The high-thermal stability and ultrafast phase change memory based on Ge1.6Te-GaSb nano-composite alloys

Solving the contradictory between data retention and switching speed has been the subject of numerous investigations on phase change materials. Towards this end, Ge1.6Te-GaSb nano-composite is proposed, which combines advantages of fast crystallization speed and high thermal stability. The character...

Full description

Saved in:
Bibliographic Details
Published inJournal of alloys and compounds Vol. 727; pp. 1288 - 1292
Main Authors Xue, Yuan, Song, Sannian, Yan, Shuai, Guo, Tianqi, Shen, Lanlan, Wu, Liangcai, Song, Zhitang, Feng, Songlin
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 15.12.2017
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solving the contradictory between data retention and switching speed has been the subject of numerous investigations on phase change materials. Towards this end, Ge1.6Te-GaSb nano-composite is proposed, which combines advantages of fast crystallization speed and high thermal stability. The characterization results elucidate that doped materials exhibit a high crystallization temperature due to the enhanced stability of the amorphous state associated with the generated larger energy barrier. Furthermore, the reversible electrical switching capability of the phase-change devices is improved in terms of an ultrafast speed of 5 ns with Sb-rich GaSb addition. A good endurance of 20 K and long data retention are achieved simultaneously, indicating that Sb-rich GaSb incorporation into Ge1.6Te alloy is a promising material for high-temperature performance applications. •Ge1.6Te-GaSb nano-composite combines advantages of fast crystallization speed and high thermal stability.•The temperature for 10-year data retention of Ge2.7Te1.7GaSb4.6 is up to 218 °C.•Ge2.7Te1.7GaSb4.6 shows 5ns operation speed.•The grain size of Ge2.7Te1.7GaSb4.6 is smaller than that of GeTe.
AbstractList Solving the contradictory between data retention and switching speed has been the subject of numerous investigations on phase change materials. Towards this end, Ge1.6Te-GaSb nano-composite is proposed, which combines advantages of fast crystallization speed and high thermal stability. The characterization results elucidate that doped materials exhibit a high crystallization temperature due to the enhanced stability of the amorphous state associated with the generated larger energy barrier. Furthermore, the reversible electrical switching capability of the phase-change devices is improved in terms of an ultrafast speed of 5 ns with Sb-rich GaSb addition. A good endurance of 20 K and long data retention are achieved simultaneously, indicating that Sb-rich GaSb incorporation into Ge1.6Te alloy is a promising material for high-temperature performance applications.
Solving the contradictory between data retention and switching speed has been the subject of numerous investigations on phase change materials. Towards this end, Ge1.6Te-GaSb nano-composite is proposed, which combines advantages of fast crystallization speed and high thermal stability. The characterization results elucidate that doped materials exhibit a high crystallization temperature due to the enhanced stability of the amorphous state associated with the generated larger energy barrier. Furthermore, the reversible electrical switching capability of the phase-change devices is improved in terms of an ultrafast speed of 5 ns with Sb-rich GaSb addition. A good endurance of 20 K and long data retention are achieved simultaneously, indicating that Sb-rich GaSb incorporation into Ge1.6Te alloy is a promising material for high-temperature performance applications. •Ge1.6Te-GaSb nano-composite combines advantages of fast crystallization speed and high thermal stability.•The temperature for 10-year data retention of Ge2.7Te1.7GaSb4.6 is up to 218 °C.•Ge2.7Te1.7GaSb4.6 shows 5ns operation speed.•The grain size of Ge2.7Te1.7GaSb4.6 is smaller than that of GeTe.
Author Feng, Songlin
Xue, Yuan
Song, Sannian
Yan, Shuai
Shen, Lanlan
Song, Zhitang
Guo, Tianqi
Wu, Liangcai
Author_xml – sequence: 1
  givenname: Yuan
  surname: Xue
  fullname: Xue, Yuan
  email: xueyuan@mail.sim.ac.cn
  organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
– sequence: 2
  givenname: Sannian
  surname: Song
  fullname: Song, Sannian
  email: songsannian@mail.sim.ac.cn
  organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
– sequence: 3
  givenname: Shuai
  surname: Yan
  fullname: Yan, Shuai
  organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
– sequence: 4
  givenname: Tianqi
  surname: Guo
  fullname: Guo, Tianqi
  organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
– sequence: 5
  givenname: Lanlan
  surname: Shen
  fullname: Shen, Lanlan
  organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
– sequence: 6
  givenname: Liangcai
  surname: Wu
  fullname: Wu, Liangcai
  organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
– sequence: 7
  givenname: Zhitang
  surname: Song
  fullname: Song, Zhitang
  organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
– sequence: 8
  givenname: Songlin
  surname: Feng
  fullname: Feng, Songlin
  organization: State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
BookMark eNqFkEtLJDEQgMOisKO7P2Eh4LnbPJzuNHsQER0FwcPOnkN1umKn6U7GJCPMvzcynrx4Kqiqrx7fGTnxwSMhfzirOePN5VRPMM8mLLVgvK2ZqgVXP8iKq1ZWV03TnZAV68S6UlKpn-QspYkxxjvJV2TcjkhH9zJWecS4wExTht7NLh8o-IHu5xzBQsp0N0JCakbwL0gXXEI80L6kBho83SCvmy1WG_jXUw8-VOWcXUguIy23hUP6RU4tzAl_f8Zz8v_-bnv7UD09bx5vb54qI2WbK1DQW6ZMPzQGbAuN7BFQILYWpWJXIFgvjC3FruNcYGfMINZrwaxB2_FWnpOL49xdDK97TFlPYR99Wal517SyKW546fp77DIxpBTRauMyZBd8edfNmjP9oVZP-lOt_lCrmdIFL_T6C72LboF4-Ja7PnJYBLw5jDoZh97g4CKarIfgvpnwDiURmpI
CitedBy_id crossref_primary_10_1109_LED_2024_3469194
crossref_primary_10_1002_inf2_12543
crossref_primary_10_1016_j_scriptamat_2018_08_009
crossref_primary_10_1088_1361_6528_aae4f4
crossref_primary_10_1007_s10854_025_14470_2
crossref_primary_10_1063_5_0031947
crossref_primary_10_1002_adma_202300107
crossref_primary_10_1088_0256_307X_35_9_096801
Cites_doi 10.1016/j.sse.2011.06.029
10.1021/cr900040x
10.1016/j.jnoncrysol.2011.12.087
10.1016/j.jallcom.2013.10.076
10.1063/1.1604172
10.1364/AO.26.004772
10.1063/1.3259435
10.1063/1.2894903
10.1063/1.3186077
10.1063/1.4754138
10.1016/j.jnoncrysol.2013.09.017
10.1038/nmat2009
10.1021/jp412412j
10.1016/j.scriptamat.2016.10.034
10.1016/j.scriptamat.2011.04.033
10.1063/1.4809735
10.1103/PhysRevLett.98.055505
10.1073/pnas.1107464108
10.1063/1.4894864
10.1063/1.4937603
10.1016/j.mee.2005.07.007
10.1007/s00339-010-6042-0
10.1039/C5CE02153G
10.1126/science.1160231
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright Elsevier BV Dec 15, 2017
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright Elsevier BV Dec 15, 2017
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/j.jallcom.2017.08.218
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4669
EndPage 1292
ExternalDocumentID 10_1016_j_jallcom_2017_08_218
S092583881732947X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
SMS
SSH
T9H
WUQ
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c337t-a8abf08cbd6caf7a63beae2ee7fe3804a20b2cf6ca99112e9ccd25520fcef9173
IEDL.DBID .~1
ISSN 0925-8388
IngestDate Fri Jul 25 03:02:29 EDT 2025
Thu Apr 24 23:02:25 EDT 2025
Tue Jul 01 01:54:34 EDT 2025
Fri Feb 23 02:27:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords GaSb
Fast switching speed
High stability
GeTe
Doping
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-a8abf08cbd6caf7a63beae2ee7fe3804a20b2cf6ca99112e9ccd25520fcef9173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1967362181
PQPubID 2045454
PageCount 5
ParticipantIDs proquest_journals_1967362181
crossref_citationtrail_10_1016_j_jallcom_2017_08_218
crossref_primary_10_1016_j_jallcom_2017_08_218
elsevier_sciencedirect_doi_10_1016_j_jallcom_2017_08_218
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-15
PublicationDateYYYYMMDD 2017-12-15
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-15
  day: 15
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Journal of alloys and compounds
PublicationYear 2017
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Sun, Zhou, Ahuja (bib4) 2007; 98
Zhou, Wu, Song, Rao, Liu, Yao, Yin, Feng, Chen (bib7) 2010; 103
Yu, Tong, Miao (bib10) 2014; 105
Zhang, Song, Song, Cheng, Gu, Wu, Liu, Feng (bib21) 2013; 381
Sun, Zhou, Pan, Song, Mao, Ahuja (bib6) 2011; 108
Lu, Song, Shen, Wang, Wu, Song, Liu, Dai (bib23) 2014; 586
Peng, Wu, Rao, Song, Zhou, Zhu, Liu, Yao, Feng, Yang, Chu (bib8) 2011; 65
Gourvest, Lhostis, Kreisel, Armand, Maitrejean, Roule, Vallée (bib9) 2009; 95
Gravesteijn, Sens, Bertens, vander Poel (bib13) 1987; 26
Němec, Moreac, Nazabal, Pavlišta, Přikryl, Frumar (bib18) 2009; 106
Kolobov, Fons, Tominaga, Hase (bib11) 2014; 118
van Pieterson, van Schijndel, Rijpers, Kaiser (bib12) 2003; 83
Betti Beneventi, Perniola, Sousa, Gourvest, Maitrejean, Bastien, Bastard, Hyot, Fargeix, Jahan, Nodin, Persico, Fantini, Blachier, Toffoli, Loubriat, Roule, Lhostis, Feldis, Reimbold, Billon, De Salvo, Larcher, Pavan, Bensahel, Mazoyer, Annunziata, Zuliani, Boulanger (bib16) 2011; 65–66
Lu, Zhang, Song, Shen, Wang, Cheng, Dai, Song (bib14) 2013; 102
Peng, Wu, Rao, Song, Yang, Song, Ren, Zhou, Zhu, Liu, Chu (bib19) 2012; 101
Raoux, Welnic, Ielmini (bib2) 2010; 110
Cao, Wu, Zhu, Ji, Zheng, Song, Rao, Song, Ma, Xu (bib17) 2015; 107
Chen, Song, Song, Li, Zhang, Zheng, Zheng, Zhu, Lu, Shao (bib22) 2016; 18
Atwood (bib3) 2008; 321
Wu, Zhu, Song, Lv, Zhou, Peng, Rao, Song, Liu, Feng (bib20) 2012; 358
Chung, Wamwangi, Woda, Wuttig, Bensch (bib15) 2008; 103
Wuttig, Yamada (bib1) 2007; 6
Liu, Song, Feng, Chen (bib5) 2005; 82
Guo, Song, Li, Ji, Li, Xu, Shen, Xue, Liu, Song, Qi, Feng (bib24) 2017; 129
Wuttig (10.1016/j.jallcom.2017.08.218_bib1) 2007; 6
van Pieterson (10.1016/j.jallcom.2017.08.218_bib12) 2003; 83
Liu (10.1016/j.jallcom.2017.08.218_bib5) 2005; 82
Lu (10.1016/j.jallcom.2017.08.218_bib23) 2014; 586
Zhang (10.1016/j.jallcom.2017.08.218_bib21) 2013; 381
Guo (10.1016/j.jallcom.2017.08.218_bib24) 2017; 129
Kolobov (10.1016/j.jallcom.2017.08.218_bib11) 2014; 118
Betti Beneventi (10.1016/j.jallcom.2017.08.218_bib16) 2011; 65–66
Gravesteijn (10.1016/j.jallcom.2017.08.218_bib13) 1987; 26
Chen (10.1016/j.jallcom.2017.08.218_bib22) 2016; 18
Sun (10.1016/j.jallcom.2017.08.218_bib4) 2007; 98
Sun (10.1016/j.jallcom.2017.08.218_bib6) 2011; 108
Wu (10.1016/j.jallcom.2017.08.218_bib20) 2012; 358
Peng (10.1016/j.jallcom.2017.08.218_bib8) 2011; 65
Yu (10.1016/j.jallcom.2017.08.218_bib10) 2014; 105
Raoux (10.1016/j.jallcom.2017.08.218_bib2) 2010; 110
Peng (10.1016/j.jallcom.2017.08.218_bib19) 2012; 101
Atwood (10.1016/j.jallcom.2017.08.218_bib3) 2008; 321
Zhou (10.1016/j.jallcom.2017.08.218_bib7) 2010; 103
Gourvest (10.1016/j.jallcom.2017.08.218_bib9) 2009; 95
Lu (10.1016/j.jallcom.2017.08.218_bib14) 2013; 102
Chung (10.1016/j.jallcom.2017.08.218_bib15) 2008; 103
Cao (10.1016/j.jallcom.2017.08.218_bib17) 2015; 107
Němec (10.1016/j.jallcom.2017.08.218_bib18) 2009; 106
References_xml – volume: 101
  start-page: 122108
  year: 2012
  ident: bib19
  article-title: W-Sb-Te phase-change material: a candidate for the trade-off between programming speed and data retention
  publication-title: Appl. Phys. Lett.
– volume: 83
  start-page: 1373
  year: 2003
  end-page: 1375
  ident: bib12
  article-title: Te-free, Sb-based phase-change materials for high-speed rewritable optical recording
  publication-title: Appl. Phys. Lett.
– volume: 106
  start-page: 103509
  year: 2009
  ident: bib18
  article-title: Ge–Sb–Te thin films deposited by pulsed laser: an ellipsometry and Raman scattering spectroscopy study
  publication-title: J. Appl. Phys.
– volume: 65–66
  start-page: 197
  year: 2011
  end-page: 204
  ident: bib16
  article-title: Carbon-doped GeTe: a promising material for phase-change memories
  publication-title: Solid State Electron.
– volume: 65
  start-page: 327
  year: 2011
  end-page: 330
  ident: bib8
  article-title: Nitrogen incorporated GeTe phase change thin film for high-temperature data retention and low-power application
  publication-title: Scr. Mater.
– volume: 129
  start-page: 56
  year: 2017
  end-page: 60
  ident: bib24
  article-title: The ultrafast phase-change memory with high-thermal stability based on SiC-doped antimony
  publication-title: Scr. Mater.
– volume: 95
  start-page: 031908
  year: 2009
  ident: bib9
  article-title: Evidence of Germanium precipitation in phase-change Ge
  publication-title: Appl. Phys. Lett.
– volume: 18
  start-page: 787
  year: 2016
  end-page: 792
  ident: bib22
  article-title: Performance improvement in a Ti–Sb–Te phase change material by GaSb doping
  publication-title: CrystEngComm
– volume: 586
  start-page: 669
  year: 2014
  end-page: 673
  ident: bib23
  article-title: Phase change characteristics of Sb-rich Ga–Sb–Se materials
  publication-title: J. Alloy. Comp.
– volume: 103
  start-page: 1077
  year: 2010
  end-page: 1081
  ident: bib7
  article-title: Investigation of Sb-rich Si
  publication-title: Appl. Phys. A
– volume: 6
  start-page: 824
  year: 2007
  end-page: 832
  ident: bib1
  article-title: Phase-change materials for rewritable
  publication-title: Nat. Mater.
– volume: 110
  start-page: 240
  year: 2010
  end-page: 267
  ident: bib2
  article-title: Phase change materials and their application to nonvolatile memories
  publication-title: Chem. Rev.
– volume: 118
  start-page: 10248
  year: 2014
  end-page: 10253
  ident: bib11
  article-title: Excitation-assisted disordering of GeTe and related solids with resonant bonding
  publication-title: J. Phys. Chem. C
– volume: 107
  start-page: 242101
  year: 2015
  ident: bib17
  article-title: High thermal stable and fast switching Ni-Ge-Te alloy for phase change memory applications
  publication-title: Appl. Phys. Lett.
– volume: 98
  start-page: 055505
  year: 2007
  ident: bib4
  article-title: Unique melting behavior in phase-change materials for rewritable data storage
  publication-title: Phys. Rev. Lett.
– volume: 105
  start-page: 121902
  year: 2014
  ident: bib10
  article-title: Structure and phonon behavior of crystalline GeTe ultrathin film
  publication-title: Appl. Phys. Lett.
– volume: 82
  start-page: 168
  year: 2005
  end-page: 174
  ident: bib5
  article-title: Characteristics of chalcogenide nonvolatile memory nano-cell-element based on Sb
  publication-title: Microelectron. Eng.
– volume: 358
  start-page: 2409
  year: 2012
  end-page: 2411
  ident: bib20
  article-title: Investigation on Sb-rich Sb–Se–Te phase-change material for phase change memory application
  publication-title: J. Non-Cryst. Solids
– volume: 103
  start-page: 083523
  year: 2008
  ident: bib15
  article-title: Investigation of SnSe, SnSe
  publication-title: J. Appl. Phys.
– volume: 321
  start-page: 210
  year: 2008
  end-page: 211
  ident: bib3
  article-title: Engineering-phase-change materials for electronic memories
  publication-title: Science
– volume: 26
  start-page: 4772
  year: 1987
  ident: bib13
  article-title: Phase-change optical data storage in GaSb
  publication-title: Appl. Opt.
– volume: 381
  start-page: 54
  year: 2013
  end-page: 57
  ident: bib21
  article-title: Study on GeGaSbTe film for long data retention phase change memory application
  publication-title: J. Non-Cryst. Solids
– volume: 108
  start-page: 10410
  year: 2011
  end-page: 10414
  ident: bib6
  article-title: Pressure-induced reversible amorphization and an amorphous-amorphous transition in Ge
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 102
  start-page: 241907
  year: 2013
  ident: bib14
  article-title: Performance improvement of Ge-Sb-Te material by GaSb doping for phase change memory
  publication-title: Appl. Phys. Lett.
– volume: 65–66
  start-page: 197
  year: 2011
  ident: 10.1016/j.jallcom.2017.08.218_bib16
  article-title: Carbon-doped GeTe: a promising material for phase-change memories
  publication-title: Solid State Electron.
  doi: 10.1016/j.sse.2011.06.029
– volume: 110
  start-page: 240
  year: 2010
  ident: 10.1016/j.jallcom.2017.08.218_bib2
  article-title: Phase change materials and their application to nonvolatile memories
  publication-title: Chem. Rev.
  doi: 10.1021/cr900040x
– volume: 358
  start-page: 2409
  year: 2012
  ident: 10.1016/j.jallcom.2017.08.218_bib20
  article-title: Investigation on Sb-rich Sb–Se–Te phase-change material for phase change memory application
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2011.12.087
– volume: 586
  start-page: 669
  year: 2014
  ident: 10.1016/j.jallcom.2017.08.218_bib23
  article-title: Phase change characteristics of Sb-rich Ga–Sb–Se materials
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2013.10.076
– volume: 83
  start-page: 1373
  year: 2003
  ident: 10.1016/j.jallcom.2017.08.218_bib12
  article-title: Te-free, Sb-based phase-change materials for high-speed rewritable optical recording
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1604172
– volume: 26
  start-page: 4772
  year: 1987
  ident: 10.1016/j.jallcom.2017.08.218_bib13
  article-title: Phase-change optical data storage in GaSb
  publication-title: Appl. Opt.
  doi: 10.1364/AO.26.004772
– volume: 106
  start-page: 103509
  year: 2009
  ident: 10.1016/j.jallcom.2017.08.218_bib18
  article-title: Ge–Sb–Te thin films deposited by pulsed laser: an ellipsometry and Raman scattering spectroscopy study
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3259435
– volume: 103
  start-page: 083523
  year: 2008
  ident: 10.1016/j.jallcom.2017.08.218_bib15
  article-title: Investigation of SnSe, SnSe2, and Sn2Se3 alloys for phase change memory applications
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2894903
– volume: 95
  start-page: 031908
  year: 2009
  ident: 10.1016/j.jallcom.2017.08.218_bib9
  article-title: Evidence of Germanium precipitation in phase-change Ge1−xTex thin films by Raman scattering
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3186077
– volume: 101
  start-page: 122108
  year: 2012
  ident: 10.1016/j.jallcom.2017.08.218_bib19
  article-title: W-Sb-Te phase-change material: a candidate for the trade-off between programming speed and data retention
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4754138
– volume: 381
  start-page: 54
  year: 2013
  ident: 10.1016/j.jallcom.2017.08.218_bib21
  article-title: Study on GeGaSbTe film for long data retention phase change memory application
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2013.09.017
– volume: 6
  start-page: 824
  year: 2007
  ident: 10.1016/j.jallcom.2017.08.218_bib1
  article-title: Phase-change materials for rewritable
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2009
– volume: 118
  start-page: 10248
  year: 2014
  ident: 10.1016/j.jallcom.2017.08.218_bib11
  article-title: Excitation-assisted disordering of GeTe and related solids with resonant bonding
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp412412j
– volume: 129
  start-page: 56
  year: 2017
  ident: 10.1016/j.jallcom.2017.08.218_bib24
  article-title: The ultrafast phase-change memory with high-thermal stability based on SiC-doped antimony
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2016.10.034
– volume: 65
  start-page: 327
  year: 2011
  ident: 10.1016/j.jallcom.2017.08.218_bib8
  article-title: Nitrogen incorporated GeTe phase change thin film for high-temperature data retention and low-power application
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2011.04.033
– volume: 102
  start-page: 241907
  year: 2013
  ident: 10.1016/j.jallcom.2017.08.218_bib14
  article-title: Performance improvement of Ge-Sb-Te material by GaSb doping for phase change memory
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4809735
– volume: 98
  start-page: 055505
  year: 2007
  ident: 10.1016/j.jallcom.2017.08.218_bib4
  article-title: Unique melting behavior in phase-change materials for rewritable data storage
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.055505
– volume: 108
  start-page: 10410
  year: 2011
  ident: 10.1016/j.jallcom.2017.08.218_bib6
  article-title: Pressure-induced reversible amorphization and an amorphous-amorphous transition in Ge2Sb2Te5 phase-change memory material
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1107464108
– volume: 105
  start-page: 121902
  year: 2014
  ident: 10.1016/j.jallcom.2017.08.218_bib10
  article-title: Structure and phonon behavior of crystalline GeTe ultrathin film
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4894864
– volume: 107
  start-page: 242101
  year: 2015
  ident: 10.1016/j.jallcom.2017.08.218_bib17
  article-title: High thermal stable and fast switching Ni-Ge-Te alloy for phase change memory applications
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4937603
– volume: 82
  start-page: 168
  year: 2005
  ident: 10.1016/j.jallcom.2017.08.218_bib5
  article-title: Characteristics of chalcogenide nonvolatile memory nano-cell-element based on Sb2Te3 material
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2005.07.007
– volume: 103
  start-page: 1077
  year: 2010
  ident: 10.1016/j.jallcom.2017.08.218_bib7
  article-title: Investigation of Sb-rich Si2Sb2+xTe6 material for phase change random access memory application
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-010-6042-0
– volume: 18
  start-page: 787
  year: 2016
  ident: 10.1016/j.jallcom.2017.08.218_bib22
  article-title: Performance improvement in a Ti–Sb–Te phase change material by GaSb doping
  publication-title: CrystEngComm
  doi: 10.1039/C5CE02153G
– volume: 321
  start-page: 210
  year: 2008
  ident: 10.1016/j.jallcom.2017.08.218_bib3
  article-title: Engineering-phase-change materials for electronic memories
  publication-title: Science
  doi: 10.1126/science.1160231
SSID ssj0001931
Score 2.2788625
Snippet Solving the contradictory between data retention and switching speed has been the subject of numerous investigations on phase change materials. Towards this...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1288
SubjectTerms Alloys
Computer memory
Crystallization
Doping
Endurance
Fast switching speed
GaSb
GeTe
High stability
Nanocomposites
Phase change materials
Switching
Thermal stability
Thermodynamic properties
Title The high-thermal stability and ultrafast phase change memory based on Ge1.6Te-GaSb nano-composite alloys
URI https://dx.doi.org/10.1016/j.jallcom.2017.08.218
https://www.proquest.com/docview/1967362181
Volume 727
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4hpmnjAW0dCMYP-WGvbhPbTdxHVA26IXgBpL5ZF9cWVCWtaHjoC3_77tJkMISEtMckthX5Lndf5O_uA_ihvFaRoIS0aYYsYYZyEPtBmmgM-4-1nk90Ly6z0Y35Pe6PN2DY1sIwrbKJ_euYXkfr5k6v2c3e4u6ud5UMFJ_52TTXamDyMVewm5y9vPv0TPMggFKr5tFgyaOfq3h60-4UZzMmjVAWzLmTp2Ltj7fz06tIXaef0y-w3eBGcbJ-ta-wEcoOfBq2cm0d2HrRWbADH2tmp19-g1tyBMFNiSVDvXtag_BgzYhdCSwn4nFWPWDEZSUWt5TRxLoSWNwzA3clOMlNxLwUZyHtZtdBnuFVIUos55LJ6Mz4CoLP7lfLHbg5_Xk9HMlGXkF6rfNKosUiJtYXk8xjzDHTRcCgQshj0DYxqJJC-UgPCUOmKgy8n9APiEqiD5H-8vQubJbzMuyB8JhGZNV61NEEVsCitX1hY6rTWAS1D6bdVOeb3uMsgTFzLcls6hpbOLaFS6wjW-xD9--0xbr5xnsTbGsx948XOUoQ7009bC3sms946Sg85ZThCQV9__-VD-AzXzEHJu0fwmb18BiOCMlUxXHtqsfw4eTX-ejyDyDp9KE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9swDCW6FEO3w7BlG9at23TYVYktObZyLIK16drm0hTITaAVCW2QOkHjHvLvRzpy94EBBXa1TMEQafIJeuID-KacVoGghDRpjixhhnIYBl5mIcs4foxxfKJ7OcnH19mP2WC2B6P2LgzTKmPu3-X0JlvHJ_24mv317W3_KhkqPvMzaaHVMCtmz2Cfu1MNOrB_fHY-njwmZMIojXAevS_Z4NdFnv6it8DlknkjVAgLbuapWP7j3yXqr2TdVKCT1_AqQkdxvPu6N7Dnqy4cjFrFti68_K25YBeeN-ROt3kLNxQLgvsSS0Z7dzQHQcKGFLsVWM3Fw7K-x4CbWqxvqKiJ3WVgccck3K3gOjcXq0qc-rSXT708xatSVFitJPPRmfTlBR_fbzfv4Prk-3Q0llFhQTqti1qiwTIkxpXz3GEoMNelR6-8L4LXJslQJaVygQYJRqbKD52b0x5EJcH5QBs9_R461aryH0A4TAOycD3qkHkWwaK5XWlCqtNQenUIWbuo1sX246yCsbQtz2xhoy8s-8ImxpIvDqH3aLbe9d94ysC0HrN_BJKlGvGU6VHrYRv_5I2lDFVQkScg9PH_Z_4KB-Pp5YW9OJucf4IXPMKUmHRwBJ36_sF_JmBTl19i4P4EfTP3Ug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+high-thermal+stability+and+ultrafast+phase+change+memory+based+on+Ge1.6Te-GaSb+nano-composite+alloys&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Xue%2C+Yuan&rft.au=Song%2C+Sannian&rft.au=Yan%2C+Shuai&rft.au=Guo%2C+Tianqi&rft.date=2017-12-15&rft.issn=0925-8388&rft.volume=727&rft.spage=1288&rft.epage=1292&rft_id=info:doi/10.1016%2Fj.jallcom.2017.08.218&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2017_08_218
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon