Leveraging Deep Reinforcement Learning With Attention Mechanism for Virtual Network Function Placement and Routing

The efficacy of Network Function Virtualization (NFV) depends critically on (1) where the virtual network functions (VNFs) are placed and (2) how the traffic is routed. Unfortunately, these aspects are not easily optimized, especially under time-varying network states with different QoS requirements...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on parallel and distributed systems Vol. 34; no. 4; pp. 1 - 16
Main Authors He, Nan, Yang, Song, Li, Fan, Trajanovski, Stojan, Zhu, Liehuang, Wang, Yu, Fu, Xiaoming
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1045-9219
1558-2183
DOI10.1109/TPDS.2023.3240404

Cover

Loading…
Abstract The efficacy of Network Function Virtualization (NFV) depends critically on (1) where the virtual network functions (VNFs) are placed and (2) how the traffic is routed. Unfortunately, these aspects are not easily optimized, especially under time-varying network states with different QoS requirements. Given the importance of NFV, many approaches have been proposed to solve the VNF placement and Service Function Chaining (SFC) routing problem. However, those prior approaches mainly assume that the network state is static and known, disregarding dynamic network variations. To bridge that gap, we leverage Markov Decision Process (MDP) to model the dynamic network state transitions. To jointly minimize the delay and cost of NFV providers and maximize the revenue, we first devise a customized Deep Reinforcement Learning (DRL) algorithm for the VNF placement problem. The algorithm uses the attention mechanism to ascertain smooth network behavior within the general framework of network utility maximization (NUM). We then propose attention mechanism-based DRL algorithm for the SFC routing problem, which is to find the path to deliver traffic for the VNFs placed on different nodes. The simulation results show that our proposed algorithms outperform the state-of-the-art algorithms in terms of network utility, delay, cost, and acceptance ratio.
AbstractList The efficacy of Network Function Virtualization (NFV) depends critically on (1) where the virtual network functions (VNFs) are placed and (2) how the traffic is routed. Unfortunately, these aspects are not easily optimized, especially under time-varying network states with different QoS requirements. Given the importance of NFV, many approaches have been proposed to solve the VNF placement and Service Function Chaining (SFC) routing problem. However, those prior approaches mainly assume that the network state is static and known, disregarding dynamic network variations. To bridge that gap, we leverage Markov Decision Process (MDP) to model the dynamic network state transitions. To jointly minimize the delay and cost of NFV providers and maximize the revenue, we first devise a customized Deep Reinforcement Learning (DRL) algorithm for the VNF placement problem. The algorithm uses the attention mechanism to ascertain smooth network behavior within the general framework of network utility maximization (NUM). We then propose attention mechanism-based DRL algorithm for the SFC routing problem, which is to find the path to deliver traffic for the VNFs placed on different nodes. The simulation results show that our proposed algorithms outperform the state-of-the-art algorithms in terms of network utility, delay, cost, and acceptance ratio.
Author Li, Fan
Yang, Song
Trajanovski, Stojan
Wang, Yu
Fu, Xiaoming
He, Nan
Zhu, Liehuang
Author_xml – sequence: 1
  givenname: Nan
  orcidid: 0000-0002-4077-9587
  surname: He
  fullname: He, Nan
  organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Song
  orcidid: 0000-0002-5385-1402
  surname: Yang
  fullname: Yang, Song
  organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
– sequence: 3
  givenname: Fan
  orcidid: 0000-0002-2348-4488
  surname: Li
  fullname: Li, Fan
  organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
– sequence: 4
  givenname: Stojan
  orcidid: 0000-0003-0892-9263
  surname: Trajanovski
  fullname: Trajanovski, Stojan
  organization: Microsoft, London, U.K
– sequence: 5
  givenname: Liehuang
  orcidid: 0000-0003-3277-3887
  surname: Zhu
  fullname: Zhu, Liehuang
  organization: School of Cyberspace Security, Beijing Institute of Technology, Beijing, China
– sequence: 6
  givenname: Yu
  orcidid: 0000-0003-3511-0288
  surname: Wang
  fullname: Wang, Yu
  organization: Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA
– sequence: 7
  givenname: Xiaoming
  orcidid: 0000-0002-8012-4753
  surname: Fu
  fullname: Fu, Xiaoming
  organization: Institute of Computer Science, University of Göttingen, Göttingen, Germany
BookMark eNp9kEtPAyEUhYnRxPr4ASYuSFxP5cJQyrLxnVRtatXlhNI7Sm2ZyjAa_72M7cK4MCwgl--ck3v2yLavPBJyBKwLwPTpZHT-0OWMi67gOUtni3RAyn7GoS-205vlMtMc9C7Zq-s5Y5BLlndIGOIHBvPi_As9R1zRMTpfVsHiEn2kQzTBt3_PLr7SQYxp6CpPb9G-Gu_qJU0sfXIhNmZB7zB-VuGNXjbe_mCjhdkYGT-j46qJyeuA7JRmUePh5t4nj5cXk7PrbHh_dXM2GGZWCBUzIzUi9Kda5tZaXeq8B8g5IrNW9sRs2utNpwZ0okul9AyYBKGV4QBcKz4T--Rk7bsK1XuDdSzmVRN8iiy4Ukr2IRd5omBN2VDVdcCyWAW3NOGrAFa01RZttUVbbbGpNmnUH4110bQbx2Dc4l_l8VrpEPFXEuNaMyG-AZy8ibc
CODEN ITDSEO
CitedBy_id crossref_primary_10_1007_s11227_025_07042_y
crossref_primary_10_1109_TMLCN_2024_3469131
crossref_primary_10_1007_s11432_024_4258_x
crossref_primary_10_1109_TMC_2023_3282645
crossref_primary_10_1109_TNET_2024_3366950
crossref_primary_10_1371_journal_pone_0306777
crossref_primary_10_1109_TSC_2024_3440050
crossref_primary_10_1016_j_asoc_2024_111263
crossref_primary_10_1002_dac_5916
crossref_primary_10_1016_j_comnet_2025_111211
crossref_primary_10_53941_ijndi_2024_100020
crossref_primary_10_1109_TNSM_2024_3383213
crossref_primary_10_1016_j_heliyon_2024_e34735
crossref_primary_10_1109_TC_2023_3347671
crossref_primary_10_1109_LNET_2024_3400764
crossref_primary_10_1109_TMC_2023_3301506
crossref_primary_10_1109_TSC_2024_3422870
crossref_primary_10_1007_s12083_024_01800_0
crossref_primary_10_1016_j_adhoc_2025_103806
crossref_primary_10_1007_s11227_023_05614_4
Cites_doi 10.1145/3466772.3467031
10.1145/3326285.3329056
10.1109/INFOCOM42981.2021.9488817
10.1016/j.comnet.2021.107830
10.1109/TMC.2019.2942306
10.1109/JSAC.2021.3087264
10.1109/JSAC.2019.2959182
10.1145/1111322.1111341
10.1109/LCOMM.2020.3025298
10.1109/IWCMC48107.2020.9148479
10.1109/IWQoS.2018.8624183
10.1109/IWQOS52092.2021.9521285
10.1109/INFOCOM.2017.8056993
10.1109/INFOCOM.2018.8486021
10.1109/NOMS47738.2020.9110288
10.1109/ICDCS.2019.00097
10.1109/IJCNN48605.2020.9206767
10.1109/TPDS.2018.2867587
10.1109/TPDS.2020.2983918
10.1109/INFOCOM.2017.8057039
10.1109/TPDS.2018.2802518
10.1109/ICDCS.2017.232
10.1109/IC2E.2015.49
10.1007/978-3-030-86137-7_37
10.1145/584091.584093
10.1109/ICDCS.2017.24
10.1109/TCOMM.2020.2992504
10.1109/INFCOMW.2019.8845184
10.1109/INFOCOM.2015.7218485
10.1109/TNSM.2019.2948137
10.1109/TPDS.2020.3017001
10.1109/TPDS.2018.2880992
10.1109/TSC.2018.2849712
10.1109/JSAC.2019.2959181
10.1364/JON.5.000509
10.1109/JSAC.2020.2986592
10.1609/aaai.v32i1.11694
10.1111/1475-3995.00003
10.1109/NFV-SDN.2015.7387426
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TPDS.2023.3240404
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2183
EndPage 16
ExternalDocumentID 10_1109_TPDS_2023_3240404
10029903
Genre orig-research
GroupedDBID --Z
-~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
TWZ
UHB
5VS
AAYOK
AAYXX
ABFSI
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
H~9
ICLAB
IFJZH
RIG
RNI
RZB
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c337t-a59ee18b954ccc9f9461e22ee0cc563db66bba19c33f779d1051397a2112972d3
IEDL.DBID RIE
ISSN 1045-9219
IngestDate Mon Jun 30 05:43:27 EDT 2025
Tue Jul 01 03:58:41 EDT 2025
Thu Apr 24 22:51:59 EDT 2025
Wed Aug 27 02:18:20 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-a59ee18b954ccc9f9461e22ee0cc563db66bba19c33f779d1051397a2112972d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5385-1402
0000-0002-8012-4753
0000-0002-2348-4488
0000-0003-3277-3887
0000-0002-4077-9587
0000-0003-0892-9263
0000-0003-3511-0288
OpenAccessLink https://resolver.sub.uni-goettingen.de/purl?gro-2/124215
PQID 2777581434
PQPubID 85437
PageCount 16
ParticipantIDs crossref_primary_10_1109_TPDS_2023_3240404
ieee_primary_10029903
proquest_journals_2777581434
crossref_citationtrail_10_1109_TPDS_2023_3240404
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on parallel and distributed systems
PublicationTitleAbbrev TPDS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
ref14
ref10
ref17
ref16
ref19
ref18
bello (ref41) 2016
lillicrap (ref11) 2015
(ref47) 2023
ref50
ref46
nakanoya (ref26) 2019
ref44
dai (ref42) 2017
ref49
vaswani (ref13) 2017
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref34
ref37
ref36
ref31
ref30
ref33
(ref48) 2023
ref32
chase (ref35) 2006
ref2
ref1
ref39
(ref45) 2023
ref38
vinyals (ref43) 2015
ref24
ref23
courville (ref12) 2015
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref5
  doi: 10.1145/3466772.3467031
– ident: ref31
  doi: 10.1145/3326285.3329056
– year: 2017
  ident: ref42
  article-title: Learning combinatorial optimization algorithms over graphs
– ident: ref49
  doi: 10.1109/INFOCOM42981.2021.9488817
– ident: ref9
  doi: 10.1016/j.comnet.2021.107830
– ident: ref25
  doi: 10.1109/TMC.2019.2942306
– ident: ref28
  doi: 10.1109/JSAC.2021.3087264
– ident: ref16
  doi: 10.1109/JSAC.2019.2959182
– ident: ref46
  doi: 10.1145/1111322.1111341
– ident: ref27
  doi: 10.1109/LCOMM.2020.3025298
– year: 2016
  ident: ref41
  article-title: Neural combinatorial optimization with reinforcement learning
– ident: ref33
  doi: 10.1109/IWCMC48107.2020.9148479
– ident: ref44
  doi: 10.1109/IWQoS.2018.8624183
– ident: ref1
  doi: 10.1109/IWQOS52092.2021.9521285
– ident: ref23
  doi: 10.1109/INFOCOM.2017.8056993
– start-page: 2048
  year: 2015
  ident: ref12
  article-title: Show, attend and tell: Neural image caption generation with visual attention
  publication-title: Proc Int Conf Mach Learn
– ident: ref19
  doi: 10.1109/INFOCOM.2018.8486021
– start-page: 36
  year: 2019
  ident: ref26
  article-title: Environment-adaptive sizing and placement of NFV service chains with accelerated reinforcement learning
  publication-title: Proc IEEE/IFIP Symp Integr Netw Serv Manage
– ident: ref3
  doi: 10.1109/NOMS47738.2020.9110288
– year: 2015
  ident: ref11
  article-title: Continuous control with deep reinforcement learning
– year: 2015
  ident: ref43
  article-title: Pointer networks
– year: 2006
  ident: ref35
  article-title: Multi-tier service level agreement method and system
– ident: ref30
  doi: 10.1109/ICDCS.2019.00097
– ident: ref50
  doi: 10.1109/IJCNN48605.2020.9206767
– ident: ref24
  doi: 10.1109/TPDS.2018.2867587
– ident: ref2
  doi: 10.1109/TPDS.2020.2983918
– year: 2023
  ident: ref45
  article-title: CERNET topology
– ident: ref20
  doi: 10.1109/INFOCOM.2017.8057039
– ident: ref17
  doi: 10.1109/TPDS.2018.2802518
– ident: ref8
  doi: 10.1109/ICDCS.2017.232
– ident: ref18
  doi: 10.1109/IC2E.2015.49
– ident: ref22
  doi: 10.1007/978-3-030-86137-7_37
– ident: ref34
  doi: 10.1145/584091.584093
– ident: ref37
  doi: 10.1109/ICDCS.2017.24
– ident: ref14
  doi: 10.1109/TCOMM.2020.2992504
– ident: ref32
  doi: 10.1109/INFCOMW.2019.8845184
– ident: ref38
  doi: 10.1109/INFOCOM.2015.7218485
– start-page: 5998
  year: 2017
  ident: ref13
  article-title: Attention is all you need
  publication-title: Proc Int Conf Neural Inf Process
– year: 2023
  ident: ref48
  article-title: GÉNET topology
– ident: ref6
  doi: 10.1109/TNSM.2019.2948137
– ident: ref4
  doi: 10.1109/TPDS.2020.3017001
– ident: ref7
  doi: 10.1109/TPDS.2018.2880992
– ident: ref21
  doi: 10.1109/TSC.2018.2849712
– ident: ref15
  doi: 10.1109/JSAC.2019.2959181
– ident: ref36
  doi: 10.1364/JON.5.000509
– ident: ref29
  doi: 10.1109/JSAC.2020.2986592
– ident: ref10
  doi: 10.1609/aaai.v32i1.11694
– year: 2023
  ident: ref47
  article-title: Abilene topology
– ident: ref40
  doi: 10.1111/1475-3995.00003
– ident: ref39
  doi: 10.1109/NFV-SDN.2015.7387426
SSID ssj0014504
Score 2.5613296
Snippet The efficacy of Network Function Virtualization (NFV) depends critically on (1) where the virtual network functions (VNFs) are placed and (2) how the traffic...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Approximation algorithms
Costs
Deep learning
Deep reinforcement learning
Delays
Heuristic algorithms
Machine learning
Markov processes
network function virtualization
Optimization
Placement
Quality of service architectures
Reinforcement learning
Routing
Virtual networks
Title Leveraging Deep Reinforcement Learning With Attention Mechanism for Virtual Network Function Placement and Routing
URI https://ieeexplore.ieee.org/document/10029903
https://www.proquest.com/docview/2777581434
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7Ukx58VMX6IgdPwm73HXMUtYjYIj57WzbZiRa1lnZ78debyWZFFMVbDpMQmElmJpn5PoCDVGfGK0nlKc6llxSZ9goZE4dGzDVGXEdIzcm9fnZ-l1wM0oFrVre9MIhoi8_Qp6H9yy_f1IyeyjoEF2puz3ge5k3mVjdrfX4ZJKnlCjTpReoJcw7dF2YYiM7t1emNTzzhPsHPJY6UrXFCllXlx1Vs_Ut3BfrNzuqykmd_VklfvX8Dbfz31ldh2UWa7Lg2jTWYw1ELVhoWB-YOdQuWvkASrsPkEo1xW-oidoo4ZtdosVWVfUZkDo71kT0Mqyd2XFV1tSTrIXUQD6evzMiy--GE2lJYv64xZ13jPK3YFT3a24WKUcmoGsmstQF33bPbk3PP8TJ4Ko555RWpQAyPpEgTpZTQIslCjCLEQKk0i0uZZVIWoTDSmnNRmhCO4swiotiOR2W8CQujtxFuAVNKS17qUJQiTgouCmor4cY-Un0UZCpqQ9AoKlcOtJy4M15ym7wEIifd5qTb3Om2DYefU8Y1Ysdfwhukqy-CtZrasNuYQ-4O9TSPODfZlQkwk-1fpu3AIq1eV_bswkI1meGeCVoquW-N9QPHwujs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROAAH3hVLgfrACSkhL8f4iEpXC91dIVgetyh2xu2qsKAle-mvr8dxECoC9ZbD2LE0M56xPfN9AAfc5DYqKR1oIVSQlbkJSpUSh0YqDCbCJEjNyYNh3rvOzu_4nW9Wd70wiOiKzzCkT_eWXz3qGV2VHRFcqN0900-wYAM_j5t2rZdHg4w7tkB7wOCBtJ7oHzHjSB6NLk6vQmIKDwmALvO0bG0YcrwqbzZjF2G6qzBs19YUlvwOZ7UK9Z9_YBv_e_FrsOJzTXbSGMc6zOFkA1ZbHgfm3XoDll-BEm7CtI_WvB15ETtFfGKX6NBVtbtIZB6Q9Se7Hde_2EldN_WSbIDUQzx-fmBWlt2Mp9SYwoZNlTnr2vDpxC7o2t5NVE4qRvVIdq4tuO5-H33rBZ6ZIdBpKuqg5BIxPlaSZ1praWSWx5gkiJHWPE8rledKlbG00kYIWdkkjjLNMqHsTiRV-hnmJ48T3AamtVGiMrGsZJqVQpbUWCKshXBzHOU66UDUKqrQHrac2DPuC3d8iWRBui1It4XXbQcOX4Y8NZgdHwlvka5eCTZq6sBuaw6Fd-vnIhHCnq9sipntvDPsKyz2RoN-0T8b_vgCS_Snps5nF-br6Qz3bApTq31nuH8BFEbsNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+Deep+Reinforcement+Learning+With+Attention+Mechanism+for+Virtual+Network+Function+Placement+and+Routing&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=He%2C+Nan&rft.au=Yang%2C+Song&rft.au=Li%2C+Fan&rft.au=Trajanovski%2C+Stojan&rft.date=2023-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1045-9219&rft.eissn=1558-2183&rft.volume=34&rft.issue=4&rft.spage=1186&rft_id=info:doi/10.1109%2FTPDS.2023.3240404&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon