Microstructure and improved plasticity of (FeCoNi1.5CrCu)p/Al composites subject to adjusted deep cryogenic treatment (DCT)

•The DCT promotes grain rotation and preferential orientation, inducing the transformation of the (111) and (200) crystal planes of the aluminum grains to the (220) crystal plane due to the released internal stress.•The preferential orientation increases the absorbed work (toughness), which macrosco...

Full description

Saved in:
Bibliographic Details
Published inJournal of alloys and compounds Vol. 895; p. 162690
Main Authors Liu, J.Q., Wang, H.M., Li, G.R., Su, W.X., Zhang, Z.B., Zhou, Z.C., Dong, C.
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 25.02.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The DCT promotes grain rotation and preferential orientation, inducing the transformation of the (111) and (200) crystal planes of the aluminum grains to the (220) crystal plane due to the released internal stress.•The preferential orientation increases the absorbed work (toughness), which macroscopically reflects the increase in plasticity.•The decrease in strength is due to the expansion of microcracks in HEAs particles. [Display omitted] This study aimed to reveal the effects of Deep Cryogenic Treatment (DCT) on the microstructure and mechanical properties of (FeCoNi1.5CrCu)p/Al composites. Precisely, the microwave sintering-prepared samples were soaked in liquid nitrogen to optimize the DCT parameter. The results demonstrated that the (111) and (200) crystal face indexes were induced by released internal stress during DCT to turn to (220). The preferential orientation plays a vital role in plasticity improvement. The compression experiments show that the plasticity of DCT 36 is greatly improved, reaching 142%, compared to the untreated sample. The macro performance shows that the cracks change from one-way to two-way propagation, and the fracture toughness of DCT 36 increased by 155.6% compared to untreated due to multi-system slip.
AbstractList •The DCT promotes grain rotation and preferential orientation, inducing the transformation of the (111) and (200) crystal planes of the aluminum grains to the (220) crystal plane due to the released internal stress.•The preferential orientation increases the absorbed work (toughness), which macroscopically reflects the increase in plasticity.•The decrease in strength is due to the expansion of microcracks in HEAs particles. [Display omitted] This study aimed to reveal the effects of Deep Cryogenic Treatment (DCT) on the microstructure and mechanical properties of (FeCoNi1.5CrCu)p/Al composites. Precisely, the microwave sintering-prepared samples were soaked in liquid nitrogen to optimize the DCT parameter. The results demonstrated that the (111) and (200) crystal face indexes were induced by released internal stress during DCT to turn to (220). The preferential orientation plays a vital role in plasticity improvement. The compression experiments show that the plasticity of DCT 36 is greatly improved, reaching 142%, compared to the untreated sample. The macro performance shows that the cracks change from one-way to two-way propagation, and the fracture toughness of DCT 36 increased by 155.6% compared to untreated due to multi-system slip.
This study aimed to reveal the effects of Deep Cryogenic Treatment (DCT) on the microstructure and mechanical properties of (FeCoNi1.5CrCu)p/Al composites. Precisely, the microwave sintering-prepared samples were soaked in liquid nitrogen to optimize the DCT parameter. The results demonstrated that the (111) and (200) crystal face indexes were induced by released internal stress during DCT to turn to (220). The preferential orientation plays a vital role in plasticity improvement. The compression experiments show that the plasticity of DCT 36 is greatly improved, reaching 142%, compared to the untreated sample. The macro performance shows that the cracks change from one-way to two-way propagation, and the fracture toughness of DCT 36 increased by 155.6% compared to untreated due to multi-system slip.
ArticleNumber 162690
Author Liu, J.Q.
Li, G.R.
Su, W.X.
Zhou, Z.C.
Dong, C.
Wang, H.M.
Zhang, Z.B.
Author_xml – sequence: 1
  givenname: J.Q.
  surname: Liu
  fullname: Liu, J.Q.
– sequence: 2
  givenname: H.M.
  surname: Wang
  fullname: Wang, H.M.
  email: ujswang@sina.com
– sequence: 3
  givenname: G.R.
  surname: Li
  fullname: Li, G.R.
  email: liguirong@ujs.edu.cn
– sequence: 4
  givenname: W.X.
  surname: Su
  fullname: Su, W.X.
– sequence: 5
  givenname: Z.B.
  surname: Zhang
  fullname: Zhang, Z.B.
– sequence: 6
  givenname: Z.C.
  surname: Zhou
  fullname: Zhou, Z.C.
– sequence: 7
  givenname: C.
  surname: Dong
  fullname: Dong, C.
BookMark eNqF0MFq3DAQBmBRUugm7SMUBL0kBzsayZZteijBbZpA2l7Ss5ClcZHxWq4kB5a8fLVsTr3kJAbm_wd95-Rs8QsS8hFYCQzk9VROep6N35eccShBctmxN2QHbSOKSsrujOxYx-uiFW37jpzHODHGoBOwI88_nAk-prCZtAWkerHU7dfgn9DSddYxOePSgfqRXt5i7386KOs-9NvVen0z03x09dEljDRuw4Qm0eSpttMWUy6wiCs14eD_4OIMTQF12uOS6OXX_vHqPXk76jnih5f3gvy-_fbY3xUPv77f9zcPhRGiSYWGZgDNLKvHoRuqCu3ARtm1FcBgayOzgeHjCJZVYuCN6QBsntuq5mPbABMX5NOpN3_r74YxqclvYcknFZdcSNZJKfJWfdo6esSAo1qD2-twUMDU0VlN6sVZHZ3VyTnnPv-Xy2A6Ob-koN38avrLKY0Z4MlhUNE4XAxaF7Kmst690vAPV4ufLA
CitedBy_id crossref_primary_10_1016_j_jmrt_2024_05_153
crossref_primary_10_1007_s10853_024_09505_8
crossref_primary_10_1016_j_jmrt_2023_05_100
crossref_primary_10_1016_j_jallcom_2023_168822
crossref_primary_10_1016_j_jmrt_2023_08_140
crossref_primary_10_3390_cryst14040382
crossref_primary_10_1016_j_jallcom_2023_171763
crossref_primary_10_1016_j_jmrt_2023_02_157
crossref_primary_10_1016_j_jallcom_2022_167372
crossref_primary_10_1016_j_mtcomm_2023_105998
crossref_primary_10_15377_2409_983X_2024_11_3
crossref_primary_10_1016_j_jmrt_2024_11_238
crossref_primary_10_1016_j_matpr_2023_02_274
crossref_primary_10_1016_j_mtcomm_2024_109961
crossref_primary_10_1007_s12598_024_02865_9
crossref_primary_10_1016_j_jmrt_2025_02_048
crossref_primary_10_3390_molecules28041831
Cites_doi 10.1016/j.jallcom.2020.153658
10.1016/j.vacuum.2020.109738
10.1016/j.jallcom.2015.07.125
10.1016/j.matlet.2021.130699
10.1016/j.compositesb.2016.07.006
10.1016/j.jallcom.2018.05.067
10.1016/j.jmrt.2021.05.084
10.1016/j.jallcom.2021.160495
10.1016/j.matlet.2019.06.093
10.1016/j.msea.2016.10.038
10.1088/2051-672X/ac2882
10.1177/0021998319865307
10.1016/j.msea.2012.03.095
10.1016/j.cryogenics.2020.103190
10.1016/j.jallcom.2021.159197
10.1016/j.msea.2019.138116
10.1016/j.msea.2020.140406
10.1016/j.jallcom.2019.153310
10.1016/j.jmapro.2020.05.042
10.1016/j.matpr.2020.02.488
10.1007/s11837-020-04059-x
10.1007/s40436-020-00313-2
10.1016/j.msea.2021.140732
10.1016/j.matchar.2017.12.030
10.1016/j.jmrt.2020.11.084
10.1016/j.matpr.2017.11.163
10.1016/j.jallcom.2016.11.028
10.1016/j.compositesb.2021.108750
10.1016/j.msea.2020.139755
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Feb 25, 2022
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Feb 25, 2022
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/j.jallcom.2021.162690
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4669
ExternalDocumentID 10_1016_j_jallcom_2021_162690
S0925838821041001
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEZYN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSH
SSM
SSZ
T5K
TWZ
XPP
ZMT
~G-
29J
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SMS
T9H
WUQ
8BQ
8FD
JG9
ID FETCH-LOGICAL-c337t-a17b1a0d05fb9b44edb0f698411bd5c6101c2ff1d043b27c911d2ff8452f87103
IEDL.DBID .~1
ISSN 0925-8388
IngestDate Fri Jul 25 03:47:08 EDT 2025
Thu Apr 24 22:56:55 EDT 2025
Tue Aug 05 12:12:59 EDT 2025
Sat Apr 19 16:02:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Mechanical properties
Metal-matrix composites (MMCs)
Deep cryogenic treatment (DCT)
Microstructures
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-a17b1a0d05fb9b44edb0f698411bd5c6101c2ff1d043b27c911d2ff8452f87103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2623609663
PQPubID 2045454
ParticipantIDs proquest_journals_2623609663
crossref_primary_10_1016_j_jallcom_2021_162690
crossref_citationtrail_10_1016_j_jallcom_2021_162690
elsevier_sciencedirect_doi_10_1016_j_jallcom_2021_162690
PublicationCentury 2000
PublicationDate 2022-02-25
PublicationDateYYYYMMDD 2022-02-25
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-25
  day: 25
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Journal of alloys and compounds
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Tang, Shao, Liu, Jiang, Fu, Zhang, Teng (bib4) 2021; 804
Chak, Chattopadhyay, Dora (bib11) 2020; 56
Gao, Kang, Chen, Guo, Fu, Xu, Wang (bib29) 2020; 818
Sonia, Verma, Saxena, Kishore, Rana (bib28) 2020; 26
Dong, Sun, Ma, Jin (bib34) 2021; 305
Arunkumar, Krishnappa, Kasturirengan, Laxman (bib30) 2018; 5
Bhoi, Singh, Pratap (bib10) 2020; 54
Lu, Chen, Xu, Wang, Mao, Liu, Fu (bib15) 2018; 136
Li, Gao, Wang, Liu, Wang, Wen, Yan, Ren, Liu (bib21) 2021; 866
Liu, Wang, Jia, Zhang, Jing, Ma, Jing, Liu (bib13) 2012; 547
Chen, Zhou, Wang, Liu, Lv, Yang, Xu, Liu (bib17) 2018; 760
Song, Xiao, Wang, Ma, Zhou (bib33) 2021; 879
Sápi, Butler (bib1) 2020; 111
Kim, Kim, Elyorjon, Chan Kang, Hong, Song, Lee, Lee, Kim (bib20) 2021; 214
Chen, Niu, Wei, Hao, Liu, Wang, Peng (bib24) 2015; 649
Chen, Gu, He (bib9) 2020; 8
Yuan, Tian, Li, Fu, Wang, Qian, An (bib6) 2020; 822
Karabulut, Karakoç, Çıtak (bib8) 2016; 101
Li, Li, Wang, Meng, Wan, Dong, Huang (bib14) 2020; 792
Liu, Duan, Zhao, Ye, Chen (bib32) 2021; 9
Wang, Wang, Li, Liu, Zhang, Wen, Ren, Gao, Chen (bib18) 2020; 181
Wang, Ren, Li, Wen, Wang, Chen, Zhao, Chen, Kai (bib23) 2021; 801
Li, Chen, Zhang, Wang, Liu, Tang, Yan, Wen, Ren, Wang (bib5) 2021; 10
Wang, Liu, Li, Tang, Yan, Gao, Zhao (bib16) 2021; 13
Chen, Li, Lu, He, Li, Li, Wan, Fu, Scudino (bib12) 2019; 762
Li, Xu, Wang, Xie, Liu, Zhang, Zhao, Chen, Kai (bib2) 2019; 253
Karthik, Panikar, Ram, Kottada (bib25) 2017; 679
Wang, Shan, Hu, Wu (bib31) 2006
Li, Cheng, Wang, Li (bib27) 2017; 695
Chak, Chattopadhyay, Dora (bib3) 2020; 56
Li, Liu, Wang, Zhang, Tang, Wang, Zhao, Chen, Kai (bib19) 2020; 72
Li, Wen, Wang, Ren, Yan, Chen, Wang, Zhao (bib22) 2021; 861
Wang, Qi, Chen, Lao, He, Lu, Gargarella, Scudino (bib7) 2021; 868
Wang, Wu, Wu, Li, Ge, Dong, Zhang, Wang (bib26) 2020; 25
Liu (10.1016/j.jallcom.2021.162690_bib13) 2012; 547
Li (10.1016/j.jallcom.2021.162690_bib5) 2021; 10
Arunkumar (10.1016/j.jallcom.2021.162690_bib30) 2018; 5
Kim (10.1016/j.jallcom.2021.162690_bib20) 2021; 214
Bhoi (10.1016/j.jallcom.2021.162690_bib10) 2020; 54
Song (10.1016/j.jallcom.2021.162690_bib33) 2021; 879
Chak (10.1016/j.jallcom.2021.162690_bib3) 2020; 56
Li (10.1016/j.jallcom.2021.162690_bib22) 2021; 861
Chak (10.1016/j.jallcom.2021.162690_bib11) 2020; 56
Wang (10.1016/j.jallcom.2021.162690_bib18) 2020; 181
Wang (10.1016/j.jallcom.2021.162690_bib26) 2020; 25
Sonia (10.1016/j.jallcom.2021.162690_bib28) 2020; 26
Li (10.1016/j.jallcom.2021.162690_bib19) 2020; 72
Tang (10.1016/j.jallcom.2021.162690_bib4) 2021; 804
Sápi (10.1016/j.jallcom.2021.162690_bib1) 2020; 111
Dong (10.1016/j.jallcom.2021.162690_bib34) 2021; 305
Li (10.1016/j.jallcom.2021.162690_bib27) 2017; 695
Wang (10.1016/j.jallcom.2021.162690_bib7) 2021; 868
Li (10.1016/j.jallcom.2021.162690_bib14) 2020; 792
Lu (10.1016/j.jallcom.2021.162690_bib15) 2018; 136
Chen (10.1016/j.jallcom.2021.162690_bib24) 2015; 649
Yuan (10.1016/j.jallcom.2021.162690_bib6) 2020; 822
Chen (10.1016/j.jallcom.2021.162690_bib12) 2019; 762
Wang (10.1016/j.jallcom.2021.162690_bib31) 2006
Chen (10.1016/j.jallcom.2021.162690_bib17) 2018; 760
Liu (10.1016/j.jallcom.2021.162690_bib32) 2021; 9
Karthik (10.1016/j.jallcom.2021.162690_bib25) 2017; 679
Karabulut (10.1016/j.jallcom.2021.162690_bib8) 2016; 101
Li (10.1016/j.jallcom.2021.162690_bib21) 2021; 866
Li (10.1016/j.jallcom.2021.162690_bib2) 2019; 253
Gao (10.1016/j.jallcom.2021.162690_bib29) 2020; 818
Chen (10.1016/j.jallcom.2021.162690_bib9) 2020; 8
Wang (10.1016/j.jallcom.2021.162690_bib16) 2021; 13
Wang (10.1016/j.jallcom.2021.162690_bib23) 2021; 801
References_xml – volume: 804
  year: 2021
  ident: bib4
  article-title: Microstructure and mechanical behaviors of 6061 Al matrix hybrid composites reinforced with SiC and stainless steel particles
  publication-title: Mater. Sci. Eng. A
– volume: 801
  year: 2021
  ident: bib23
  article-title: Microstructure and properties of FeCoNi
  publication-title: Mater. Sci. Eng. A
– volume: 822
  year: 2020
  ident: bib6
  article-title: Effect of heat treatment on the interface of high-entropy alloy particles reinforced aluminum matrix composites
  publication-title: J. Alloy. Comp.
– volume: 8
  start-page: 279
  year: 2020
  end-page: 315
  ident: bib9
  article-title: A review on conventional and nonconventional machining of SiC particle-reinforced aluminium matrix composites
  publication-title: Adv. Manuf.
– volume: 181
  year: 2020
  ident: bib18
  article-title: Microwave vacuum sintering of FeCoNi
  publication-title: Vaccum
– volume: 25
  year: 2020
  ident: bib26
  article-title: Microstructure and properties of aluminium-high entropy alloy composites fabricated by mechanical alloying and spark plasma sintering
  publication-title: Mater. Today Commun.
– start-page: 57
  year: 2006
  end-page: 60
  ident: bib31
  article-title: Mechanism of effect of deep cryogenic treatment on microstructure of Cr-Zr-Cu alloy for electrode
  publication-title: Mater. Eng.
– volume: 649
  start-page: 630
  year: 2015
  end-page: 634
  ident: bib24
  article-title: Fabrication and mechanical properties of AlCoNiCrFe high-entropy alloy particle reinforced Cu matrix composites
  publication-title: J. Alloy. Comp.
– volume: 879
  year: 2021
  ident: bib33
  article-title: Effects of cryogenic treatments on phase transformations, microstructure and mechanical properties of near βTi alloy
  publication-title: J. Alloy. Comp.
– volume: 861
  year: 2021
  ident: bib22
  article-title: Microstructural characteristics and mechanical behavior of microwave-assisted sintered ferromagnetic FeCoNi
  publication-title: J. Alloy. Comp.
– volume: 111
  year: 2020
  ident: bib1
  article-title: Properties of cryogenic and low temperature composite materials – a review
  publication-title: Cryogenics
– volume: 253
  start-page: 346
  year: 2019
  end-page: 348
  ident: bib2
  article-title: Microstructure and performance of nanometer gamma-Al
  publication-title: Mater. Lett.
– volume: 56
  start-page: 1059
  year: 2020
  end-page: 1074
  ident: bib11
  article-title: A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites
  publication-title: J. Manuf. Process
– volume: 136
  start-page: 264
  year: 2018
  end-page: 271
  ident: bib15
  article-title: The effects of Cr particles addition on the aging behavior and mechanical properties of SiC
  publication-title: Mater. Charact.
– volume: 868
  year: 2021
  ident: bib7
  article-title: Microstructure and mechanical properties of novel high-entropy alloy particle reinforced aluminum matrix composites fabricated by selective laser melting
  publication-title: J. Alloy. Comp.
– volume: 54
  start-page: 813
  year: 2020
  end-page: 833
  ident: bib10
  article-title: Developments in the aluminum metal matrix composites reinforced by micro/nano particles - a review
  publication-title: J. Compos. Mater.
– volume: 56
  start-page: 1059
  year: 2020
  end-page: 1074
  ident: bib3
  article-title: A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites
  publication-title: J. Manuf. Proc.
– volume: 101
  start-page: 87
  year: 2016
  end-page: 98
  ident: bib8
  article-title: Influence of B
  publication-title: Compos. Part B
– volume: 866
  start-page: 10
  year: 2021
  ident: bib21
  article-title: Effects of boron on microstructure and properties of microwave sintered FeCoNi
  publication-title: J. Alloy. Comp.
– volume: 679
  start-page: 193
  year: 2017
  end-page: 203
  ident: bib25
  article-title: Additive manufacturing of an aluminum matrix composite reinforced with nanocrystalline high-entropy alloy particles
  publication-title: Mater. Sci. Eng. A
– volume: 13
  start-page: 1509
  year: 2021
  end-page: 1520
  ident: bib16
  article-title: Effect of TiB
  publication-title: J. Mater. Res. Technol.
– volume: 695
  start-page: 1930
  year: 2017
  end-page: 1945
  ident: bib27
  article-title: The influence of cryogenic-aging circular treatment on the microstructure and properties of aluminum matrix composites
  publication-title: J. Alloy. Comp.
– volume: 792
  year: 2020
  ident: bib14
  article-title: Friction stir processing of high-entropy alloy reinforced aluminum matrix composites for mechanical properties enhancement
  publication-title: Mater. Sci. Eng. A
– volume: 760
  start-page: 15
  year: 2018
  end-page: 30
  ident: bib17
  article-title: A review on fundamental of high entropy alloys with promising high–temperature properties
  publication-title: J. Alloy. Comp.
– volume: 547
  start-page: 120
  year: 2012
  end-page: 124
  ident: bib13
  article-title: Effect of W particles on the properties of accumulatively roll-bonded Al/W composites
  publication-title: Mater. Sci. Eng. A
– volume: 9
  year: 2021
  ident: bib32
  article-title: Effect of cryogenic treatment time on microstructure and tribology performance of TiAlN coating
  publication-title: Surf. Topogr. Metrol. Prop.
– volume: 26
  start-page: 2248
  year: 2020
  end-page: 2253
  ident: bib28
  article-title: Effect of cryogenic treatment on mechanical properties and microstructure of aluminium 6082 alloy
  publication-title: Mater. Today Proc.
– volume: 5
  start-page: 904
  year: 2018
  end-page: 910
  ident: bib30
  article-title: An experimental investigation on tensile and compression behavior of aluminum, silicon carbide, and graphite hybrid composite with and without cryogenic treatment
  publication-title: Mater. Today Proc.
– volume: 762
  year: 2019
  ident: bib12
  article-title: Effect of ball milling on microstructure and mechanical properties of 6061Al matrix composites reinforced with high-entropy alloy particles
  publication-title: Mater. Sci. Eng. A
– volume: 818
  year: 2020
  ident: bib29
  article-title: Enhanced strength-ductility synergy in a boron carbide reinforced aluminum matrix composite at 77K
  publication-title: J. Alloy. Comp.
– volume: 10
  start-page: 34
  year: 2021
  end-page: 50
  ident: bib5
  article-title: Microstructure and properties of the Nd
  publication-title: J. Mater. Res. Technol.
– volume: 72
  start-page: 2332
  year: 2020
  end-page: 2339
  ident: bib19
  article-title: Effect of the rare earth element yttrium on the structure and properties of boron-containing high-entropy alloy
  publication-title: JOM
– volume: 214
  year: 2021
  ident: bib20
  article-title: Understanding the microstructure and mechanical properties of Ta Al
  publication-title: Compos. Part B
– volume: 305
  year: 2021
  ident: bib34
  article-title: Effects of cryogenic treatment on microstructures and mechanical properties of Mg-2Nd-4Zn alloy
  publication-title: Mater. Lett.
– volume: 822
  year: 2020
  ident: 10.1016/j.jallcom.2021.162690_bib6
  article-title: Effect of heat treatment on the interface of high-entropy alloy particles reinforced aluminum matrix composites
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2020.153658
– volume: 181
  year: 2020
  ident: 10.1016/j.jallcom.2021.162690_bib18
  article-title: Microwave vacuum sintering of FeCoNi1.5CuB0.5Y0.2 high-entropy alloy: effect of heat treatment on microstructure and mechanical property
  publication-title: Vaccum
  doi: 10.1016/j.vacuum.2020.109738
– volume: 866
  start-page: 10
  year: 2021
  ident: 10.1016/j.jallcom.2021.162690_bib21
  article-title: Effects of boron on microstructure and properties of microwave sintered FeCoNi1.5CuY0.2 high-entropy alloy
  publication-title: J. Alloy. Comp.
– volume: 649
  start-page: 630
  year: 2015
  ident: 10.1016/j.jallcom.2021.162690_bib24
  article-title: Fabrication and mechanical properties of AlCoNiCrFe high-entropy alloy particle reinforced Cu matrix composites
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2015.07.125
– volume: 305
  year: 2021
  ident: 10.1016/j.jallcom.2021.162690_bib34
  article-title: Effects of cryogenic treatment on microstructures and mechanical properties of Mg-2Nd-4Zn alloy
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2021.130699
– volume: 101
  start-page: 87
  year: 2016
  ident: 10.1016/j.jallcom.2021.162690_bib8
  article-title: Influence of B4C particle reinforcement on mechanical and machining properties of Al6061/B4C composites
  publication-title: Compos. Part B
  doi: 10.1016/j.compositesb.2016.07.006
– volume: 760
  start-page: 15
  year: 2018
  ident: 10.1016/j.jallcom.2021.162690_bib17
  article-title: A review on fundamental of high entropy alloys with promising high–temperature properties
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2018.05.067
– volume: 13
  start-page: 1509
  year: 2021
  ident: 10.1016/j.jallcom.2021.162690_bib16
  article-title: Effect of TiB2 content on microstructure and mechanical properties of (TiB2p+B4Cp)/Al composites fabricated by microwave sintering
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2021.05.084
– volume: 879
  year: 2021
  ident: 10.1016/j.jallcom.2021.162690_bib33
  article-title: Effects of cryogenic treatments on phase transformations, microstructure and mechanical properties of near βTi alloy
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2021.160495
– volume: 253
  start-page: 346
  year: 2019
  ident: 10.1016/j.jallcom.2021.162690_bib2
  article-title: Microstructure and performance of nanometer gamma-Al2O3p/Al composite fabricated in Al-Co3O4 components
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2019.06.093
– volume: 679
  start-page: 193
  year: 2017
  ident: 10.1016/j.jallcom.2021.162690_bib25
  article-title: Additive manufacturing of an aluminum matrix composite reinforced with nanocrystalline high-entropy alloy particles
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2016.10.038
– volume: 9
  issue: 3
  year: 2021
  ident: 10.1016/j.jallcom.2021.162690_bib32
  article-title: Effect of cryogenic treatment time on microstructure and tribology performance of TiAlN coating
  publication-title: Surf. Topogr. Metrol. Prop.
  doi: 10.1088/2051-672X/ac2882
– volume: 54
  start-page: 813
  issue: 6
  year: 2020
  ident: 10.1016/j.jallcom.2021.162690_bib10
  article-title: Developments in the aluminum metal matrix composites reinforced by micro/nano particles - a review
  publication-title: J. Compos. Mater.
  doi: 10.1177/0021998319865307
– volume: 547
  start-page: 120
  year: 2012
  ident: 10.1016/j.jallcom.2021.162690_bib13
  article-title: Effect of W particles on the properties of accumulatively roll-bonded Al/W composites
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2012.03.095
– volume: 111
  year: 2020
  ident: 10.1016/j.jallcom.2021.162690_bib1
  article-title: Properties of cryogenic and low temperature composite materials – a review
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2020.103190
– volume: 868
  year: 2021
  ident: 10.1016/j.jallcom.2021.162690_bib7
  article-title: Microstructure and mechanical properties of novel high-entropy alloy particle reinforced aluminum matrix composites fabricated by selective laser melting
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2021.159197
– volume: 762
  year: 2019
  ident: 10.1016/j.jallcom.2021.162690_bib12
  article-title: Effect of ball milling on microstructure and mechanical properties of 6061Al matrix composites reinforced with high-entropy alloy particles
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.138116
– volume: 801
  year: 2021
  ident: 10.1016/j.jallcom.2021.162690_bib23
  article-title: Microstructure and properties of FeCoNi1.5CrCu/2024Al composites prepared by microwave sintering
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2020.140406
– volume: 818
  year: 2020
  ident: 10.1016/j.jallcom.2021.162690_bib29
  article-title: Enhanced strength-ductility synergy in a boron carbide reinforced aluminum matrix composite at 77K
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2019.153310
– volume: 25
  year: 2020
  ident: 10.1016/j.jallcom.2021.162690_bib26
  article-title: Microstructure and properties of aluminium-high entropy alloy composites fabricated by mechanical alloying and spark plasma sintering
  publication-title: Mater. Today Commun.
– start-page: 57
  issue: 1
  year: 2006
  ident: 10.1016/j.jallcom.2021.162690_bib31
  article-title: Mechanism of effect of deep cryogenic treatment on microstructure of Cr-Zr-Cu alloy for electrode
  publication-title: Mater. Eng.
– volume: 56
  start-page: 1059
  year: 2020
  ident: 10.1016/j.jallcom.2021.162690_bib11
  article-title: A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites
  publication-title: J. Manuf. Process
  doi: 10.1016/j.jmapro.2020.05.042
– volume: 26
  start-page: 2248
  year: 2020
  ident: 10.1016/j.jallcom.2021.162690_bib28
  article-title: Effect of cryogenic treatment on mechanical properties and microstructure of aluminium 6082 alloy
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.02.488
– volume: 72
  start-page: 2332
  issue: 6
  year: 2020
  ident: 10.1016/j.jallcom.2021.162690_bib19
  article-title: Effect of the rare earth element yttrium on the structure and properties of boron-containing high-entropy alloy
  publication-title: JOM
  doi: 10.1007/s11837-020-04059-x
– volume: 8
  start-page: 279
  issue: 3
  year: 2020
  ident: 10.1016/j.jallcom.2021.162690_bib9
  article-title: A review on conventional and nonconventional machining of SiC particle-reinforced aluminium matrix composites
  publication-title: Adv. Manuf.
  doi: 10.1007/s40436-020-00313-2
– volume: 804
  year: 2021
  ident: 10.1016/j.jallcom.2021.162690_bib4
  article-title: Microstructure and mechanical behaviors of 6061 Al matrix hybrid composites reinforced with SiC and stainless steel particles
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2021.140732
– volume: 136
  start-page: 264
  year: 2018
  ident: 10.1016/j.jallcom.2021.162690_bib15
  article-title: The effects of Cr particles addition on the aging behavior and mechanical properties of SiCp/7075Al composites
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2017.12.030
– volume: 10
  start-page: 34
  year: 2021
  ident: 10.1016/j.jallcom.2021.162690_bib5
  article-title: Microstructure and properties of the Nd2Fe14Bp/Al–Co composites fabricated via microwave sintering
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2020.11.084
– volume: 5
  start-page: 904
  issue: 1
  year: 2018
  ident: 10.1016/j.jallcom.2021.162690_bib30
  article-title: An experimental investigation on tensile and compression behavior of aluminum, silicon carbide, and graphite hybrid composite with and without cryogenic treatment
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2017.11.163
– volume: 861
  year: 2021
  ident: 10.1016/j.jallcom.2021.162690_bib22
  article-title: Microstructural characteristics and mechanical behavior of microwave-assisted sintered ferromagnetic FeCoNi1.5CrCu HEAp/Al matrix composites
  publication-title: J. Alloy. Comp.
– volume: 56
  start-page: 1059
  year: 2020
  ident: 10.1016/j.jallcom.2021.162690_bib3
  article-title: A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites
  publication-title: J. Manuf. Proc.
  doi: 10.1016/j.jmapro.2020.05.042
– volume: 695
  start-page: 1930
  year: 2017
  ident: 10.1016/j.jallcom.2021.162690_bib27
  article-title: The influence of cryogenic-aging circular treatment on the microstructure and properties of aluminum matrix composites
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2016.11.028
– volume: 214
  year: 2021
  ident: 10.1016/j.jallcom.2021.162690_bib20
  article-title: Understanding the microstructure and mechanical properties of Ta Al0.7CoCrFeNi2.1 eutectic high entropy composites: multi-scale deformation mechanism analysis
  publication-title: Compos. Part B
  doi: 10.1016/j.compositesb.2021.108750
– volume: 792
  year: 2020
  ident: 10.1016/j.jallcom.2021.162690_bib14
  article-title: Friction stir processing of high-entropy alloy reinforced aluminum matrix composites for mechanical properties enhancement
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2020.139755
SSID ssj0001931
Score 2.4568193
Snippet •The DCT promotes grain rotation and preferential orientation, inducing the transformation of the (111) and (200) crystal planes of the aluminum grains to the...
This study aimed to reveal the effects of Deep Cryogenic Treatment (DCT) on the microstructure and mechanical properties of (FeCoNi1.5CrCu)p/Al composites....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 162690
SubjectTerms Composite materials
Crack propagation
Cryogenic engineering
Cryogenic treatment
Deep cryogenic treatment (DCT)
Fracture toughness
Liquid nitrogen
Mechanical properties
Metal-matrix composites (MMCs)
Microstructure
Microstructures
Microwave sintering
Performance indices
Plastic properties
Residual stress
Title Microstructure and improved plasticity of (FeCoNi1.5CrCu)p/Al composites subject to adjusted deep cryogenic treatment (DCT)
URI https://dx.doi.org/10.1016/j.jallcom.2021.162690
https://www.proquest.com/docview/2623609663
Volume 895
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CQml7KO22pWmToEMPycEPyfLruDhZti3ZSxPITViWBF6WtdnHIRT62zvjR9KWQqBHG40fmvG8_M0MwGdq8RHmpfGc4RigmCj1dGJQGdosN4KmXGnKQ14vkvmt_HoX3x1AMdbCEKxy0P29Tu-09XAmGHYzaOs6-B7mgv75ZRi0SOokRBXsMiUp938-wjzQQemm5uFij1Y_VvEES39ZrlYEGhFo6XyOvj2p5n_bp780dWd-Zq_h1eA3smn_aG_gwK4n8LwYx7VN4OVvnQUn8KxDdlbbt_DjmiB3fZvY_caycm1Y3WUSrGEt-s4Eq97ds8ax85ktmkXN_bjYFPuLNpiuGEHOCddlt2y715S0YbuGlWa5pzwpM9a2rNrcNyiHdcUeYOvs_LK4uXgHt7Orm2LuDRMXvCqK0p1X8lTzMjRh7HSupbRGhy7JM8m5NnGFrhavhHPchDLSIq1QUxo8zmQsHEZeYfQeDtfN2n4AJm0mSikcT5zFEAcjpdzG2kjN8QZZGB-DHPdZVUM7cpqKsVIj7mypBvYoYo_q2XMM_gNZ2_fjeIogG5mo_hAshTbjKdKTkelq-LK3SqC_mODbJNHH_7_yJ3ghqIyCSuPjEzhEGbCn6Nzs9FknvWdwNP3ybb74BQAN-Ec
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5Sh5LmEFq3oUnTdg89JAdZ2tVKlo5GiXGa2Jc6kNui1a5AxljCj0Pon--MHu6DQiBHCY1eM_p2ZvTNDMA3avHhxalxcsMxQDH-0NGhQTC0UWwETbnSlIeczsLJg_z-GDweQNLVwhCtssX-BtNrtG73uO3bdKuicH94saB_fhEGLZI6Cb2CQ-pOFfTgcHR7N5ntARl9lHpwHh7vkMDvQh53MVikyyXxRgQudgOO7j2h8_-XqH_Aul6Bxm_hpHUd2ai5u3dwYFd9OEq6iW19OP6juWAfXtfkzmzzHn5OiXXXdIrdrS1LV4YVdTLBGlah-0zM6u0TK3N2ObZJOSv4IEjWye6qckdLRqxzonbZDdvsNOVt2LZkqVnsKFXKjLUVy9ZPJZpikbE9c51dXifzqw_wML6ZJxOnHbrgZL4_3DopH2qeesYLch1rKa3RXh7GkeRcmyBDb4tnIs-58aSvxTBDsDS4HclA5Bh8ef4p9Fblyn4EJm0kUilyHuYWoxwMlmIbaCM1xwtEXnAGsnvPKms7ktNgjKXqqGcL1apHkXpUo54zGOzFqqYlx3MCUadE9ZdtKVw2nhO96JSu2o97owS6jCE-Teifv_zMX-FoMp_eq_vb2d0neCOoqoIq5YML6KE92M_o62z1l9aWfwGBTPr4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructure+and+improved+plasticity+of+%28FeCoNi1.5CrCu%29p%2FAl+composites+subject+to+adjusted+deep+cryogenic+treatment+%28DCT%29&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Liu%2C+J.Q.&rft.au=Wang%2C+H.M.&rft.au=Li%2C+G.R.&rft.au=Su%2C+W.X.&rft.date=2022-02-25&rft.pub=Elsevier+B.V&rft.issn=0925-8388&rft.volume=895&rft_id=info:doi/10.1016%2Fj.jallcom.2021.162690&rft.externalDocID=S0925838821041001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon