Heat-treatment effects on mechanical properties and microstructure evolution of Ti-6Al-4V alloy fabricated by laser powder bed fusion
Recently, the Ti-6Al-4V alloy fabricated by laser powder bed fusion has been widely studies. According to the high cooling rate, the strength of 3D printed Ti-6Al-4V alloy usually higher than that made by traditional process. In the meanwhile, the residual stress or microstructure feature that cause...
Saved in:
Published in | Journal of alloys and compounds Vol. 816; p. 152615 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
05.03.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, the Ti-6Al-4V alloy fabricated by laser powder bed fusion has been widely studies. According to the high cooling rate, the strength of 3D printed Ti-6Al-4V alloy usually higher than that made by traditional process. In the meanwhile, the residual stress or microstructure feature that caused by high cooling rate usually causes the lower ductility. Therefore, such defects of these Ti-based alloys should be prevented before the application. Besides the porosity, the overall ductility of Ti-based alloys is consisted of its microstructure, of which dominated by acicular α′ structure with some dislocations or twins. Namely, an important effect on ductility is the α′ phase decomposed into the α phase and β phase. In present researches, some various heat treatment conditions are performed, and to investigate the relationship between their microstructures and mechanical properties. By proper heat treatment, the temperature of martensitic transition (Ms) temperature was between 750 and 800 °C, which is lower than the traditional cast/wrought Ti-6Al-4V alloy. Moreover, through the identification of XRD and TEM, there is a α’→α + β transformation and some island β-phase particles formed at the acicular α phase interface. It is also shown that the residual stress can be eliminated after annealed at 600 °C for various times resulting to increase the overall elongation about 3–5% without significantly reducing the strength.
•The selective laser melting (SLM) method is adopted to fabricate Ti-6Al-4V materials.•The relationship between heat treatment parameter, microstructure, and mechanical properties of LPBF Ti-6Al-4V is explored.•The suggested heat treatment parameter are proposed and evaluated. |
---|---|
AbstractList | Recently, the Ti-6Al-4V alloy fabricated by laser powder bed fusion has been widely studies. According to the high cooling rate, the strength of 3D printed Ti-6Al-4V alloy usually higher than that made by traditional process. In the meanwhile, the residual stress or microstructure feature that caused by high cooling rate usually causes the lower ductility. Therefore, such defects of these Ti-based alloys should be prevented before the application. Besides the porosity, the overall ductility of Ti-based alloys is consisted of its microstructure, of which dominated by acicular α′ structure with some dislocations or twins. Namely, an important effect on ductility is the α′ phase decomposed into the α phase and β phase. In present researches, some various heat treatment conditions are performed, and to investigate the relationship between their microstructures and mechanical properties. By proper heat treatment, the temperature of martensitic transition (Ms) temperature was between 750 and 800 °C, which is lower than the traditional cast/wrought Ti-6Al-4V alloy. Moreover, through the identification of XRD and TEM, there is a α'→α + β transformation and some island β-phase particles formed at the acicular α phase interface. It is also shown that the residual stress can be eliminated after annealed at 600 °C for various times resulting to increase the overall elongation about 3–5% without significantly reducing the strength. Recently, the Ti-6Al-4V alloy fabricated by laser powder bed fusion has been widely studies. According to the high cooling rate, the strength of 3D printed Ti-6Al-4V alloy usually higher than that made by traditional process. In the meanwhile, the residual stress or microstructure feature that caused by high cooling rate usually causes the lower ductility. Therefore, such defects of these Ti-based alloys should be prevented before the application. Besides the porosity, the overall ductility of Ti-based alloys is consisted of its microstructure, of which dominated by acicular α′ structure with some dislocations or twins. Namely, an important effect on ductility is the α′ phase decomposed into the α phase and β phase. In present researches, some various heat treatment conditions are performed, and to investigate the relationship between their microstructures and mechanical properties. By proper heat treatment, the temperature of martensitic transition (Ms) temperature was between 750 and 800 °C, which is lower than the traditional cast/wrought Ti-6Al-4V alloy. Moreover, through the identification of XRD and TEM, there is a α’→α + β transformation and some island β-phase particles formed at the acicular α phase interface. It is also shown that the residual stress can be eliminated after annealed at 600 °C for various times resulting to increase the overall elongation about 3–5% without significantly reducing the strength. •The selective laser melting (SLM) method is adopted to fabricate Ti-6Al-4V materials.•The relationship between heat treatment parameter, microstructure, and mechanical properties of LPBF Ti-6Al-4V is explored.•The suggested heat treatment parameter are proposed and evaluated. |
ArticleNumber | 152615 |
Author | Chen, Yi-Wen Chao, Chih-Yeh Kuo, Che-Nan Tsai, Min-Tsang Tsai, Chih-Ching Jang, Jason S.C. Su, Yu-Lun |
Author_xml | – sequence: 1 givenname: Min-Tsang surname: Tsai fullname: Tsai, Min-Tsang organization: Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan – sequence: 2 givenname: Yi-Wen surname: Chen fullname: Chen, Yi-Wen organization: 3D Printing Medical Research Center, China Medical University Hospital, Taichung, Taiwan – sequence: 3 givenname: Chih-Yeh surname: Chao fullname: Chao, Chih-Yeh organization: Department of Mechanical Engineering, National Pingtung University of Science and Technology, Pingtung, Taiwan – sequence: 4 givenname: Jason S.C. surname: Jang fullname: Jang, Jason S.C. organization: Institute of Materials Science and Engineering, Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan – sequence: 5 givenname: Chih-Ching surname: Tsai fullname: Tsai, Chih-Ching organization: Department of Mechanical Engineering, National Pingtung University of Science and Technology, Pingtung, Taiwan – sequence: 6 givenname: Yu-Lun surname: Su fullname: Su, Yu-Lun organization: Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan – sequence: 7 givenname: Che-Nan orcidid: 0000-0001-6538-4867 surname: Kuo fullname: Kuo, Che-Nan email: cnkuo@asia.edu.tw organization: Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan |
BookMark | eNqFkVFrHCEUhaUk0E3Sn1AQ-jwb7zjjKH0oIbRNIdCXJa_i6pU6zIxbdVL2B_R_x2XzlJe8eEHOd7zneEUulrggIZ-BbYGBuB23o5kmG-dty0BtoW8F9B_IBuTAm04IdUE2TLV9I7mUH8lVziNjVclhQ_4_oClNSfWccSkUvUdbMo0LndH-MUuwZqKHFA-YSsBMzeLoHGyKuaTVljUhxec4rSVUJHq6C424m5ruidad4pF6s0_Vo6Cj-yOdTMZED_Gfq2Nf7_yaK3hDLr2ZMn56nddk9-P77v6hefz989f93WNjOR9KoxRaO4BqJYLnQ28AbD8oidwrsZcwcMfBMTDOSxwYdNgK1iuH0lslBb8mX862Nc_fFXPRY1zTUl_ULe8G0bG-a6vq61l1CpkTem1DMad8JZkwaWD6VLse9Wvt-lS7Ptde6f4NfUhhNun4LvftzGHN_xww6WwDLhZdSPVHtIvhHYcXWFejcQ |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2021_160044 crossref_primary_10_1016_j_mtcomm_2024_110781 crossref_primary_10_1017_S1431927621000052 crossref_primary_10_3390_ma15062047 crossref_primary_10_3390_ma13183967 crossref_primary_10_1016_j_jallcom_2021_163155 crossref_primary_10_3390_ma13112604 crossref_primary_10_1002_adem_202001433 crossref_primary_10_1007_s11665_022_06684_w crossref_primary_10_1007_s41939_025_00759_6 crossref_primary_10_1007_s00170_021_08381_9 crossref_primary_10_1016_j_jmrt_2020_06_019 crossref_primary_10_1177_02670836241265234 crossref_primary_10_3390_met10081006 crossref_primary_10_1016_j_jmrt_2022_07_192 crossref_primary_10_1016_j_msea_2022_144255 crossref_primary_10_1007_s00170_021_08295_6 crossref_primary_10_1016_j_jmapro_2021_08_063 crossref_primary_10_1007_s12540_022_01181_0 crossref_primary_10_1016_j_addma_2020_101705 crossref_primary_10_1007_s40516_024_00259_4 crossref_primary_10_1016_j_jallcom_2023_169048 crossref_primary_10_3390_jmmp7060226 crossref_primary_10_1016_j_mattod_2023_06_019 crossref_primary_10_1016_j_jmrt_2024_07_029 crossref_primary_10_1016_j_jmrt_2024_10_227 crossref_primary_10_1002_jbm_a_37632 crossref_primary_10_1016_j_matdes_2022_110392 crossref_primary_10_1016_j_jallcom_2020_155344 crossref_primary_10_1016_j_jsamd_2024_100679 crossref_primary_10_1016_j_jmrt_2024_03_235 crossref_primary_10_1016_j_matdes_2024_112926 crossref_primary_10_1007_s11665_020_05170_5 crossref_primary_10_1557_s43578_023_01278_1 crossref_primary_10_3390_mi13020331 crossref_primary_10_1007_s00170_021_06669_4 crossref_primary_10_3390_coatings11050505 crossref_primary_10_1016_j_mtla_2022_101366 crossref_primary_10_1016_j_jallcom_2021_163054 crossref_primary_10_1016_j_jallcom_2022_168387 crossref_primary_10_1016_j_corsci_2022_110732 crossref_primary_10_1007_s11015_022_01256_8 crossref_primary_10_1007_s12540_023_01607_3 crossref_primary_10_1016_j_matchar_2025_114948 crossref_primary_10_1016_j_addma_2022_103245 crossref_primary_10_1016_j_matdes_2021_110184 crossref_primary_10_1016_j_jallcom_2023_173387 crossref_primary_10_1016_j_msea_2023_145229 crossref_primary_10_1007_s11837_022_05430_w crossref_primary_10_1016_j_optlastec_2021_107342 crossref_primary_10_1007_s00170_024_14902_z crossref_primary_10_1016_j_surfcoat_2020_125908 crossref_primary_10_1007_s11665_024_10079_4 crossref_primary_10_1007_s40735_022_00700_1 crossref_primary_10_1016_j_jmst_2023_12_060 crossref_primary_10_3390_ma16010160 crossref_primary_10_1016_j_jmapro_2023_09_044 crossref_primary_10_1007_s10704_024_00784_5 crossref_primary_10_1177_14644207231186511 crossref_primary_10_1016_j_jmapro_2021_01_009 crossref_primary_10_1016_j_msea_2024_146227 crossref_primary_10_1016_j_matchar_2024_113926 crossref_primary_10_1016_j_jallcom_2021_159023 crossref_primary_10_1016_j_msea_2024_146421 |
Cites_doi | 10.1016/j.actamat.2010.02.004 10.1016/j.jallcom.2018.08.265 10.1016/j.jmbbm.2015.09.020 10.1016/j.matdes.2015.12.135 10.1016/j.matdes.2010.09.011 10.1016/j.compositesb.2018.02.012 10.1016/j.jallcom.2016.02.183 10.1016/j.msea.2013.04.099 10.1016/j.jallcom.2018.06.076 10.1016/S0921-5093(97)00806-X 10.1016/0925-8388(95)02057-8 10.1016/j.actamat.2014.11.028 10.1016/j.matdes.2018.107552 10.1007/BF02410495 10.1007/s11661-011-0731-y 10.1016/j.jallcom.2012.07.022 10.1016/j.mattod.2017.07.001 10.1016/j.jallcom.2007.10.054 10.1016/j.matlet.2015.10.136 10.1007/s11837-015-1297-8 10.1016/j.scriptamat.2007.07.007 10.1016/j.msea.2018.11.126 10.1016/j.jclepro.2016.04.150 |
ContentType | Journal Article |
Copyright | 2019 Copyright Elsevier BV Mar 5, 2020 |
Copyright_xml | – notice: 2019 – notice: Copyright Elsevier BV Mar 5, 2020 |
DBID | AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1016/j.jallcom.2019.152615 |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1873-4669 |
ExternalDocumentID | 10_1016_j_jallcom_2019_152615 S0925838819338617 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SMS SSH T9H WUQ 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c337t-99ecc71928e1f375a11c5798e3f96b8173d31d01adf8e7014e26059de8fc9863 |
IEDL.DBID | .~1 |
ISSN | 0925-8388 |
IngestDate | Sun Jul 13 04:06:33 EDT 2025 Tue Jul 01 03:58:17 EDT 2025 Thu Apr 24 23:09:25 EDT 2025 Fri Feb 23 02:48:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Additive manufacturing Microstructure Ti-6Al-4V Elongation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c337t-99ecc71928e1f375a11c5798e3f96b8173d31d01adf8e7014e26059de8fc9863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6538-4867 |
PQID | 2347640542 |
PQPubID | 2045454 |
ParticipantIDs | proquest_journals_2347640542 crossref_citationtrail_10_1016_j_jallcom_2019_152615 crossref_primary_10_1016_j_jallcom_2019_152615 elsevier_sciencedirect_doi_10_1016_j_jallcom_2019_152615 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-05 |
PublicationDateYYYYMMDD | 2020-03-05 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Journal of alloys and compounds |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Sallica-Leva, Caram, Jardini, Fogagnolo (bib19) 2016; 54 Ngo, Kashani, Imbalzano, Nguyen, Hui (bib10) 2018; 143 Niinomi (bib3) 1998; 243 Wu, Li, Liu, Wu, Guo, Li, Wang (bib21) 2019; 743 Wu, Lu, Gan, Huang, Zhao, Lin, Guo, Lin (bib18) 2016; 672 Vrancken, Thijs, Kruth, Humbeeck (bib20) 2012; 541 Liu, Shin (bib4) 2019; 164 Xu, Brandt, Sun, Elambasseril, Liu, Latham, Xia, Qian (bib17) 2015; 85 Trosch, Strößner, Völkl, Glatzel (bib6) 2016; 164 Prevéy (bib28) 1996 Zhao, Li, Zhang, Liu, Sercombe, Wang, Hao, Yang, Murr (bib13) 2016; 95 Yan, Yin, Chen, e Huang, Bolot, Lupoi, Kuang, Ma, Coddet, Liao, Li (bib16) 2018; 764 Martinez, Sathish, Blodgett, Shepard (bib27) 2003; 43 Wu, Liu, Li, Xia, Wu, Li (bib22) 2019; 771 (bib5) 2012 Qiu, Adkins, Attallah (bib15) 2013; 578 Fitzpatrick, Fry, Holdway, Kandil, Shackleton, Suominen (bib26) 2005 Tofail, Koumoulos, Bandyopadhyay, Bose, O’Donoghue, Charitidis (bib8) 2018; 21 Thijs, Verhaeghe, Craeghs, Humbeeck, Kruth (bib12) 2010; 58 Vilaro, Colin, Bartout (bib14) 2011; 42A Xu, Sun, Elambasseril, Liu, Brandt, Qian (bib7) 2015; 67 Ho (bib2) 2008; 464 Gil Mur, Rodríguez, Planell (bib11) 1996; 234 Malý, Höller, Skalon, Meier, Koutný, Pichler, Sommitsch, Paloušek (bib25) 2019; vol. 12 Ford, Despeisse (bib9) 2016; 137 Wang, Hwang, Chao, Liu (bib23) 2007; 57 Cui, Hu, Zhao, Liu (bib1) 2011; 32 Dieter, Bacon (bib24) 1961 Ford (10.1016/j.jallcom.2019.152615_bib9) 2016; 137 Yan (10.1016/j.jallcom.2019.152615_bib16) 2018; 764 Wu (10.1016/j.jallcom.2019.152615_bib22) 2019; 771 Prevéy (10.1016/j.jallcom.2019.152615_bib28) 1996 Sallica-Leva (10.1016/j.jallcom.2019.152615_bib19) 2016; 54 Dieter (10.1016/j.jallcom.2019.152615_bib24) 1961 Gil Mur (10.1016/j.jallcom.2019.152615_bib11) 1996; 234 Fitzpatrick (10.1016/j.jallcom.2019.152615_bib26) 2005 Ho (10.1016/j.jallcom.2019.152615_bib2) 2008; 464 Vilaro (10.1016/j.jallcom.2019.152615_bib14) 2011; 42A Xu (10.1016/j.jallcom.2019.152615_bib7) 2015; 67 Wu (10.1016/j.jallcom.2019.152615_bib21) 2019; 743 (10.1016/j.jallcom.2019.152615_bib5) 2012 Cui (10.1016/j.jallcom.2019.152615_bib1) 2011; 32 Trosch (10.1016/j.jallcom.2019.152615_bib6) 2016; 164 Tofail (10.1016/j.jallcom.2019.152615_bib8) 2018; 21 Wang (10.1016/j.jallcom.2019.152615_bib23) 2007; 57 Xu (10.1016/j.jallcom.2019.152615_bib17) 2015; 85 Malý (10.1016/j.jallcom.2019.152615_bib25) 2019; vol. 12 Liu (10.1016/j.jallcom.2019.152615_bib4) 2019; 164 Wu (10.1016/j.jallcom.2019.152615_bib18) 2016; 672 Thijs (10.1016/j.jallcom.2019.152615_bib12) 2010; 58 Zhao (10.1016/j.jallcom.2019.152615_bib13) 2016; 95 Martinez (10.1016/j.jallcom.2019.152615_bib27) 2003; 43 Ngo (10.1016/j.jallcom.2019.152615_bib10) 2018; 143 Vrancken (10.1016/j.jallcom.2019.152615_bib20) 2012; 541 Niinomi (10.1016/j.jallcom.2019.152615_bib3) 1998; 243 Qiu (10.1016/j.jallcom.2019.152615_bib15) 2013; 578 |
References_xml | – volume: 541 start-page: 177 year: 2012 end-page: 185 ident: bib20 article-title: Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties publication-title: J. Alloy. Comp. – volume: 234 start-page: 287 year: 1996 end-page: 289 ident: bib11 article-title: Influence of tempering temperature and time on the α’-Ti-6Al-4V martensite publication-title: J. Alloy. Comp. – volume: 54 start-page: 149 year: 2016 end-page: 158 ident: bib19 article-title: Ductility improvement due to martensite α’ decomposition in porous Ti-6Al-4V parts produced by selective laser melting for orthopedic implants publication-title: J. Mech. Behav. Biomed. – volume: 464 start-page: 580 year: 2008 end-page: 583 ident: bib2 article-title: A comparison of tensile properties and corrosion behavior of cast Ti-7.5Mo with c.p. Ti, Ti-15Mo and Ti-6Al-4V alloys publication-title: J. Alloy. Comp. – volume: 771 start-page: 526 year: 2019 end-page: 533 ident: bib22 article-title: Coarsening behavior of γ’ precipitates in the γ’+γ area of a Ni3Al-based alloy publication-title: J. Alloy. Comp. – volume: 32 start-page: 1684 year: 2011 end-page: 1691 ident: bib1 article-title: Titanium alloy production technology, market prospects and industry development publication-title: Mater. Des. – volume: 21 start-page: 22 year: 2018 end-page: 37 ident: bib8 article-title: Additive manufacturing: scientific and technological challenges, market uptake and opportunities publication-title: Mater. Today – volume: 58 start-page: 3303 year: 2010 end-page: 3312 ident: bib12 article-title: A study of the microstructural evolution during selective laser melting of Ti-6Al-4V publication-title: Acta Mater. – volume: 67 start-page: 668 year: 2015 end-page: 673 ident: bib7 article-title: Ti-6Al-4V additively manufactured by selective laser melting with superior mechanical properties publication-title: JOM – volume: 95 start-page: 21 year: 2016 end-page: 31 ident: bib13 article-title: Comparison of the microstructures and mechanical properties of Ti-6Al-4V fabricated by selective laser melting and electron beam melting publication-title: Mater. Des. – volume: vol. 12 start-page: 930 year: 2019 ident: bib25 publication-title: Effect of Process Parameters and High-Temperature Preheating on Residual Stress and Relative Density of Ti6Al4V Processed by Selective Laser Melting – start-page: 103 year: 1996 end-page: 110 ident: bib28 article-title: Current Applications of X-Ray Diffraction Residual Stress Measurement, Developments in Materials Characterization Technologies – year: 1961 ident: bib24 article-title: Mechanical Metallurgy – volume: 137 start-page: 1573 year: 2016 end-page: 1587 ident: bib9 article-title: Additive manufacturing and sustainability: an exploratory study of the advantages and challenges publication-title: J. Clean. Prod. – volume: 164 start-page: 107552 year: 2019 ident: bib4 article-title: Additive manufacturing of Ti6Al4V alloy: a review publication-title: Mater. Des. – volume: 164 start-page: 428 year: 2016 end-page: 431 ident: bib6 article-title: Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting publication-title: Mater. Lett. – volume: 672 start-page: 643 year: 2016 end-page: 652 ident: bib18 article-title: Microstructural evolution and microhardness of a selective-laser-melted Ti-6Al-4V alloy after post heat treatments publication-title: J. Alloy. Comp. – year: 2005 ident: bib26 article-title: Determination of Residual Stresses by X-Ray Diffraction – volume: 764 start-page: 1056 year: 2018 end-page: 1071 ident: bib16 article-title: Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting publication-title: J. Alloy. Comp. – year: 2012 ident: bib5 publication-title: Standard Terminology for Additive Manufacturing Technologies’ (Withdrawn 2015) – volume: 57 start-page: 809 year: 2007 end-page: 812 ident: bib23 article-title: Phase transitions in an Fe-9Al-30Mn-2.0C alloy publication-title: Scr. Mater. – volume: 85 start-page: 74 year: 2015 end-page: 84 ident: bib17 article-title: Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition publication-title: Acta Mater. – volume: 43 start-page: 141 year: 2003 end-page: 147 ident: bib27 article-title: Residual stress distribution on suface-treated Ti-6Al-4V by X-ray diffraction publication-title: Exp. Mech. – volume: 143 start-page: 172 year: 2018 end-page: 196 ident: bib10 article-title: Additive manufacturing (3D printing): a review of materials, methods, applications and challenges publication-title: Compos. B Eng. – volume: 42A start-page: 3190 year: 2011 end-page: 3199 ident: bib14 article-title: As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting publication-title: Metall. Mater. Trans. A – volume: 578 start-page: 230 year: 2013 end-page: 239 ident: bib15 article-title: Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V publication-title: Mater. Sci. Eng. A – volume: 743 start-page: 623 year: 2019 end-page: 635 ident: bib21 article-title: Effect of annealing treatment on microstructure evolution and creep behavior of a multiphase Ni publication-title: Mater. Sci. Eng. A – volume: 243 start-page: 231 year: 1998 end-page: 236 ident: bib3 article-title: Mechanical properties of biomedical titanium alloys publication-title: Mater. Sci. Eng. A – volume: vol. 12 start-page: 930 year: 2019 ident: 10.1016/j.jallcom.2019.152615_bib25 – volume: 58 start-page: 3303 year: 2010 ident: 10.1016/j.jallcom.2019.152615_bib12 article-title: A study of the microstructural evolution during selective laser melting of Ti-6Al-4V publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.02.004 – year: 2005 ident: 10.1016/j.jallcom.2019.152615_bib26 – volume: 771 start-page: 526 year: 2019 ident: 10.1016/j.jallcom.2019.152615_bib22 article-title: Coarsening behavior of γ’ precipitates in the γ’+γ area of a Ni3Al-based alloy publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2018.08.265 – volume: 54 start-page: 149 year: 2016 ident: 10.1016/j.jallcom.2019.152615_bib19 article-title: Ductility improvement due to martensite α’ decomposition in porous Ti-6Al-4V parts produced by selective laser melting for orthopedic implants publication-title: J. Mech. Behav. Biomed. doi: 10.1016/j.jmbbm.2015.09.020 – volume: 95 start-page: 21 year: 2016 ident: 10.1016/j.jallcom.2019.152615_bib13 article-title: Comparison of the microstructures and mechanical properties of Ti-6Al-4V fabricated by selective laser melting and electron beam melting publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.12.135 – volume: 32 start-page: 1684 year: 2011 ident: 10.1016/j.jallcom.2019.152615_bib1 article-title: Titanium alloy production technology, market prospects and industry development publication-title: Mater. Des. doi: 10.1016/j.matdes.2010.09.011 – volume: 143 start-page: 172 year: 2018 ident: 10.1016/j.jallcom.2019.152615_bib10 article-title: Additive manufacturing (3D printing): a review of materials, methods, applications and challenges publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2018.02.012 – volume: 672 start-page: 643 year: 2016 ident: 10.1016/j.jallcom.2019.152615_bib18 article-title: Microstructural evolution and microhardness of a selective-laser-melted Ti-6Al-4V alloy after post heat treatments publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2016.02.183 – volume: 578 start-page: 230 year: 2013 ident: 10.1016/j.jallcom.2019.152615_bib15 article-title: Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2013.04.099 – volume: 764 start-page: 1056 year: 2018 ident: 10.1016/j.jallcom.2019.152615_bib16 article-title: Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2018.06.076 – volume: 243 start-page: 231 year: 1998 ident: 10.1016/j.jallcom.2019.152615_bib3 article-title: Mechanical properties of biomedical titanium alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(97)00806-X – volume: 234 start-page: 287 year: 1996 ident: 10.1016/j.jallcom.2019.152615_bib11 article-title: Influence of tempering temperature and time on the α’-Ti-6Al-4V martensite publication-title: J. Alloy. Comp. doi: 10.1016/0925-8388(95)02057-8 – volume: 85 start-page: 74 year: 2015 ident: 10.1016/j.jallcom.2019.152615_bib17 article-title: Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.11.028 – volume: 164 start-page: 107552 year: 2019 ident: 10.1016/j.jallcom.2019.152615_bib4 article-title: Additive manufacturing of Ti6Al4V alloy: a review publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.107552 – volume: 43 start-page: 141 year: 2003 ident: 10.1016/j.jallcom.2019.152615_bib27 article-title: Residual stress distribution on suface-treated Ti-6Al-4V by X-ray diffraction publication-title: Exp. Mech. doi: 10.1007/BF02410495 – year: 2012 ident: 10.1016/j.jallcom.2019.152615_bib5 – volume: 42A start-page: 3190 year: 2011 ident: 10.1016/j.jallcom.2019.152615_bib14 article-title: As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-011-0731-y – volume: 541 start-page: 177 year: 2012 ident: 10.1016/j.jallcom.2019.152615_bib20 article-title: Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2012.07.022 – volume: 21 start-page: 22 year: 2018 ident: 10.1016/j.jallcom.2019.152615_bib8 article-title: Additive manufacturing: scientific and technological challenges, market uptake and opportunities publication-title: Mater. Today doi: 10.1016/j.mattod.2017.07.001 – volume: 464 start-page: 580 year: 2008 ident: 10.1016/j.jallcom.2019.152615_bib2 article-title: A comparison of tensile properties and corrosion behavior of cast Ti-7.5Mo with c.p. Ti, Ti-15Mo and Ti-6Al-4V alloys publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2007.10.054 – start-page: 103 year: 1996 ident: 10.1016/j.jallcom.2019.152615_bib28 – volume: 164 start-page: 428 year: 2016 ident: 10.1016/j.jallcom.2019.152615_bib6 article-title: Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting publication-title: Mater. Lett. doi: 10.1016/j.matlet.2015.10.136 – volume: 67 start-page: 668 year: 2015 ident: 10.1016/j.jallcom.2019.152615_bib7 article-title: Ti-6Al-4V additively manufactured by selective laser melting with superior mechanical properties publication-title: JOM doi: 10.1007/s11837-015-1297-8 – volume: 57 start-page: 809 year: 2007 ident: 10.1016/j.jallcom.2019.152615_bib23 article-title: Phase transitions in an Fe-9Al-30Mn-2.0C alloy publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2007.07.007 – year: 1961 ident: 10.1016/j.jallcom.2019.152615_bib24 – volume: 743 start-page: 623 year: 2019 ident: 10.1016/j.jallcom.2019.152615_bib21 article-title: Effect of annealing treatment on microstructure evolution and creep behavior of a multiphase Ni3Al-based superalloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2018.11.126 – volume: 137 start-page: 1573 year: 2016 ident: 10.1016/j.jallcom.2019.152615_bib9 article-title: Additive manufacturing and sustainability: an exploratory study of the advantages and challenges publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.04.150 |
SSID | ssj0001931 |
Score | 2.5650842 |
Snippet | Recently, the Ti-6Al-4V alloy fabricated by laser powder bed fusion has been widely studies. According to the high cooling rate, the strength of 3D printed... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 152615 |
SubjectTerms | Acicular structure Additive manufacturing Alloys Beta phase Cooling rate Ductility Elongation Heat treatment Mechanical properties Microstructure Porosity Powder beds Residual stress Three dimensional printing Ti-6Al-4V Titanium base alloys |
Title | Heat-treatment effects on mechanical properties and microstructure evolution of Ti-6Al-4V alloy fabricated by laser powder bed fusion |
URI | https://dx.doi.org/10.1016/j.jallcom.2019.152615 https://www.proquest.com/docview/2347640542 |
Volume | 816 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLamIQQ7ICigDcbkA1e3SRzb8bGqmApIu1DQblZsv0iturTqNtAuu_F_817ibICQJnGKlNhR5O_l_bC_9x5j703QRaZjJjLjvShBZ8IHUCLqoHzMwNjYsXzP9Pxr-elcne-x2ZALQ7TKpPt7nd5p63RnklZzsl0uJ18yW9CZH5o0DLPQEFMGe2lIyse39zQPfNp1zcPBgkbfZ_FMVuNVvV4TaQStoKVOQJq64_7bPv2lqTvzc_qcPUt-I5_2n_aC7UE7Yk9mQ7u2ETv4rbLgiD3umJ3h8iX7OUdtK-745DwROPim5RdAab-EEt_SnvyOiqvyuo38gmh6fWnZ6x1w-J4ElG8avlgKPV2L8hunM_sb3tS-azUEkfsbjs447Ph28yPixeO95pr2416xxemHxWwuUu8FEaQ0V8JaxNag-1dB3kij6jwPytgKZGO1r3Ijo8xjltexqcBgnAUUGNkIVRNspeVrtt9uWjhkPAsVevAQAwYupcygVqbWEpSOxqhY6iNWDgvuQqpLTu0x1m4goK1cwskRTq7H6YiN76Zt-8IcD02oBjTdHxLm0Hg8NPV4QN-lX_zSFRKFDd3dsnjz_29-y54WFMATqU0ds30EFt6hl3PlTzoxPmGPph8_z89-AWj9_XM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbGEBocEBQQgwE-cHWbxL_i41QxFRi7UNBuVmK_SK26tOo20C7c-L95L3E2QEiTOEVy7CjyZ78fyef3MfbWBlNkJmYis3UtFJhM1AG0iCboOmZgXexYvidm9kV9ONWnO2w6nIUhWmWy_b1N76x1apmk2ZxsFovJ58wV9M8PXRqmWeiI77C7CrcvyRiMf9zwPPB2J5uHvQV1vznGM1mOl9VqRawRdIOOpIAMyeP-20H9Zao7_3P0iD1MgSM_7N_tMduBdsT2poNe24g9-K204Ijd66id4fwJ-zlDcyuuCeU8MTj4uuVnQOd-CSa-oY_yW6quyqs28jPi6fW1ZS-3wOFbWqF83fD5QpjDlVBfOf20v-JNVXdaQxB5fcUxGoct36y_R7zU2NZc0ge5p2x-9G4-nYkkviCClPZCOIfgWoz_SsgbaXWV50FbV4JsnKnL3Moo85jlVWxKsJhoAWVGLkLZBFca-YzttusWnjOehRJDeIgBMxclM6i0rYwEbaK1Oiqzz9Qw4T6kwuSkj7HyAwNt6RNOnnDyPU77bHw9bNNX5rhtQDmg6f9YYh69x21DDwb0fdrj576QyhqMd1Xx4v-f_Ibtzeafjv3x-5OPL9n9grJ5YrjpA7aLIMMrDHku6tfdkv4FJ6P_AQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat-treatment+effects+on+mechanical+properties+and+microstructure+evolution+of+Ti-6Al-4V+alloy+fabricated+by+laser+powder+bed+fusion&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Tsai%2C+Min-Tsang&rft.au=Chen%2C+Yi-Wen&rft.au=Chao%2C+Chih-Yeh&rft.au=Jang%2C+Jason+S.C.&rft.date=2020-03-05&rft.issn=0925-8388&rft.volume=816&rft.spage=152615&rft_id=info:doi/10.1016%2Fj.jallcom.2019.152615&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2019_152615 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |