On mechanical control systems with nonholonomic constraints and symmetries

This paper presents a computationally efficient method for deriving coordinate representations for the equations of motion and the affine connection describing a class of Lagrangian systems. We consider mechanical systems endowed with symmetries and subject to nonholonomic constraints and external f...

Full description

Saved in:
Bibliographic Details
Published inSystems & control letters Vol. 45; no. 2; pp. 133 - 143
Main Authors Bullo, Francesco, Žefran, Miloš
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.02.2002
Elsevier
Subjects
Online AccessGet full text
ISSN0167-6911
1872-7956
DOI10.1016/S0167-6911(01)00173-6

Cover

Loading…
Abstract This paper presents a computationally efficient method for deriving coordinate representations for the equations of motion and the affine connection describing a class of Lagrangian systems. We consider mechanical systems endowed with symmetries and subject to nonholonomic constraints and external forces. The method is demonstrated on two robotic locomotion mechanisms known as the snakeboard and the roller racer. The resulting coordinate representations are compact and lead to straightforward proofs of various controllability results.
AbstractList This paper presents a computationally efficient method for deriving coordinate representations for the equations of motion and the affine connection describing a class of Lagrangian systems. We consider mechanical systems endowed with symmetries and subject to nonholonomic constraints and external forces. The method is demonstrated on two robotic locomotion mechanisms known as the snakeboard and the roller racer. The resulting coordinate representations are compact and lead to straightforward proofs of various controllability results.
Author Žefran, Miloš
Bullo, Francesco
Author_xml – sequence: 1
  givenname: Francesco
  surname: Bullo
  fullname: Bullo, Francesco
  email: bullo@uiuc.edu
  organization: Coordinated Science Laboratory and General Engineering Department, University of Illinois at Urbana-Champaign, 1308 W. Main St., Urbana, IL 61801, USA
– sequence: 2
  givenname: Miloš
  surname: Žefran
  fullname: Žefran, Miloš
  email: mzefran@eecs.uic.edu
  organization: Department of Electrical Engineering and Computer Science, University of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60607, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14237235$$DView record in Pascal Francis
BookMark eNqFkE1LAzEQhoNUsK3-BGEvgh5WM5sm6eJBpPhJoQf1HLJJlkZ2k5IEpf_erJUevBTChMDzzmSeCRo57wxC54CvAQO7ecuFl6wGuMRwhTFwUrIjNIY5r0peUzZC4z1ygiYxfmKMK0zIGL2uXNEbtZbOKtkVyrsUfFfEbUymj8W3Tesij1v7zjvfWzUQMQVpXYqFdDqTfW9SsCaeouNWdtGc_d1T9PH48L54Lperp5fF_bJUhPBUSjJvOWjFSatpWzdVXbOay4bMK1ZpKo3mWBulGwAlOeUUGjrLD06bWgGlZIoudn03MuY_t0E6ZaPYBNvLsBUwqwivyMDd7jgVfIzBtELZJJMdVpS2E4DFoE_86hODG4HzGfQJltP0X3o_4EDubpczWcGXNUFEZY1TRttgVBLa2wMdfgBZ3oqR
CODEN SCLEDC
CitedBy_id crossref_primary_10_1002_rnc_1259
crossref_primary_10_3182_20080706_5_KR_1001_00202
crossref_primary_10_1109_TRA_2002_802233
crossref_primary_10_1007_s11071_021_07151_2
crossref_primary_10_1088_0253_6102_54_5_02
crossref_primary_10_1109_TAC_2004_825651
crossref_primary_10_1016_S1474_6670_17_38861_4
crossref_primary_10_1063_1_3525798
crossref_primary_10_1115_1_2764507
crossref_primary_10_1063_1_3049752
crossref_primary_10_1109_TRA_2003_810236
crossref_primary_10_1109_TRO_2004_829455
crossref_primary_10_1007_s11071_006_9053_9
crossref_primary_10_1137_S0363012900374099
crossref_primary_10_1007_s00332_016_9357_y
crossref_primary_10_1088_0143_0807_31_2_011
crossref_primary_10_1115_1_4034729
crossref_primary_10_3166_ejc_10_397_410
crossref_primary_10_1016_j_mechmachtheory_2014_07_012
crossref_primary_10_1017_S0263574707003815
crossref_primary_10_1016_j_geomphys_2014_12_011
crossref_primary_10_1016_j_na_2009_05_055
crossref_primary_10_1007_s11071_018_4693_0
crossref_primary_10_1016_j_apm_2011_08_005
Cites_doi 10.1109/CDC.1995.478543
10.1007/BF01459122
10.1177/027836499401300104
10.1007/BF02199365
10.1109/9.871753
10.1109/9.871752
10.1109/37.476384
10.1016/S0034-4877(98)80008-6
10.1177/027836499801700701
10.1137/S0363012999364796
10.1137/S0363012995287155
10.1016/0034-4877(94)90038-8
10.1137/S036301299223533X
10.1109/ROBOT.1994.351153
10.1109/9.173144
ContentType Journal Article
Copyright 2002 Elsevier Science B.V.
Copyright_xml – notice: 2002 Elsevier Science B.V.
DBID AAYXX
CITATION
IQODW
DOI 10.1016/S0167-6911(01)00173-6
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Physics
EISSN 1872-7956
EndPage 143
ExternalDocumentID 14237235
10_1016_S0167_6911_01_00173_6
S0167691101001736
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
TN5
WH7
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
ID FETCH-LOGICAL-c337t-a38f71dc73fd5f9b299697ab38262d5aed70decdb11ca75751b54b1175b9c1553
IEDL.DBID AIKHN
ISSN 0167-6911
IngestDate Mon Jul 21 09:17:18 EDT 2025
Tue Jul 01 03:28:54 EDT 2025
Thu Apr 24 22:56:25 EDT 2025
Fri Feb 23 02:33:32 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Nonholonomic constraints
Mechanical systems
Modeling
Nonlinear control
Differential geometric methods
Locomotion
Lagrangian
Equation of motion
Differential geometry
Mechanical system
Non holonomic system
Mechanical control
Controllability
Lagrangian system
Robotics
Symmetry
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-a38f71dc73fd5f9b299697ab38262d5aed70decdb11ca75751b54b1175b9c1553
PageCount 11
ParticipantIDs pascalfrancis_primary_14237235
crossref_citationtrail_10_1016_S0167_6911_01_00173_6
crossref_primary_10_1016_S0167_6911_01_00173_6
elsevier_sciencedirect_doi_10_1016_S0167_6911_01_00173_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2002-02-15
PublicationDateYYYYMMDD 2002-02-15
PublicationDate_xml – month: 02
  year: 2002
  text: 2002-02-15
  day: 15
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Systems & control letters
PublicationYear 2002
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Kobayashi, Nomizu (BIB6) 1963; Vol. 15
Kolmanovsky, McClamroch (BIB7) 1995; 15
Bullo (BIB4) 2001; 40
Marsden, Ratiu (BIB13) 1999
Synge (BIB16) 1928; 99
Bloch, Krishnaprasad, Marsden, Murray (BIB2) 1996; 136
Vershik (BIB18) 1984; Vol. 1108
Bloch, Crouch (BIB1) 1995; 33
P.S. Krishnaprasad, D.P. Tsakiris, Oscillations, SE(2)-snakes and motion control, in: IEEE Conference on Decision and Control, New Orleans, LA, December 1995, pp. 2806–2811, A longer version submitted to Dyn. Stability Systems.
A.D. Lewis, J.P. Ostrowski, R.M. Murray, J.W. Burdick, Nonholonomic mechanics and locomotion: the snakeboard example, in: IEEE International Conference on Robotics and Automation, San Diego, CA, May 1994, pp. 2391–2400.
Lewis (BIB9) 1998; 42
van der Schaft, Maschke (BIB17) 1994; 34
Bloch, Reyhanoglu, McClamroch (BIB3) 1992; 37
Lewis (BIB10) 2000; 45
Bullo, Leonard, Lewis (BIB5) 2000; 45
Lewis, Murray (BIB11) 1997; 35
Ostrowski, Burdick (BIB14) 1998; 17
Sarkar, Yun, Kumar (BIB15) 1994; 13
Sarkar (10.1016/S0167-6911(01)00173-6_BIB15) 1994; 13
Vershik (10.1016/S0167-6911(01)00173-6_BIB18) 1984; Vol. 1108
Kobayashi (10.1016/S0167-6911(01)00173-6_BIB6) 1963; Vol. 15
Lewis (10.1016/S0167-6911(01)00173-6_BIB11) 1997; 35
Lewis (10.1016/S0167-6911(01)00173-6_BIB10) 2000; 45
van der Schaft (10.1016/S0167-6911(01)00173-6_BIB17) 1994; 34
10.1016/S0167-6911(01)00173-6_BIB12
10.1016/S0167-6911(01)00173-6_BIB8
Lewis (10.1016/S0167-6911(01)00173-6_BIB9) 1998; 42
Ostrowski (10.1016/S0167-6911(01)00173-6_BIB14) 1998; 17
Kolmanovsky (10.1016/S0167-6911(01)00173-6_BIB7) 1995; 15
Bloch (10.1016/S0167-6911(01)00173-6_BIB2) 1996; 136
Synge (10.1016/S0167-6911(01)00173-6_BIB16) 1928; 99
Bullo (10.1016/S0167-6911(01)00173-6_BIB5) 2000; 45
Marsden (10.1016/S0167-6911(01)00173-6_BIB13) 1999
Bloch (10.1016/S0167-6911(01)00173-6_BIB1) 1995; 33
Bullo (10.1016/S0167-6911(01)00173-6_BIB4) 2001; 40
Bloch (10.1016/S0167-6911(01)00173-6_BIB3) 1992; 37
References_xml – volume: 33
  start-page: 126
  year: 1995
  end-page: 148
  ident: BIB1
  article-title: Nonholonomic control systems on Riemannian manifolds
  publication-title: SIAM J. Control Optim.
– volume: 45
  start-page: 1420
  year: 2000
  end-page: 1436
  ident: BIB10
  article-title: Simple mechanical control systems with constraints
  publication-title: IEEE Trans. Automat. Control
– volume: 13
  start-page: 55
  year: 1994
  end-page: 69
  ident: BIB15
  article-title: Control of mechanical systems with rolling constraints: application to dynamic control of mobile robots
  publication-title: Internat. J. Robotics Res.
– volume: 99
  start-page: 738
  year: 1928
  end-page: 751
  ident: BIB16
  article-title: Geodesics in nonholonomic geometry
  publication-title: Math. Ann.
– volume: 37
  start-page: 1746
  year: 1992
  end-page: 1757
  ident: BIB3
  article-title: Control and stabilization of nonholonomic dynamic systems
  publication-title: IEEE Trans. Automat. Control
– reference: A.D. Lewis, J.P. Ostrowski, R.M. Murray, J.W. Burdick, Nonholonomic mechanics and locomotion: the snakeboard example, in: IEEE International Conference on Robotics and Automation, San Diego, CA, May 1994, pp. 2391–2400.
– volume: 34
  start-page: 225
  year: 1994
  end-page: 233
  ident: BIB17
  article-title: On the Hamiltonian formulation of nonholonomic mechanical systems
  publication-title: Rep. Math. Phys.
– year: 1999
  ident: BIB13
  publication-title: Introduction to Mechanics and Symmetry
– volume: 17
  start-page: 683
  year: 1998
  end-page: 701
  ident: BIB14
  article-title: The geometric mechanics of undulatory robotic locomotion
  publication-title: Internat. J. Robotics Res.
– volume: 40
  start-page: 166
  year: 2001
  end-page: 190
  ident: BIB4
  article-title: Series expansions for the evolution of mechanical control systems
  publication-title: SIAM J. Control Optim.
– volume: 45
  start-page: 1437
  year: 2000
  end-page: 1454
  ident: BIB5
  article-title: Controllability and motion algorithms for underactuated Lagrangian systems on Lie groups
  publication-title: IEEE Trans. Automat. Control
– volume: 15
  start-page: 20
  year: 1995
  end-page: 36
  ident: BIB7
  article-title: Developments in nonholonomic control problems
  publication-title: IEEE Control Systems Mag.
– volume: Vol. 1108
  start-page: 278
  year: 1984
  end-page: 301
  ident: BIB18
  article-title: Classical and nonclassical dynamics with constraints
  publication-title: Global Analysis: Studies and Applications
– volume: 136
  start-page: 21
  year: 1996
  end-page: 99
  ident: BIB2
  article-title: Nonholonomic mechanical systems with symmetry
  publication-title: Arch. Rational Mech. Anal.
– volume: 42
  start-page: 135
  year: 1998
  end-page: 164
  ident: BIB9
  article-title: Affine connections and distributions with applications to nonholonomic mechanics
  publication-title: Rep. Math. Phys.
– volume: 35
  start-page: 766
  year: 1997
  end-page: 790
  ident: BIB11
  article-title: Configuration controllability of simple mechanical control systems
  publication-title: SIAM J. Control Optim.
– volume: Vol. 15
  year: 1963
  ident: BIB6
  publication-title: Foundations of Differential Geometry. Vol. I
– reference: P.S. Krishnaprasad, D.P. Tsakiris, Oscillations, SE(2)-snakes and motion control, in: IEEE Conference on Decision and Control, New Orleans, LA, December 1995, pp. 2806–2811, A longer version submitted to Dyn. Stability Systems.
– ident: 10.1016/S0167-6911(01)00173-6_BIB8
  doi: 10.1109/CDC.1995.478543
– volume: 99
  start-page: 738
  year: 1928
  ident: 10.1016/S0167-6911(01)00173-6_BIB16
  article-title: Geodesics in nonholonomic geometry
  publication-title: Math. Ann.
  doi: 10.1007/BF01459122
– volume: 13
  start-page: 55
  issue: 1
  year: 1994
  ident: 10.1016/S0167-6911(01)00173-6_BIB15
  article-title: Control of mechanical systems with rolling constraints: application to dynamic control of mobile robots
  publication-title: Internat. J. Robotics Res.
  doi: 10.1177/027836499401300104
– volume: 136
  start-page: 21
  issue: 1
  year: 1996
  ident: 10.1016/S0167-6911(01)00173-6_BIB2
  article-title: Nonholonomic mechanical systems with symmetry
  publication-title: Arch. Rational Mech. Anal.
  doi: 10.1007/BF02199365
– volume: 45
  start-page: 1437
  issue: 8
  year: 2000
  ident: 10.1016/S0167-6911(01)00173-6_BIB5
  article-title: Controllability and motion algorithms for underactuated Lagrangian systems on Lie groups
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/9.871753
– volume: Vol. 1108
  start-page: 278
  year: 1984
  ident: 10.1016/S0167-6911(01)00173-6_BIB18
  article-title: Classical and nonclassical dynamics with constraints
– volume: Vol. 15
  year: 1963
  ident: 10.1016/S0167-6911(01)00173-6_BIB6
– volume: 45
  start-page: 1420
  issue: 8
  year: 2000
  ident: 10.1016/S0167-6911(01)00173-6_BIB10
  article-title: Simple mechanical control systems with constraints
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/9.871752
– volume: 15
  start-page: 20
  issue: 6
  year: 1995
  ident: 10.1016/S0167-6911(01)00173-6_BIB7
  article-title: Developments in nonholonomic control problems
  publication-title: IEEE Control Systems Mag.
  doi: 10.1109/37.476384
– volume: 42
  start-page: 135
  issue: 1/2
  year: 1998
  ident: 10.1016/S0167-6911(01)00173-6_BIB9
  article-title: Affine connections and distributions with applications to nonholonomic mechanics
  publication-title: Rep. Math. Phys.
  doi: 10.1016/S0034-4877(98)80008-6
– volume: 17
  start-page: 683
  issue: 7
  year: 1998
  ident: 10.1016/S0167-6911(01)00173-6_BIB14
  article-title: The geometric mechanics of undulatory robotic locomotion
  publication-title: Internat. J. Robotics Res.
  doi: 10.1177/027836499801700701
– volume: 40
  start-page: 166
  issue: 1
  year: 2001
  ident: 10.1016/S0167-6911(01)00173-6_BIB4
  article-title: Series expansions for the evolution of mechanical control systems
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012999364796
– volume: 35
  start-page: 766
  issue: 3
  year: 1997
  ident: 10.1016/S0167-6911(01)00173-6_BIB11
  article-title: Configuration controllability of simple mechanical control systems
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012995287155
– volume: 34
  start-page: 225
  issue: 2
  year: 1994
  ident: 10.1016/S0167-6911(01)00173-6_BIB17
  article-title: On the Hamiltonian formulation of nonholonomic mechanical systems
  publication-title: Rep. Math. Phys.
  doi: 10.1016/0034-4877(94)90038-8
– volume: 33
  start-page: 126
  issue: 1
  year: 1995
  ident: 10.1016/S0167-6911(01)00173-6_BIB1
  article-title: Nonholonomic control systems on Riemannian manifolds
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S036301299223533X
– year: 1999
  ident: 10.1016/S0167-6911(01)00173-6_BIB13
– ident: 10.1016/S0167-6911(01)00173-6_BIB12
  doi: 10.1109/ROBOT.1994.351153
– volume: 37
  start-page: 1746
  issue: 11
  year: 1992
  ident: 10.1016/S0167-6911(01)00173-6_BIB3
  article-title: Control and stabilization of nonholonomic dynamic systems
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/9.173144
SSID ssj0002033
Score 1.8614832
Snippet This paper presents a computationally efficient method for deriving coordinate representations for the equations of motion and the affine connection describing...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 133
SubjectTerms Applied sciences
Computer science; control theory; systems
Control of mechanical systems
Control system synthesis
Control theory. Systems
Differential geometric methods
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Mechanical systems
Modeling
Nonholonomic constraints
Nonlinear control
Physics
Solid dynamics (ballistics, collision, multibody system, stabilization...)
Solid mechanics
Title On mechanical control systems with nonholonomic constraints and symmetries
URI https://dx.doi.org/10.1016/S0167-6911(01)00173-6
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA_7uCgifuL8GD140EO3JmmS9jiGY24wQR3uFpo2gYEbw86rf7t5afd1kIGXloa8JLy8viTte78fQveC2jfIKOyzKDV-qOLMj7S90CC1JhUEhhsX5Tvi_XE4mLBJBXVXuTAQVln6_sKnO29dlrRLbbYX02n7DQLoue0pABghQXkV1QmNuTXteud52B-tHTIJCkZ5gPgGgU0iT9GIK3wI8KNrx-d_LVFHiyS3ijMF48XWMtQ7Qcfl_tHrFEM8RRU9P0OHW6iC52jwMvdmGjJ6YQK8MhjdKzCbcw--vHr20A9uz-UkQ43cUUUscy-ZZ7bmbOaItvILNO49vXf7fkmZ4KeUiqWf0MgInKWCmoyZWNnFhsciUdSeIkjGEp2JINNppjBOEwH_XBQLFcB1qjgFCqFLVLMj0FfIY0QL6_xCxRkNlSGJfcBEEYF1HCmqGyhcaUmmJZ44jPVTbgWOcSFBuTLA0ilX8gZqrcUWBaDGPoFoNQVyxzKkdfr7RJs7U7bpEIKBCGXX_2_7Bh04YhjghmG3qLb8-tZ3dn-yVE1Ubf3gZmmFcB--fgx_AauM4Mw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5zHlRE_MT5MXPwoIe6tmmS9ijDMeecBzfYLTRpAgM3hq1Xf7t5085tBxl4KTTkizfJm6R93udB6JYTu4KMDDwaK-NFMsm8WNsH8ZWdUr5vmHEo3wHrjqLemI5rqL2IhQFYZeX7S5_uvHWV0qqs2ZpPJq13ANAz25IPNEKcsC20HdnlC6vz4XuJ8wj9Uk8eCL4h-zKMp6zCJd75wb2rxWN_bVD78zS3ZjOl3sXKJtQ5RAfV6RE_lh08QjU9O0Z7K5yCJ6j3NsNTDfG8YH5cQdFxydicY_juiu2VH5yei0iGHLkTiihynM4ym3M6dTJb-SkadZ6G7a5XCSZ4ihBeeCmJDQ8yxYnJqEmk3WpYwlNJ7B0izGiqM-5nWmUyCFTK4Y-LpJEEsk6ZKBAQOkN12wN9jjANNbeuL5KMkkiaMLUvQShDHugklkQ3ULSwklAVmzj09UOswMYYF2Bc4QfCGVewBnr4LTYv6TQ2FYgXQyDW5oWwLn9T0ebakC0bBChQSOjF_-u-QTvd4Wtf9J8HL5do10nEgEoMvUL14vNLX9uTSiGbbib-AHII3-0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+mechanical+control+systems+with+nonholonomic+constraints+and+symmetries&rft.jtitle=Systems+%26+control+letters&rft.au=Bullo%2C+Francesco&rft.au=%C5%BDefran%2C+Milo%C5%A1&rft.date=2002-02-15&rft.pub=Elsevier+B.V&rft.issn=0167-6911&rft.eissn=1872-7956&rft.volume=45&rft.issue=2&rft.spage=133&rft.epage=143&rft_id=info:doi/10.1016%2FS0167-6911%2801%2900173-6&rft.externalDocID=S0167691101001736
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6911&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6911&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6911&client=summon