Water-stable Cd()/Zn() coordination polymers as recyclable luminescent sensors for detecting hippuric acid in simulated urine for indexing toluene exposure with high selectivity, sensitivity and fast response
Three novel Cd( ii )/Zn( ii ) coordination polymers (CPs), namely [Cd(L)(BPDC) 0.5 H 2 O]·0.5H 2 O ( 1 ), [Zn 2 (L) 2 (BPDC)]·2H 2 O ( 2 ) and [Cd 2 (L)(BTC)H 2 O]·3H 2 O ( 3 ) (L = 4-(tetrazol-5-yl)phenyl-4,2′:6′,4′′-terpyridine, H 2 BPDC = 4,4′-biphenyldicarboxylic acid, and H 3 BTC = 1,3,5-benzen...
Saved in:
Published in | Dalton transactions : an international journal of inorganic chemistry Vol. 5; no. 2; pp. 553 - 561 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
14.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Three novel Cd(
ii
)/Zn(
ii
) coordination polymers (CPs), namely [Cd(L)(BPDC)
0.5
H
2
O]·0.5H
2
O (
1
), [Zn
2
(L)
2
(BPDC)]·2H
2
O (
2
) and [Cd
2
(L)(BTC)H
2
O]·3H
2
O (
3
) (L = 4-(tetrazol-5-yl)phenyl-4,2′:6′,4′′-terpyridine, H
2
BPDC = 4,4′-biphenyldicarboxylic acid, and H
3
BTC = 1,3,5-benzenetricarboxylic acid), have been successfully synthesized and characterized. CP
1
and CP
2
display new two-dimensional double-layered honeycomb frameworks containing uncoordinated nitrogen atoms from pyridine and tetrazole rings, which can easily form hydrogen bonds with various analytes. CP
3
exhibits a 3D framework also with uncoordinated nitrogen atoms from pyridine and tetrazole rings. The fluorescence explorations indicate that CPs
1-3
exhibit strong blue luminescence and excellent chemical stability under a relatively wide range of pH conditions. It is worth noting that CPs
1-3
can quantitatively detect hippuric acid (HA), which is a metabolite of toluene in human urine, with high selectivity, sensitivity, fast response and relatively low detection limits. Moreover, the sensing mechanism of CPs
1-3
for HA can mainly be ascribed to fluorescence resonance energy transfer (FRET). CPs
1-3
could be ideal candidates as HA sensors in human urine samples for practical applications. Notably, to the best of our knowledge, we report for the first time Cd(
ii
)/Zn(
ii
)-based luminescent sensors for detecting HA in simulated urine.
Water stable Cd(
ii
)/Zn(
ii
) coordination polymers exhibit rapid, sensitive, selective and recyclable detection towards hippuric acid in simulated urine for indexing toluene exposure. |
---|---|
AbstractList | Three novel Cd(ii)/Zn(ii) coordination polymers (CPs), namely [Cd(L)(BPDC)0.5H2O]·0.5H2O (1), [Zn2(L)2(BPDC)]·2H2O (2) and [Cd2(L)(BTC)H2O]·3H2O (3) (L = 4-(tetrazol-5-yl)phenyl-4,2':6',4''-terpyridine, H2BPDC = 4,4'-biphenyldicarboxylic acid, and H3BTC = 1,3,5-benzenetricarboxylic acid), have been successfully synthesized and characterized. CP 1 and CP 2 display new two-dimensional double-layered honeycomb frameworks containing uncoordinated nitrogen atoms from pyridine and tetrazole rings, which can easily form hydrogen bonds with various analytes. CP 3 exhibits a 3D framework also with uncoordinated nitrogen atoms from pyridine and tetrazole rings. The fluorescence explorations indicate that CPs 1-3 exhibit strong blue luminescence and excellent chemical stability under a relatively wide range of pH conditions. It is worth noting that CPs 1-3 can quantitatively detect hippuric acid (HA), which is a metabolite of toluene in human urine, with high selectivity, sensitivity, fast response and relatively low detection limits. Moreover, the sensing mechanism of CPs 1-3 for HA can mainly be ascribed to fluorescence resonance energy transfer (FRET). CPs 1-3 could be ideal candidates as HA sensors in human urine samples for practical applications. Notably, to the best of our knowledge, we report for the first time Cd(ii)/Zn(ii)-based luminescent sensors for detecting HA in simulated urine.Three novel Cd(ii)/Zn(ii) coordination polymers (CPs), namely [Cd(L)(BPDC)0.5H2O]·0.5H2O (1), [Zn2(L)2(BPDC)]·2H2O (2) and [Cd2(L)(BTC)H2O]·3H2O (3) (L = 4-(tetrazol-5-yl)phenyl-4,2':6',4''-terpyridine, H2BPDC = 4,4'-biphenyldicarboxylic acid, and H3BTC = 1,3,5-benzenetricarboxylic acid), have been successfully synthesized and characterized. CP 1 and CP 2 display new two-dimensional double-layered honeycomb frameworks containing uncoordinated nitrogen atoms from pyridine and tetrazole rings, which can easily form hydrogen bonds with various analytes. CP 3 exhibits a 3D framework also with uncoordinated nitrogen atoms from pyridine and tetrazole rings. The fluorescence explorations indicate that CPs 1-3 exhibit strong blue luminescence and excellent chemical stability under a relatively wide range of pH conditions. It is worth noting that CPs 1-3 can quantitatively detect hippuric acid (HA), which is a metabolite of toluene in human urine, with high selectivity, sensitivity, fast response and relatively low detection limits. Moreover, the sensing mechanism of CPs 1-3 for HA can mainly be ascribed to fluorescence resonance energy transfer (FRET). CPs 1-3 could be ideal candidates as HA sensors in human urine samples for practical applications. Notably, to the best of our knowledge, we report for the first time Cd(ii)/Zn(ii)-based luminescent sensors for detecting HA in simulated urine. Three novel Cd( ii )/Zn( ii ) coordination polymers (CPs), namely [Cd(L)(BPDC) 0.5 H 2 O]·0.5H 2 O ( 1 ), [Zn 2 (L) 2 (BPDC)]·2H 2 O ( 2 ) and [Cd 2 (L)(BTC)H 2 O]·3H 2 O ( 3 ) (L = 4-(tetrazol-5-yl)phenyl-4,2′:6′,4′′-terpyridine, H 2 BPDC = 4,4′-biphenyldicarboxylic acid, and H 3 BTC = 1,3,5-benzenetricarboxylic acid), have been successfully synthesized and characterized. CP 1 and CP 2 display new two-dimensional double-layered honeycomb frameworks containing uncoordinated nitrogen atoms from pyridine and tetrazole rings, which can easily form hydrogen bonds with various analytes. CP 3 exhibits a 3D framework also with uncoordinated nitrogen atoms from pyridine and tetrazole rings. The fluorescence explorations indicate that CPs 1–3 exhibit strong blue luminescence and excellent chemical stability under a relatively wide range of pH conditions. It is worth noting that CPs 1–3 can quantitatively detect hippuric acid (HA), which is a metabolite of toluene in human urine, with high selectivity, sensitivity, fast response and relatively low detection limits. Moreover, the sensing mechanism of CPs 1–3 for HA can mainly be ascribed to fluorescence resonance energy transfer (FRET). CPs 1–3 could be ideal candidates as HA sensors in human urine samples for practical applications. Notably, to the best of our knowledge, we report for the first time Cd( ii )/Zn( ii )-based luminescent sensors for detecting HA in simulated urine. Three novel Cd( ii )/Zn( ii ) coordination polymers (CPs), namely [Cd(L)(BPDC) 0.5 H 2 O]·0.5H 2 O ( 1 ), [Zn 2 (L) 2 (BPDC)]·2H 2 O ( 2 ) and [Cd 2 (L)(BTC)H 2 O]·3H 2 O ( 3 ) (L = 4-(tetrazol-5-yl)phenyl-4,2′:6′,4′′-terpyridine, H 2 BPDC = 4,4′-biphenyldicarboxylic acid, and H 3 BTC = 1,3,5-benzenetricarboxylic acid), have been successfully synthesized and characterized. CP 1 and CP 2 display new two-dimensional double-layered honeycomb frameworks containing uncoordinated nitrogen atoms from pyridine and tetrazole rings, which can easily form hydrogen bonds with various analytes. CP 3 exhibits a 3D framework also with uncoordinated nitrogen atoms from pyridine and tetrazole rings. The fluorescence explorations indicate that CPs 1-3 exhibit strong blue luminescence and excellent chemical stability under a relatively wide range of pH conditions. It is worth noting that CPs 1-3 can quantitatively detect hippuric acid (HA), which is a metabolite of toluene in human urine, with high selectivity, sensitivity, fast response and relatively low detection limits. Moreover, the sensing mechanism of CPs 1-3 for HA can mainly be ascribed to fluorescence resonance energy transfer (FRET). CPs 1-3 could be ideal candidates as HA sensors in human urine samples for practical applications. Notably, to the best of our knowledge, we report for the first time Cd( ii )/Zn( ii )-based luminescent sensors for detecting HA in simulated urine. Water stable Cd( ii )/Zn( ii ) coordination polymers exhibit rapid, sensitive, selective and recyclable detection towards hippuric acid in simulated urine for indexing toluene exposure. Three novel Cd(ii)/Zn(ii) coordination polymers (CPs), namely [Cd(L)(BPDC) H O]·0.5H O (1), [Zn (L) (BPDC)]·2H O (2) and [Cd (L)(BTC)H O]·3H O (3) (L = 4-(tetrazol-5-yl)phenyl-4,2':6',4''-terpyridine, H BPDC = 4,4'-biphenyldicarboxylic acid, and H BTC = 1,3,5-benzenetricarboxylic acid), have been successfully synthesized and characterized. CP 1 and CP 2 display new two-dimensional double-layered honeycomb frameworks containing uncoordinated nitrogen atoms from pyridine and tetrazole rings, which can easily form hydrogen bonds with various analytes. CP 3 exhibits a 3D framework also with uncoordinated nitrogen atoms from pyridine and tetrazole rings. The fluorescence explorations indicate that CPs 1-3 exhibit strong blue luminescence and excellent chemical stability under a relatively wide range of pH conditions. It is worth noting that CPs 1-3 can quantitatively detect hippuric acid (HA), which is a metabolite of toluene in human urine, with high selectivity, sensitivity, fast response and relatively low detection limits. Moreover, the sensing mechanism of CPs 1-3 for HA can mainly be ascribed to fluorescence resonance energy transfer (FRET). CPs 1-3 could be ideal candidates as HA sensors in human urine samples for practical applications. Notably, to the best of our knowledge, we report for the first time Cd(ii)/Zn(ii)-based luminescent sensors for detecting HA in simulated urine. Three novel Cd(ii)/Zn(ii) coordination polymers (CPs), namely [Cd(L)(BPDC)0.5H2O]·0.5H2O (1), [Zn2(L)2(BPDC)]·2H2O (2) and [Cd2(L)(BTC)H2O]·3H2O (3) (L = 4-(tetrazol-5-yl)phenyl-4,2′:6′,4′′-terpyridine, H2BPDC = 4,4′-biphenyldicarboxylic acid, and H3BTC = 1,3,5-benzenetricarboxylic acid), have been successfully synthesized and characterized. CP 1 and CP 2 display new two-dimensional double-layered honeycomb frameworks containing uncoordinated nitrogen atoms from pyridine and tetrazole rings, which can easily form hydrogen bonds with various analytes. CP 3 exhibits a 3D framework also with uncoordinated nitrogen atoms from pyridine and tetrazole rings. The fluorescence explorations indicate that CPs 1–3 exhibit strong blue luminescence and excellent chemical stability under a relatively wide range of pH conditions. It is worth noting that CPs 1–3 can quantitatively detect hippuric acid (HA), which is a metabolite of toluene in human urine, with high selectivity, sensitivity, fast response and relatively low detection limits. Moreover, the sensing mechanism of CPs 1–3 for HA can mainly be ascribed to fluorescence resonance energy transfer (FRET). CPs 1–3 could be ideal candidates as HA sensors in human urine samples for practical applications. Notably, to the best of our knowledge, we report for the first time Cd(ii)/Zn(ii)-based luminescent sensors for detecting HA in simulated urine. |
Author | Zhao, Jiao-Jiao Liu, Peng-Yu Liu, Zhi-Liang Zhang, Lei Wang, Yan-Qin Chen, Wei-Zhe |
AuthorAffiliation | Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials Inner Mongolia University College of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – name: College of Chemistry and Chemical Engineering – name: Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials – name: Inner Mongolia University |
Author_xml | – sequence: 1 givenname: Jiao-Jiao surname: Zhao fullname: Zhao, Jiao-Jiao – sequence: 2 givenname: Lei surname: Zhang fullname: Zhang, Lei – sequence: 3 givenname: Peng-Yu surname: Liu fullname: Liu, Peng-Yu – sequence: 4 givenname: Wei-Zhe surname: Chen fullname: Chen, Wei-Zhe – sequence: 5 givenname: Zhi-Liang surname: Liu fullname: Liu, Zhi-Liang – sequence: 6 givenname: Yan-Qin surname: Wang fullname: Wang, Yan-Qin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33350995$$D View this record in MEDLINE/PubMed |
BookMark | eNptkkuPFCEUhYkZ4zx0415D4qbH2A4F1GtpenxmEjdjTNxUKLhM06GgBiid_pf-JOnqsU0mroCb7557wzmn6Mh5Bwg9L8jbgrD2QhGVCKt4s3mETgpe18uWMn50uNPqGJ3GuCGEUlLSJ-iYMVaSti1P0O_vIkFYxiR6C3ilFucXP9ziHEvvgzJOJOMdHr3dDhAiFhEHkFtpZ9pOg3EQJbiEI7joM6F9wAoSyGTcDV6bcZyCkVhIo7BxOJphsnmiwrnsYMaNU3C3o5O3E-Qi3I0-TgHwL5PWWeNmneXtTvKnSds38yyzf2DhFNYiprxXHL2L8BQ91sJGeHZ_nqFvH95frz4tr75-_Lx6d7WUjNVpKYgGSiraM6Y0aUpBKVRtq6tKcwW64pSJsiKc8b7odd_TvhJAak5l3ZScSXaGFnvdMfjbCWLqBpO_wlrhwE-xo7ymRbanaDP66gG68VNwebsd1dRNW7Y8Uy_vqakfQHVjMIMI2-6vVxl4vQdk8DEG0AekIN0uCN0lubyeg_Alw-QBLE2a3UxBGPv_lhf7lhDlQfpfttgf_cnDqA |
CitedBy_id | crossref_primary_10_1039_D1CE00621E crossref_primary_10_1016_j_jssc_2022_123154 crossref_primary_10_1016_j_jssc_2022_123550 crossref_primary_10_1021_acs_inorgchem_2c01313 crossref_primary_10_1016_j_talanta_2023_124803 crossref_primary_10_1021_acs_cgd_4c01126 crossref_primary_10_1107_S2053229622001322 crossref_primary_10_1016_j_ica_2022_120993 crossref_primary_10_1016_j_poly_2022_115827 crossref_primary_10_1039_D2DT02141B crossref_primary_10_1002_pssa_202200076 crossref_primary_10_1007_s10904_022_02299_9 crossref_primary_10_1016_j_molstruc_2024_139538 crossref_primary_10_2139_ssrn_4063437 crossref_primary_10_1039_D1DT02260A crossref_primary_10_1021_acs_inorgchem_2c03828 crossref_primary_10_1016_j_jssc_2021_122874 crossref_primary_10_1039_D4TC01686F crossref_primary_10_1007_s10904_021_02107_w crossref_primary_10_1016_j_jssc_2023_124450 crossref_primary_10_2139_ssrn_4172129 crossref_primary_10_1039_D2CE01484J crossref_primary_10_1016_j_molstruc_2022_133154 crossref_primary_10_1016_j_saa_2023_122637 crossref_primary_10_1016_j_poly_2024_116963 |
Cites_doi | 10.1021/acs.accounts.7b00387 10.1016/0892-0362(88)90014-1 10.1016/j.snb.2017.07.020 10.1080/15321810600734901 10.1021/jacs.6b01663 10.1016/j.snb.2017.12.060 10.1021/ic9019553 10.1002/(SICI)1099-0801(199803/04)12:2<47::AID-BMC717>3.0.CO;2-Y 10.1039/b802426j 10.1039/C6TC05615F 10.1021/ja500090y 10.1039/D0TC00825G 10.1021/jacs.6b09463 10.1039/C5CC02596F 10.1016/j.ccr.2011.03.013 10.1039/C9QI01490J 10.1039/C6TA05965A 10.1021/cg3000526 10.1039/C9TB02579K 10.1039/C8CS00688A 10.1002/adfm.201707169 10.1016/j.jchromb.2010.12.015 10.1289/ehp.99107417 10.1039/C4CS00010B 10.1080/00958972.2016.1143935 10.1039/b807083k 10.1021/acssensors.7b00808 10.1039/C6CE01457G 10.1093/jat/31.6.347 10.1016/j.arabjc.2010.09.029 10.1021/acsami.6b14795 10.1039/c2cs35047e 10.1021/acs.cgd.6b00258 10.1016/j.ccr.2011.02.012 10.1039/D0CS00107D 10.1016/S0378-4347(00)00463-1 10.1039/C5CC05219J 10.1039/C6CE01035K 10.1016/j.legalmed.2005.02.001 10.1021/jacs.0c05074 10.3390/s141018886 10.1021/jacs.5b06929 10.1021/cg050458i 10.1002/anie.200902274 10.1016/j.jpba.2010.01.016 10.1002/anie.201812708 10.1039/C7TB01764B 10.1039/C5PP00107B 10.1038/s41467-019-11912-4 10.1016/j.aca.2017.11.039 10.1038/s41560-017-0018-7 10.1021/cg0604982 10.1021/acs.cgd.6b00528 10.1039/C8NJ05647A 10.1080/00039896.1992.9935940 10.1016/j.bios.2016.12.026 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d0dt03648j |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1477-9234 |
EndPage | 561 |
ExternalDocumentID | 33350995 10_1039_D0DT03648J d0dt03648j |
Genre | Journal Article |
GroupedDBID | - 0-7 0R 29F 4.4 53G 5GY 70 70J 7~J AAEMU AAGNR AAIWI AANOJ AAPBV ABDVN ABFLS ABGFH ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 D0L DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3G J3H J3I JG M4U O9- R7B R7C RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UPT VH6 VQA WH7 X --- -DZ -~X 0R~ 2WC 70~ AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ R56 RAOCF -JG CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c337t-a0fe2062b33df085a22e699f66f4def6423a560434b1bfbb2b6ae0742c78543c3 |
ISSN | 1477-9226 1477-9234 |
IngestDate | Fri Jul 11 15:09:58 EDT 2025 Sun Jun 29 14:13:25 EDT 2025 Wed Feb 19 02:09:06 EST 2025 Tue Jul 01 03:01:57 EDT 2025 Thu Apr 24 23:05:42 EDT 2025 Sat Jan 08 03:52:04 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-a0fe2062b33df085a22e699f66f4def6423a560434b1bfbb2b6ae0742c78543c3 |
Notes | Electronic supplementary information (ESI) available. CCDC For ESI and crystallographic data in CIF or other electronic format see DOI 2031783 2031780 and 2031778 10.1039/d0dt03648j , ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6276-0679 0000-0001-7105-7950 |
PMID | 33350995 |
PQID | 2478789594 |
PQPubID | 2047498 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2472110319 crossref_citationtrail_10_1039_D0DT03648J proquest_journals_2478789594 pubmed_primary_33350995 rsc_primary_d0dt03648j crossref_primary_10_1039_D0DT03648J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-14 |
PublicationDateYYYYMMDD | 2021-01-14 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Dalton transactions : an international journal of inorganic chemistry |
PublicationTitleAlternate | Dalton Trans |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Wang (D0DT03648J-(cit46)/*[position()=1]) 2019; 10 Afreen (D0DT03648J-(cit32)/*[position()=1]) 2020; 8 Erucar (D0DT03648J-(cit25)/*[position()=1]) 2017; 5 Wang (D0DT03648J-(cit42)/*[position()=1]) 2016; 138 Yoshida (D0DT03648J-(cit57)/*[position()=1]) 2005; 7 Hu (D0DT03648J-(cit26)/*[position()=1]) 2014; 43 Hao (D0DT03648J-(cit5)/*[position()=1]) 2015; 51 Inagaki (D0DT03648J-(cit12)/*[position()=1]) 2006; 27 Yang (D0DT03648J-(cit45)/*[position()=1]) 2017; 2 Gao (D0DT03648J-(cit24)/*[position()=1]) 2017; 9 Pan (D0DT03648J-(cit15)/*[position()=1]) 2011; 255 Kim (D0DT03648J-(cit33)/*[position()=1]) 2020; 49 Feldman (D0DT03648J-(cit3)/*[position()=1]) 1999; 107 Wang (D0DT03648J-(cit50)/*[position()=1]) 2016; 18 Penner (D0DT03648J-(cit13)/*[position()=1]) 2010; 52 Zhang (D0DT03648J-(cit52)/*[position()=1]) 2010; 49 Wang (D0DT03648J-(cit39)/*[position()=1]) 2019; 58 Zhong (D0DT03648J-(cit29)/*[position()=1]) 2020; 7 Chen (D0DT03648J-(cit56)/*[position()=1]) 2017; 5 Guo (D0DT03648J-(cit41)/*[position()=1]) 2019; 43 Otto (D0DT03648J-(cit4)/*[position()=1]) 1992; 47 Kirchon (D0DT03648J-(cit16)/*[position()=1]) 2018; 47 Wen (D0DT03648J-(cit48)/*[position()=1]) 2007; 7 Wang (D0DT03648J-(cit40)/*[position()=1]) 2016; 18 Falkowski (D0DT03648J-(cit23)/*[position()=1]) 2014; 136 Yan (D0DT03648J-(cit17)/*[position()=1]) 2017; 50 Liu (D0DT03648J-(cit54)/*[position()=1]) 2015; 14 Choi (D0DT03648J-(cit58)/*[position()=1]) 2014; 14 Li (D0DT03648J-(cit38)/*[position()=1]) 2016; 16 Niu (D0DT03648J-(cit49)/*[position()=1]) 2012; 12 Wen (D0DT03648J-(cit51)/*[position()=1]) 2006; 6 Zhang (D0DT03648J-(cit31)/*[position()=1]) 2015; 137 Kim (D0DT03648J-(cit18)/*[position()=1]) 2018; 3 Wu (D0DT03648J-(cit27)/*[position()=1]) 2018; 28 Li (D0DT03648J-(cit37)/*[position()=1]) 2016; 16 Lv (D0DT03648J-(cit43)/*[position()=1]) 2017; 139 Wang (D0DT03648J-(cit14)/*[position()=1]) 2009; 48 Li (D0DT03648J-(cit19)/*[position()=1]) 2009; 38 He (D0DT03648J-(cit44)/*[position()=1]) 2020; 142 Ellairaja (D0DT03648J-(cit59)/*[position()=1]) 2017; 91 Park (D0DT03648J-(cit6)/*[position()=1]) 2007; 31 Qin (D0DT03648J-(cit9)/*[position()=1]) 2017; 253 Du (D0DT03648J-(cit1)/*[position()=1]) 2018; 1001 Qin (D0DT03648J-(cit47)/*[position()=1]) 2018; 259 Wu (D0DT03648J-(cit28)/*[position()=1]) 2020; 8 Zhao (D0DT03648J-(cit8)/*[position()=1]) 2011; 879 Wu (D0DT03648J-(cit30)/*[position()=1]) 2018; 28 Xu (D0DT03648J-(cit55)/*[position()=1]) 2015; 51 Rosenberg (D0DT03648J-(cit2)/*[position()=1]) 1988; 10 Zinalibdin (D0DT03648J-(cit7)/*[position()=1]) 2013; 6 Li (D0DT03648J-(cit20)/*[position()=1]) 2011; 255 Kongtip (D0DT03648J-(cit10)/*[position()=1]) 2001; 751 Ma (D0DT03648J-(cit21)/*[position()=1]) 2009; 38 Sheldrick (D0DT03648J-(cit34)/*[position()=1]) 1996 Yang (D0DT03648J-(cit11)/*[position()=1]) 1998; 12 Lia (D0DT03648J-(cit36)/*[position()=1]) 2016; 69 Lv (D0DT03648J-(cit53)/*[position()=1]) 2016; 4 Dhakshinamoorthy (D0DT03648J-(cit22)/*[position()=1]) 2012; 41 |
References_xml | – issn: 1996 publication-title: Program for Empirical Absorption Correction of Area Detector Data doi: Sheldrick – issn: 1998 publication-title: SHELXTL Version 5.1 doi: Sheldrick – volume: 50 start-page: 2789 year: 2017 ident: D0DT03648J-(cit17)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00387 – volume: 10 start-page: 489 year: 1988 ident: D0DT03648J-(cit2)/*[position()=1] publication-title: Neurotoxicol. Teratol. doi: 10.1016/0892-0362(88)90014-1 – volume: 253 start-page: 852 year: 2017 ident: D0DT03648J-(cit9)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2017.07.020 – volume-title: Program for Empirical Absorption Correction of Area Detector Data year: 1996 ident: D0DT03648J-(cit34)/*[position()=1] – volume: 27 start-page: 213 year: 2006 ident: D0DT03648J-(cit12)/*[position()=1] publication-title: J. Immunoassay Immunochem. doi: 10.1080/15321810600734901 – volume: 138 start-page: 6204 year: 2016 ident: D0DT03648J-(cit42)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b01663 – volume: 259 start-page: 125 year: 2018 ident: D0DT03648J-(cit47)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2017.12.060 – volume: 49 start-page: 1535 year: 2010 ident: D0DT03648J-(cit52)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic9019553 – volume: 12 start-page: 47 year: 1998 ident: D0DT03648J-(cit11)/*[position()=1] publication-title: Biomed. Chromatogr. doi: 10.1002/(SICI)1099-0801(199803/04)12:2<47::AID-BMC717>3.0.CO;2-Y – volume: 38 start-page: 1477 year: 2009 ident: D0DT03648J-(cit19)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b802426j – volume: 5 start-page: 2015 year: 2017 ident: D0DT03648J-(cit56)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C6TC05615F – volume: 136 start-page: 5213 year: 2014 ident: D0DT03648J-(cit23)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500090y – volume: 8 start-page: 6820 year: 2020 ident: D0DT03648J-(cit28)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/D0TC00825G – volume: 139 start-page: 211 year: 2017 ident: D0DT03648J-(cit43)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b09463 – volume: 51 start-page: 10280 year: 2015 ident: D0DT03648J-(cit55)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC02596F – volume: 255 start-page: 1921 year: 2011 ident: D0DT03648J-(cit15)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2011.03.013 – volume: 7 start-page: 1161 year: 2020 ident: D0DT03648J-(cit29)/*[position()=1] publication-title: Inorg. Chem. Front. doi: 10.1039/C9QI01490J – volume: 4 start-page: 15494 year: 2016 ident: D0DT03648J-(cit53)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA05965A – volume: 12 start-page: 2397 year: 2012 ident: D0DT03648J-(cit49)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/cg3000526 – volume: 8 start-page: 1338 year: 2020 ident: D0DT03648J-(cit32)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/C9TB02579K – volume: 47 start-page: 8611 year: 2018 ident: D0DT03648J-(cit16)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00688A – volume: 28 start-page: 1707169 year: 2018 ident: D0DT03648J-(cit30)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707169 – volume: 879 start-page: 296 year: 2011 ident: D0DT03648J-(cit8)/*[position()=1] publication-title: J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. doi: 10.1016/j.jchromb.2010.12.015 – volume: 107 start-page: 417 year: 1999 ident: D0DT03648J-(cit3)/*[position()=1] publication-title: Environ. Health Perspect. doi: 10.1289/ehp.99107417 – volume: 43 start-page: 5815 year: 2014 ident: D0DT03648J-(cit26)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00010B – volume: 69 start-page: 966 year: 2016 ident: D0DT03648J-(cit36)/*[position()=1] publication-title: J. Coord. Chem. doi: 10.1080/00958972.2016.1143935 – volume: 38 start-page: 1248 year: 2009 ident: D0DT03648J-(cit21)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b807083k – volume: 3 start-page: 386 year: 2018 ident: D0DT03648J-(cit18)/*[position()=1] publication-title: ACS Sens. doi: 10.1021/acssensors.7b00808 – volume: 18 start-page: 7471 year: 2016 ident: D0DT03648J-(cit50)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C6CE01457G – volume: 31 start-page: 347 year: 2007 ident: D0DT03648J-(cit6)/*[position()=1] publication-title: J. Anal. Toxicol. doi: 10.1093/jat/31.6.347 – volume: 28 start-page: 1707169 year: 2018 ident: D0DT03648J-(cit27)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707169 – volume: 6 start-page: 115 year: 2013 ident: D0DT03648J-(cit7)/*[position()=1] publication-title: Arabian J. Chem. doi: 10.1016/j.arabjc.2010.09.029 – volume: 9 start-page: 3455 year: 2017 ident: D0DT03648J-(cit24)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b14795 – volume: 41 start-page: 5262 year: 2012 ident: D0DT03648J-(cit22)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35047e – volume: 16 start-page: 2912 year: 2016 ident: D0DT03648J-(cit37)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.6b00258 – volume: 255 start-page: 1791 year: 2011 ident: D0DT03648J-(cit20)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2011.02.012 – volume: 49 start-page: 5446 year: 2020 ident: D0DT03648J-(cit33)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00107D – volume: 751 start-page: 199 year: 2001 ident: D0DT03648J-(cit10)/*[position()=1] publication-title: J. Chromatogr. B: Biomed. Sci. Appl. doi: 10.1016/S0378-4347(00)00463-1 – volume: 51 start-page: 14509 year: 2015 ident: D0DT03648J-(cit5)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC05219J – volume: 18 start-page: 5101 year: 2016 ident: D0DT03648J-(cit40)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C6CE01035K – volume: 7 start-page: 198 year: 2005 ident: D0DT03648J-(cit57)/*[position()=1] publication-title: Leg. Med. doi: 10.1016/j.legalmed.2005.02.001 – volume: 142 start-page: 13491 year: 2020 ident: D0DT03648J-(cit44)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c05074 – volume: 14 start-page: 18886 year: 2014 ident: D0DT03648J-(cit58)/*[position()=1] publication-title: Sensors doi: 10.3390/s141018886 – volume: 137 start-page: 12203 year: 2015 ident: D0DT03648J-(cit31)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b06929 – volume: 6 start-page: 530 year: 2006 ident: D0DT03648J-(cit51)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/cg050458i – volume: 48 start-page: 5291 year: 2009 ident: D0DT03648J-(cit14)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200902274 – volume: 52 start-page: 534 year: 2010 ident: D0DT03648J-(cit13)/*[position()=1] publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2010.01.016 – volume: 58 start-page: 3481 year: 2019 ident: D0DT03648J-(cit39)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201812708 – volume: 5 start-page: 7342 year: 2017 ident: D0DT03648J-(cit25)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/C7TB01764B – volume: 14 start-page: 1644 year: 2015 ident: D0DT03648J-(cit54)/*[position()=1] publication-title: Photochem. Photobiol. Sci. doi: 10.1039/C5PP00107B – volume: 10 start-page: 3861 year: 2019 ident: D0DT03648J-(cit46)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-11912-4 – volume: 1001 start-page: 134 year: 2018 ident: D0DT03648J-(cit1)/*[position()=1] publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2017.11.039 – volume: 2 start-page: 877 year: 2017 ident: D0DT03648J-(cit45)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/s41560-017-0018-7 – volume: 7 start-page: 93 year: 2007 ident: D0DT03648J-(cit48)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/cg0604982 – volume: 16 start-page: 3969 year: 2016 ident: D0DT03648J-(cit38)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.6b00528 – volume: 43 start-page: 2353 year: 2019 ident: D0DT03648J-(cit41)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/C8NJ05647A – volume: 47 start-page: 23 year: 1992 ident: D0DT03648J-(cit4)/*[position()=1] publication-title: Arch. Environ. Health doi: 10.1080/00039896.1992.9935940 – volume: 91 start-page: 82 year: 2017 ident: D0DT03648J-(cit59)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.12.026 |
SSID | ssj0022052 |
Score | 2.4562929 |
Snippet | Three novel Cd(
ii
)/Zn(
ii
) coordination polymers (CPs), namely [Cd(L)(BPDC)
0.5
H
2
O]·0.5H
2
O (
1
), [Zn
2
(L)
2
(BPDC)]·2H
2
O (
2
) and [Cd
2
(L)(BTC)H... Three novel Cd(ii)/Zn(ii) coordination polymers (CPs), namely [Cd(L)(BPDC) H O]·0.5H O (1), [Zn (L) (BPDC)]·2H O (2) and [Cd (L)(BTC)H O]·3H O (3) (L =... Three novel Cd(ii)/Zn(ii) coordination polymers (CPs), namely [Cd(L)(BPDC)0.5H2O]·0.5H2O (1), [Zn2(L)2(BPDC)]·2H2O (2) and [Cd2(L)(BTC)H2O]·3H2O (3) (L =... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 553 |
SubjectTerms | Acids Cadmium Cadmium - chemistry Cadmium - urine Coordination Complexes - chemical synthesis Coordination Complexes - chemistry Coordination polymers Crystallography Energy transfer Fluorescence Hippurates - chemistry Hippurates - urine Hippuric acid Humans Hydrogen bonds Limit of Detection Metabolites Nitrogen atoms Polymers - chemistry Selectivity Sensitivity Sensors Tetrazoles Toluene Toluene - chemistry Urine Water - chemistry Zinc - chemistry Zinc - urine |
Title | Water-stable Cd()/Zn() coordination polymers as recyclable luminescent sensors for detecting hippuric acid in simulated urine for indexing toluene exposure with high selectivity, sensitivity and fast response |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33350995 https://www.proquest.com/docview/2478789594 https://www.proquest.com/docview/2472110319 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLX2IcFeEF8bhYEuggemki2zkzR5nLqhMU08ddrYS-U4DjPa0mppH8bv5Adxrx2nGRsS8JK2iZNUvaeO7_H1OYy9TzM1KMs4DdIiUgFp5wQykSrQPMpV4iYHqdriS3J4Eh2dxWdLy2udqqX5LN9WP-5dV_I_UcV9GFdaJfsPkW0vijvwPcYXtxhh3P5VjE9xoHgd4PiOlj8N8e6pwauRtOd55T_01QTzS-NIP_JkuCGmmuxlsK-7UZf2XOyhqPydKjX7NSa25MBD9YeFpjkGYhMuzHRKAkR9qQzJNfVrc0XOXzheJb7eSYdb6UW7_mpCziea_AMmREE6upekkfu1Nd6xlhUUXrqbaRwsiMMvZT3Db2YLd29VKe1L8r8mSwvvb15bOkNWVvJiwWre0sJwplWqr7yvXYcod3NORk4C2txh0I-1aauVzNzVMlffgq_zRUWE67JPtQnOL3SXP-FEngRu3eq2dn1-RLPYvOFUm4eCU8NtwM87PXzstI3vPHlCQdEtwmJGM7vp924j_DWmVxaDQggcoTlb0d90vv2hZbbKMeXhK2x172D0-bilD3gYcy-wK7Kdxa3W2AN_8u3R1Z2UCQdQ197Yxg6gRo_ZoybzgT0H4ydsSVdP2cOhD8wz9rMLZxgWH4zZ2jmv6AW6IAYPYpA1LEAMHRBDA2JAVEILYvAgBgIxmApaEIMFsW3uQQwNiMGDGAjEQCCGDog_QgfCgBAGgjB4CD9nJ58ORsPDoDEdCZQQg1kgw1LzMOG5EEWJ-YjkXCdZViZJGRW6xHRdSMwSIhHlu3mZ5zxPpCaCSQ3SOBJKrLOValLpFwwiFcaxzlVeJGkUJWE2KJTezWQy2OWaD_Ie2_LBGqtGkZ-MYS7HtjJEZOP9cH9kY3zUY-_atlOnQ3Nvq00f83Hzb6vHnPS30izOoh572x7G2NLUoKz0ZG7bEBOEz-Me23BYaW_jsdVj6wiedvcCfy__eMortrb4y22yldn1XL_GQfwsf9Og-xf6m_6C |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water-stable+Cd%28ii%29%2FZn%28ii%29+coordination+polymers+as+recyclable+luminescent+sensors+for+detecting+hippuric+acid+in+simulated+urine+for+indexing+toluene+exposure+with+high+selectivity%2C+sensitivity+and+fast+response&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Zhao%2C+Jiao-Jiao&rft.au=Zhang%2C+Lei&rft.au=Liu%2C+Peng-Yu&rft.au=Chen%2C+Wei-Zhe&rft.date=2021-01-14&rft.eissn=1477-9234&rft.volume=50&rft.issue=2&rft.spage=553&rft_id=info:doi/10.1039%2Fd0dt03648j&rft_id=info%3Apmid%2F33350995&rft.externalDocID=33350995 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon |