K5gMdFudUqP0aTQfTcGzq294GTEMILR2Z-kGmWEeB3UmmuXEl0KlnIFPVdqXzAYTxJaag0ozx1lUo4y1I3TDQBkKHJCWrk77k-RThQMg2ITN0s86iCcDAvCwG1EA5zmxSyia5qv8SJFQY3_SlmcUkQGIuNF2PrxSa6XFnPK0GMX-w61sV_mLVq_8d29CxjXxilNS4oO_vfV87Rjrmtfo20UKNYfOgLAAuFakPCDG7baKvbf7gfw_UmGj0-tcsE-gKCcrfh
linkProvider Hindawi Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLYGCMGFN2I8c4ATimibpE0PCE1jY7CxC5vErSRpCkhTN6AI8af4jSR9gBACTpxj5eB8sT87jg2wz3jIBSfEfo5hmLoixFz6GgtBlSEcylUyr7bo-50hvbhm1zV4q_7C2LLKyibmhjoeK5sjP_K47b4VcMpOJg_YTo2yr6vVCI0CFl39-mJCtqfj81Nzvgee124Nmh1cThXAipAgwyLx_ESzhJjISUgdSEcQHQsWMkk9R0jPMJxAxTSUmtEgdqRUAUtiJ1SaGPetidl3CmYoIaG9Ubx99vFqYdg9K1grxdwNSFVoz5jNMZAjbrvVEfLFBc7e2dj75f6bL8gdXHsJFkpmihoFlJahptMVWKymPqDSCKzCcSNFrbzxhPFXaHjVwn2doVOtJ6hs1nqL7IS1ETJ8GDUtqh7NcpbXfKVrMPwXda3DdDpO9QYgX4rYJyJ2ksSl0uCCuUlo6BMJjJEVXNThsNJLpMoO5XZQxijKIxXGIqvFqNRiHQ4-pCdFZ44f5PZLFf8htl3pPyqv8VP0CbrN35f3YK4zuOxFvfN-dwvm7cZFnmYbprPHZ71jmEsmd3O4ILj5b3y-A29c_Is
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3BoqJeCv1A0C7UBzgha5PYjp3DCgG7KyjVCrWsxC21HadFQmELQYi_1l_HOHGoUNX2xNkjH15eZt7Y4xmAbaEypRVj_nGMoDzWGVUmdVRrblFw2Niaptpimh7N-Kdzcb4Av7q3ML6ssvOJjaMurqw_Ix8kynffkoqLQRnKIk5Hk735T-onSPmb1m6cRkuRE3d_h-nbzfB4hN96J0km47PDIxomDFDLmKypLpO0dKJkmEVp46SJNHOFFpkwPIm0SVDtSFvwzDjBZREZY6UoiyizjmEodwz3XYQliVlR1IOlg_H09MvjHQZqfdFqWE5VLFlXdi-EP3FgA-V71zH2JCC--OEz8buLPyJDE-4mq_Aq6FSy3xLrNSy46g2sdDMgSHAJb2G4X5Fx04YCoxeZfR3TqavJyLk5Ca1bvxM_b-2SoDomh55j17hcNxVg1TuYPQtga9Crriq3DiQ1ukiZLqKyjLlBloi4zFBMMYkuVyu9AbsdLrkN_cr92IzLvMlbhMg9inlAcQN2Hq3nbZ-Ov9htB4j_Y9bv8M_DT32T_6bg-38vf4Rl5Gb--Xh68gFe-n3bQ5s-9OrrW7eJMqY2W4EvBL49N0UfAHWsAiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+USE-Net+Deep+Learning+Model+for+Cancer+Detection&rft.jtitle=International+journal+of+intelligent+systems&rft.au=Almutairi%2C+Saad+M.&rft.au=Manimurugan%2C+S.&rft.au=Aborokbah%2C+Majed+M.&rft.au=Narmatha%2C+C.&rft.date=2023&rft.pub=Hindawi&rft.issn=0884-8173&rft.eissn=1098-111X&rft.volume=2023&rft_id=info:doi/10.1155%2F2023%2F8509433&rft.externalDocID=10_1155_2023_8509433
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8173&client=summon