A decade update on the application of β-oxodithioesters in heterocyclic synthesis

The diverse synthesis of heterocyclic compounds has always been one of the popular subjects of organic chemistry. To this end, great efforts have been devoted to developing new reagents and establishing new strategies and methods concerning efficiency, selectivity and sustainability. β-Oxodithioeste...

Full description

Saved in:
Bibliographic Details
Published inOrganic & biomolecular chemistry Vol. 21; no. 34; pp. 686 - 6829
Main Authors Dong, Zhi-Bing, Gong, Zhiying, Dou, Qian, Cheng, Bin, Wang, Taimin
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 30.08.2023
Subjects
Online AccessGet full text
ISSN1477-0520
1477-0539
1477-0539
DOI10.1039/d3ob00601h

Cover

Loading…
Abstract The diverse synthesis of heterocyclic compounds has always been one of the popular subjects of organic chemistry. To this end, great efforts have been devoted to developing new reagents and establishing new strategies and methods concerning efficiency, selectivity and sustainability. β-Oxodithioesters and their enol tautomers ( i.e. , α-enolic dithioesters), as a class of simple and readily accessible sulfur-containing synthons, have been widely applied in the construction of various five- and six-membered heterocycles ( e.g. , thiophenes, thiopyrans, thiazoles, pyridines and quinolines) and other useful open-chain frameworks. Due to their unique chemical structures, β-oxodithioesters bear multiple reaction sites, which enable them to participate in two-component or multicomponent reactions to construct various heterocyclic compounds. In the past decade, the application of β-oxodithioesters in the synthesis of heterocycles has made remarkable progress. Herein, an update on the recent advances in the application of β-oxodithioesters in the synthesis of heterocycles during the period from 2013 to 2023/06 is provided. According to the different types of rings concerning heteroatoms in products, this review is divided into five sections under discussion including (i) synthesis of sulfur-containing heterocycles, (ii) synthesis of sulfur and nitrogen-containing heterocycles, (iii) synthesis of nitrogen-containing heterocycles, (iv) synthesis of nitrogen and oxygen-containing heterocycles, and (v) modification to other open-chain frameworks. A decade update on the application of β-oxodithioesters in the construction of sulfur-containing heterocycles, non-sulfur heterocycles, and other open-chain frameworks is presented.
AbstractList The diverse synthesis of heterocyclic compounds has always been one of the popular subjects of organic chemistry. To this end, great efforts have been devoted to developing new reagents and establishing new strategies and methods concerning efficiency, selectivity and sustainability. β-Oxodithioesters and their enol tautomers ( i.e. , α-enolic dithioesters), as a class of simple and readily accessible sulfur-containing synthons, have been widely applied in the construction of various five- and six-membered heterocycles ( e.g. , thiophenes, thiopyrans, thiazoles, pyridines and quinolines) and other useful open-chain frameworks. Due to their unique chemical structures, β-oxodithioesters bear multiple reaction sites, which enable them to participate in two-component or multicomponent reactions to construct various heterocyclic compounds. In the past decade, the application of β-oxodithioesters in the synthesis of heterocycles has made remarkable progress. Herein, an update on the recent advances in the application of β-oxodithioesters in the synthesis of heterocycles during the period from 2013 to 2023/06 is provided. According to the different types of rings concerning heteroatoms in products, this review is divided into five sections under discussion including (i) synthesis of sulfur-containing heterocycles, (ii) synthesis of sulfur and nitrogen-containing heterocycles, (iii) synthesis of nitrogen-containing heterocycles, (iv) synthesis of nitrogen and oxygen-containing heterocycles, and (v) modification to other open-chain frameworks. A decade update on the application of β-oxodithioesters in the construction of sulfur-containing heterocycles, non-sulfur heterocycles, and other open-chain frameworks is presented.
The diverse synthesis of heterocyclic compounds has always been one of the popular subjects of organic chemistry. To this end, great efforts have been devoted to developing new reagents and establishing new strategies and methods concerning efficiency, selectivity and sustainability. β-Oxodithioesters and their enol tautomers (i.e., α-enolic dithioesters), as a class of simple and readily accessible sulfur-containing synthons, have been widely applied in the construction of various five- and six-membered heterocycles (e.g., thiophenes, thiopyrans, thiazoles, pyridines and quinolines) and other useful open-chain frameworks. Due to their unique chemical structures, β-oxodithioesters bear multiple reaction sites, which enable them to participate in two-component or multicomponent reactions to construct various heterocyclic compounds. In the past decade, the application of β-oxodithioesters in the synthesis of heterocycles has made remarkable progress. Herein, an update on the recent advances in the application of β-oxodithioesters in the synthesis of heterocycles during the period from 2013 to 2023/06 is provided. According to the different types of rings concerning heteroatoms in products, this review is divided into five sections under discussion including (i) synthesis of sulfur-containing heterocycles, (ii) synthesis of sulfur and nitrogen-containing heterocycles, (iii) synthesis of nitrogen-containing heterocycles, (iv) synthesis of nitrogen and oxygen-containing heterocycles, and (v) modification to other open-chain frameworks.
The diverse synthesis of heterocyclic compounds has always been one of the popular subjects of organic chemistry. To this end, great efforts have been devoted to developing new reagents and establishing new strategies and methods concerning efficiency, selectivity and sustainability. β-Oxodithioesters and their enol tautomers (i.e., α-enolic dithioesters), as a class of simple and readily accessible sulfur-containing synthons, have been widely applied in the construction of various five- and six-membered heterocycles (e.g., thiophenes, thiopyrans, thiazoles, pyridines and quinolines) and other useful open-chain frameworks. Due to their unique chemical structures, β-oxodithioesters bear multiple reaction sites, which enable them to participate in two-component or multicomponent reactions to construct various heterocyclic compounds. In the past decade, the application of β-oxodithioesters in the synthesis of heterocycles has made remarkable progress. Herein, an update on the recent advances in the application of β-oxodithioesters in the synthesis of heterocycles during the period from 2013 to 2023/06 is provided. According to the different types of rings concerning heteroatoms in products, this review is divided into five sections under discussion including (i) synthesis of sulfur-containing heterocycles, (ii) synthesis of sulfur and nitrogen-containing heterocycles, (iii) synthesis of nitrogen-containing heterocycles, (iv) synthesis of nitrogen and oxygen-containing heterocycles, and (v) modification to other open-chain frameworks.The diverse synthesis of heterocyclic compounds has always been one of the popular subjects of organic chemistry. To this end, great efforts have been devoted to developing new reagents and establishing new strategies and methods concerning efficiency, selectivity and sustainability. β-Oxodithioesters and their enol tautomers (i.e., α-enolic dithioesters), as a class of simple and readily accessible sulfur-containing synthons, have been widely applied in the construction of various five- and six-membered heterocycles (e.g., thiophenes, thiopyrans, thiazoles, pyridines and quinolines) and other useful open-chain frameworks. Due to their unique chemical structures, β-oxodithioesters bear multiple reaction sites, which enable them to participate in two-component or multicomponent reactions to construct various heterocyclic compounds. In the past decade, the application of β-oxodithioesters in the synthesis of heterocycles has made remarkable progress. Herein, an update on the recent advances in the application of β-oxodithioesters in the synthesis of heterocycles during the period from 2013 to 2023/06 is provided. According to the different types of rings concerning heteroatoms in products, this review is divided into five sections under discussion including (i) synthesis of sulfur-containing heterocycles, (ii) synthesis of sulfur and nitrogen-containing heterocycles, (iii) synthesis of nitrogen-containing heterocycles, (iv) synthesis of nitrogen and oxygen-containing heterocycles, and (v) modification to other open-chain frameworks.
The diverse synthesis of heterocyclic compounds has always been one of the popular subjects of organic chemistry. To this end, great efforts have been devoted to developing new reagents and establishing new strategies and methods concerning efficiency, selectivity and sustainability. β-Oxodithioesters and their enol tautomers ( , α-enolic dithioesters), as a class of simple and readily accessible sulfur-containing synthons, have been widely applied in the construction of various five- and six-membered heterocycles ( , thiophenes, thiopyrans, thiazoles, pyridines and quinolines) and other useful open-chain frameworks. Due to their unique chemical structures, β-oxodithioesters bear multiple reaction sites, which enable them to participate in two-component or multicomponent reactions to construct various heterocyclic compounds. In the past decade, the application of β-oxodithioesters in the synthesis of heterocycles has made remarkable progress. Herein, an update on the recent advances in the application of β-oxodithioesters in the synthesis of heterocycles during the period from 2013 to 2023/06 is provided. According to the different types of rings concerning heteroatoms in products, this review is divided into five sections under discussion including (i) synthesis of sulfur-containing heterocycles, (ii) synthesis of sulfur and nitrogen-containing heterocycles, (iii) synthesis of nitrogen-containing heterocycles, (iv) synthesis of nitrogen and oxygen-containing heterocycles, and (v) modification to other open-chain frameworks.
The diverse synthesis of heterocyclic compounds has always been one of the popular subjects of organic chemistry. To this end, great efforts have been devoted to developing new reagents and establishing new strategies and methods concerning efficiency, selectivity and sustainability. β-Oxodithioesters and their enol tautomers ( i.e. , α-enolic dithioesters), as a class of simple and readily accessible sulfur-containing synthons, have been widely applied in the construction of various five- and six-membered heterocycles ( e.g. , thiophenes, thiopyrans, thiazoles, pyridines and quinolines) and other useful open-chain frameworks. Due to their unique chemical structures, β-oxodithioesters bear multiple reaction sites, which enable them to participate in two-component or multicomponent reactions to construct various heterocyclic compounds. In the past decade, the application of β-oxodithioesters in the synthesis of heterocycles has made remarkable progress. Herein, an update on the recent advances in the application of β-oxodithioesters in the synthesis of heterocycles during the period from 2013 to 2023/06 is provided. According to the different types of rings concerning heteroatoms in products, this review is divided into five sections under discussion including (i) synthesis of sulfur-containing heterocycles, (ii) synthesis of sulfur and nitrogen-containing heterocycles, (iii) synthesis of nitrogen-containing heterocycles, (iv) synthesis of nitrogen and oxygen-containing heterocycles, and (v) modification to other open-chain frameworks.
Author Dong, Zhi-Bing
Cheng, Bin
Dou, Qian
Wang, Taimin
Gong, Zhiying
AuthorAffiliation Lanzhou Institute of Chemical Physics
Chinese Academy of Sciences
Key Laboratory of Science and Technology on Wear and Protection of Materials
School of Chemistry and Environmental Engineering
Wuhan Institute of Technology
Shenzhen Polytechnic
Institute of Marine Biomedicine
AuthorAffiliation_xml – sequence: 0
  name: Shenzhen Polytechnic
– sequence: 0
  name: Key Laboratory of Science and Technology on Wear and Protection of Materials
– sequence: 0
  name: Chinese Academy of Sciences
– sequence: 0
  name: Institute of Marine Biomedicine
– sequence: 0
  name: Lanzhou Institute of Chemical Physics
– sequence: 0
  name: School of Chemistry and Environmental Engineering
– sequence: 0
  name: Wuhan Institute of Technology
Author_xml – sequence: 1
  givenname: Zhi-Bing
  surname: Dong
  fullname: Dong, Zhi-Bing
– sequence: 2
  givenname: Zhiying
  surname: Gong
  fullname: Gong, Zhiying
– sequence: 3
  givenname: Qian
  surname: Dou
  fullname: Dou, Qian
– sequence: 4
  givenname: Bin
  surname: Cheng
  fullname: Cheng, Bin
– sequence: 5
  givenname: Taimin
  surname: Wang
  fullname: Wang, Taimin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37555699$$D View this record in MEDLINE/PubMed
BookMark eNptkV9LwzAUxYNMnJu--K4EfBGhmjRp0jzO-WfCYCD6XNI0ZRldU5MW3Nfyg_iZjNucMHy698LvXA7nDECvtrUG4AyjG4yIuC2IzRFiCM8PwDGmnEcoIaK322PUBwPvFwhhwRk9An3CkyRhQhyDlxEstJKFhl1TyFZDW8N2rqFsmsoo2Zpw2xJ-fUb2wxamnRurfaudh6aGcx02q1YqoNCv6iD0xp-Aw1JWXp9u5xC8PT68jifRdPb0PB5NI0UIbyMhBaW55GmZx5znKFWMM5lzkcSUKKxpSTkLLrWI8wQzosMVlwVOC1JyKgQZgqvN38bZ9y64ypbGK11Vsta281mc0jSOBeNpQC_30IXtXB3cBSpJGaKc8kBdbKkuX-oia5xZSrfKftMKwPUGUM5673S5QzDKfqrI7snsbl3FJMBoD1amXQfaOmmq_yXnG4nzavf6r13yDXJxk7s
CitedBy_id crossref_primary_10_1016_j_rechem_2024_101977
crossref_primary_10_1039_D5OB00022J
Cites_doi 10.1021/acs.joc.7b03092
10.1039/b901245c
10.24820/ark.5550190.p010.069
10.1021/cr100214d
10.1039/C7NJ03025H
10.1002/adsc.201400828
10.1080/00397911.2017.1346810
10.1039/C5RA06355H
10.1039/C6OB00936K
10.1021/acs.orglett.6b00997
10.1021/jm4017625
10.1002/adsc.201900580
10.3390/molecules26030627
10.1021/cr0683966
10.1039/C4OB02117G
10.1021/jf8031364
10.1021/jo061747w
10.1021/acs.chemrev.5b00360
10.1021/jf203974p
10.1016/j.bmcl.2011.11.122
10.1021/acs.accounts.5b00041
10.1055/s-0040-1707160
10.1080/10715760601009586
10.1002/adma.201003128
10.1039/p19850000641
10.1016/j.tet.2016.12.073
10.1002/ejoc.201300038
10.1016/j.tetlet.2014.06.013
10.1039/D0QO01453B
10.1021/acs.oprd.7b00280
10.1002/ajoc.201800396
10.1039/b509528j
10.1002/adsc.202201050
10.1016/S0040-4039(00)88354-9
10.1021/cr010016n
10.1002/ejoc.202101276
10.1002/adsc.201901180
10.1002/slct.201803403
10.1039/c3cs35505e
10.1021/acs.joc.6b01802
10.1021/acs.joc.2c01617
10.1016/j.tet.2013.12.020
10.1021/acs.joc.5b00288
10.1039/c3ra41094c
10.1021/ol402728y
10.1039/D0OB00458H
10.1021/acs.joc.0c01984
10.1016/j.tetlet.2014.02.115
10.1039/b413249c
10.1039/D1NJ01970H
10.1021/jo00986a008
10.1021/acs.joc.5b01869
10.1039/D2OB01258H
10.1016/0040-4020(95)01103-X
10.1039/c3ra41100a
10.1021/ol400644m
10.1039/C4GC01431F
10.1039/C6OB01054G
10.1016/j.tet.2013.07.092
10.1016/j.bmcl.2011.10.055
10.1016/S0040-4039(00)02209-7
10.3762/bjoc.10.303
10.1002/adsc.201701595
10.1021/acs.joc.7b01601
10.1002/ajoc.201200148
10.1039/C5RA11629E
10.1021/jm00390a011
10.1080/00397919908086034
10.1002/ps.3615
10.1016/j.tetlet.2017.05.064
10.1021/jo801801y
10.1016/S0040-4039(00)73299-0
10.1039/C2CS35329F
10.1038/s41557-018-0021-z
10.1039/B608235C
10.1002/adsc.201500962
10.1016/j.tet.2013.07.001
10.1039/c3gc37047j
10.1080/00397911.2023.2221755
10.1021/ol502850h
10.1002/anie.201006515
10.1021/acs.joc.8b00814
10.1016/j.brainres.2007.12.044
10.1039/C4OB02024C
10.1002/anie.202006736
10.1055/s-2001-12356
10.1016/j.neuro.2008.11.007
10.1021/acs.joc.0c01355
10.1016/j.tetlet.2010.09.055
10.1002/ajoc.202100197
10.1002/ejoc.201403171
10.1021/jm0256225
10.1016/j.tet.2014.03.097
10.1002/ejoc.201301788
10.1055/s-1983-30446
10.1021/jm201540h
10.1021/cr078361l
10.1016/j.tetlet.2014.01.014
10.1021/acs.joc.1c00156
10.1039/C5OB02081F
10.1021/jm501100b
10.1021/jm901323s
10.1016/j.tetlet.2016.04.100
10.1002/ejoc.201402276
10.1016/j.tetlet.2023.154463
10.1021/cr050041j
10.1021/ar800214s
10.1021/ar700238s
10.1021/cr800296p
10.1002/adsc.202200511
10.1039/p19880000663
10.6023/cjoc202107023
10.1039/C1CC15238F
10.1021/acs.orglett.2c03642
10.1016/j.tetlet.2015.04.004
10.1021/acs.accounts.6b00254
10.1021/acs.orglett.3c00509
10.1021/acs.oprd.2c00050
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
NPM
7QO
7T7
7TM
8FD
C1K
FR3
P64
7X8
DOI 10.1039/d3ob00601h
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
Biotechnology Research Abstracts
MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1477-0539
EndPage 6829
ExternalDocumentID 37555699
10_1039_D3OB00601H
d3ob00601h
Genre Journal Article
Review
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
123
29N
4.4
705
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACNCT
ACPRK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
O9-
OK1
P2P
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
VH6
VQA
WH7
XSW
YNT
YZZ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
NPM
7QO
7T7
7TM
8FD
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c337t-9a944ba78fb277b08c676ab795243c1e4f476556e92b5163e7652fd18d3f74993
ISSN 1477-0520
1477-0539
IngestDate Thu Jul 10 18:10:39 EDT 2025
Mon Jun 30 12:02:25 EDT 2025
Wed Feb 19 02:24:13 EST 2025
Tue Jul 01 01:52:30 EDT 2025
Thu Apr 24 23:03:44 EDT 2025
Tue Dec 17 20:58:23 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 34
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-9a944ba78fb277b08c676ab795243c1e4f476556e92b5163e7652fd18d3f74993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3354-8318
0000-0002-8276-6653
PMID 37555699
PQID 2858604747
PQPubID 2047497
PageCount 24
ParticipantIDs crossref_primary_10_1039_D3OB00601H
pubmed_primary_37555699
proquest_journals_2858604747
rsc_primary_d3ob00601h
proquest_miscellaneous_2848229678
crossref_citationtrail_10_1039_D3OB00601H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-30
PublicationDateYYYYMMDD 2023-08-30
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-30
  day: 30
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Organic & biomolecular chemistry
PublicationTitleAlternate Org Biomol Chem
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Vitaku (D3OB00601H/cit2a/1) 2014; 57
Wang (D3OB00601H/cit11/1) 2015; 5
Sharma (D3OB00601H/cit6b/1) 2012; 48
Brahmachari (D3OB00601H/cit6e/1) 2018; 7
Singh (D3OB00601H/cit51/1) 2013; 15
Pan (D3OB00601H/cit74/1) 2013; 42
Saha (D3OB00601H/cit77/1) 2021
Zakarya (D3OB00601H/cit7d/1) 1994; 35
Reissig (D3OB00601H/cit10a/1) 2003; 103
de la Torre (D3OB00601H/cit2e/1) 2021; 26
Ruijter (D3OB00601H/cit13d/1) 2011; 50
Soni (D3OB00601H/cit76/1) 2020; 85
Androsov (D3OB00601H/cit50b/1) 2008; 73
Ganem (D3OB00601H/cit13b/1) 2009; 42
Shukla (D3OB00601H/cit16/1) 2022; 87
Soni (D3OB00601H/cit39/1) 2022; 20
Grover (D3OB00601H/cit10c/1) 2015; 13
Guo (D3OB00601H/cit5g/1) 2015; 13
Patel (D3OB00601H/cit48b/1) 2012; 22
Ramulu (D3OB00601H/cit18/1) 2016; 14
Kapanda (D3OB00601H/cit23c/1) 2009; 52
Tripathy (D3OB00601H/cit48a/1) 2011; 21
Clausen (D3OB00601H/cit50a/1) 1996; 52
Polshettiwar (D3OB00601H/cit6a/1) 2008; 41
Touré (D3OB00601H/cit13c/1) 2009; 109
Zhao (D3OB00601H/cit4c/1) 2017; 21
Masson (D3OB00601H/cit7b/1) 1982; 23
Nair (D3OB00601H/cit7e/1) 1999; 29
Koley (D3OB00601H/cit33/1) 2013; 69
Kurahashi (D3OB00601H/cit5f/1) 2015; 48
Chowdhury (D3OB00601H/cit34/1) 2014; 70
Kurva (D3OB00601H/cit37/1) 2017; 47
Brauch (D3OB00601H/cit13e/1) 2013; 42
Xu (D3OB00601H/cit48c/1) 2012; 55
Soni (D3OB00601H/cit75/1) 2019; 361
Chowdhury (D3OB00601H/cit9/1) 2014; 16
Ramulu (D3OB00601H/cit19/1) 2015; 357
Samai (D3OB00601H/cit67/1) 2013
Michael (D3OB00601H/cit1/1) 2007; 24
Zhang (D3OB00601H/cit17/1) 2023; 121
Shukla (D3OB00601H/cit20/1) 2013; 3
Singh (D3OB00601H/cit65/1) 2018; 83
D'Souza (D3OB00601H/cit13a/1) 2007; 36
Kurva (D3OB00601H/cit36/1) 2017; 41
Chellu (D3OB00601H/cit54/1) 2021; 10
Taylor (D3OB00601H/cit2b/1) 2014; 57
Nagaraju (D3OB00601H/cit64a/1) 2015; 17
Patil (D3OB00601H/cit5b/1) 2008; 108
Gupta (D3OB00601H/cit8b/1) 2023; 53
McAllister (D3OB00601H/cit31/1) 2001; 42
Hughes (D3OB00601H/cit4a/1) 2005; 15
Khan (D3OB00601H/cit60/1) 2013; 2
Lamberth (D3OB00601H/cit3/1) 2013; 69
Koley (D3OB00601H/cit66/1) 2016; 358
Srivastava (D3OB00601H/cit69/1) 2017; 73
Nagaraju (D3OB00601H/cit57/1) 2014; 70
Liang (D3OB00601H/cit58a/1) 2020; 52
Álvarez-Corral (D3OB00601H/cit5d/1) 2008; 108
Soni (D3OB00601H/cit42/1) 2017; 58
Alvarez (D3OB00601H/cit23a/1) 1987; 30
Chowdhury (D3OB00601H/cit70/1) 2014
Ward (D3OB00601H/cit29/1) 2006; 71
Barik (D3OB00601H/cit40/1) 2022; 24
Chen (D3OB00601H/cit6d/1) 2016; 49
Nair (D3OB00601H/cit7f/1) 2001
Yang (D3OB00601H/cit46/1) 2023; 365
Du (D3OB00601H/cit49b/1) 2012; 60
Yang (D3OB00601H/cit55/1) 2022; 26
Liao (D3OB00601H/cit5i/1) 2021; 8
Li (D3OB00601H/cit68/1) 2015; 80
Koley (D3OB00601H/cit62/1) 2018; 360
Zhu (D3OB00601H/cit24a/1) 2007; 41
Srivastava (D3OB00601H/cit63/1) 2017; 2018
Xiao (D3OB00601H/cit4b/1) 2011; 23
Godoi (D3OB00601H/cit5c/1) 2011; 111
Koley (D3OB00601H/cit21/1) 2014
Cheng (D3OB00601H/cit53/1) 2021; 86
Li (D3OB00601H/cit5e/1) 2020; 18
Madabhushi (D3OB00601H/cit12/1) 2015; 5
Wen (D3OB00601H/cit56/1) 2015; 80
Singh (D3OB00601H/cit8a/1) 2013; 3
Moghaddam (D3OB00601H/cit14/1) 2014; 55
Singh (D3OB00601H/cit61/1) 2013; 15
Apparao (D3OB00601H/cit72/1) 1985
Zeni (D3OB00601H/cit5a/1) 2006; 106
Roy (D3OB00601H/cit23b/1) 2003; 46
Koley (D3OB00601H/cit27/1) 2016; 81
Cheng (D3OB00601H/cit59/1) 2020; 85
Jia (D3OB00601H/cit24c/1) 2009; 30
Ray (D3OB00601H/cit47/1) 2022; 364
Taylor (D3OB00601H/cit2c/1) 2016; 14
Dentel (D3OB00601H/cit32/1) 2010; 51
Yadav (D3OB00601H/cit38/1) 2020; 362
Jia (D3OB00601H/cit24b/1) 2008; 1197
Blakemore (D3OB00601H/cit2d/1) 2018; 10
Koley (D3OB00601H/cit73/1) 2015
Nagaraju (D3OB00601H/cit52/1) 2014; 55
Pali (D3OB00601H/cit28/1) 2023; 25
Shukla (D3OB00601H/cit22/1) 2018; 83
Carson (D3OB00601H/cit10b/1) 2009; 38
Klingsberg (D3OB00601H/cit7a/1) 1972; 37
Francke (D3OB00601H/cit6c/1) 2014; 10
Kumara (D3OB00601H/cit15/1) 2016; 57
Aggarwal (D3OB00601H/cit5h/1) 2016; 14
Shukla (D3OB00601H/cit41/1) 2016; 18
Madabhushi (D3OB00601H/cit35/1) 2014; 55
Sun (D3OB00601H/cit45/1) 2021; 45
Srivastava (D3OB00601H/cit43/1) 2017; 82
Ramadas (D3OB00601H/cit7c/1) 1983
Ghosh (D3OB00601H/cit44/1) 2018; 3
Ramulu (D3OB00601H/cit26/1) 2015; 56
Zhang (D3OB00601H/cit58b/1) 2021; 41
Zhang (D3OB00601H/cit64b/1) 2016; 116
Fan (D3OB00601H/cit49a/1) 2009; 57
Chowdhury (D3OB00601H/cit25/1) 2013; 15
Xia (D3OB00601H/cit10d/1) 2021; 60
Lawson (D3OB00601H/cit30/1) 1988
Chowdhury (D3OB00601H/cit71/1) 2013; 69
References_xml – volume: 83
  start-page: 2173
  year: 2018
  ident: D3OB00601H/cit22/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.7b03092
– volume: 38
  start-page: 3051
  year: 2009
  ident: D3OB00601H/cit10b/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b901245c
– volume: 2018
  start-page: 81
  year: 2017
  ident: D3OB00601H/cit63/1
  publication-title: ARKIVOC
  doi: 10.24820/ark.5550190.p010.069
– volume: 111
  start-page: 2937
  year: 2011
  ident: D3OB00601H/cit5c/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr100214d
– volume: 41
  start-page: 13219
  year: 2017
  ident: D3OB00601H/cit36/1
  publication-title: New J. Chem.
  doi: 10.1039/C7NJ03025H
– volume: 357
  start-page: 530
  year: 2015
  ident: D3OB00601H/cit19/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201400828
– volume: 47
  start-page: 1702
  year: 2017
  ident: D3OB00601H/cit37/1
  publication-title: Synth. Commun.
  doi: 10.1080/00397911.2017.1346810
– volume: 5
  start-page: 47418
  year: 2015
  ident: D3OB00601H/cit11/1
  publication-title: RSC Adv.
  doi: 10.1039/C5RA06355H
– volume: 14
  start-page: 6611
  year: 2016
  ident: D3OB00601H/cit2c/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C6OB00936K
– volume: 18
  start-page: 2451
  year: 2016
  ident: D3OB00601H/cit41/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.6b00997
– volume: 57
  start-page: 5845
  year: 2014
  ident: D3OB00601H/cit2b/1
  publication-title: J. Med. Chem.
  doi: 10.1021/jm4017625
– volume: 361
  start-page: 4091
  year: 2019
  ident: D3OB00601H/cit75/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201900580
– volume: 26
  start-page: 627
  year: 2021
  ident: D3OB00601H/cit2e/1
  publication-title: Molecules
  doi: 10.3390/molecules26030627
– volume: 106
  start-page: 4644
  year: 2006
  ident: D3OB00601H/cit5a/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr0683966
– volume: 13
  start-page: 655
  year: 2015
  ident: D3OB00601H/cit10c/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C4OB02117G
– volume: 57
  start-page: 4279
  year: 2009
  ident: D3OB00601H/cit49a/1
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf8031364
– volume: 71
  start-page: 8989
  year: 2006
  ident: D3OB00601H/cit29/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo061747w
– volume: 116
  start-page: 287
  year: 2016
  ident: D3OB00601H/cit64b/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00360
– volume: 60
  start-page: 346
  year: 2012
  ident: D3OB00601H/cit49b/1
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf203974p
– volume: 22
  start-page: 1111
  year: 2012
  ident: D3OB00601H/cit48b/1
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2011.11.122
– volume: 48
  start-page: 1703
  year: 2015
  ident: D3OB00601H/cit5f/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00041
– volume: 52
  start-page: 2469
  year: 2020
  ident: D3OB00601H/cit58a/1
  publication-title: Synthesis
  doi: 10.1055/s-0040-1707160
– volume: 41
  start-page: 242
  year: 2007
  ident: D3OB00601H/cit24a/1
  publication-title: Free Radical Res.
  doi: 10.1080/10715760601009586
– volume: 23
  start-page: 926
  year: 2011
  ident: D3OB00601H/cit4b/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201003128
– start-page: 641
  year: 1985
  ident: D3OB00601H/cit72/1
  publication-title: J. Chem. Soc., Perkin Trans. 1
  doi: 10.1039/p19850000641
– volume: 73
  start-page: 879
  year: 2017
  ident: D3OB00601H/cit69/1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2016.12.073
– start-page: 4026
  year: 2013
  ident: D3OB00601H/cit67/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201300038
– volume: 55
  start-page: 4382
  year: 2014
  ident: D3OB00601H/cit35/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2014.06.013
– volume: 8
  start-page: 1345
  year: 2021
  ident: D3OB00601H/cit5i/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/D0QO01453B
– volume: 21
  start-page: 1675
  year: 2017
  ident: D3OB00601H/cit4c/1
  publication-title: Org. Process Res. Dev.
  doi: 10.1021/acs.oprd.7b00280
– volume: 7
  start-page: 1982
  year: 2018
  ident: D3OB00601H/cit6e/1
  publication-title: Asian J. Org. Chem.
  doi: 10.1002/ajoc.201800396
– volume: 24
  start-page: 223
  year: 2007
  ident: D3OB00601H/cit1/1
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/b509528j
– volume: 365
  start-page: 88
  year: 2023
  ident: D3OB00601H/cit46/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.202201050
– volume: 23
  start-page: 4087
  year: 1982
  ident: D3OB00601H/cit7b/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(00)88354-9
– volume: 103
  start-page: 1151
  year: 2003
  ident: D3OB00601H/cit10a/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr010016n
– start-page: 5884
  year: 2021
  ident: D3OB00601H/cit77/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.202101276
– volume: 362
  start-page: 512
  year: 2020
  ident: D3OB00601H/cit38/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201901180
– volume: 3
  start-page: 13773
  year: 2018
  ident: D3OB00601H/cit44/1
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201803403
– volume: 42
  start-page: 4948
  year: 2013
  ident: D3OB00601H/cit13e/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs35505e
– volume: 81
  start-page: 11594
  year: 2016
  ident: D3OB00601H/cit27/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.6b01802
– volume: 87
  start-page: 13935
  year: 2022
  ident: D3OB00601H/cit16/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.2c01617
– volume: 70
  start-page: 914
  year: 2014
  ident: D3OB00601H/cit34/1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2013.12.020
– volume: 80
  start-page: 4942
  year: 2015
  ident: D3OB00601H/cit56/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.5b00288
– volume: 3
  start-page: 14183
  year: 2013
  ident: D3OB00601H/cit8a/1
  publication-title: RSC Adv.
  doi: 10.1039/c3ra41094c
– volume: 15
  start-page: 5386
  year: 2013
  ident: D3OB00601H/cit25/1
  publication-title: Org. Lett.
  doi: 10.1021/ol402728y
– volume: 18
  start-page: 3638
  year: 2020
  ident: D3OB00601H/cit5e/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/D0OB00458H
– volume: 85
  start-page: 13339
  year: 2020
  ident: D3OB00601H/cit59/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.0c01984
– volume: 55
  start-page: 2430
  year: 2014
  ident: D3OB00601H/cit52/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2014.02.115
– volume: 15
  start-page: 94
  year: 2005
  ident: D3OB00601H/cit4a/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/b413249c
– volume: 45
  start-page: 14508
  year: 2021
  ident: D3OB00601H/cit45/1
  publication-title: New J. Chem.
  doi: 10.1039/D1NJ01970H
– volume: 37
  start-page: 3226
  year: 1972
  ident: D3OB00601H/cit7a/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00986a008
– volume: 80
  start-page: 11138
  year: 2015
  ident: D3OB00601H/cit68/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.5b01869
– volume: 20
  start-page: 6784
  year: 2022
  ident: D3OB00601H/cit39/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/D2OB01258H
– volume: 52
  start-page: 3171
  year: 1996
  ident: D3OB00601H/cit50a/1
  publication-title: Tetrahedron
  doi: 10.1016/0040-4020(95)01103-X
– volume: 3
  start-page: 13811
  year: 2013
  ident: D3OB00601H/cit20/1
  publication-title: RSC Adv.
  doi: 10.1039/c3ra41100a
– volume: 15
  start-page: 1974
  year: 2013
  ident: D3OB00601H/cit61/1
  publication-title: Org. Lett.
  doi: 10.1021/ol400644m
– volume: 17
  start-page: 950
  year: 2015
  ident: D3OB00601H/cit64a/1
  publication-title: Green Chem.
  doi: 10.1039/C4GC01431F
– volume: 14
  start-page: 7639
  year: 2016
  ident: D3OB00601H/cit5h/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C6OB01054G
– volume: 69
  start-page: 8899
  year: 2013
  ident: D3OB00601H/cit71/1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2013.07.092
– volume: 21
  start-page: 7261
  year: 2011
  ident: D3OB00601H/cit48a/1
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2011.10.055
– volume: 42
  start-page: 1197
  year: 2001
  ident: D3OB00601H/cit31/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(00)02209-7
– volume: 10
  start-page: 2858
  year: 2014
  ident: D3OB00601H/cit6c/1
  publication-title: Beilstein J. Org. Chem.
  doi: 10.3762/bjoc.10.303
– volume: 360
  start-page: 1780
  year: 2018
  ident: D3OB00601H/cit62/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201701595
– volume: 82
  start-page: 10846
  year: 2017
  ident: D3OB00601H/cit43/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.7b01601
– volume: 2
  start-page: 126
  year: 2013
  ident: D3OB00601H/cit60/1
  publication-title: Asian J. Org. Chem.
  doi: 10.1002/ajoc.201200148
– volume: 5
  start-page: 64797
  year: 2015
  ident: D3OB00601H/cit12/1
  publication-title: RSC Adv.
  doi: 10.1039/C5RA11629E
– volume: 30
  start-page: 1186
  year: 1987
  ident: D3OB00601H/cit23a/1
  publication-title: J. Med. Chem.
  doi: 10.1021/jm00390a011
– volume: 29
  start-page: 791
  year: 1999
  ident: D3OB00601H/cit7e/1
  publication-title: Synth. Commun.
  doi: 10.1080/00397919908086034
– volume: 69
  start-page: 1106
  year: 2013
  ident: D3OB00601H/cit3/1
  publication-title: Pest Manage. Sci.
  doi: 10.1002/ps.3615
– volume: 58
  start-page: 2512
  year: 2017
  ident: D3OB00601H/cit42/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2017.05.064
– volume: 73
  start-page: 8612
  year: 2008
  ident: D3OB00601H/cit50b/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo801801y
– volume: 35
  start-page: 4985
  year: 1994
  ident: D3OB00601H/cit7d/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(00)73299-0
– volume: 42
  start-page: 1251
  year: 2013
  ident: D3OB00601H/cit74/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35329F
– volume: 10
  start-page: 383
  year: 2018
  ident: D3OB00601H/cit2d/1
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0021-z
– volume: 36
  start-page: 1095
  year: 2007
  ident: D3OB00601H/cit13a/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B608235C
– volume: 358
  start-page: 1195
  year: 2016
  ident: D3OB00601H/cit66/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201500962
– volume: 69
  start-page: 8013
  year: 2013
  ident: D3OB00601H/cit33/1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2013.07.001
– volume: 15
  start-page: 954
  year: 2013
  ident: D3OB00601H/cit51/1
  publication-title: Green Chem.
  doi: 10.1039/c3gc37047j
– volume: 53
  start-page: 1279
  year: 2023
  ident: D3OB00601H/cit8b/1
  publication-title: Synth. Commun.
  doi: 10.1080/00397911.2023.2221755
– volume: 16
  start-page: 5536
  year: 2014
  ident: D3OB00601H/cit9/1
  publication-title: Org. Lett.
  doi: 10.1021/ol502850h
– volume: 50
  start-page: 6234
  year: 2011
  ident: D3OB00601H/cit13d/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201006515
– volume: 83
  start-page: 7950
  year: 2018
  ident: D3OB00601H/cit65/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.8b00814
– volume: 1197
  start-page: 159
  year: 2008
  ident: D3OB00601H/cit24b/1
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2007.12.044
– volume: 13
  start-page: 1942
  year: 2015
  ident: D3OB00601H/cit5g/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C4OB02024C
– volume: 60
  start-page: 9192
  year: 2021
  ident: D3OB00601H/cit10d/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202006736
– start-page: 0573
  year: 2001
  ident: D3OB00601H/cit7f/1
  publication-title: Synthesis
  doi: 10.1055/s-2001-12356
– volume: 30
  start-page: 1
  year: 2009
  ident: D3OB00601H/cit24c/1
  publication-title: Neurotoxicology
  doi: 10.1016/j.neuro.2008.11.007
– volume: 85
  start-page: 10098
  year: 2020
  ident: D3OB00601H/cit76/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.0c01355
– volume: 51
  start-page: 6014
  year: 2010
  ident: D3OB00601H/cit32/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2010.09.055
– volume: 10
  start-page: 1432
  year: 2021
  ident: D3OB00601H/cit54/1
  publication-title: Asian J. Org. Chem.
  doi: 10.1002/ajoc.202100197
– start-page: 409
  year: 2015
  ident: D3OB00601H/cit73/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201403171
– volume: 46
  start-page: 2565
  year: 2003
  ident: D3OB00601H/cit23b/1
  publication-title: J. Med. Chem.
  doi: 10.1021/jm0256225
– volume: 70
  start-page: 3740
  year: 2014
  ident: D3OB00601H/cit57/1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2014.03.097
– start-page: 2964
  year: 2014
  ident: D3OB00601H/cit70/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201301788
– start-page: 605
  year: 1983
  ident: D3OB00601H/cit7c/1
  publication-title: Synthesis
  doi: 10.1055/s-1983-30446
– volume: 55
  start-page: 3122
  year: 2012
  ident: D3OB00601H/cit48c/1
  publication-title: J. Med. Chem.
  doi: 10.1021/jm201540h
– volume: 108
  start-page: 3174
  year: 2008
  ident: D3OB00601H/cit5d/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr078361l
– volume: 55
  start-page: 1251
  year: 2014
  ident: D3OB00601H/cit14/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2014.01.014
– volume: 86
  start-page: 5265
  year: 2021
  ident: D3OB00601H/cit53/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.1c00156
– volume: 14
  start-page: 434
  year: 2016
  ident: D3OB00601H/cit18/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C5OB02081F
– volume: 57
  start-page: 10257
  year: 2014
  ident: D3OB00601H/cit2a/1
  publication-title: J. Med. Chem.
  doi: 10.1021/jm501100b
– volume: 52
  start-page: 7310
  year: 2009
  ident: D3OB00601H/cit23c/1
  publication-title: J. Med. Chem.
  doi: 10.1021/jm901323s
– volume: 57
  start-page: 2520
  year: 2016
  ident: D3OB00601H/cit15/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2016.04.100
– start-page: 5501
  year: 2014
  ident: D3OB00601H/cit21/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201402276
– volume: 121
  start-page: 154463
  year: 2023
  ident: D3OB00601H/cit17/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2023.154463
– volume: 108
  start-page: 3395
  year: 2008
  ident: D3OB00601H/cit5b/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr050041j
– volume: 42
  start-page: 463
  year: 2009
  ident: D3OB00601H/cit13b/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar800214s
– volume: 41
  start-page: 629
  year: 2008
  ident: D3OB00601H/cit6a/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar700238s
– volume: 109
  start-page: 4439
  year: 2009
  ident: D3OB00601H/cit13c/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr800296p
– volume: 364
  start-page: 3204
  year: 2022
  ident: D3OB00601H/cit47/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.202200511
– start-page: 663
  year: 1988
  ident: D3OB00601H/cit30/1
  publication-title: J. Chem. Soc., Perkin Trans. 1
  doi: 10.1039/p19880000663
– volume: 41
  start-page: 4154
  year: 2021
  ident: D3OB00601H/cit58b/1
  publication-title: Chin. J. Org. Chem.
  doi: 10.6023/cjoc202107023
– volume: 48
  start-page: 1623
  year: 2012
  ident: D3OB00601H/cit6b/1
  publication-title: Chem. Commun.
  doi: 10.1039/C1CC15238F
– volume: 24
  start-page: 8848
  year: 2022
  ident: D3OB00601H/cit40/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.2c03642
– volume: 56
  start-page: 2593
  year: 2015
  ident: D3OB00601H/cit26/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2015.04.004
– volume: 49
  start-page: 1911
  year: 2016
  ident: D3OB00601H/cit6d/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00254
– volume: 25
  start-page: 2258
  year: 2023
  ident: D3OB00601H/cit28/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.3c00509
– volume: 26
  start-page: 1690
  year: 2022
  ident: D3OB00601H/cit55/1
  publication-title: Org. Process Res. Dev.
  doi: 10.1021/acs.oprd.2c00050
SSID ssj0019764
Score 2.439565
SecondaryResourceType review_article
Snippet The diverse synthesis of heterocyclic compounds has always been one of the popular subjects of organic chemistry. To this end, great efforts have been devoted...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 686
SubjectTerms Chemical synthesis
Heterocyclic compounds
Nitrogen
Organic chemistry
Organic compounds
Pyridines
Quinolines
Reagents
Sulfur
Thiazoles
Thiophenes
Title A decade update on the application of β-oxodithioesters in heterocyclic synthesis
URI https://www.ncbi.nlm.nih.gov/pubmed/37555699
https://www.proquest.com/docview/2858604747
https://www.proquest.com/docview/2848229678
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVgk2AvE1-DjIGMYA-oCqS2E8ePbSkqiA-BOmniJYodR60ESbW2EuVn8UP4TVzbcRpGkYCXqL2xG_UeJznX9j0XoSdSElKKCMISLSOTksNCeCvKUHFRlrEqlNPZfvsumZyx1-fx-bYync0uWcln6tvOvJL_QRVsgKvJkv0HZNsfBQN8BnzhCAjD8a8wHvQKbfa399YLE7g3E_-9zqK04YKno_HpkIT119okYMxrq41gt8HOzF6YWm2UUbpebirovJwvu3zVpWoqO0BMpr4vpttTvlBcy4Sbvb2fZvNw6N-HVni_tW86ZiDuxvqhMzpHM-2aDhs18GYyglA7u-rWVbR7gDLOQ7ixxc7Hc0SNumlBa2l1YGbdRuDaxRcLFOVxHCeubtIlMWx_6iraJxAXwJN4fzCevnrTLhwBu2JehZaK59tLHaBrvvOvFOS3uAJYxoWv_mJZxvQGOmzCAzxwWN9EV3R1C10feWffRh8H2GGOHea4rjDAhjuY47rEP75fxhvPK9zFG7d430FnL8fT0SRs6mKEilK-CkUuGJM5T0sJTpBRqhKe5JKLmDCq-pqVjCfwT7UgMga-reEbKYt-WtCSQ4RLj9BeVVf6HsJaEgArJbQwkbbsS0XzBDieisxcmJABeupdlalGNN7ULvmc2c0LVGQv6Puh9fAkQI_btgsnlbKz1Yn3eNbcSsuMpHGaRAxC2wA9ak-DZ83qVV7pem3aMFOcAMhVgO46pNrLeGQDdATQteYt-sd_7HIfHWwH8gnaW12s9QPgmSv5sBlbPwE0O3wS
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+decade+update+on+the+application+of+%CE%B2-oxodithioesters+in+heterocyclic+synthesis&rft.jtitle=Organic+%26+biomolecular+chemistry&rft.au=Dong%2C+Zhi-Bing&rft.au=Gong%2C+Zhiying&rft.au=Dou%2C+Qian&rft.au=Cheng%2C+Bin&rft.date=2023-08-30&rft.eissn=1477-0539&rft_id=info:doi/10.1039%2Fd3ob00601h&rft_id=info%3Apmid%2F37555699&rft.externalDocID=37555699
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-0520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-0520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-0520&client=summon