Heat-treatment effects on mechanical properties and microstructure evolution of Ti-6Al-4V alloy fabricated by laser powder bed fusion

Recently, the Ti-6Al-4V alloy fabricated by laser powder bed fusion has been widely studies. According to the high cooling rate, the strength of 3D printed Ti-6Al-4V alloy usually higher than that made by traditional process. In the meanwhile, the residual stress or microstructure feature that cause...

Full description

Saved in:
Bibliographic Details
Published inJournal of alloys and compounds Vol. 816; p. 152615
Main Authors Tsai, Min-Tsang, Chen, Yi-Wen, Chao, Chih-Yeh, Jang, Jason S.C., Tsai, Chih-Ching, Su, Yu-Lun, Kuo, Che-Nan
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 05.03.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, the Ti-6Al-4V alloy fabricated by laser powder bed fusion has been widely studies. According to the high cooling rate, the strength of 3D printed Ti-6Al-4V alloy usually higher than that made by traditional process. In the meanwhile, the residual stress or microstructure feature that caused by high cooling rate usually causes the lower ductility. Therefore, such defects of these Ti-based alloys should be prevented before the application. Besides the porosity, the overall ductility of Ti-based alloys is consisted of its microstructure, of which dominated by acicular α′ structure with some dislocations or twins. Namely, an important effect on ductility is the α′ phase decomposed into the α phase and β phase. In present researches, some various heat treatment conditions are performed, and to investigate the relationship between their microstructures and mechanical properties. By proper heat treatment, the temperature of martensitic transition (Ms) temperature was between 750 and 800 °C, which is lower than the traditional cast/wrought Ti-6Al-4V alloy. Moreover, through the identification of XRD and TEM, there is a α’→α + β transformation and some island β-phase particles formed at the acicular α phase interface. It is also shown that the residual stress can be eliminated after annealed at 600 °C for various times resulting to increase the overall elongation about 3–5% without significantly reducing the strength. •The selective laser melting (SLM) method is adopted to fabricate Ti-6Al-4V materials.•The relationship between heat treatment parameter, microstructure, and mechanical properties of LPBF Ti-6Al-4V is explored.•The suggested heat treatment parameter are proposed and evaluated.
AbstractList Recently, the Ti-6Al-4V alloy fabricated by laser powder bed fusion has been widely studies. According to the high cooling rate, the strength of 3D printed Ti-6Al-4V alloy usually higher than that made by traditional process. In the meanwhile, the residual stress or microstructure feature that caused by high cooling rate usually causes the lower ductility. Therefore, such defects of these Ti-based alloys should be prevented before the application. Besides the porosity, the overall ductility of Ti-based alloys is consisted of its microstructure, of which dominated by acicular α′ structure with some dislocations or twins. Namely, an important effect on ductility is the α′ phase decomposed into the α phase and β phase. In present researches, some various heat treatment conditions are performed, and to investigate the relationship between their microstructures and mechanical properties. By proper heat treatment, the temperature of martensitic transition (Ms) temperature was between 750 and 800 °C, which is lower than the traditional cast/wrought Ti-6Al-4V alloy. Moreover, through the identification of XRD and TEM, there is a α'→α + β transformation and some island β-phase particles formed at the acicular α phase interface. It is also shown that the residual stress can be eliminated after annealed at 600 °C for various times resulting to increase the overall elongation about 3–5% without significantly reducing the strength.
Recently, the Ti-6Al-4V alloy fabricated by laser powder bed fusion has been widely studies. According to the high cooling rate, the strength of 3D printed Ti-6Al-4V alloy usually higher than that made by traditional process. In the meanwhile, the residual stress or microstructure feature that caused by high cooling rate usually causes the lower ductility. Therefore, such defects of these Ti-based alloys should be prevented before the application. Besides the porosity, the overall ductility of Ti-based alloys is consisted of its microstructure, of which dominated by acicular α′ structure with some dislocations or twins. Namely, an important effect on ductility is the α′ phase decomposed into the α phase and β phase. In present researches, some various heat treatment conditions are performed, and to investigate the relationship between their microstructures and mechanical properties. By proper heat treatment, the temperature of martensitic transition (Ms) temperature was between 750 and 800 °C, which is lower than the traditional cast/wrought Ti-6Al-4V alloy. Moreover, through the identification of XRD and TEM, there is a α’→α + β transformation and some island β-phase particles formed at the acicular α phase interface. It is also shown that the residual stress can be eliminated after annealed at 600 °C for various times resulting to increase the overall elongation about 3–5% without significantly reducing the strength. •The selective laser melting (SLM) method is adopted to fabricate Ti-6Al-4V materials.•The relationship between heat treatment parameter, microstructure, and mechanical properties of LPBF Ti-6Al-4V is explored.•The suggested heat treatment parameter are proposed and evaluated.
ArticleNumber 152615
Author Chen, Yi-Wen
Chao, Chih-Yeh
Kuo, Che-Nan
Tsai, Min-Tsang
Tsai, Chih-Ching
Jang, Jason S.C.
Su, Yu-Lun
Author_xml – sequence: 1
  givenname: Min-Tsang
  surname: Tsai
  fullname: Tsai, Min-Tsang
  organization: Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
– sequence: 2
  givenname: Yi-Wen
  surname: Chen
  fullname: Chen, Yi-Wen
  organization: 3D Printing Medical Research Center, China Medical University Hospital, Taichung, Taiwan
– sequence: 3
  givenname: Chih-Yeh
  surname: Chao
  fullname: Chao, Chih-Yeh
  organization: Department of Mechanical Engineering, National Pingtung University of Science and Technology, Pingtung, Taiwan
– sequence: 4
  givenname: Jason S.C.
  surname: Jang
  fullname: Jang, Jason S.C.
  organization: Institute of Materials Science and Engineering, Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan
– sequence: 5
  givenname: Chih-Ching
  surname: Tsai
  fullname: Tsai, Chih-Ching
  organization: Department of Mechanical Engineering, National Pingtung University of Science and Technology, Pingtung, Taiwan
– sequence: 6
  givenname: Yu-Lun
  surname: Su
  fullname: Su, Yu-Lun
  organization: Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
– sequence: 7
  givenname: Che-Nan
  orcidid: 0000-0001-6538-4867
  surname: Kuo
  fullname: Kuo, Che-Nan
  email: cnkuo@asia.edu.tw
  organization: Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
BookMark eNqFkVFrHCEUhaUk0E3Sn1AQ-jwb7zjjKH0oIbRNIdCXJa_i6pU6zIxbdVL2B_R_x2XzlJe8eEHOd7zneEUulrggIZ-BbYGBuB23o5kmG-dty0BtoW8F9B_IBuTAm04IdUE2TLV9I7mUH8lVziNjVclhQ_4_oClNSfWccSkUvUdbMo0LndH-MUuwZqKHFA-YSsBMzeLoHGyKuaTVljUhxec4rSVUJHq6C424m5ruidad4pF6s0_Vo6Cj-yOdTMZED_Gfq2Nf7_yaK3hDLr2ZMn56nddk9-P77v6hefz989f93WNjOR9KoxRaO4BqJYLnQ28AbD8oidwrsZcwcMfBMTDOSxwYdNgK1iuH0lslBb8mX862Nc_fFXPRY1zTUl_ULe8G0bG-a6vq61l1CpkTem1DMad8JZkwaWD6VLse9Wvt-lS7Ptde6f4NfUhhNun4LvftzGHN_xww6WwDLhZdSPVHtIvhHYcXWFejcQ
CitedBy_id crossref_primary_10_1016_j_jallcom_2021_160044
crossref_primary_10_1016_j_mtcomm_2024_110781
crossref_primary_10_1017_S1431927621000052
crossref_primary_10_3390_ma15062047
crossref_primary_10_3390_ma13183967
crossref_primary_10_1016_j_jallcom_2021_163155
crossref_primary_10_3390_ma13112604
crossref_primary_10_1002_adem_202001433
crossref_primary_10_1007_s11665_022_06684_w
crossref_primary_10_1007_s41939_025_00759_6
crossref_primary_10_1007_s00170_021_08381_9
crossref_primary_10_1016_j_jmrt_2020_06_019
crossref_primary_10_1177_02670836241265234
crossref_primary_10_3390_met10081006
crossref_primary_10_1016_j_jmrt_2022_07_192
crossref_primary_10_1016_j_msea_2022_144255
crossref_primary_10_1007_s00170_021_08295_6
crossref_primary_10_1016_j_jmapro_2021_08_063
crossref_primary_10_1007_s12540_022_01181_0
crossref_primary_10_1016_j_addma_2020_101705
crossref_primary_10_1007_s40516_024_00259_4
crossref_primary_10_1016_j_jallcom_2023_169048
crossref_primary_10_3390_jmmp7060226
crossref_primary_10_1016_j_mattod_2023_06_019
crossref_primary_10_1016_j_jmrt_2024_07_029
crossref_primary_10_1016_j_jmrt_2024_10_227
crossref_primary_10_1002_jbm_a_37632
crossref_primary_10_1016_j_matdes_2022_110392
crossref_primary_10_1016_j_jallcom_2020_155344
crossref_primary_10_1016_j_jsamd_2024_100679
crossref_primary_10_1016_j_jmrt_2024_03_235
crossref_primary_10_1016_j_matdes_2024_112926
crossref_primary_10_1007_s11665_020_05170_5
crossref_primary_10_1557_s43578_023_01278_1
crossref_primary_10_3390_mi13020331
crossref_primary_10_1007_s00170_021_06669_4
crossref_primary_10_3390_coatings11050505
crossref_primary_10_1016_j_mtla_2022_101366
crossref_primary_10_1016_j_jallcom_2021_163054
crossref_primary_10_1016_j_jallcom_2022_168387
crossref_primary_10_1016_j_corsci_2022_110732
crossref_primary_10_1007_s11015_022_01256_8
crossref_primary_10_1007_s12540_023_01607_3
crossref_primary_10_1016_j_matchar_2025_114948
crossref_primary_10_1016_j_addma_2022_103245
crossref_primary_10_1016_j_matdes_2021_110184
crossref_primary_10_1016_j_jallcom_2023_173387
crossref_primary_10_1016_j_msea_2023_145229
crossref_primary_10_1007_s11837_022_05430_w
crossref_primary_10_1016_j_optlastec_2021_107342
crossref_primary_10_1007_s00170_024_14902_z
crossref_primary_10_1016_j_surfcoat_2020_125908
crossref_primary_10_1007_s11665_024_10079_4
crossref_primary_10_1007_s40735_022_00700_1
crossref_primary_10_1016_j_jmst_2023_12_060
crossref_primary_10_3390_ma16010160
crossref_primary_10_1016_j_jmapro_2023_09_044
crossref_primary_10_1007_s10704_024_00784_5
crossref_primary_10_1177_14644207231186511
crossref_primary_10_1016_j_jmapro_2021_01_009
crossref_primary_10_1016_j_msea_2024_146227
crossref_primary_10_1016_j_matchar_2024_113926
crossref_primary_10_1016_j_jallcom_2021_159023
crossref_primary_10_1016_j_msea_2024_146421
Cites_doi 10.1016/j.actamat.2010.02.004
10.1016/j.jallcom.2018.08.265
10.1016/j.jmbbm.2015.09.020
10.1016/j.matdes.2015.12.135
10.1016/j.matdes.2010.09.011
10.1016/j.compositesb.2018.02.012
10.1016/j.jallcom.2016.02.183
10.1016/j.msea.2013.04.099
10.1016/j.jallcom.2018.06.076
10.1016/S0921-5093(97)00806-X
10.1016/0925-8388(95)02057-8
10.1016/j.actamat.2014.11.028
10.1016/j.matdes.2018.107552
10.1007/BF02410495
10.1007/s11661-011-0731-y
10.1016/j.jallcom.2012.07.022
10.1016/j.mattod.2017.07.001
10.1016/j.jallcom.2007.10.054
10.1016/j.matlet.2015.10.136
10.1007/s11837-015-1297-8
10.1016/j.scriptamat.2007.07.007
10.1016/j.msea.2018.11.126
10.1016/j.jclepro.2016.04.150
ContentType Journal Article
Copyright 2019
Copyright Elsevier BV Mar 5, 2020
Copyright_xml – notice: 2019
– notice: Copyright Elsevier BV Mar 5, 2020
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/j.jallcom.2019.152615
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4669
ExternalDocumentID 10_1016_j_jallcom_2019_152615
S0925838819338617
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SMS
SSH
T9H
WUQ
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c337t-99ecc71928e1f375a11c5798e3f96b8173d31d01adf8e7014e26059de8fc9863
IEDL.DBID .~1
ISSN 0925-8388
IngestDate Sun Jul 13 04:06:33 EDT 2025
Tue Jul 01 03:58:17 EDT 2025
Thu Apr 24 23:09:25 EDT 2025
Fri Feb 23 02:48:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Additive manufacturing
Microstructure
Ti-6Al-4V
Elongation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c337t-99ecc71928e1f375a11c5798e3f96b8173d31d01adf8e7014e26059de8fc9863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6538-4867
PQID 2347640542
PQPubID 2045454
ParticipantIDs proquest_journals_2347640542
crossref_citationtrail_10_1016_j_jallcom_2019_152615
crossref_primary_10_1016_j_jallcom_2019_152615
elsevier_sciencedirect_doi_10_1016_j_jallcom_2019_152615
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-05
PublicationDateYYYYMMDD 2020-03-05
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-05
  day: 05
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Journal of alloys and compounds
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Sallica-Leva, Caram, Jardini, Fogagnolo (bib19) 2016; 54
Ngo, Kashani, Imbalzano, Nguyen, Hui (bib10) 2018; 143
Niinomi (bib3) 1998; 243
Wu, Li, Liu, Wu, Guo, Li, Wang (bib21) 2019; 743
Wu, Lu, Gan, Huang, Zhao, Lin, Guo, Lin (bib18) 2016; 672
Vrancken, Thijs, Kruth, Humbeeck (bib20) 2012; 541
Liu, Shin (bib4) 2019; 164
Xu, Brandt, Sun, Elambasseril, Liu, Latham, Xia, Qian (bib17) 2015; 85
Trosch, Strößner, Völkl, Glatzel (bib6) 2016; 164
Prevéy (bib28) 1996
Zhao, Li, Zhang, Liu, Sercombe, Wang, Hao, Yang, Murr (bib13) 2016; 95
Yan, Yin, Chen, e Huang, Bolot, Lupoi, Kuang, Ma, Coddet, Liao, Li (bib16) 2018; 764
Martinez, Sathish, Blodgett, Shepard (bib27) 2003; 43
Wu, Liu, Li, Xia, Wu, Li (bib22) 2019; 771
(bib5) 2012
Qiu, Adkins, Attallah (bib15) 2013; 578
Fitzpatrick, Fry, Holdway, Kandil, Shackleton, Suominen (bib26) 2005
Tofail, Koumoulos, Bandyopadhyay, Bose, O’Donoghue, Charitidis (bib8) 2018; 21
Thijs, Verhaeghe, Craeghs, Humbeeck, Kruth (bib12) 2010; 58
Vilaro, Colin, Bartout (bib14) 2011; 42A
Xu, Sun, Elambasseril, Liu, Brandt, Qian (bib7) 2015; 67
Ho (bib2) 2008; 464
Gil Mur, Rodríguez, Planell (bib11) 1996; 234
Malý, Höller, Skalon, Meier, Koutný, Pichler, Sommitsch, Paloušek (bib25) 2019; vol. 12
Ford, Despeisse (bib9) 2016; 137
Wang, Hwang, Chao, Liu (bib23) 2007; 57
Cui, Hu, Zhao, Liu (bib1) 2011; 32
Dieter, Bacon (bib24) 1961
Ford (10.1016/j.jallcom.2019.152615_bib9) 2016; 137
Yan (10.1016/j.jallcom.2019.152615_bib16) 2018; 764
Wu (10.1016/j.jallcom.2019.152615_bib22) 2019; 771
Prevéy (10.1016/j.jallcom.2019.152615_bib28) 1996
Sallica-Leva (10.1016/j.jallcom.2019.152615_bib19) 2016; 54
Dieter (10.1016/j.jallcom.2019.152615_bib24) 1961
Gil Mur (10.1016/j.jallcom.2019.152615_bib11) 1996; 234
Fitzpatrick (10.1016/j.jallcom.2019.152615_bib26) 2005
Ho (10.1016/j.jallcom.2019.152615_bib2) 2008; 464
Vilaro (10.1016/j.jallcom.2019.152615_bib14) 2011; 42A
Xu (10.1016/j.jallcom.2019.152615_bib7) 2015; 67
Wu (10.1016/j.jallcom.2019.152615_bib21) 2019; 743
(10.1016/j.jallcom.2019.152615_bib5) 2012
Cui (10.1016/j.jallcom.2019.152615_bib1) 2011; 32
Trosch (10.1016/j.jallcom.2019.152615_bib6) 2016; 164
Tofail (10.1016/j.jallcom.2019.152615_bib8) 2018; 21
Wang (10.1016/j.jallcom.2019.152615_bib23) 2007; 57
Xu (10.1016/j.jallcom.2019.152615_bib17) 2015; 85
Malý (10.1016/j.jallcom.2019.152615_bib25) 2019; vol. 12
Liu (10.1016/j.jallcom.2019.152615_bib4) 2019; 164
Wu (10.1016/j.jallcom.2019.152615_bib18) 2016; 672
Thijs (10.1016/j.jallcom.2019.152615_bib12) 2010; 58
Zhao (10.1016/j.jallcom.2019.152615_bib13) 2016; 95
Martinez (10.1016/j.jallcom.2019.152615_bib27) 2003; 43
Ngo (10.1016/j.jallcom.2019.152615_bib10) 2018; 143
Vrancken (10.1016/j.jallcom.2019.152615_bib20) 2012; 541
Niinomi (10.1016/j.jallcom.2019.152615_bib3) 1998; 243
Qiu (10.1016/j.jallcom.2019.152615_bib15) 2013; 578
References_xml – volume: 541
  start-page: 177
  year: 2012
  end-page: 185
  ident: bib20
  article-title: Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties
  publication-title: J. Alloy. Comp.
– volume: 234
  start-page: 287
  year: 1996
  end-page: 289
  ident: bib11
  article-title: Influence of tempering temperature and time on the α’-Ti-6Al-4V martensite
  publication-title: J. Alloy. Comp.
– volume: 54
  start-page: 149
  year: 2016
  end-page: 158
  ident: bib19
  article-title: Ductility improvement due to martensite α’ decomposition in porous Ti-6Al-4V parts produced by selective laser melting for orthopedic implants
  publication-title: J. Mech. Behav. Biomed.
– volume: 464
  start-page: 580
  year: 2008
  end-page: 583
  ident: bib2
  article-title: A comparison of tensile properties and corrosion behavior of cast Ti-7.5Mo with c.p. Ti, Ti-15Mo and Ti-6Al-4V alloys
  publication-title: J. Alloy. Comp.
– volume: 771
  start-page: 526
  year: 2019
  end-page: 533
  ident: bib22
  article-title: Coarsening behavior of γ’ precipitates in the γ’+γ area of a Ni3Al-based alloy
  publication-title: J. Alloy. Comp.
– volume: 32
  start-page: 1684
  year: 2011
  end-page: 1691
  ident: bib1
  article-title: Titanium alloy production technology, market prospects and industry development
  publication-title: Mater. Des.
– volume: 21
  start-page: 22
  year: 2018
  end-page: 37
  ident: bib8
  article-title: Additive manufacturing: scientific and technological challenges, market uptake and opportunities
  publication-title: Mater. Today
– volume: 58
  start-page: 3303
  year: 2010
  end-page: 3312
  ident: bib12
  article-title: A study of the microstructural evolution during selective laser melting of Ti-6Al-4V
  publication-title: Acta Mater.
– volume: 67
  start-page: 668
  year: 2015
  end-page: 673
  ident: bib7
  article-title: Ti-6Al-4V additively manufactured by selective laser melting with superior mechanical properties
  publication-title: JOM
– volume: 95
  start-page: 21
  year: 2016
  end-page: 31
  ident: bib13
  article-title: Comparison of the microstructures and mechanical properties of Ti-6Al-4V fabricated by selective laser melting and electron beam melting
  publication-title: Mater. Des.
– volume: vol. 12
  start-page: 930
  year: 2019
  ident: bib25
  publication-title: Effect of Process Parameters and High-Temperature Preheating on Residual Stress and Relative Density of Ti6Al4V Processed by Selective Laser Melting
– start-page: 103
  year: 1996
  end-page: 110
  ident: bib28
  article-title: Current Applications of X-Ray Diffraction Residual Stress Measurement, Developments in Materials Characterization Technologies
– year: 1961
  ident: bib24
  article-title: Mechanical Metallurgy
– volume: 137
  start-page: 1573
  year: 2016
  end-page: 1587
  ident: bib9
  article-title: Additive manufacturing and sustainability: an exploratory study of the advantages and challenges
  publication-title: J. Clean. Prod.
– volume: 164
  start-page: 107552
  year: 2019
  ident: bib4
  article-title: Additive manufacturing of Ti6Al4V alloy: a review
  publication-title: Mater. Des.
– volume: 164
  start-page: 428
  year: 2016
  end-page: 431
  ident: bib6
  article-title: Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting
  publication-title: Mater. Lett.
– volume: 672
  start-page: 643
  year: 2016
  end-page: 652
  ident: bib18
  article-title: Microstructural evolution and microhardness of a selective-laser-melted Ti-6Al-4V alloy after post heat treatments
  publication-title: J. Alloy. Comp.
– year: 2005
  ident: bib26
  article-title: Determination of Residual Stresses by X-Ray Diffraction
– volume: 764
  start-page: 1056
  year: 2018
  end-page: 1071
  ident: bib16
  article-title: Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting
  publication-title: J. Alloy. Comp.
– year: 2012
  ident: bib5
  publication-title: Standard Terminology for Additive Manufacturing Technologies’ (Withdrawn 2015)
– volume: 57
  start-page: 809
  year: 2007
  end-page: 812
  ident: bib23
  article-title: Phase transitions in an Fe-9Al-30Mn-2.0C alloy
  publication-title: Scr. Mater.
– volume: 85
  start-page: 74
  year: 2015
  end-page: 84
  ident: bib17
  article-title: Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition
  publication-title: Acta Mater.
– volume: 43
  start-page: 141
  year: 2003
  end-page: 147
  ident: bib27
  article-title: Residual stress distribution on suface-treated Ti-6Al-4V by X-ray diffraction
  publication-title: Exp. Mech.
– volume: 143
  start-page: 172
  year: 2018
  end-page: 196
  ident: bib10
  article-title: Additive manufacturing (3D printing): a review of materials, methods, applications and challenges
  publication-title: Compos. B Eng.
– volume: 42A
  start-page: 3190
  year: 2011
  end-page: 3199
  ident: bib14
  article-title: As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting
  publication-title: Metall. Mater. Trans. A
– volume: 578
  start-page: 230
  year: 2013
  end-page: 239
  ident: bib15
  article-title: Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V
  publication-title: Mater. Sci. Eng. A
– volume: 743
  start-page: 623
  year: 2019
  end-page: 635
  ident: bib21
  article-title: Effect of annealing treatment on microstructure evolution and creep behavior of a multiphase Ni
  publication-title: Mater. Sci. Eng. A
– volume: 243
  start-page: 231
  year: 1998
  end-page: 236
  ident: bib3
  article-title: Mechanical properties of biomedical titanium alloys
  publication-title: Mater. Sci. Eng. A
– volume: vol. 12
  start-page: 930
  year: 2019
  ident: 10.1016/j.jallcom.2019.152615_bib25
– volume: 58
  start-page: 3303
  year: 2010
  ident: 10.1016/j.jallcom.2019.152615_bib12
  article-title: A study of the microstructural evolution during selective laser melting of Ti-6Al-4V
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.02.004
– year: 2005
  ident: 10.1016/j.jallcom.2019.152615_bib26
– volume: 771
  start-page: 526
  year: 2019
  ident: 10.1016/j.jallcom.2019.152615_bib22
  article-title: Coarsening behavior of γ’ precipitates in the γ’+γ area of a Ni3Al-based alloy
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2018.08.265
– volume: 54
  start-page: 149
  year: 2016
  ident: 10.1016/j.jallcom.2019.152615_bib19
  article-title: Ductility improvement due to martensite α’ decomposition in porous Ti-6Al-4V parts produced by selective laser melting for orthopedic implants
  publication-title: J. Mech. Behav. Biomed.
  doi: 10.1016/j.jmbbm.2015.09.020
– volume: 95
  start-page: 21
  year: 2016
  ident: 10.1016/j.jallcom.2019.152615_bib13
  article-title: Comparison of the microstructures and mechanical properties of Ti-6Al-4V fabricated by selective laser melting and electron beam melting
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.12.135
– volume: 32
  start-page: 1684
  year: 2011
  ident: 10.1016/j.jallcom.2019.152615_bib1
  article-title: Titanium alloy production technology, market prospects and industry development
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2010.09.011
– volume: 143
  start-page: 172
  year: 2018
  ident: 10.1016/j.jallcom.2019.152615_bib10
  article-title: Additive manufacturing (3D printing): a review of materials, methods, applications and challenges
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2018.02.012
– volume: 672
  start-page: 643
  year: 2016
  ident: 10.1016/j.jallcom.2019.152615_bib18
  article-title: Microstructural evolution and microhardness of a selective-laser-melted Ti-6Al-4V alloy after post heat treatments
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2016.02.183
– volume: 578
  start-page: 230
  year: 2013
  ident: 10.1016/j.jallcom.2019.152615_bib15
  article-title: Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2013.04.099
– volume: 764
  start-page: 1056
  year: 2018
  ident: 10.1016/j.jallcom.2019.152615_bib16
  article-title: Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2018.06.076
– volume: 243
  start-page: 231
  year: 1998
  ident: 10.1016/j.jallcom.2019.152615_bib3
  article-title: Mechanical properties of biomedical titanium alloys
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(97)00806-X
– volume: 234
  start-page: 287
  year: 1996
  ident: 10.1016/j.jallcom.2019.152615_bib11
  article-title: Influence of tempering temperature and time on the α’-Ti-6Al-4V martensite
  publication-title: J. Alloy. Comp.
  doi: 10.1016/0925-8388(95)02057-8
– volume: 85
  start-page: 74
  year: 2015
  ident: 10.1016/j.jallcom.2019.152615_bib17
  article-title: Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.11.028
– volume: 164
  start-page: 107552
  year: 2019
  ident: 10.1016/j.jallcom.2019.152615_bib4
  article-title: Additive manufacturing of Ti6Al4V alloy: a review
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.107552
– volume: 43
  start-page: 141
  year: 2003
  ident: 10.1016/j.jallcom.2019.152615_bib27
  article-title: Residual stress distribution on suface-treated Ti-6Al-4V by X-ray diffraction
  publication-title: Exp. Mech.
  doi: 10.1007/BF02410495
– year: 2012
  ident: 10.1016/j.jallcom.2019.152615_bib5
– volume: 42A
  start-page: 3190
  year: 2011
  ident: 10.1016/j.jallcom.2019.152615_bib14
  article-title: As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-011-0731-y
– volume: 541
  start-page: 177
  year: 2012
  ident: 10.1016/j.jallcom.2019.152615_bib20
  article-title: Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2012.07.022
– volume: 21
  start-page: 22
  year: 2018
  ident: 10.1016/j.jallcom.2019.152615_bib8
  article-title: Additive manufacturing: scientific and technological challenges, market uptake and opportunities
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2017.07.001
– volume: 464
  start-page: 580
  year: 2008
  ident: 10.1016/j.jallcom.2019.152615_bib2
  article-title: A comparison of tensile properties and corrosion behavior of cast Ti-7.5Mo with c.p. Ti, Ti-15Mo and Ti-6Al-4V alloys
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2007.10.054
– start-page: 103
  year: 1996
  ident: 10.1016/j.jallcom.2019.152615_bib28
– volume: 164
  start-page: 428
  year: 2016
  ident: 10.1016/j.jallcom.2019.152615_bib6
  article-title: Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2015.10.136
– volume: 67
  start-page: 668
  year: 2015
  ident: 10.1016/j.jallcom.2019.152615_bib7
  article-title: Ti-6Al-4V additively manufactured by selective laser melting with superior mechanical properties
  publication-title: JOM
  doi: 10.1007/s11837-015-1297-8
– volume: 57
  start-page: 809
  year: 2007
  ident: 10.1016/j.jallcom.2019.152615_bib23
  article-title: Phase transitions in an Fe-9Al-30Mn-2.0C alloy
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2007.07.007
– year: 1961
  ident: 10.1016/j.jallcom.2019.152615_bib24
– volume: 743
  start-page: 623
  year: 2019
  ident: 10.1016/j.jallcom.2019.152615_bib21
  article-title: Effect of annealing treatment on microstructure evolution and creep behavior of a multiphase Ni3Al-based superalloy
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2018.11.126
– volume: 137
  start-page: 1573
  year: 2016
  ident: 10.1016/j.jallcom.2019.152615_bib9
  article-title: Additive manufacturing and sustainability: an exploratory study of the advantages and challenges
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.04.150
SSID ssj0001931
Score 2.5650842
Snippet Recently, the Ti-6Al-4V alloy fabricated by laser powder bed fusion has been widely studies. According to the high cooling rate, the strength of 3D printed...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 152615
SubjectTerms Acicular structure
Additive manufacturing
Alloys
Beta phase
Cooling rate
Ductility
Elongation
Heat treatment
Mechanical properties
Microstructure
Porosity
Powder beds
Residual stress
Three dimensional printing
Ti-6Al-4V
Titanium base alloys
Title Heat-treatment effects on mechanical properties and microstructure evolution of Ti-6Al-4V alloy fabricated by laser powder bed fusion
URI https://dx.doi.org/10.1016/j.jallcom.2019.152615
https://www.proquest.com/docview/2347640542
Volume 816
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLamIQQ7ICigDcbkA1e3SRzb8bGqmApIu1DQblZsv0iturTqNtAuu_F_817ibICQJnGKlNhR5O_l_bC_9x5j703QRaZjJjLjvShBZ8IHUCLqoHzMwNjYsXzP9Pxr-elcne-x2ZALQ7TKpPt7nd5p63RnklZzsl0uJ18yW9CZH5o0DLPQEFMGe2lIyse39zQPfNp1zcPBgkbfZ_FMVuNVvV4TaQStoKVOQJq64_7bPv2lqTvzc_qcPUt-I5_2n_aC7UE7Yk9mQ7u2ETv4rbLgiD3umJ3h8iX7OUdtK-745DwROPim5RdAab-EEt_SnvyOiqvyuo38gmh6fWnZ6x1w-J4ElG8avlgKPV2L8hunM_sb3tS-azUEkfsbjs447Ph28yPixeO95pr2416xxemHxWwuUu8FEaQ0V8JaxNag-1dB3kij6jwPytgKZGO1r3Ijo8xjltexqcBgnAUUGNkIVRNspeVrtt9uWjhkPAsVevAQAwYupcygVqbWEpSOxqhY6iNWDgvuQqpLTu0x1m4goK1cwskRTq7H6YiN76Zt-8IcD02oBjTdHxLm0Hg8NPV4QN-lX_zSFRKFDd3dsnjz_29-y54WFMATqU0ds30EFt6hl3PlTzoxPmGPph8_z89-AWj9_XM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbGEBocEBQQgwE-cHWbxL_i41QxFRi7UNBuVmK_SK26tOo20C7c-L95L3E2QEiTOEVy7CjyZ78fyef3MfbWBlNkJmYis3UtFJhM1AG0iCboOmZgXexYvidm9kV9ONWnO2w6nIUhWmWy_b1N76x1apmk2ZxsFovJ58wV9M8PXRqmWeiI77C7CrcvyRiMf9zwPPB2J5uHvQV1vznGM1mOl9VqRawRdIOOpIAMyeP-20H9Zao7_3P0iD1MgSM_7N_tMduBdsT2poNe24g9-K204Ijd66id4fwJ-zlDcyuuCeU8MTj4uuVnQOd-CSa-oY_yW6quyqs28jPi6fW1ZS-3wOFbWqF83fD5QpjDlVBfOf20v-JNVXdaQxB5fcUxGoct36y_R7zU2NZc0ge5p2x-9G4-nYkkviCClPZCOIfgWoz_SsgbaXWV50FbV4JsnKnL3Moo85jlVWxKsJhoAWVGLkLZBFca-YzttusWnjOehRJDeIgBMxclM6i0rYwEbaK1Oiqzz9Qw4T6kwuSkj7HyAwNt6RNOnnDyPU77bHw9bNNX5rhtQDmg6f9YYh69x21DDwb0fdrj576QyhqMd1Xx4v-f_Ibtzeafjv3x-5OPL9n9grJ5YrjpA7aLIMMrDHku6tfdkv4FJ6P_AQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat-treatment+effects+on+mechanical+properties+and+microstructure+evolution+of+Ti-6Al-4V+alloy+fabricated+by+laser+powder+bed+fusion&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Tsai%2C+Min-Tsang&rft.au=Chen%2C+Yi-Wen&rft.au=Chao%2C+Chih-Yeh&rft.au=Jang%2C+Jason+S.C.&rft.date=2020-03-05&rft.issn=0925-8388&rft.volume=816&rft.spage=152615&rft_id=info:doi/10.1016%2Fj.jallcom.2019.152615&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2019_152615
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon