The high-thermal stability and ultrafast phase change memory based on Ge1.6Te-GaSb nano-composite alloys
Solving the contradictory between data retention and switching speed has been the subject of numerous investigations on phase change materials. Towards this end, Ge1.6Te-GaSb nano-composite is proposed, which combines advantages of fast crystallization speed and high thermal stability. The character...
Saved in:
Published in | Journal of alloys and compounds Vol. 727; pp. 1288 - 1292 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.12.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solving the contradictory between data retention and switching speed has been the subject of numerous investigations on phase change materials. Towards this end, Ge1.6Te-GaSb nano-composite is proposed, which combines advantages of fast crystallization speed and high thermal stability. The characterization results elucidate that doped materials exhibit a high crystallization temperature due to the enhanced stability of the amorphous state associated with the generated larger energy barrier. Furthermore, the reversible electrical switching capability of the phase-change devices is improved in terms of an ultrafast speed of 5 ns with Sb-rich GaSb addition. A good endurance of 20 K and long data retention are achieved simultaneously, indicating that Sb-rich GaSb incorporation into Ge1.6Te alloy is a promising material for high-temperature performance applications.
•Ge1.6Te-GaSb nano-composite combines advantages of fast crystallization speed and high thermal stability.•The temperature for 10-year data retention of Ge2.7Te1.7GaSb4.6 is up to 218 °C.•Ge2.7Te1.7GaSb4.6 shows 5ns operation speed.•The grain size of Ge2.7Te1.7GaSb4.6 is smaller than that of GeTe. |
---|---|
AbstractList | Solving the contradictory between data retention and switching speed has been the subject of numerous investigations on phase change materials. Towards this end, Ge1.6Te-GaSb nano-composite is proposed, which combines advantages of fast crystallization speed and high thermal stability. The characterization results elucidate that doped materials exhibit a high crystallization temperature due to the enhanced stability of the amorphous state associated with the generated larger energy barrier. Furthermore, the reversible electrical switching capability of the phase-change devices is improved in terms of an ultrafast speed of 5 ns with Sb-rich GaSb addition. A good endurance of 20 K and long data retention are achieved simultaneously, indicating that Sb-rich GaSb incorporation into Ge1.6Te alloy is a promising material for high-temperature performance applications. Solving the contradictory between data retention and switching speed has been the subject of numerous investigations on phase change materials. Towards this end, Ge1.6Te-GaSb nano-composite is proposed, which combines advantages of fast crystallization speed and high thermal stability. The characterization results elucidate that doped materials exhibit a high crystallization temperature due to the enhanced stability of the amorphous state associated with the generated larger energy barrier. Furthermore, the reversible electrical switching capability of the phase-change devices is improved in terms of an ultrafast speed of 5 ns with Sb-rich GaSb addition. A good endurance of 20 K and long data retention are achieved simultaneously, indicating that Sb-rich GaSb incorporation into Ge1.6Te alloy is a promising material for high-temperature performance applications. •Ge1.6Te-GaSb nano-composite combines advantages of fast crystallization speed and high thermal stability.•The temperature for 10-year data retention of Ge2.7Te1.7GaSb4.6 is up to 218 °C.•Ge2.7Te1.7GaSb4.6 shows 5ns operation speed.•The grain size of Ge2.7Te1.7GaSb4.6 is smaller than that of GeTe. |
Author | Feng, Songlin Xue, Yuan Song, Sannian Yan, Shuai Shen, Lanlan Song, Zhitang Guo, Tianqi Wu, Liangcai |
Author_xml | – sequence: 1 givenname: Yuan surname: Xue fullname: Xue, Yuan email: xueyuan@mail.sim.ac.cn organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China – sequence: 2 givenname: Sannian surname: Song fullname: Song, Sannian email: songsannian@mail.sim.ac.cn organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China – sequence: 3 givenname: Shuai surname: Yan fullname: Yan, Shuai organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China – sequence: 4 givenname: Tianqi surname: Guo fullname: Guo, Tianqi organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China – sequence: 5 givenname: Lanlan surname: Shen fullname: Shen, Lanlan organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China – sequence: 6 givenname: Liangcai surname: Wu fullname: Wu, Liangcai organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China – sequence: 7 givenname: Zhitang surname: Song fullname: Song, Zhitang organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China – sequence: 8 givenname: Songlin surname: Feng fullname: Feng, Songlin organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China |
BookMark | eNqFkEtLJDEQgMOisKO7P2Eh4LnbPJzuNHsQER0FwcPOnkN1umKn6U7GJCPMvzcynrx4Kqiqrx7fGTnxwSMhfzirOePN5VRPMM8mLLVgvK2ZqgVXP8iKq1ZWV03TnZAV68S6UlKpn-QspYkxxjvJV2TcjkhH9zJWecS4wExTht7NLh8o-IHu5xzBQsp0N0JCakbwL0gXXEI80L6kBho83SCvmy1WG_jXUw8-VOWcXUguIy23hUP6RU4tzAl_f8Zz8v_-bnv7UD09bx5vb54qI2WbK1DQW6ZMPzQGbAuN7BFQILYWpWJXIFgvjC3FruNcYGfMINZrwaxB2_FWnpOL49xdDK97TFlPYR99Wal517SyKW546fp77DIxpBTRauMyZBd8edfNmjP9oVZP-lOt_lCrmdIFL_T6C72LboF4-Ja7PnJYBLw5jDoZh97g4CKarIfgvpnwDiURmpI |
CitedBy_id | crossref_primary_10_1109_LED_2024_3469194 crossref_primary_10_1002_inf2_12543 crossref_primary_10_1016_j_scriptamat_2018_08_009 crossref_primary_10_1088_1361_6528_aae4f4 crossref_primary_10_1007_s10854_025_14470_2 crossref_primary_10_1063_5_0031947 crossref_primary_10_1002_adma_202300107 crossref_primary_10_1088_0256_307X_35_9_096801 |
Cites_doi | 10.1016/j.sse.2011.06.029 10.1021/cr900040x 10.1016/j.jnoncrysol.2011.12.087 10.1016/j.jallcom.2013.10.076 10.1063/1.1604172 10.1364/AO.26.004772 10.1063/1.3259435 10.1063/1.2894903 10.1063/1.3186077 10.1063/1.4754138 10.1016/j.jnoncrysol.2013.09.017 10.1038/nmat2009 10.1021/jp412412j 10.1016/j.scriptamat.2016.10.034 10.1016/j.scriptamat.2011.04.033 10.1063/1.4809735 10.1103/PhysRevLett.98.055505 10.1073/pnas.1107464108 10.1063/1.4894864 10.1063/1.4937603 10.1016/j.mee.2005.07.007 10.1007/s00339-010-6042-0 10.1039/C5CE02153G 10.1126/science.1160231 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright Elsevier BV Dec 15, 2017 |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright Elsevier BV Dec 15, 2017 |
DBID | AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1016/j.jallcom.2017.08.218 |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1873-4669 |
EndPage | 1292 |
ExternalDocumentID | 10_1016_j_jallcom_2017_08_218 S092583881732947X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SEW SMS SSH T9H WUQ 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c337t-a8abf08cbd6caf7a63beae2ee7fe3804a20b2cf6ca99112e9ccd25520fcef9173 |
IEDL.DBID | .~1 |
ISSN | 0925-8388 |
IngestDate | Fri Jul 25 03:02:29 EDT 2025 Thu Apr 24 23:02:25 EDT 2025 Tue Jul 01 01:54:34 EDT 2025 Fri Feb 23 02:27:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | GaSb Fast switching speed High stability GeTe Doping |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-a8abf08cbd6caf7a63beae2ee7fe3804a20b2cf6ca99112e9ccd25520fcef9173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1967362181 |
PQPubID | 2045454 |
PageCount | 5 |
ParticipantIDs | proquest_journals_1967362181 crossref_citationtrail_10_1016_j_jallcom_2017_08_218 crossref_primary_10_1016_j_jallcom_2017_08_218 elsevier_sciencedirect_doi_10_1016_j_jallcom_2017_08_218 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-15 |
PublicationDateYYYYMMDD | 2017-12-15 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Journal of alloys and compounds |
PublicationYear | 2017 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Sun, Zhou, Ahuja (bib4) 2007; 98 Zhou, Wu, Song, Rao, Liu, Yao, Yin, Feng, Chen (bib7) 2010; 103 Yu, Tong, Miao (bib10) 2014; 105 Zhang, Song, Song, Cheng, Gu, Wu, Liu, Feng (bib21) 2013; 381 Sun, Zhou, Pan, Song, Mao, Ahuja (bib6) 2011; 108 Lu, Song, Shen, Wang, Wu, Song, Liu, Dai (bib23) 2014; 586 Peng, Wu, Rao, Song, Zhou, Zhu, Liu, Yao, Feng, Yang, Chu (bib8) 2011; 65 Gourvest, Lhostis, Kreisel, Armand, Maitrejean, Roule, Vallée (bib9) 2009; 95 Gravesteijn, Sens, Bertens, vander Poel (bib13) 1987; 26 Němec, Moreac, Nazabal, Pavlišta, Přikryl, Frumar (bib18) 2009; 106 Kolobov, Fons, Tominaga, Hase (bib11) 2014; 118 van Pieterson, van Schijndel, Rijpers, Kaiser (bib12) 2003; 83 Betti Beneventi, Perniola, Sousa, Gourvest, Maitrejean, Bastien, Bastard, Hyot, Fargeix, Jahan, Nodin, Persico, Fantini, Blachier, Toffoli, Loubriat, Roule, Lhostis, Feldis, Reimbold, Billon, De Salvo, Larcher, Pavan, Bensahel, Mazoyer, Annunziata, Zuliani, Boulanger (bib16) 2011; 65–66 Lu, Zhang, Song, Shen, Wang, Cheng, Dai, Song (bib14) 2013; 102 Peng, Wu, Rao, Song, Yang, Song, Ren, Zhou, Zhu, Liu, Chu (bib19) 2012; 101 Raoux, Welnic, Ielmini (bib2) 2010; 110 Cao, Wu, Zhu, Ji, Zheng, Song, Rao, Song, Ma, Xu (bib17) 2015; 107 Chen, Song, Song, Li, Zhang, Zheng, Zheng, Zhu, Lu, Shao (bib22) 2016; 18 Atwood (bib3) 2008; 321 Wu, Zhu, Song, Lv, Zhou, Peng, Rao, Song, Liu, Feng (bib20) 2012; 358 Chung, Wamwangi, Woda, Wuttig, Bensch (bib15) 2008; 103 Wuttig, Yamada (bib1) 2007; 6 Liu, Song, Feng, Chen (bib5) 2005; 82 Guo, Song, Li, Ji, Li, Xu, Shen, Xue, Liu, Song, Qi, Feng (bib24) 2017; 129 Wuttig (10.1016/j.jallcom.2017.08.218_bib1) 2007; 6 van Pieterson (10.1016/j.jallcom.2017.08.218_bib12) 2003; 83 Liu (10.1016/j.jallcom.2017.08.218_bib5) 2005; 82 Lu (10.1016/j.jallcom.2017.08.218_bib23) 2014; 586 Zhang (10.1016/j.jallcom.2017.08.218_bib21) 2013; 381 Guo (10.1016/j.jallcom.2017.08.218_bib24) 2017; 129 Kolobov (10.1016/j.jallcom.2017.08.218_bib11) 2014; 118 Betti Beneventi (10.1016/j.jallcom.2017.08.218_bib16) 2011; 65–66 Gravesteijn (10.1016/j.jallcom.2017.08.218_bib13) 1987; 26 Chen (10.1016/j.jallcom.2017.08.218_bib22) 2016; 18 Sun (10.1016/j.jallcom.2017.08.218_bib4) 2007; 98 Sun (10.1016/j.jallcom.2017.08.218_bib6) 2011; 108 Wu (10.1016/j.jallcom.2017.08.218_bib20) 2012; 358 Peng (10.1016/j.jallcom.2017.08.218_bib8) 2011; 65 Yu (10.1016/j.jallcom.2017.08.218_bib10) 2014; 105 Raoux (10.1016/j.jallcom.2017.08.218_bib2) 2010; 110 Peng (10.1016/j.jallcom.2017.08.218_bib19) 2012; 101 Atwood (10.1016/j.jallcom.2017.08.218_bib3) 2008; 321 Zhou (10.1016/j.jallcom.2017.08.218_bib7) 2010; 103 Gourvest (10.1016/j.jallcom.2017.08.218_bib9) 2009; 95 Lu (10.1016/j.jallcom.2017.08.218_bib14) 2013; 102 Chung (10.1016/j.jallcom.2017.08.218_bib15) 2008; 103 Cao (10.1016/j.jallcom.2017.08.218_bib17) 2015; 107 Němec (10.1016/j.jallcom.2017.08.218_bib18) 2009; 106 |
References_xml | – volume: 101 start-page: 122108 year: 2012 ident: bib19 article-title: W-Sb-Te phase-change material: a candidate for the trade-off between programming speed and data retention publication-title: Appl. Phys. Lett. – volume: 83 start-page: 1373 year: 2003 end-page: 1375 ident: bib12 article-title: Te-free, Sb-based phase-change materials for high-speed rewritable optical recording publication-title: Appl. Phys. Lett. – volume: 106 start-page: 103509 year: 2009 ident: bib18 article-title: Ge–Sb–Te thin films deposited by pulsed laser: an ellipsometry and Raman scattering spectroscopy study publication-title: J. Appl. Phys. – volume: 65–66 start-page: 197 year: 2011 end-page: 204 ident: bib16 article-title: Carbon-doped GeTe: a promising material for phase-change memories publication-title: Solid State Electron. – volume: 65 start-page: 327 year: 2011 end-page: 330 ident: bib8 article-title: Nitrogen incorporated GeTe phase change thin film for high-temperature data retention and low-power application publication-title: Scr. Mater. – volume: 129 start-page: 56 year: 2017 end-page: 60 ident: bib24 article-title: The ultrafast phase-change memory with high-thermal stability based on SiC-doped antimony publication-title: Scr. Mater. – volume: 95 start-page: 031908 year: 2009 ident: bib9 article-title: Evidence of Germanium precipitation in phase-change Ge publication-title: Appl. Phys. Lett. – volume: 18 start-page: 787 year: 2016 end-page: 792 ident: bib22 article-title: Performance improvement in a Ti–Sb–Te phase change material by GaSb doping publication-title: CrystEngComm – volume: 586 start-page: 669 year: 2014 end-page: 673 ident: bib23 article-title: Phase change characteristics of Sb-rich Ga–Sb–Se materials publication-title: J. Alloy. Comp. – volume: 103 start-page: 1077 year: 2010 end-page: 1081 ident: bib7 article-title: Investigation of Sb-rich Si publication-title: Appl. Phys. A – volume: 6 start-page: 824 year: 2007 end-page: 832 ident: bib1 article-title: Phase-change materials for rewritable publication-title: Nat. Mater. – volume: 110 start-page: 240 year: 2010 end-page: 267 ident: bib2 article-title: Phase change materials and their application to nonvolatile memories publication-title: Chem. Rev. – volume: 118 start-page: 10248 year: 2014 end-page: 10253 ident: bib11 article-title: Excitation-assisted disordering of GeTe and related solids with resonant bonding publication-title: J. Phys. Chem. C – volume: 107 start-page: 242101 year: 2015 ident: bib17 article-title: High thermal stable and fast switching Ni-Ge-Te alloy for phase change memory applications publication-title: Appl. Phys. Lett. – volume: 98 start-page: 055505 year: 2007 ident: bib4 article-title: Unique melting behavior in phase-change materials for rewritable data storage publication-title: Phys. Rev. Lett. – volume: 105 start-page: 121902 year: 2014 ident: bib10 article-title: Structure and phonon behavior of crystalline GeTe ultrathin film publication-title: Appl. Phys. Lett. – volume: 82 start-page: 168 year: 2005 end-page: 174 ident: bib5 article-title: Characteristics of chalcogenide nonvolatile memory nano-cell-element based on Sb publication-title: Microelectron. Eng. – volume: 358 start-page: 2409 year: 2012 end-page: 2411 ident: bib20 article-title: Investigation on Sb-rich Sb–Se–Te phase-change material for phase change memory application publication-title: J. Non-Cryst. Solids – volume: 103 start-page: 083523 year: 2008 ident: bib15 article-title: Investigation of SnSe, SnSe publication-title: J. Appl. Phys. – volume: 321 start-page: 210 year: 2008 end-page: 211 ident: bib3 article-title: Engineering-phase-change materials for electronic memories publication-title: Science – volume: 26 start-page: 4772 year: 1987 ident: bib13 article-title: Phase-change optical data storage in GaSb publication-title: Appl. Opt. – volume: 381 start-page: 54 year: 2013 end-page: 57 ident: bib21 article-title: Study on GeGaSbTe film for long data retention phase change memory application publication-title: J. Non-Cryst. Solids – volume: 108 start-page: 10410 year: 2011 end-page: 10414 ident: bib6 article-title: Pressure-induced reversible amorphization and an amorphous-amorphous transition in Ge publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 102 start-page: 241907 year: 2013 ident: bib14 article-title: Performance improvement of Ge-Sb-Te material by GaSb doping for phase change memory publication-title: Appl. Phys. Lett. – volume: 65–66 start-page: 197 year: 2011 ident: 10.1016/j.jallcom.2017.08.218_bib16 article-title: Carbon-doped GeTe: a promising material for phase-change memories publication-title: Solid State Electron. doi: 10.1016/j.sse.2011.06.029 – volume: 110 start-page: 240 year: 2010 ident: 10.1016/j.jallcom.2017.08.218_bib2 article-title: Phase change materials and their application to nonvolatile memories publication-title: Chem. Rev. doi: 10.1021/cr900040x – volume: 358 start-page: 2409 year: 2012 ident: 10.1016/j.jallcom.2017.08.218_bib20 article-title: Investigation on Sb-rich Sb–Se–Te phase-change material for phase change memory application publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2011.12.087 – volume: 586 start-page: 669 year: 2014 ident: 10.1016/j.jallcom.2017.08.218_bib23 article-title: Phase change characteristics of Sb-rich Ga–Sb–Se materials publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2013.10.076 – volume: 83 start-page: 1373 year: 2003 ident: 10.1016/j.jallcom.2017.08.218_bib12 article-title: Te-free, Sb-based phase-change materials for high-speed rewritable optical recording publication-title: Appl. Phys. Lett. doi: 10.1063/1.1604172 – volume: 26 start-page: 4772 year: 1987 ident: 10.1016/j.jallcom.2017.08.218_bib13 article-title: Phase-change optical data storage in GaSb publication-title: Appl. Opt. doi: 10.1364/AO.26.004772 – volume: 106 start-page: 103509 year: 2009 ident: 10.1016/j.jallcom.2017.08.218_bib18 article-title: Ge–Sb–Te thin films deposited by pulsed laser: an ellipsometry and Raman scattering spectroscopy study publication-title: J. Appl. Phys. doi: 10.1063/1.3259435 – volume: 103 start-page: 083523 year: 2008 ident: 10.1016/j.jallcom.2017.08.218_bib15 article-title: Investigation of SnSe, SnSe2, and Sn2Se3 alloys for phase change memory applications publication-title: J. Appl. Phys. doi: 10.1063/1.2894903 – volume: 95 start-page: 031908 year: 2009 ident: 10.1016/j.jallcom.2017.08.218_bib9 article-title: Evidence of Germanium precipitation in phase-change Ge1−xTex thin films by Raman scattering publication-title: Appl. Phys. Lett. doi: 10.1063/1.3186077 – volume: 101 start-page: 122108 year: 2012 ident: 10.1016/j.jallcom.2017.08.218_bib19 article-title: W-Sb-Te phase-change material: a candidate for the trade-off between programming speed and data retention publication-title: Appl. Phys. Lett. doi: 10.1063/1.4754138 – volume: 381 start-page: 54 year: 2013 ident: 10.1016/j.jallcom.2017.08.218_bib21 article-title: Study on GeGaSbTe film for long data retention phase change memory application publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2013.09.017 – volume: 6 start-page: 824 year: 2007 ident: 10.1016/j.jallcom.2017.08.218_bib1 article-title: Phase-change materials for rewritable publication-title: Nat. Mater. doi: 10.1038/nmat2009 – volume: 118 start-page: 10248 year: 2014 ident: 10.1016/j.jallcom.2017.08.218_bib11 article-title: Excitation-assisted disordering of GeTe and related solids with resonant bonding publication-title: J. Phys. Chem. C doi: 10.1021/jp412412j – volume: 129 start-page: 56 year: 2017 ident: 10.1016/j.jallcom.2017.08.218_bib24 article-title: The ultrafast phase-change memory with high-thermal stability based on SiC-doped antimony publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2016.10.034 – volume: 65 start-page: 327 year: 2011 ident: 10.1016/j.jallcom.2017.08.218_bib8 article-title: Nitrogen incorporated GeTe phase change thin film for high-temperature data retention and low-power application publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2011.04.033 – volume: 102 start-page: 241907 year: 2013 ident: 10.1016/j.jallcom.2017.08.218_bib14 article-title: Performance improvement of Ge-Sb-Te material by GaSb doping for phase change memory publication-title: Appl. Phys. Lett. doi: 10.1063/1.4809735 – volume: 98 start-page: 055505 year: 2007 ident: 10.1016/j.jallcom.2017.08.218_bib4 article-title: Unique melting behavior in phase-change materials for rewritable data storage publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.055505 – volume: 108 start-page: 10410 year: 2011 ident: 10.1016/j.jallcom.2017.08.218_bib6 article-title: Pressure-induced reversible amorphization and an amorphous-amorphous transition in Ge2Sb2Te5 phase-change memory material publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1107464108 – volume: 105 start-page: 121902 year: 2014 ident: 10.1016/j.jallcom.2017.08.218_bib10 article-title: Structure and phonon behavior of crystalline GeTe ultrathin film publication-title: Appl. Phys. Lett. doi: 10.1063/1.4894864 – volume: 107 start-page: 242101 year: 2015 ident: 10.1016/j.jallcom.2017.08.218_bib17 article-title: High thermal stable and fast switching Ni-Ge-Te alloy for phase change memory applications publication-title: Appl. Phys. Lett. doi: 10.1063/1.4937603 – volume: 82 start-page: 168 year: 2005 ident: 10.1016/j.jallcom.2017.08.218_bib5 article-title: Characteristics of chalcogenide nonvolatile memory nano-cell-element based on Sb2Te3 material publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2005.07.007 – volume: 103 start-page: 1077 year: 2010 ident: 10.1016/j.jallcom.2017.08.218_bib7 article-title: Investigation of Sb-rich Si2Sb2+xTe6 material for phase change random access memory application publication-title: Appl. Phys. A doi: 10.1007/s00339-010-6042-0 – volume: 18 start-page: 787 year: 2016 ident: 10.1016/j.jallcom.2017.08.218_bib22 article-title: Performance improvement in a Ti–Sb–Te phase change material by GaSb doping publication-title: CrystEngComm doi: 10.1039/C5CE02153G – volume: 321 start-page: 210 year: 2008 ident: 10.1016/j.jallcom.2017.08.218_bib3 article-title: Engineering-phase-change materials for electronic memories publication-title: Science doi: 10.1126/science.1160231 |
SSID | ssj0001931 |
Score | 2.2788625 |
Snippet | Solving the contradictory between data retention and switching speed has been the subject of numerous investigations on phase change materials. Towards this... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1288 |
SubjectTerms | Alloys Computer memory Crystallization Doping Endurance Fast switching speed GaSb GeTe High stability Nanocomposites Phase change materials Switching Thermal stability Thermodynamic properties |
Title | The high-thermal stability and ultrafast phase change memory based on Ge1.6Te-GaSb nano-composite alloys |
URI | https://dx.doi.org/10.1016/j.jallcom.2017.08.218 https://www.proquest.com/docview/1967362181 |
Volume | 727 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4hpmnjAW0dCMYP-WGvbhPbTdxHVA26IXgBpL5ZF9cWVCWtaHjoC3_77tJkMISEtMckthX5Lndf5O_uA_ihvFaRoIS0aYYsYYZyEPtBmmgM-4-1nk90Ly6z0Y35Pe6PN2DY1sIwrbKJ_euYXkfr5k6v2c3e4u6ud5UMFJ_52TTXamDyMVewm5y9vPv0TPMggFKr5tFgyaOfq3h60-4UZzMmjVAWzLmTp2Ltj7fz06tIXaef0y-w3eBGcbJ-ta-wEcoOfBq2cm0d2HrRWbADH2tmp19-g1tyBMFNiSVDvXtag_BgzYhdCSwn4nFWPWDEZSUWt5TRxLoSWNwzA3clOMlNxLwUZyHtZtdBnuFVIUos55LJ6Mz4CoLP7lfLHbg5_Xk9HMlGXkF6rfNKosUiJtYXk8xjzDHTRcCgQshj0DYxqJJC-UgPCUOmKgy8n9APiEqiD5H-8vQubJbzMuyB8JhGZNV61NEEVsCitX1hY6rTWAS1D6bdVOeb3uMsgTFzLcls6hpbOLaFS6wjW-xD9--0xbr5xnsTbGsx948XOUoQ7009bC3sms946Sg85ZThCQV9__-VD-AzXzEHJu0fwmb18BiOCMlUxXHtqsfw4eTX-ejyDyDp9KE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9swDCW6FEO3w7BlG9at23TYVYktObZyLIK16drm0hTITaAVCW2QOkHjHvLvRzpy94EBBXa1TMEQafIJeuID-KacVoGghDRpjixhhnIYBl5mIcs4foxxfKJ7OcnH19mP2WC2B6P2LgzTKmPu3-X0JlvHJ_24mv317W3_KhkqPvMzaaHVMCtmz2Cfu1MNOrB_fHY-njwmZMIojXAevS_Z4NdFnv6it8DlknkjVAgLbuapWP7j3yXqr2TdVKCT1_AqQkdxvPu6N7Dnqy4cjFrFti68_K25YBeeN-ROt3kLNxQLgvsSS0Z7dzQHQcKGFLsVWM3Fw7K-x4CbWqxvqKiJ3WVgccck3K3gOjcXq0qc-rSXT708xatSVFitJPPRmfTlBR_fbzfv4Prk-3Q0llFhQTqti1qiwTIkxpXz3GEoMNelR6-8L4LXJslQJaVygQYJRqbKD52b0x5EJcH5QBs9_R461aryH0A4TAOycD3qkHkWwaK5XWlCqtNQenUIWbuo1sX246yCsbQtz2xhoy8s-8ImxpIvDqH3aLbe9d94ysC0HrN_BJKlGvGU6VHrYRv_5I2lDFVQkScg9PH_Z_4KB-Pp5YW9OJucf4IXPMKUmHRwBJ36_sF_JmBTl19i4P4EfTP3Ug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+high-thermal+stability+and+ultrafast+phase+change+memory+based+on+Ge1.6Te-GaSb+nano-composite+alloys&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Xue%2C+Yuan&rft.au=Song%2C+Sannian&rft.au=Yan%2C+Shuai&rft.au=Guo%2C+Tianqi&rft.date=2017-12-15&rft.issn=0925-8388&rft.volume=727&rft.spage=1288&rft.epage=1292&rft_id=info:doi/10.1016%2Fj.jallcom.2017.08.218&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2017_08_218 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |