Leveraging Deep Reinforcement Learning With Attention Mechanism for Virtual Network Function Placement and Routing
The efficacy of Network Function Virtualization (NFV) depends critically on (1) where the virtual network functions (VNFs) are placed and (2) how the traffic is routed. Unfortunately, these aspects are not easily optimized, especially under time-varying network states with different QoS requirements...
Saved in:
Published in | IEEE transactions on parallel and distributed systems Vol. 34; no. 4; pp. 1 - 16 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1045-9219 1558-2183 |
DOI | 10.1109/TPDS.2023.3240404 |
Cover
Loading…
Abstract | The efficacy of Network Function Virtualization (NFV) depends critically on (1) where the virtual network functions (VNFs) are placed and (2) how the traffic is routed. Unfortunately, these aspects are not easily optimized, especially under time-varying network states with different QoS requirements. Given the importance of NFV, many approaches have been proposed to solve the VNF placement and Service Function Chaining (SFC) routing problem. However, those prior approaches mainly assume that the network state is static and known, disregarding dynamic network variations. To bridge that gap, we leverage Markov Decision Process (MDP) to model the dynamic network state transitions. To jointly minimize the delay and cost of NFV providers and maximize the revenue, we first devise a customized Deep Reinforcement Learning (DRL) algorithm for the VNF placement problem. The algorithm uses the attention mechanism to ascertain smooth network behavior within the general framework of network utility maximization (NUM). We then propose attention mechanism-based DRL algorithm for the SFC routing problem, which is to find the path to deliver traffic for the VNFs placed on different nodes. The simulation results show that our proposed algorithms outperform the state-of-the-art algorithms in terms of network utility, delay, cost, and acceptance ratio. |
---|---|
AbstractList | The efficacy of Network Function Virtualization (NFV) depends critically on (1) where the virtual network functions (VNFs) are placed and (2) how the traffic is routed. Unfortunately, these aspects are not easily optimized, especially under time-varying network states with different QoS requirements. Given the importance of NFV, many approaches have been proposed to solve the VNF placement and Service Function Chaining (SFC) routing problem. However, those prior approaches mainly assume that the network state is static and known, disregarding dynamic network variations. To bridge that gap, we leverage Markov Decision Process (MDP) to model the dynamic network state transitions. To jointly minimize the delay and cost of NFV providers and maximize the revenue, we first devise a customized Deep Reinforcement Learning (DRL) algorithm for the VNF placement problem. The algorithm uses the attention mechanism to ascertain smooth network behavior within the general framework of network utility maximization (NUM). We then propose attention mechanism-based DRL algorithm for the SFC routing problem, which is to find the path to deliver traffic for the VNFs placed on different nodes. The simulation results show that our proposed algorithms outperform the state-of-the-art algorithms in terms of network utility, delay, cost, and acceptance ratio. |
Author | Li, Fan Yang, Song Trajanovski, Stojan Wang, Yu Fu, Xiaoming He, Nan Zhu, Liehuang |
Author_xml | – sequence: 1 givenname: Nan orcidid: 0000-0002-4077-9587 surname: He fullname: He, Nan organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China – sequence: 2 givenname: Song orcidid: 0000-0002-5385-1402 surname: Yang fullname: Yang, Song organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China – sequence: 3 givenname: Fan orcidid: 0000-0002-2348-4488 surname: Li fullname: Li, Fan organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China – sequence: 4 givenname: Stojan orcidid: 0000-0003-0892-9263 surname: Trajanovski fullname: Trajanovski, Stojan organization: Microsoft, London, U.K – sequence: 5 givenname: Liehuang orcidid: 0000-0003-3277-3887 surname: Zhu fullname: Zhu, Liehuang organization: School of Cyberspace Security, Beijing Institute of Technology, Beijing, China – sequence: 6 givenname: Yu orcidid: 0000-0003-3511-0288 surname: Wang fullname: Wang, Yu organization: Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA – sequence: 7 givenname: Xiaoming orcidid: 0000-0002-8012-4753 surname: Fu fullname: Fu, Xiaoming organization: Institute of Computer Science, University of Göttingen, Göttingen, Germany |
BookMark | eNp9kEtPAyEUhYnRxPr4ASYuSFxP5cJQyrLxnVRtatXlhNI7Sm2ZyjAa_72M7cK4MCwgl--ck3v2yLavPBJyBKwLwPTpZHT-0OWMi67gOUtni3RAyn7GoS-205vlMtMc9C7Zq-s5Y5BLlndIGOIHBvPi_As9R1zRMTpfVsHiEn2kQzTBt3_PLr7SQYxp6CpPb9G-Gu_qJU0sfXIhNmZB7zB-VuGNXjbe_mCjhdkYGT-j46qJyeuA7JRmUePh5t4nj5cXk7PrbHh_dXM2GGZWCBUzIzUi9Kda5tZaXeq8B8g5IrNW9sRs2utNpwZ0okul9AyYBKGV4QBcKz4T--Rk7bsK1XuDdSzmVRN8iiy4Ukr2IRd5omBN2VDVdcCyWAW3NOGrAFa01RZttUVbbbGpNmnUH4110bQbx2Dc4l_l8VrpEPFXEuNaMyG-AZy8ibc |
CODEN | ITDSEO |
CitedBy_id | crossref_primary_10_1007_s11227_025_07042_y crossref_primary_10_1109_TMLCN_2024_3469131 crossref_primary_10_1007_s11432_024_4258_x crossref_primary_10_1109_TMC_2023_3282645 crossref_primary_10_1109_TNET_2024_3366950 crossref_primary_10_1371_journal_pone_0306777 crossref_primary_10_1109_TSC_2024_3440050 crossref_primary_10_1016_j_asoc_2024_111263 crossref_primary_10_1002_dac_5916 crossref_primary_10_1016_j_comnet_2025_111211 crossref_primary_10_53941_ijndi_2024_100020 crossref_primary_10_1109_TNSM_2024_3383213 crossref_primary_10_1016_j_heliyon_2024_e34735 crossref_primary_10_1109_TC_2023_3347671 crossref_primary_10_1109_LNET_2024_3400764 crossref_primary_10_1109_TMC_2023_3301506 crossref_primary_10_1109_TSC_2024_3422870 crossref_primary_10_1007_s12083_024_01800_0 crossref_primary_10_1016_j_adhoc_2025_103806 crossref_primary_10_1007_s11227_023_05614_4 |
Cites_doi | 10.1145/3466772.3467031 10.1145/3326285.3329056 10.1109/INFOCOM42981.2021.9488817 10.1016/j.comnet.2021.107830 10.1109/TMC.2019.2942306 10.1109/JSAC.2021.3087264 10.1109/JSAC.2019.2959182 10.1145/1111322.1111341 10.1109/LCOMM.2020.3025298 10.1109/IWCMC48107.2020.9148479 10.1109/IWQoS.2018.8624183 10.1109/IWQOS52092.2021.9521285 10.1109/INFOCOM.2017.8056993 10.1109/INFOCOM.2018.8486021 10.1109/NOMS47738.2020.9110288 10.1109/ICDCS.2019.00097 10.1109/IJCNN48605.2020.9206767 10.1109/TPDS.2018.2867587 10.1109/TPDS.2020.2983918 10.1109/INFOCOM.2017.8057039 10.1109/TPDS.2018.2802518 10.1109/ICDCS.2017.232 10.1109/IC2E.2015.49 10.1007/978-3-030-86137-7_37 10.1145/584091.584093 10.1109/ICDCS.2017.24 10.1109/TCOMM.2020.2992504 10.1109/INFCOMW.2019.8845184 10.1109/INFOCOM.2015.7218485 10.1109/TNSM.2019.2948137 10.1109/TPDS.2020.3017001 10.1109/TPDS.2018.2880992 10.1109/TSC.2018.2849712 10.1109/JSAC.2019.2959181 10.1364/JON.5.000509 10.1109/JSAC.2020.2986592 10.1609/aaai.v32i1.11694 10.1111/1475-3995.00003 10.1109/NFV-SDN.2015.7387426 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TPDS.2023.3240404 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1558-2183 |
EndPage | 16 |
ExternalDocumentID | 10_1109_TPDS_2023_3240404 10029903 |
Genre | orig-research |
GroupedDBID | --Z -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS TN5 TWZ UHB 5VS AAYOK AAYXX ABFSI AETIX AGSQL AI. AIBXA ALLEH CITATION E.L H~9 ICLAB IFJZH RIG RNI RZB VH1 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c337t-a59ee18b954ccc9f9461e22ee0cc563db66bba19c33f779d1051397a2112972d3 |
IEDL.DBID | RIE |
ISSN | 1045-9219 |
IngestDate | Mon Jun 30 05:43:27 EDT 2025 Tue Jul 01 03:58:41 EDT 2025 Thu Apr 24 22:51:59 EDT 2025 Wed Aug 27 02:18:20 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-a59ee18b954ccc9f9461e22ee0cc563db66bba19c33f779d1051397a2112972d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5385-1402 0000-0002-8012-4753 0000-0002-2348-4488 0000-0003-3277-3887 0000-0002-4077-9587 0000-0003-0892-9263 0000-0003-3511-0288 |
OpenAccessLink | https://resolver.sub.uni-goettingen.de/purl?gro-2/124215 |
PQID | 2777581434 |
PQPubID | 85437 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1109_TPDS_2023_3240404 ieee_primary_10029903 proquest_journals_2777581434 crossref_citationtrail_10_1109_TPDS_2023_3240404 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on parallel and distributed systems |
PublicationTitleAbbrev | TPDS |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref15 ref14 ref10 ref17 ref16 ref19 ref18 bello (ref41) 2016 lillicrap (ref11) 2015 (ref47) 2023 ref50 ref46 nakanoya (ref26) 2019 ref44 dai (ref42) 2017 ref49 vaswani (ref13) 2017 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref34 ref37 ref36 ref31 ref30 ref33 (ref48) 2023 ref32 chase (ref35) 2006 ref2 ref1 ref39 (ref45) 2023 ref38 vinyals (ref43) 2015 ref24 ref23 courville (ref12) 2015 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref5 doi: 10.1145/3466772.3467031 – ident: ref31 doi: 10.1145/3326285.3329056 – year: 2017 ident: ref42 article-title: Learning combinatorial optimization algorithms over graphs – ident: ref49 doi: 10.1109/INFOCOM42981.2021.9488817 – ident: ref9 doi: 10.1016/j.comnet.2021.107830 – ident: ref25 doi: 10.1109/TMC.2019.2942306 – ident: ref28 doi: 10.1109/JSAC.2021.3087264 – ident: ref16 doi: 10.1109/JSAC.2019.2959182 – ident: ref46 doi: 10.1145/1111322.1111341 – ident: ref27 doi: 10.1109/LCOMM.2020.3025298 – year: 2016 ident: ref41 article-title: Neural combinatorial optimization with reinforcement learning – ident: ref33 doi: 10.1109/IWCMC48107.2020.9148479 – ident: ref44 doi: 10.1109/IWQoS.2018.8624183 – ident: ref1 doi: 10.1109/IWQOS52092.2021.9521285 – ident: ref23 doi: 10.1109/INFOCOM.2017.8056993 – start-page: 2048 year: 2015 ident: ref12 article-title: Show, attend and tell: Neural image caption generation with visual attention publication-title: Proc Int Conf Mach Learn – ident: ref19 doi: 10.1109/INFOCOM.2018.8486021 – start-page: 36 year: 2019 ident: ref26 article-title: Environment-adaptive sizing and placement of NFV service chains with accelerated reinforcement learning publication-title: Proc IEEE/IFIP Symp Integr Netw Serv Manage – ident: ref3 doi: 10.1109/NOMS47738.2020.9110288 – year: 2015 ident: ref11 article-title: Continuous control with deep reinforcement learning – year: 2015 ident: ref43 article-title: Pointer networks – year: 2006 ident: ref35 article-title: Multi-tier service level agreement method and system – ident: ref30 doi: 10.1109/ICDCS.2019.00097 – ident: ref50 doi: 10.1109/IJCNN48605.2020.9206767 – ident: ref24 doi: 10.1109/TPDS.2018.2867587 – ident: ref2 doi: 10.1109/TPDS.2020.2983918 – year: 2023 ident: ref45 article-title: CERNET topology – ident: ref20 doi: 10.1109/INFOCOM.2017.8057039 – ident: ref17 doi: 10.1109/TPDS.2018.2802518 – ident: ref8 doi: 10.1109/ICDCS.2017.232 – ident: ref18 doi: 10.1109/IC2E.2015.49 – ident: ref22 doi: 10.1007/978-3-030-86137-7_37 – ident: ref34 doi: 10.1145/584091.584093 – ident: ref37 doi: 10.1109/ICDCS.2017.24 – ident: ref14 doi: 10.1109/TCOMM.2020.2992504 – ident: ref32 doi: 10.1109/INFCOMW.2019.8845184 – ident: ref38 doi: 10.1109/INFOCOM.2015.7218485 – start-page: 5998 year: 2017 ident: ref13 article-title: Attention is all you need publication-title: Proc Int Conf Neural Inf Process – year: 2023 ident: ref48 article-title: GÉNET topology – ident: ref6 doi: 10.1109/TNSM.2019.2948137 – ident: ref4 doi: 10.1109/TPDS.2020.3017001 – ident: ref7 doi: 10.1109/TPDS.2018.2880992 – ident: ref21 doi: 10.1109/TSC.2018.2849712 – ident: ref15 doi: 10.1109/JSAC.2019.2959181 – ident: ref36 doi: 10.1364/JON.5.000509 – ident: ref29 doi: 10.1109/JSAC.2020.2986592 – ident: ref10 doi: 10.1609/aaai.v32i1.11694 – year: 2023 ident: ref47 article-title: Abilene topology – ident: ref40 doi: 10.1111/1475-3995.00003 – ident: ref39 doi: 10.1109/NFV-SDN.2015.7387426 |
SSID | ssj0014504 |
Score | 2.5613296 |
Snippet | The efficacy of Network Function Virtualization (NFV) depends critically on (1) where the virtual network functions (VNFs) are placed and (2) how the traffic... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Approximation algorithms Costs Deep learning Deep reinforcement learning Delays Heuristic algorithms Machine learning Markov processes network function virtualization Optimization Placement Quality of service architectures Reinforcement learning Routing Virtual networks |
Title | Leveraging Deep Reinforcement Learning With Attention Mechanism for Virtual Network Function Placement and Routing |
URI | https://ieeexplore.ieee.org/document/10029903 https://www.proquest.com/docview/2777581434 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7Ukx58VMX6IgdPwm73HXMUtYjYIj57WzbZiRa1lnZ78debyWZFFMVbDpMQmElmJpn5PoCDVGfGK0nlKc6llxSZ9goZE4dGzDVGXEdIzcm9fnZ-l1wM0oFrVre9MIhoi8_Qp6H9yy_f1IyeyjoEF2puz3ge5k3mVjdrfX4ZJKnlCjTpReoJcw7dF2YYiM7t1emNTzzhPsHPJY6UrXFCllXlx1Vs_Ut3BfrNzuqykmd_VklfvX8Dbfz31ldh2UWa7Lg2jTWYw1ELVhoWB-YOdQuWvkASrsPkEo1xW-oidoo4ZtdosVWVfUZkDo71kT0Mqyd2XFV1tSTrIXUQD6evzMiy--GE2lJYv64xZ13jPK3YFT3a24WKUcmoGsmstQF33bPbk3PP8TJ4Ko555RWpQAyPpEgTpZTQIslCjCLEQKk0i0uZZVIWoTDSmnNRmhCO4swiotiOR2W8CQujtxFuAVNKS17qUJQiTgouCmor4cY-Un0UZCpqQ9AoKlcOtJy4M15ym7wEIifd5qTb3Om2DYefU8Y1Ysdfwhukqy-CtZrasNuYQ-4O9TSPODfZlQkwk-1fpu3AIq1eV_bswkI1meGeCVoquW-N9QPHwujs |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROAAH3hVLgfrACSkhL8f4iEpXC91dIVgetyh2xu2qsKAle-mvr8dxECoC9ZbD2LE0M56xPfN9AAfc5DYqKR1oIVSQlbkJSpUSh0YqDCbCJEjNyYNh3rvOzu_4nW9Wd70wiOiKzzCkT_eWXz3qGV2VHRFcqN0900-wYAM_j5t2rZdHg4w7tkB7wOCBtJ7oHzHjSB6NLk6vQmIKDwmALvO0bG0YcrwqbzZjF2G6qzBs19YUlvwOZ7UK9Z9_YBv_e_FrsOJzTXbSGMc6zOFkA1ZbHgfm3XoDll-BEm7CtI_WvB15ETtFfGKX6NBVtbtIZB6Q9Se7Hde_2EldN_WSbIDUQzx-fmBWlt2Mp9SYwoZNlTnr2vDpxC7o2t5NVE4qRvVIdq4tuO5-H33rBZ6ZIdBpKuqg5BIxPlaSZ1praWSWx5gkiJHWPE8rledKlbG00kYIWdkkjjLNMqHsTiRV-hnmJ48T3AamtVGiMrGsZJqVQpbUWCKshXBzHOU66UDUKqrQHrac2DPuC3d8iWRBui1It4XXbQcOX4Y8NZgdHwlvka5eCTZq6sBuaw6Fd-vnIhHCnq9sipntvDPsKyz2RoN-0T8b_vgCS_Snps5nF-br6Qz3bApTq31nuH8BFEbsNQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+Deep+Reinforcement+Learning+With+Attention+Mechanism+for+Virtual+Network+Function+Placement+and+Routing&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=He%2C+Nan&rft.au=Yang%2C+Song&rft.au=Li%2C+Fan&rft.au=Trajanovski%2C+Stojan&rft.date=2023-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1045-9219&rft.eissn=1558-2183&rft.volume=34&rft.issue=4&rft.spage=1186&rft_id=info:doi/10.1109%2FTPDS.2023.3240404&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon |