A decade update on the application of β-oxodithioesters in heterocyclic synthesis
The diverse synthesis of heterocyclic compounds has always been one of the popular subjects of organic chemistry. To this end, great efforts have been devoted to developing new reagents and establishing new strategies and methods concerning efficiency, selectivity and sustainability. β-Oxodithioeste...
Saved in:
Published in | Organic & biomolecular chemistry Vol. 21; no. 34; pp. 686 - 6829 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
30.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1477-0520 1477-0539 1477-0539 |
DOI | 10.1039/d3ob00601h |
Cover
Loading…
Abstract | The diverse synthesis of heterocyclic compounds has always been one of the popular subjects of organic chemistry. To this end, great efforts have been devoted to developing new reagents and establishing new strategies and methods concerning efficiency, selectivity and sustainability. β-Oxodithioesters and their enol tautomers (
i.e.
, α-enolic dithioesters), as a class of simple and readily accessible sulfur-containing synthons, have been widely applied in the construction of various five- and six-membered heterocycles (
e.g.
, thiophenes, thiopyrans, thiazoles, pyridines and quinolines) and other useful open-chain frameworks. Due to their unique chemical structures, β-oxodithioesters bear multiple reaction sites, which enable them to participate in two-component or multicomponent reactions to construct various heterocyclic compounds. In the past decade, the application of β-oxodithioesters in the synthesis of heterocycles has made remarkable progress. Herein, an update on the recent advances in the application of β-oxodithioesters in the synthesis of heterocycles during the period from 2013 to 2023/06 is provided. According to the different types of rings concerning heteroatoms in products, this review is divided into five sections under discussion including (i) synthesis of sulfur-containing heterocycles, (ii) synthesis of sulfur and nitrogen-containing heterocycles, (iii) synthesis of nitrogen-containing heterocycles, (iv) synthesis of nitrogen and oxygen-containing heterocycles, and (v) modification to other open-chain frameworks.
A decade update on the application of β-oxodithioesters in the construction of sulfur-containing heterocycles, non-sulfur heterocycles, and other open-chain frameworks is presented. |
---|---|
AbstractList | The diverse synthesis of heterocyclic compounds has always been one of the popular subjects of organic chemistry. To this end, great efforts have been devoted to developing new reagents and establishing new strategies and methods concerning efficiency, selectivity and sustainability. β-Oxodithioesters and their enol tautomers (
i.e.
, α-enolic dithioesters), as a class of simple and readily accessible sulfur-containing synthons, have been widely applied in the construction of various five- and six-membered heterocycles (
e.g.
, thiophenes, thiopyrans, thiazoles, pyridines and quinolines) and other useful open-chain frameworks. Due to their unique chemical structures, β-oxodithioesters bear multiple reaction sites, which enable them to participate in two-component or multicomponent reactions to construct various heterocyclic compounds. In the past decade, the application of β-oxodithioesters in the synthesis of heterocycles has made remarkable progress. Herein, an update on the recent advances in the application of β-oxodithioesters in the synthesis of heterocycles during the period from 2013 to 2023/06 is provided. According to the different types of rings concerning heteroatoms in products, this review is divided into five sections under discussion including (i) synthesis of sulfur-containing heterocycles, (ii) synthesis of sulfur and nitrogen-containing heterocycles, (iii) synthesis of nitrogen-containing heterocycles, (iv) synthesis of nitrogen and oxygen-containing heterocycles, and (v) modification to other open-chain frameworks.
A decade update on the application of β-oxodithioesters in the construction of sulfur-containing heterocycles, non-sulfur heterocycles, and other open-chain frameworks is presented. The diverse synthesis of heterocyclic compounds has always been one of the popular subjects of organic chemistry. To this end, great efforts have been devoted to developing new reagents and establishing new strategies and methods concerning efficiency, selectivity and sustainability. β-Oxodithioesters and their enol tautomers (i.e., α-enolic dithioesters), as a class of simple and readily accessible sulfur-containing synthons, have been widely applied in the construction of various five- and six-membered heterocycles (e.g., thiophenes, thiopyrans, thiazoles, pyridines and quinolines) and other useful open-chain frameworks. Due to their unique chemical structures, β-oxodithioesters bear multiple reaction sites, which enable them to participate in two-component or multicomponent reactions to construct various heterocyclic compounds. In the past decade, the application of β-oxodithioesters in the synthesis of heterocycles has made remarkable progress. Herein, an update on the recent advances in the application of β-oxodithioesters in the synthesis of heterocycles during the period from 2013 to 2023/06 is provided. According to the different types of rings concerning heteroatoms in products, this review is divided into five sections under discussion including (i) synthesis of sulfur-containing heterocycles, (ii) synthesis of sulfur and nitrogen-containing heterocycles, (iii) synthesis of nitrogen-containing heterocycles, (iv) synthesis of nitrogen and oxygen-containing heterocycles, and (v) modification to other open-chain frameworks. The diverse synthesis of heterocyclic compounds has always been one of the popular subjects of organic chemistry. To this end, great efforts have been devoted to developing new reagents and establishing new strategies and methods concerning efficiency, selectivity and sustainability. β-Oxodithioesters and their enol tautomers (i.e., α-enolic dithioesters), as a class of simple and readily accessible sulfur-containing synthons, have been widely applied in the construction of various five- and six-membered heterocycles (e.g., thiophenes, thiopyrans, thiazoles, pyridines and quinolines) and other useful open-chain frameworks. Due to their unique chemical structures, β-oxodithioesters bear multiple reaction sites, which enable them to participate in two-component or multicomponent reactions to construct various heterocyclic compounds. In the past decade, the application of β-oxodithioesters in the synthesis of heterocycles has made remarkable progress. Herein, an update on the recent advances in the application of β-oxodithioesters in the synthesis of heterocycles during the period from 2013 to 2023/06 is provided. According to the different types of rings concerning heteroatoms in products, this review is divided into five sections under discussion including (i) synthesis of sulfur-containing heterocycles, (ii) synthesis of sulfur and nitrogen-containing heterocycles, (iii) synthesis of nitrogen-containing heterocycles, (iv) synthesis of nitrogen and oxygen-containing heterocycles, and (v) modification to other open-chain frameworks.The diverse synthesis of heterocyclic compounds has always been one of the popular subjects of organic chemistry. To this end, great efforts have been devoted to developing new reagents and establishing new strategies and methods concerning efficiency, selectivity and sustainability. β-Oxodithioesters and their enol tautomers (i.e., α-enolic dithioesters), as a class of simple and readily accessible sulfur-containing synthons, have been widely applied in the construction of various five- and six-membered heterocycles (e.g., thiophenes, thiopyrans, thiazoles, pyridines and quinolines) and other useful open-chain frameworks. Due to their unique chemical structures, β-oxodithioesters bear multiple reaction sites, which enable them to participate in two-component or multicomponent reactions to construct various heterocyclic compounds. In the past decade, the application of β-oxodithioesters in the synthesis of heterocycles has made remarkable progress. Herein, an update on the recent advances in the application of β-oxodithioesters in the synthesis of heterocycles during the period from 2013 to 2023/06 is provided. According to the different types of rings concerning heteroatoms in products, this review is divided into five sections under discussion including (i) synthesis of sulfur-containing heterocycles, (ii) synthesis of sulfur and nitrogen-containing heterocycles, (iii) synthesis of nitrogen-containing heterocycles, (iv) synthesis of nitrogen and oxygen-containing heterocycles, and (v) modification to other open-chain frameworks. The diverse synthesis of heterocyclic compounds has always been one of the popular subjects of organic chemistry. To this end, great efforts have been devoted to developing new reagents and establishing new strategies and methods concerning efficiency, selectivity and sustainability. β-Oxodithioesters and their enol tautomers ( , α-enolic dithioesters), as a class of simple and readily accessible sulfur-containing synthons, have been widely applied in the construction of various five- and six-membered heterocycles ( , thiophenes, thiopyrans, thiazoles, pyridines and quinolines) and other useful open-chain frameworks. Due to their unique chemical structures, β-oxodithioesters bear multiple reaction sites, which enable them to participate in two-component or multicomponent reactions to construct various heterocyclic compounds. In the past decade, the application of β-oxodithioesters in the synthesis of heterocycles has made remarkable progress. Herein, an update on the recent advances in the application of β-oxodithioesters in the synthesis of heterocycles during the period from 2013 to 2023/06 is provided. According to the different types of rings concerning heteroatoms in products, this review is divided into five sections under discussion including (i) synthesis of sulfur-containing heterocycles, (ii) synthesis of sulfur and nitrogen-containing heterocycles, (iii) synthesis of nitrogen-containing heterocycles, (iv) synthesis of nitrogen and oxygen-containing heterocycles, and (v) modification to other open-chain frameworks. The diverse synthesis of heterocyclic compounds has always been one of the popular subjects of organic chemistry. To this end, great efforts have been devoted to developing new reagents and establishing new strategies and methods concerning efficiency, selectivity and sustainability. β-Oxodithioesters and their enol tautomers ( i.e. , α-enolic dithioesters), as a class of simple and readily accessible sulfur-containing synthons, have been widely applied in the construction of various five- and six-membered heterocycles ( e.g. , thiophenes, thiopyrans, thiazoles, pyridines and quinolines) and other useful open-chain frameworks. Due to their unique chemical structures, β-oxodithioesters bear multiple reaction sites, which enable them to participate in two-component or multicomponent reactions to construct various heterocyclic compounds. In the past decade, the application of β-oxodithioesters in the synthesis of heterocycles has made remarkable progress. Herein, an update on the recent advances in the application of β-oxodithioesters in the synthesis of heterocycles during the period from 2013 to 2023/06 is provided. According to the different types of rings concerning heteroatoms in products, this review is divided into five sections under discussion including (i) synthesis of sulfur-containing heterocycles, (ii) synthesis of sulfur and nitrogen-containing heterocycles, (iii) synthesis of nitrogen-containing heterocycles, (iv) synthesis of nitrogen and oxygen-containing heterocycles, and (v) modification to other open-chain frameworks. |
Author | Dong, Zhi-Bing Cheng, Bin Dou, Qian Wang, Taimin Gong, Zhiying |
AuthorAffiliation | Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Key Laboratory of Science and Technology on Wear and Protection of Materials School of Chemistry and Environmental Engineering Wuhan Institute of Technology Shenzhen Polytechnic Institute of Marine Biomedicine |
AuthorAffiliation_xml | – sequence: 0 name: Shenzhen Polytechnic – sequence: 0 name: Key Laboratory of Science and Technology on Wear and Protection of Materials – sequence: 0 name: Chinese Academy of Sciences – sequence: 0 name: Institute of Marine Biomedicine – sequence: 0 name: Lanzhou Institute of Chemical Physics – sequence: 0 name: School of Chemistry and Environmental Engineering – sequence: 0 name: Wuhan Institute of Technology |
Author_xml | – sequence: 1 givenname: Zhi-Bing surname: Dong fullname: Dong, Zhi-Bing – sequence: 2 givenname: Zhiying surname: Gong fullname: Gong, Zhiying – sequence: 3 givenname: Qian surname: Dou fullname: Dou, Qian – sequence: 4 givenname: Bin surname: Cheng fullname: Cheng, Bin – sequence: 5 givenname: Taimin surname: Wang fullname: Wang, Taimin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37555699$$D View this record in MEDLINE/PubMed |
BookMark | eNptkV9LwzAUxYNMnJu--K4EfBGhmjRp0jzO-WfCYCD6XNI0ZRldU5MW3Nfyg_iZjNucMHy698LvXA7nDECvtrUG4AyjG4yIuC2IzRFiCM8PwDGmnEcoIaK322PUBwPvFwhhwRk9An3CkyRhQhyDlxEstJKFhl1TyFZDW8N2rqFsmsoo2Zpw2xJ-fUb2wxamnRurfaudh6aGcx02q1YqoNCv6iD0xp-Aw1JWXp9u5xC8PT68jifRdPb0PB5NI0UIbyMhBaW55GmZx5znKFWMM5lzkcSUKKxpSTkLLrWI8wQzosMVlwVOC1JyKgQZgqvN38bZ9y64ypbGK11Vsta281mc0jSOBeNpQC_30IXtXB3cBSpJGaKc8kBdbKkuX-oia5xZSrfKftMKwPUGUM5673S5QzDKfqrI7snsbl3FJMBoD1amXQfaOmmq_yXnG4nzavf6r13yDXJxk7s |
CitedBy_id | crossref_primary_10_1016_j_rechem_2024_101977 crossref_primary_10_1039_D5OB00022J |
Cites_doi | 10.1021/acs.joc.7b03092 10.1039/b901245c 10.24820/ark.5550190.p010.069 10.1021/cr100214d 10.1039/C7NJ03025H 10.1002/adsc.201400828 10.1080/00397911.2017.1346810 10.1039/C5RA06355H 10.1039/C6OB00936K 10.1021/acs.orglett.6b00997 10.1021/jm4017625 10.1002/adsc.201900580 10.3390/molecules26030627 10.1021/cr0683966 10.1039/C4OB02117G 10.1021/jf8031364 10.1021/jo061747w 10.1021/acs.chemrev.5b00360 10.1021/jf203974p 10.1016/j.bmcl.2011.11.122 10.1021/acs.accounts.5b00041 10.1055/s-0040-1707160 10.1080/10715760601009586 10.1002/adma.201003128 10.1039/p19850000641 10.1016/j.tet.2016.12.073 10.1002/ejoc.201300038 10.1016/j.tetlet.2014.06.013 10.1039/D0QO01453B 10.1021/acs.oprd.7b00280 10.1002/ajoc.201800396 10.1039/b509528j 10.1002/adsc.202201050 10.1016/S0040-4039(00)88354-9 10.1021/cr010016n 10.1002/ejoc.202101276 10.1002/adsc.201901180 10.1002/slct.201803403 10.1039/c3cs35505e 10.1021/acs.joc.6b01802 10.1021/acs.joc.2c01617 10.1016/j.tet.2013.12.020 10.1021/acs.joc.5b00288 10.1039/c3ra41094c 10.1021/ol402728y 10.1039/D0OB00458H 10.1021/acs.joc.0c01984 10.1016/j.tetlet.2014.02.115 10.1039/b413249c 10.1039/D1NJ01970H 10.1021/jo00986a008 10.1021/acs.joc.5b01869 10.1039/D2OB01258H 10.1016/0040-4020(95)01103-X 10.1039/c3ra41100a 10.1021/ol400644m 10.1039/C4GC01431F 10.1039/C6OB01054G 10.1016/j.tet.2013.07.092 10.1016/j.bmcl.2011.10.055 10.1016/S0040-4039(00)02209-7 10.3762/bjoc.10.303 10.1002/adsc.201701595 10.1021/acs.joc.7b01601 10.1002/ajoc.201200148 10.1039/C5RA11629E 10.1021/jm00390a011 10.1080/00397919908086034 10.1002/ps.3615 10.1016/j.tetlet.2017.05.064 10.1021/jo801801y 10.1016/S0040-4039(00)73299-0 10.1039/C2CS35329F 10.1038/s41557-018-0021-z 10.1039/B608235C 10.1002/adsc.201500962 10.1016/j.tet.2013.07.001 10.1039/c3gc37047j 10.1080/00397911.2023.2221755 10.1021/ol502850h 10.1002/anie.201006515 10.1021/acs.joc.8b00814 10.1016/j.brainres.2007.12.044 10.1039/C4OB02024C 10.1002/anie.202006736 10.1055/s-2001-12356 10.1016/j.neuro.2008.11.007 10.1021/acs.joc.0c01355 10.1016/j.tetlet.2010.09.055 10.1002/ajoc.202100197 10.1002/ejoc.201403171 10.1021/jm0256225 10.1016/j.tet.2014.03.097 10.1002/ejoc.201301788 10.1055/s-1983-30446 10.1021/jm201540h 10.1021/cr078361l 10.1016/j.tetlet.2014.01.014 10.1021/acs.joc.1c00156 10.1039/C5OB02081F 10.1021/jm501100b 10.1021/jm901323s 10.1016/j.tetlet.2016.04.100 10.1002/ejoc.201402276 10.1016/j.tetlet.2023.154463 10.1021/cr050041j 10.1021/ar800214s 10.1021/ar700238s 10.1021/cr800296p 10.1002/adsc.202200511 10.1039/p19880000663 10.6023/cjoc202107023 10.1039/C1CC15238F 10.1021/acs.orglett.2c03642 10.1016/j.tetlet.2015.04.004 10.1021/acs.accounts.6b00254 10.1021/acs.orglett.3c00509 10.1021/acs.oprd.2c00050 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION NPM 7QO 7T7 7TM 8FD C1K FR3 P64 7X8 |
DOI | 10.1039/d3ob00601h |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Biotechnology Research Abstracts MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1477-0539 |
EndPage | 6829 |
ExternalDocumentID | 37555699 10_1039_D3OB00601H d3ob00601h |
Genre | Journal Article Review |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 123 29N 4.4 705 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACNCT ACPRK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- OK1 P2P R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ VH6 VQA WH7 XSW YNT YZZ AAYXX AFRZK AKMSF ALUYA CITATION R56 NPM 7QO 7T7 7TM 8FD C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c337t-9a944ba78fb277b08c676ab795243c1e4f476556e92b5163e7652fd18d3f74993 |
ISSN | 1477-0520 1477-0539 |
IngestDate | Thu Jul 10 18:10:39 EDT 2025 Mon Jun 30 12:02:25 EDT 2025 Wed Feb 19 02:24:13 EST 2025 Tue Jul 01 01:52:30 EDT 2025 Thu Apr 24 23:03:44 EDT 2025 Tue Dec 17 20:58:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-9a944ba78fb277b08c676ab795243c1e4f476556e92b5163e7652fd18d3f74993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3354-8318 0000-0002-8276-6653 |
PMID | 37555699 |
PQID | 2858604747 |
PQPubID | 2047497 |
PageCount | 24 |
ParticipantIDs | crossref_primary_10_1039_D3OB00601H pubmed_primary_37555699 proquest_journals_2858604747 rsc_primary_d3ob00601h proquest_miscellaneous_2848229678 crossref_citationtrail_10_1039_D3OB00601H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-30 |
PublicationDateYYYYMMDD | 2023-08-30 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Organic & biomolecular chemistry |
PublicationTitleAlternate | Org Biomol Chem |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Vitaku (D3OB00601H/cit2a/1) 2014; 57 Wang (D3OB00601H/cit11/1) 2015; 5 Sharma (D3OB00601H/cit6b/1) 2012; 48 Brahmachari (D3OB00601H/cit6e/1) 2018; 7 Singh (D3OB00601H/cit51/1) 2013; 15 Pan (D3OB00601H/cit74/1) 2013; 42 Saha (D3OB00601H/cit77/1) 2021 Zakarya (D3OB00601H/cit7d/1) 1994; 35 Reissig (D3OB00601H/cit10a/1) 2003; 103 de la Torre (D3OB00601H/cit2e/1) 2021; 26 Ruijter (D3OB00601H/cit13d/1) 2011; 50 Soni (D3OB00601H/cit76/1) 2020; 85 Androsov (D3OB00601H/cit50b/1) 2008; 73 Ganem (D3OB00601H/cit13b/1) 2009; 42 Shukla (D3OB00601H/cit16/1) 2022; 87 Soni (D3OB00601H/cit39/1) 2022; 20 Grover (D3OB00601H/cit10c/1) 2015; 13 Guo (D3OB00601H/cit5g/1) 2015; 13 Patel (D3OB00601H/cit48b/1) 2012; 22 Ramulu (D3OB00601H/cit18/1) 2016; 14 Kapanda (D3OB00601H/cit23c/1) 2009; 52 Tripathy (D3OB00601H/cit48a/1) 2011; 21 Clausen (D3OB00601H/cit50a/1) 1996; 52 Polshettiwar (D3OB00601H/cit6a/1) 2008; 41 Touré (D3OB00601H/cit13c/1) 2009; 109 Zhao (D3OB00601H/cit4c/1) 2017; 21 Masson (D3OB00601H/cit7b/1) 1982; 23 Nair (D3OB00601H/cit7e/1) 1999; 29 Koley (D3OB00601H/cit33/1) 2013; 69 Kurahashi (D3OB00601H/cit5f/1) 2015; 48 Chowdhury (D3OB00601H/cit34/1) 2014; 70 Kurva (D3OB00601H/cit37/1) 2017; 47 Brauch (D3OB00601H/cit13e/1) 2013; 42 Xu (D3OB00601H/cit48c/1) 2012; 55 Soni (D3OB00601H/cit75/1) 2019; 361 Chowdhury (D3OB00601H/cit9/1) 2014; 16 Ramulu (D3OB00601H/cit19/1) 2015; 357 Samai (D3OB00601H/cit67/1) 2013 Michael (D3OB00601H/cit1/1) 2007; 24 Zhang (D3OB00601H/cit17/1) 2023; 121 Shukla (D3OB00601H/cit20/1) 2013; 3 Singh (D3OB00601H/cit65/1) 2018; 83 D'Souza (D3OB00601H/cit13a/1) 2007; 36 Kurva (D3OB00601H/cit36/1) 2017; 41 Chellu (D3OB00601H/cit54/1) 2021; 10 Taylor (D3OB00601H/cit2b/1) 2014; 57 Nagaraju (D3OB00601H/cit64a/1) 2015; 17 Patil (D3OB00601H/cit5b/1) 2008; 108 Gupta (D3OB00601H/cit8b/1) 2023; 53 McAllister (D3OB00601H/cit31/1) 2001; 42 Hughes (D3OB00601H/cit4a/1) 2005; 15 Khan (D3OB00601H/cit60/1) 2013; 2 Lamberth (D3OB00601H/cit3/1) 2013; 69 Koley (D3OB00601H/cit66/1) 2016; 358 Srivastava (D3OB00601H/cit69/1) 2017; 73 Nagaraju (D3OB00601H/cit57/1) 2014; 70 Liang (D3OB00601H/cit58a/1) 2020; 52 Álvarez-Corral (D3OB00601H/cit5d/1) 2008; 108 Soni (D3OB00601H/cit42/1) 2017; 58 Alvarez (D3OB00601H/cit23a/1) 1987; 30 Chowdhury (D3OB00601H/cit70/1) 2014 Ward (D3OB00601H/cit29/1) 2006; 71 Barik (D3OB00601H/cit40/1) 2022; 24 Chen (D3OB00601H/cit6d/1) 2016; 49 Nair (D3OB00601H/cit7f/1) 2001 Yang (D3OB00601H/cit46/1) 2023; 365 Du (D3OB00601H/cit49b/1) 2012; 60 Yang (D3OB00601H/cit55/1) 2022; 26 Liao (D3OB00601H/cit5i/1) 2021; 8 Li (D3OB00601H/cit68/1) 2015; 80 Koley (D3OB00601H/cit62/1) 2018; 360 Zhu (D3OB00601H/cit24a/1) 2007; 41 Srivastava (D3OB00601H/cit63/1) 2017; 2018 Xiao (D3OB00601H/cit4b/1) 2011; 23 Godoi (D3OB00601H/cit5c/1) 2011; 111 Koley (D3OB00601H/cit21/1) 2014 Cheng (D3OB00601H/cit53/1) 2021; 86 Li (D3OB00601H/cit5e/1) 2020; 18 Madabhushi (D3OB00601H/cit12/1) 2015; 5 Wen (D3OB00601H/cit56/1) 2015; 80 Singh (D3OB00601H/cit8a/1) 2013; 3 Moghaddam (D3OB00601H/cit14/1) 2014; 55 Singh (D3OB00601H/cit61/1) 2013; 15 Apparao (D3OB00601H/cit72/1) 1985 Zeni (D3OB00601H/cit5a/1) 2006; 106 Roy (D3OB00601H/cit23b/1) 2003; 46 Koley (D3OB00601H/cit27/1) 2016; 81 Cheng (D3OB00601H/cit59/1) 2020; 85 Jia (D3OB00601H/cit24c/1) 2009; 30 Ray (D3OB00601H/cit47/1) 2022; 364 Taylor (D3OB00601H/cit2c/1) 2016; 14 Dentel (D3OB00601H/cit32/1) 2010; 51 Yadav (D3OB00601H/cit38/1) 2020; 362 Jia (D3OB00601H/cit24b/1) 2008; 1197 Blakemore (D3OB00601H/cit2d/1) 2018; 10 Koley (D3OB00601H/cit73/1) 2015 Nagaraju (D3OB00601H/cit52/1) 2014; 55 Pali (D3OB00601H/cit28/1) 2023; 25 Shukla (D3OB00601H/cit22/1) 2018; 83 Carson (D3OB00601H/cit10b/1) 2009; 38 Klingsberg (D3OB00601H/cit7a/1) 1972; 37 Francke (D3OB00601H/cit6c/1) 2014; 10 Kumara (D3OB00601H/cit15/1) 2016; 57 Aggarwal (D3OB00601H/cit5h/1) 2016; 14 Shukla (D3OB00601H/cit41/1) 2016; 18 Madabhushi (D3OB00601H/cit35/1) 2014; 55 Sun (D3OB00601H/cit45/1) 2021; 45 Srivastava (D3OB00601H/cit43/1) 2017; 82 Ramadas (D3OB00601H/cit7c/1) 1983 Ghosh (D3OB00601H/cit44/1) 2018; 3 Ramulu (D3OB00601H/cit26/1) 2015; 56 Zhang (D3OB00601H/cit58b/1) 2021; 41 Zhang (D3OB00601H/cit64b/1) 2016; 116 Fan (D3OB00601H/cit49a/1) 2009; 57 Chowdhury (D3OB00601H/cit25/1) 2013; 15 Xia (D3OB00601H/cit10d/1) 2021; 60 Lawson (D3OB00601H/cit30/1) 1988 Chowdhury (D3OB00601H/cit71/1) 2013; 69 |
References_xml | – volume: 83 start-page: 2173 year: 2018 ident: D3OB00601H/cit22/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.7b03092 – volume: 38 start-page: 3051 year: 2009 ident: D3OB00601H/cit10b/1 publication-title: Chem. Soc. Rev. doi: 10.1039/b901245c – volume: 2018 start-page: 81 year: 2017 ident: D3OB00601H/cit63/1 publication-title: ARKIVOC doi: 10.24820/ark.5550190.p010.069 – volume: 111 start-page: 2937 year: 2011 ident: D3OB00601H/cit5c/1 publication-title: Chem. Rev. doi: 10.1021/cr100214d – volume: 41 start-page: 13219 year: 2017 ident: D3OB00601H/cit36/1 publication-title: New J. Chem. doi: 10.1039/C7NJ03025H – volume: 357 start-page: 530 year: 2015 ident: D3OB00601H/cit19/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201400828 – volume: 47 start-page: 1702 year: 2017 ident: D3OB00601H/cit37/1 publication-title: Synth. Commun. doi: 10.1080/00397911.2017.1346810 – volume: 5 start-page: 47418 year: 2015 ident: D3OB00601H/cit11/1 publication-title: RSC Adv. doi: 10.1039/C5RA06355H – volume: 14 start-page: 6611 year: 2016 ident: D3OB00601H/cit2c/1 publication-title: Org. Biomol. Chem. doi: 10.1039/C6OB00936K – volume: 18 start-page: 2451 year: 2016 ident: D3OB00601H/cit41/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.6b00997 – volume: 57 start-page: 5845 year: 2014 ident: D3OB00601H/cit2b/1 publication-title: J. Med. Chem. doi: 10.1021/jm4017625 – volume: 361 start-page: 4091 year: 2019 ident: D3OB00601H/cit75/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201900580 – volume: 26 start-page: 627 year: 2021 ident: D3OB00601H/cit2e/1 publication-title: Molecules doi: 10.3390/molecules26030627 – volume: 106 start-page: 4644 year: 2006 ident: D3OB00601H/cit5a/1 publication-title: Chem. Rev. doi: 10.1021/cr0683966 – volume: 13 start-page: 655 year: 2015 ident: D3OB00601H/cit10c/1 publication-title: Org. Biomol. Chem. doi: 10.1039/C4OB02117G – volume: 57 start-page: 4279 year: 2009 ident: D3OB00601H/cit49a/1 publication-title: J. Agric. Food Chem. doi: 10.1021/jf8031364 – volume: 71 start-page: 8989 year: 2006 ident: D3OB00601H/cit29/1 publication-title: J. Org. Chem. doi: 10.1021/jo061747w – volume: 116 start-page: 287 year: 2016 ident: D3OB00601H/cit64b/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00360 – volume: 60 start-page: 346 year: 2012 ident: D3OB00601H/cit49b/1 publication-title: J. Agric. Food Chem. doi: 10.1021/jf203974p – volume: 22 start-page: 1111 year: 2012 ident: D3OB00601H/cit48b/1 publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2011.11.122 – volume: 48 start-page: 1703 year: 2015 ident: D3OB00601H/cit5f/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00041 – volume: 52 start-page: 2469 year: 2020 ident: D3OB00601H/cit58a/1 publication-title: Synthesis doi: 10.1055/s-0040-1707160 – volume: 41 start-page: 242 year: 2007 ident: D3OB00601H/cit24a/1 publication-title: Free Radical Res. doi: 10.1080/10715760601009586 – volume: 23 start-page: 926 year: 2011 ident: D3OB00601H/cit4b/1 publication-title: Adv. Mater. doi: 10.1002/adma.201003128 – start-page: 641 year: 1985 ident: D3OB00601H/cit72/1 publication-title: J. Chem. Soc., Perkin Trans. 1 doi: 10.1039/p19850000641 – volume: 73 start-page: 879 year: 2017 ident: D3OB00601H/cit69/1 publication-title: Tetrahedron doi: 10.1016/j.tet.2016.12.073 – start-page: 4026 year: 2013 ident: D3OB00601H/cit67/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201300038 – volume: 55 start-page: 4382 year: 2014 ident: D3OB00601H/cit35/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2014.06.013 – volume: 8 start-page: 1345 year: 2021 ident: D3OB00601H/cit5i/1 publication-title: Org. Chem. Front. doi: 10.1039/D0QO01453B – volume: 21 start-page: 1675 year: 2017 ident: D3OB00601H/cit4c/1 publication-title: Org. Process Res. Dev. doi: 10.1021/acs.oprd.7b00280 – volume: 7 start-page: 1982 year: 2018 ident: D3OB00601H/cit6e/1 publication-title: Asian J. Org. Chem. doi: 10.1002/ajoc.201800396 – volume: 24 start-page: 223 year: 2007 ident: D3OB00601H/cit1/1 publication-title: Nat. Prod. Rep. doi: 10.1039/b509528j – volume: 365 start-page: 88 year: 2023 ident: D3OB00601H/cit46/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.202201050 – volume: 23 start-page: 4087 year: 1982 ident: D3OB00601H/cit7b/1 publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(00)88354-9 – volume: 103 start-page: 1151 year: 2003 ident: D3OB00601H/cit10a/1 publication-title: Chem. Rev. doi: 10.1021/cr010016n – start-page: 5884 year: 2021 ident: D3OB00601H/cit77/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.202101276 – volume: 362 start-page: 512 year: 2020 ident: D3OB00601H/cit38/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201901180 – volume: 3 start-page: 13773 year: 2018 ident: D3OB00601H/cit44/1 publication-title: ChemistrySelect doi: 10.1002/slct.201803403 – volume: 42 start-page: 4948 year: 2013 ident: D3OB00601H/cit13e/1 publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs35505e – volume: 81 start-page: 11594 year: 2016 ident: D3OB00601H/cit27/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.6b01802 – volume: 87 start-page: 13935 year: 2022 ident: D3OB00601H/cit16/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.2c01617 – volume: 70 start-page: 914 year: 2014 ident: D3OB00601H/cit34/1 publication-title: Tetrahedron doi: 10.1016/j.tet.2013.12.020 – volume: 80 start-page: 4942 year: 2015 ident: D3OB00601H/cit56/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.5b00288 – volume: 3 start-page: 14183 year: 2013 ident: D3OB00601H/cit8a/1 publication-title: RSC Adv. doi: 10.1039/c3ra41094c – volume: 15 start-page: 5386 year: 2013 ident: D3OB00601H/cit25/1 publication-title: Org. Lett. doi: 10.1021/ol402728y – volume: 18 start-page: 3638 year: 2020 ident: D3OB00601H/cit5e/1 publication-title: Org. Biomol. Chem. doi: 10.1039/D0OB00458H – volume: 85 start-page: 13339 year: 2020 ident: D3OB00601H/cit59/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.0c01984 – volume: 55 start-page: 2430 year: 2014 ident: D3OB00601H/cit52/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2014.02.115 – volume: 15 start-page: 94 year: 2005 ident: D3OB00601H/cit4a/1 publication-title: J. Mater. Chem. doi: 10.1039/b413249c – volume: 45 start-page: 14508 year: 2021 ident: D3OB00601H/cit45/1 publication-title: New J. Chem. doi: 10.1039/D1NJ01970H – volume: 37 start-page: 3226 year: 1972 ident: D3OB00601H/cit7a/1 publication-title: J. Org. Chem. doi: 10.1021/jo00986a008 – volume: 80 start-page: 11138 year: 2015 ident: D3OB00601H/cit68/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.5b01869 – volume: 20 start-page: 6784 year: 2022 ident: D3OB00601H/cit39/1 publication-title: Org. Biomol. Chem. doi: 10.1039/D2OB01258H – volume: 52 start-page: 3171 year: 1996 ident: D3OB00601H/cit50a/1 publication-title: Tetrahedron doi: 10.1016/0040-4020(95)01103-X – volume: 3 start-page: 13811 year: 2013 ident: D3OB00601H/cit20/1 publication-title: RSC Adv. doi: 10.1039/c3ra41100a – volume: 15 start-page: 1974 year: 2013 ident: D3OB00601H/cit61/1 publication-title: Org. Lett. doi: 10.1021/ol400644m – volume: 17 start-page: 950 year: 2015 ident: D3OB00601H/cit64a/1 publication-title: Green Chem. doi: 10.1039/C4GC01431F – volume: 14 start-page: 7639 year: 2016 ident: D3OB00601H/cit5h/1 publication-title: Org. Biomol. Chem. doi: 10.1039/C6OB01054G – volume: 69 start-page: 8899 year: 2013 ident: D3OB00601H/cit71/1 publication-title: Tetrahedron doi: 10.1016/j.tet.2013.07.092 – volume: 21 start-page: 7261 year: 2011 ident: D3OB00601H/cit48a/1 publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2011.10.055 – volume: 42 start-page: 1197 year: 2001 ident: D3OB00601H/cit31/1 publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(00)02209-7 – volume: 10 start-page: 2858 year: 2014 ident: D3OB00601H/cit6c/1 publication-title: Beilstein J. Org. Chem. doi: 10.3762/bjoc.10.303 – volume: 360 start-page: 1780 year: 2018 ident: D3OB00601H/cit62/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201701595 – volume: 82 start-page: 10846 year: 2017 ident: D3OB00601H/cit43/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.7b01601 – volume: 2 start-page: 126 year: 2013 ident: D3OB00601H/cit60/1 publication-title: Asian J. Org. Chem. doi: 10.1002/ajoc.201200148 – volume: 5 start-page: 64797 year: 2015 ident: D3OB00601H/cit12/1 publication-title: RSC Adv. doi: 10.1039/C5RA11629E – volume: 30 start-page: 1186 year: 1987 ident: D3OB00601H/cit23a/1 publication-title: J. Med. Chem. doi: 10.1021/jm00390a011 – volume: 29 start-page: 791 year: 1999 ident: D3OB00601H/cit7e/1 publication-title: Synth. Commun. doi: 10.1080/00397919908086034 – volume: 69 start-page: 1106 year: 2013 ident: D3OB00601H/cit3/1 publication-title: Pest Manage. Sci. doi: 10.1002/ps.3615 – volume: 58 start-page: 2512 year: 2017 ident: D3OB00601H/cit42/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2017.05.064 – volume: 73 start-page: 8612 year: 2008 ident: D3OB00601H/cit50b/1 publication-title: J. Org. Chem. doi: 10.1021/jo801801y – volume: 35 start-page: 4985 year: 1994 ident: D3OB00601H/cit7d/1 publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(00)73299-0 – volume: 42 start-page: 1251 year: 2013 ident: D3OB00601H/cit74/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35329F – volume: 10 start-page: 383 year: 2018 ident: D3OB00601H/cit2d/1 publication-title: Nat. Chem. doi: 10.1038/s41557-018-0021-z – volume: 36 start-page: 1095 year: 2007 ident: D3OB00601H/cit13a/1 publication-title: Chem. Soc. Rev. doi: 10.1039/B608235C – volume: 358 start-page: 1195 year: 2016 ident: D3OB00601H/cit66/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201500962 – volume: 69 start-page: 8013 year: 2013 ident: D3OB00601H/cit33/1 publication-title: Tetrahedron doi: 10.1016/j.tet.2013.07.001 – volume: 15 start-page: 954 year: 2013 ident: D3OB00601H/cit51/1 publication-title: Green Chem. doi: 10.1039/c3gc37047j – volume: 53 start-page: 1279 year: 2023 ident: D3OB00601H/cit8b/1 publication-title: Synth. Commun. doi: 10.1080/00397911.2023.2221755 – volume: 16 start-page: 5536 year: 2014 ident: D3OB00601H/cit9/1 publication-title: Org. Lett. doi: 10.1021/ol502850h – volume: 50 start-page: 6234 year: 2011 ident: D3OB00601H/cit13d/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201006515 – volume: 83 start-page: 7950 year: 2018 ident: D3OB00601H/cit65/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.8b00814 – volume: 1197 start-page: 159 year: 2008 ident: D3OB00601H/cit24b/1 publication-title: Brain Res. doi: 10.1016/j.brainres.2007.12.044 – volume: 13 start-page: 1942 year: 2015 ident: D3OB00601H/cit5g/1 publication-title: Org. Biomol. Chem. doi: 10.1039/C4OB02024C – volume: 60 start-page: 9192 year: 2021 ident: D3OB00601H/cit10d/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202006736 – start-page: 0573 year: 2001 ident: D3OB00601H/cit7f/1 publication-title: Synthesis doi: 10.1055/s-2001-12356 – volume: 30 start-page: 1 year: 2009 ident: D3OB00601H/cit24c/1 publication-title: Neurotoxicology doi: 10.1016/j.neuro.2008.11.007 – volume: 85 start-page: 10098 year: 2020 ident: D3OB00601H/cit76/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.0c01355 – volume: 51 start-page: 6014 year: 2010 ident: D3OB00601H/cit32/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2010.09.055 – volume: 10 start-page: 1432 year: 2021 ident: D3OB00601H/cit54/1 publication-title: Asian J. Org. Chem. doi: 10.1002/ajoc.202100197 – start-page: 409 year: 2015 ident: D3OB00601H/cit73/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201403171 – volume: 46 start-page: 2565 year: 2003 ident: D3OB00601H/cit23b/1 publication-title: J. Med. Chem. doi: 10.1021/jm0256225 – volume: 70 start-page: 3740 year: 2014 ident: D3OB00601H/cit57/1 publication-title: Tetrahedron doi: 10.1016/j.tet.2014.03.097 – start-page: 2964 year: 2014 ident: D3OB00601H/cit70/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201301788 – start-page: 605 year: 1983 ident: D3OB00601H/cit7c/1 publication-title: Synthesis doi: 10.1055/s-1983-30446 – volume: 55 start-page: 3122 year: 2012 ident: D3OB00601H/cit48c/1 publication-title: J. Med. Chem. doi: 10.1021/jm201540h – volume: 108 start-page: 3174 year: 2008 ident: D3OB00601H/cit5d/1 publication-title: Chem. Rev. doi: 10.1021/cr078361l – volume: 55 start-page: 1251 year: 2014 ident: D3OB00601H/cit14/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2014.01.014 – volume: 86 start-page: 5265 year: 2021 ident: D3OB00601H/cit53/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.1c00156 – volume: 14 start-page: 434 year: 2016 ident: D3OB00601H/cit18/1 publication-title: Org. Biomol. Chem. doi: 10.1039/C5OB02081F – volume: 57 start-page: 10257 year: 2014 ident: D3OB00601H/cit2a/1 publication-title: J. Med. Chem. doi: 10.1021/jm501100b – volume: 52 start-page: 7310 year: 2009 ident: D3OB00601H/cit23c/1 publication-title: J. Med. Chem. doi: 10.1021/jm901323s – volume: 57 start-page: 2520 year: 2016 ident: D3OB00601H/cit15/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2016.04.100 – start-page: 5501 year: 2014 ident: D3OB00601H/cit21/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201402276 – volume: 121 start-page: 154463 year: 2023 ident: D3OB00601H/cit17/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2023.154463 – volume: 108 start-page: 3395 year: 2008 ident: D3OB00601H/cit5b/1 publication-title: Chem. Rev. doi: 10.1021/cr050041j – volume: 42 start-page: 463 year: 2009 ident: D3OB00601H/cit13b/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar800214s – volume: 41 start-page: 629 year: 2008 ident: D3OB00601H/cit6a/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar700238s – volume: 109 start-page: 4439 year: 2009 ident: D3OB00601H/cit13c/1 publication-title: Chem. Rev. doi: 10.1021/cr800296p – volume: 364 start-page: 3204 year: 2022 ident: D3OB00601H/cit47/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.202200511 – start-page: 663 year: 1988 ident: D3OB00601H/cit30/1 publication-title: J. Chem. Soc., Perkin Trans. 1 doi: 10.1039/p19880000663 – volume: 41 start-page: 4154 year: 2021 ident: D3OB00601H/cit58b/1 publication-title: Chin. J. Org. Chem. doi: 10.6023/cjoc202107023 – volume: 48 start-page: 1623 year: 2012 ident: D3OB00601H/cit6b/1 publication-title: Chem. Commun. doi: 10.1039/C1CC15238F – volume: 24 start-page: 8848 year: 2022 ident: D3OB00601H/cit40/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.2c03642 – volume: 56 start-page: 2593 year: 2015 ident: D3OB00601H/cit26/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2015.04.004 – volume: 49 start-page: 1911 year: 2016 ident: D3OB00601H/cit6d/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00254 – volume: 25 start-page: 2258 year: 2023 ident: D3OB00601H/cit28/1 publication-title: Org. Lett. doi: 10.1021/acs.orglett.3c00509 – volume: 26 start-page: 1690 year: 2022 ident: D3OB00601H/cit55/1 publication-title: Org. Process Res. Dev. doi: 10.1021/acs.oprd.2c00050 |
SSID | ssj0019764 |
Score | 2.439565 |
SecondaryResourceType | review_article |
Snippet | The diverse synthesis of heterocyclic compounds has always been one of the popular subjects of organic chemistry. To this end, great efforts have been devoted... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 686 |
SubjectTerms | Chemical synthesis Heterocyclic compounds Nitrogen Organic chemistry Organic compounds Pyridines Quinolines Reagents Sulfur Thiazoles Thiophenes |
Title | A decade update on the application of β-oxodithioesters in heterocyclic synthesis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37555699 https://www.proquest.com/docview/2858604747 https://www.proquest.com/docview/2848229678 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVgk2AvE1-DjIGMYA-oCqS2E8ePbSkqiA-BOmniJYodR60ESbW2EuVn8UP4TVzbcRpGkYCXqL2xG_UeJznX9j0XoSdSElKKCMISLSOTksNCeCvKUHFRlrEqlNPZfvsumZyx1-fx-bYync0uWcln6tvOvJL_QRVsgKvJkv0HZNsfBQN8BnzhCAjD8a8wHvQKbfa399YLE7g3E_-9zqK04YKno_HpkIT119okYMxrq41gt8HOzF6YWm2UUbpebirovJwvu3zVpWoqO0BMpr4vpttTvlBcy4Sbvb2fZvNw6N-HVni_tW86ZiDuxvqhMzpHM-2aDhs18GYyglA7u-rWVbR7gDLOQ7ixxc7Hc0SNumlBa2l1YGbdRuDaxRcLFOVxHCeubtIlMWx_6iraJxAXwJN4fzCevnrTLhwBu2JehZaK59tLHaBrvvOvFOS3uAJYxoWv_mJZxvQGOmzCAzxwWN9EV3R1C10feWffRh8H2GGOHea4rjDAhjuY47rEP75fxhvPK9zFG7d430FnL8fT0SRs6mKEilK-CkUuGJM5T0sJTpBRqhKe5JKLmDCq-pqVjCfwT7UgMga-reEbKYt-WtCSQ4RLj9BeVVf6HsJaEgArJbQwkbbsS0XzBDieisxcmJABeupdlalGNN7ULvmc2c0LVGQv6Puh9fAkQI_btgsnlbKz1Yn3eNbcSsuMpHGaRAxC2wA9ak-DZ83qVV7pem3aMFOcAMhVgO46pNrLeGQDdATQteYt-sd_7HIfHWwH8gnaW12s9QPgmSv5sBlbPwE0O3wS |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+decade+update+on+the+application+of+%CE%B2-oxodithioesters+in+heterocyclic+synthesis&rft.jtitle=Organic+%26+biomolecular+chemistry&rft.au=Dong%2C+Zhi-Bing&rft.au=Gong%2C+Zhiying&rft.au=Dou%2C+Qian&rft.au=Cheng%2C+Bin&rft.date=2023-08-30&rft.eissn=1477-0539&rft_id=info:doi/10.1039%2Fd3ob00601h&rft_id=info%3Apmid%2F37555699&rft.externalDocID=37555699 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-0520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-0520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-0520&client=summon |