Oxygen vacancy chemistry in oxide cathodes
Secondary batteries are a core technology for clean energy storage and conversion systems, to reduce environmental pollution and alleviate the energy crisis. Oxide cathodes play a vital role in revolutionizing battery technology due to their high capacity and voltage for oxide-based batteries. Howev...
Saved in:
Published in | Chemical Society reviews Vol. 53; no. 7; pp. 332 - 3326 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
02.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Secondary batteries are a core technology for clean energy storage and conversion systems, to reduce environmental pollution and alleviate the energy crisis. Oxide cathodes play a vital role in revolutionizing battery technology due to their high capacity and voltage for oxide-based batteries. However, oxygen vacancies (OVs) are an essential type of defect that exist predominantly in both the bulk and surface regions of transition metal (TM) oxide batteries, and have a crucial impact on battery performance. This paper reviews previous studies from the past few decades that have investigated the intrinsic and anionic redox-mediated OVs in the field of secondary batteries. We focus on discussing the formation and evolution of these OVs from both thermodynamic and kinetic perspectives, as well as their impact on the thermodynamic and kinetic properties of oxide cathodes. Finally, we offer insights into the utilization of OVs to enhance the energy density and lifespan of batteries. We expect that this review will advance our understanding of the role of OVs and subsequently boost the development of high-performance electrode materials for next-generation energy storage devices.
This review focuses on the chemical thermodynamics and reaction kinetics of intrinsic and anionic redox-mediated oxygen vacancies in oxide cathodes. |
---|---|
AbstractList | Secondary batteries are a core technology for clean energy storage and conversion systems, to reduce environmental pollution and alleviate the energy crisis. Oxide cathodes play a vital role in revolutionizing battery technology due to their high capacity and voltage for oxide-based batteries. However, oxygen vacancies (OVs) are an essential type of defect that exist predominantly in both the bulk and surface regions of transition metal (TM) oxide batteries, and have a crucial impact on battery performance. This paper reviews previous studies from the past few decades that have investigated the intrinsic and anionic redox-mediated OVs in the field of secondary batteries. We focus on discussing the formation and evolution of these OVs from both thermodynamic and kinetic perspectives, as well as their impact on the thermodynamic and kinetic properties of oxide cathodes. Finally, we offer insights into the utilization of OVs to enhance the energy density and lifespan of batteries. We expect that this review will advance our understanding of the role of OVs and subsequently boost the development of high-performance electrode materials for next-generation energy storage devices.Secondary batteries are a core technology for clean energy storage and conversion systems, to reduce environmental pollution and alleviate the energy crisis. Oxide cathodes play a vital role in revolutionizing battery technology due to their high capacity and voltage for oxide-based batteries. However, oxygen vacancies (OVs) are an essential type of defect that exist predominantly in both the bulk and surface regions of transition metal (TM) oxide batteries, and have a crucial impact on battery performance. This paper reviews previous studies from the past few decades that have investigated the intrinsic and anionic redox-mediated OVs in the field of secondary batteries. We focus on discussing the formation and evolution of these OVs from both thermodynamic and kinetic perspectives, as well as their impact on the thermodynamic and kinetic properties of oxide cathodes. Finally, we offer insights into the utilization of OVs to enhance the energy density and lifespan of batteries. We expect that this review will advance our understanding of the role of OVs and subsequently boost the development of high-performance electrode materials for next-generation energy storage devices. Secondary batteries are a core technology for clean energy storage and conversion systems, to reduce environmental pollution and alleviate the energy crisis. Oxide cathodes play a vital role in revolutionizing battery technology due to their high capacity and voltage for oxide-based batteries. However, oxygen vacancies (OVs) are an essential type of defect that exist predominantly in both the bulk and surface regions of transition metal (TM) oxide batteries, and have a crucial impact on battery performance. This paper reviews previous studies from the past few decades that have investigated the intrinsic and anionic redox-mediated OVs in the field of secondary batteries. We focus on discussing the formation and evolution of these OVs from both thermodynamic and kinetic perspectives, as well as their impact on the thermodynamic and kinetic properties of oxide cathodes. Finally, we offer insights into the utilization of OVs to enhance the energy density and lifespan of batteries. We expect that this review will advance our understanding of the role of OVs and subsequently boost the development of high-performance electrode materials for next-generation energy storage devices. Secondary batteries are a core technology for clean energy storage and conversion systems, to reduce environmental pollution and alleviate the energy crisis. Oxide cathodes play a vital role in revolutionizing battery technology due to their high capacity and voltage for oxide-based batteries. However, oxygen vacancies (OVs) are an essential type of defect that exist predominantly in both the bulk and surface regions of transition metal (TM) oxide batteries, and have a crucial impact on battery performance. This paper reviews previous studies from the past few decades that have investigated the intrinsic and anionic redox-mediated OVs in the field of secondary batteries. We focus on discussing the formation and evolution of these OVs from both thermodynamic and kinetic perspectives, as well as their impact on the thermodynamic and kinetic properties of oxide cathodes. Finally, we offer insights into the utilization of OVs to enhance the energy density and lifespan of batteries. We expect that this review will advance our understanding of the role of OVs and subsequently boost the development of high-performance electrode materials for next-generation energy storage devices. This review focuses on the chemical thermodynamics and reaction kinetics of intrinsic and anionic redox-mediated oxygen vacancies in oxide cathodes. |
Author | Han, Pengxian Hu, Naifang Cui, Guanglei Hu, Zhiwei Liu, Yuehui Ma, Jun Wang, Xiaogang Zhang, Shu Zhang, Yu-Han |
AuthorAffiliation | Chinese Academy of Sciences Qingdao Institute of Bioenergy and Bioprocess Technology Qingdao New Energy Shandong Laboratory Max Plank Institute for Chemical Physics of Solids School of Future Technology Shandong Energy Institute Qingdao Industrial Energy Storage Research Institute University of Chinese Academy of Sciences |
AuthorAffiliation_xml | – sequence: 0 name: Qingdao Industrial Energy Storage Research Institute – sequence: 0 name: Qingdao New Energy Shandong Laboratory – sequence: 0 name: Shandong Energy Institute – sequence: 0 name: Chinese Academy of Sciences – sequence: 0 name: Qingdao Institute of Bioenergy and Bioprocess Technology – sequence: 0 name: Max Plank Institute for Chemical Physics of Solids – sequence: 0 name: School of Future Technology – sequence: 0 name: University of Chinese Academy of Sciences |
Author_xml | – sequence: 1 givenname: Yu-Han surname: Zhang fullname: Zhang, Yu-Han – sequence: 2 givenname: Shu surname: Zhang fullname: Zhang, Shu – sequence: 3 givenname: Naifang surname: Hu fullname: Hu, Naifang – sequence: 4 givenname: Yuehui surname: Liu fullname: Liu, Yuehui – sequence: 5 givenname: Jun surname: Ma fullname: Ma, Jun – sequence: 6 givenname: Pengxian surname: Han fullname: Han, Pengxian – sequence: 7 givenname: Zhiwei surname: Hu fullname: Hu, Zhiwei – sequence: 8 givenname: Xiaogang surname: Wang fullname: Wang, Xiaogang – sequence: 9 givenname: Guanglei surname: Cui fullname: Cui, Guanglei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38354058$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0ctLwzAcB_AgE_fQi3el4EUG1bzaJEeZbwY7qOeSJqnr6JqZtLL-90Y3JwxPvxw-vwffDEGvtrUB4BTBKwSJuNZEeQg5w4sDMEA0hTFllPbAABKYxhAi3AdD7xfhhViKj0CfcJJQmPABGM_W3bupo0-pZK26SM3NsvSN66Kyjuy61CZSsplbbfwxOCxk5c3Jto7A2_3d6-Qxns4eniY301gRwppYUI5TKhTLKaJEp0mKUEFh2FgwUrA8FwpKRYQw2CgNi0RLZmhieHCcakVG4HIzd-XsR2t8k4WLlKkqWRvb-gwLnCYY44QHerFHF7Z1dbguIxBzlFAuWFDnW9XmS6OzlSuX0nXZbwoBjDdAOeu9M8WOIJh9R5zdksnLT8TPAcM9rMpGNqWtGyfL6v-Ws02L82o3-u_XyBdJ1YRe |
CitedBy_id | crossref_primary_10_1039_D4TA05848H crossref_primary_10_1016_j_fuel_2025_134555 crossref_primary_10_1016_j_nxmate_2024_100480 crossref_primary_10_1002_adma_202407644 crossref_primary_10_1016_j_jece_2024_115143 crossref_primary_10_1002_adma_202407029 crossref_primary_10_1021_acs_iecr_4c03713 crossref_primary_10_1007_s12598_024_03084_y crossref_primary_10_1016_j_mtcomm_2025_111970 crossref_primary_10_1002_aenm_202404459 crossref_primary_10_1002_smll_202407361 crossref_primary_10_1016_j_jechem_2024_08_066 crossref_primary_10_1016_j_jechem_2024_11_005 crossref_primary_10_1021_acsnano_5c00974 crossref_primary_10_1021_acsami_5c00196 crossref_primary_10_1021_acs_jpcc_4c05866 crossref_primary_10_1016_j_est_2024_115123 crossref_primary_10_1016_j_cclet_2025_110851 crossref_primary_10_1016_j_jpowsour_2025_236558 crossref_primary_10_1016_j_jallcom_2025_178952 crossref_primary_10_1007_s40820_024_01570_7 crossref_primary_10_1038_s41467_024_54331_w crossref_primary_10_1021_acsnano_4c14724 crossref_primary_10_1016_j_ensm_2025_104114 crossref_primary_10_1016_j_mssp_2025_109319 crossref_primary_10_1002_adma_202411311 crossref_primary_10_1039_D4SE01652A crossref_primary_10_1002_adfm_202419994 crossref_primary_10_1021_acsanm_4c07014 crossref_primary_10_1016_j_cej_2024_156295 crossref_primary_10_1039_D4EE00415A crossref_primary_10_1039_D4EE04266B crossref_primary_10_1016_j_cej_2025_159902 crossref_primary_10_1002_adfm_202413782 crossref_primary_10_1016_j_cej_2025_161626 crossref_primary_10_1088_2053_1583_ad8939 crossref_primary_10_1016_j_fuel_2025_134281 crossref_primary_10_1039_D4SE01012D crossref_primary_10_1016_j_jechem_2024_09_044 crossref_primary_10_1021_acsaem_4c01160 crossref_primary_10_1039_D4EE01618A crossref_primary_10_1016_j_jpowsour_2025_236602 crossref_primary_10_1016_j_jcis_2024_11_148 crossref_primary_10_1016_j_jcis_2025_02_127 crossref_primary_10_1016_j_jelechem_2024_118910 crossref_primary_10_1016_j_jelechem_2025_118934 |
Cites_doi | 10.1002/anie.202000262 10.1021/jacs.5b04040 10.1126/science.1122152 10.1002/adma.202000496 10.1038/s41586-019-1854-3 10.1038/ncomms12108 10.1038/s41586-022-04689-y 10.1002/anie.202010531 10.1002/adfm.202101239 10.1002/adma.201405763 10.1002/aenm.202201510 10.1002/anie.202219230 10.1038/s41560-020-00697-2 10.1038/s41560-022-01179-3 10.1126/science.aac8260 10.1016/j.jpowsour.2015.02.095 10.1039/D1EE03292E 10.1039/C7TA03878J 10.1002/adfm.202110295 10.1021/acsnano.3c06393 10.1038/s41467-023-39838-y 10.1021/acsnano.7b04617 10.1002/anie.201904469 10.1002/smll.202201014 10.1002/aenm.202101712 10.1038/srep11712 10.1002/aenm.201400498 10.1016/j.physleta.2009.05.071 10.1039/D0TA09521D 10.1021/acs.nanolett.1c01985 10.1002/adfm.202010095 10.1038/s41560-019-0508-x 10.1038/s41467-021-25610-7 10.1007/s11426-021-1103-6 10.1038/s41560-023-01289-6 10.1038/s41467-022-28793-9 10.1016/j.joule.2019.01.002 10.1002/adfm.201102648 10.1016/j.apcatb.2017.01.025 10.1039/C7EE03554C 10.1007/s12274-019-2377-9 10.1016/j.ensm.2022.12.029 10.1038/s41467-019-09408-2 10.1021/acsnano.0c08891 10.1007/s12274-021-3349-4 10.1002/smll.202207797 10.1002/aenm.202201323 10.1002/aenm.202301216 10.1016/j.joule.2018.11.014 10.1038/s41563-019-0572-4 10.1002/anie.202016334 10.1002/aenm.202202861 10.1002/aenm.202100552 10.1103/PhysRevB.65.035406 10.1021/acsenergylett.1c00750 10.1038/s41467-021-24155-z 10.1039/D2TA07413C 10.1021/acs.chemrev.2c00251 10.1016/j.esci.2021.10.003 10.1039/D0EE01694B 10.1038/s41565-019-0428-8 10.1021/acsami.8b01209 10.1038/s41560-020-0583-z 10.1002/adma.201807770 10.1063/1.1673290 10.1021/jacs.2c11640 10.1038/s41560-021-00780-2 10.1002/anie.201600687 10.1002/anie.202005337 10.1039/D1CS00442E 10.1103/PhysRevB.73.104301 10.1021/acs.nanolett.2c01401 10.1016/j.xcrp.2020.100028 10.1021/acsnano.9b05047 10.1038/nchem.2524 10.1021/acsenergylett.2c02509 10.1126/sciadv.aax9427 10.1002/adfm.202213215 10.1002/adma.202106402 10.1016/j.ssi.2011.04.007 10.1007/s11581-021-04167-x 10.1039/D0TA03358H 10.1002/adma.202207904 10.1002/adfm.201403409 10.1021/acsenergylett.2c00353 10.1002/adma.202207234 10.1038/ncomms7276 10.1002/anie.202000628 10.1002/sstr.202200343 10.1002/adfm.202100919 10.1002/aenm.202303797 10.1016/j.mattod.2021.09.013 10.1002/anie.202112508 10.1002/advs.201902413 10.1002/aenm.202202341 10.1002/aenm.201601266 10.1093/nsr/nwaa287 10.1016/S0167-2738(01)01022-0 10.1002/adfm.202004302 10.1038/s41524-020-0344-3 10.1007/978-3-319-14367-5 10.1038/s41467-020-18285-z 10.1039/D3EE02817H 10.1002/aenm.202101005 10.2109/jcersj.108.1257_462 10.1038/s41560-019-0409-z 10.1016/j.apcatb.2022.122087 10.1038/s41560-023-01233-8 10.1149/1.1836614 10.1016/j.ensm.2021.10.024 10.1016/j.mattod.2020.04.006 10.1016/j.ensm.2021.04.035 10.1021/jacs.2c03549 10.1080/13642819808206727 10.1021/cm901452z 10.1021/acsami.0c16648 10.1016/j.ssi.2020.115257 10.1021/jacs.3c08070 10.1038/s41467-019-11439-8 10.1039/C7EE03122J 10.1002/anie.201900444 10.1016/j.etran.2021.100118 10.1002/adma.201908285 10.1039/D0EE01607A 10.1002/advs.201900355 10.1103/PhysRevB.78.092106 10.1002/adfm.202215155 10.1016/j.electacta.2019.135313 10.1073/pnas.1019698108 10.1021/jacs.0c09961 10.3390/condmat4010005 10.1021/acs.nanolett.6b04502 10.1038/s41560-018-0184-2 10.1039/D3EE00435J 10.1021/acsnano.0c02237 10.1002/anie.201812472 10.1038/s41427-018-0056-z 10.1002/anie.202215131 10.1002/anie.202202894 10.1021/cm202415x 10.1002/adma.202208974 10.1002/aenm.202200022 10.1038/s41560-018-0207-z 10.1016/j.ensm.2023.01.029 10.1039/C8CS00322J 10.1038/nmat4810 10.1021/cm702546s 10.1002/aenm.201802586 10.1002/aenm.202200136 10.1002/aenm.201900551 10.1038/s41929-021-00715-w 10.1016/j.nxnano.2023.100011 10.1021/acsami.1c12684 10.1021/jacs.3c00117 10.1039/C5TA01445J 10.1038/s41467-018-03765-0 10.1126/science.aay9972 10.1038/s41578-019-0157-5 10.1016/j.joule.2017.10.008 10.1021/acs.chemmater.6b02870 10.1016/j.apcatb.2021.120680 10.1016/j.matt.2020.10.026 10.1038/s41560-021-00832-7 10.1039/C9CP05768D 10.1016/j.matt.2021.02.023 10.1038/s41578-021-00289-w 10.1002/adma.202106171 10.1038/s41560-021-00834-5 10.1002/smll.202300419 10.1038/s41560-019-0522-z 10.1016/j.apcatb.2010.07.015 10.1021/ja062027+ 10.1103/PhysRevLett.104.193002 10.1021/acs.chemrev.2c00214 10.1016/j.chempr.2022.07.023 10.1021/jacs.1c08614 10.1149/1945-7111/ac0020 10.1021/acs.chemrev.1c00327 10.1002/adma.202103173 10.1039/C9EE02803J 10.1016/j.ensm.2022.01.054 10.1021/cm2031009 10.1149/2.079202jes 10.1039/C9CS00162J 10.1002/aenm.202200569 10.1103/PhysRevB.74.094105 10.1038/s41563-020-00816-0 10.1103/PhysRev.113.1222 10.1039/D0CS00137F 10.1002/adma.202005937 10.1002/aenm.201802105 10.1039/D2EE03527H 10.1002/adma.202005182 10.1016/j.ensm.2022.09.032 10.1007/s12598-021-01782-5 10.1038/s41560-023-01211-0 10.1016/j.nanoen.2020.105459 10.1039/C4CP01799D 10.1016/j.pmatsci.2022.101055 10.1039/D1EE03610F 10.1021/acsaem.0c01303 10.1016/j.jpowsour.2018.04.018 10.1002/adfm.201909192 10.1038/s41578-022-00416-1 10.1039/D0EE02917C 10.1038/186003a0 10.1021/cm070435m 10.1038/s41467-021-22099-y |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d3cs00872j |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 3326 |
ExternalDocumentID | 38354058 10_1039_D3CS00872J d3cs00872j |
Genre | Journal Article Review |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 29B 4.4 53G 5GY 6J9 705 70~ 7~J 85S AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K COF CS3 DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- OK1 P2P R7B R7D RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 ~02 AAYXX AFRZK AKMSF ALUYA CITATION R56 NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c337t-9482649c7b4143d65611f40835f73f7bb9c0ac399e2ecd0f5da7e45e861184dc3 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Fri Jul 11 12:30:32 EDT 2025 Mon Jun 30 05:09:04 EDT 2025 Mon Jul 21 06:02:54 EDT 2025 Thu Apr 24 22:51:55 EDT 2025 Tue Jul 01 04:28:20 EDT 2025 Tue Dec 17 20:58:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c337t-9482649c7b4143d65611f40835f73f7bb9c0ac399e2ecd0f5da7e45e861184dc3 |
Notes | Yu-Han Zhang received his BS degree in Applied Chemistry from Taiyuan University of Technology (TYUT) in 2021. He is currently a PhD candidate majoring in Materials Science under the supervision of Prof. Guanglei Cui at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (QIBEBT-CAS). Currently, his research interests lie in designing advanced cathode materials and their interfaces for solid-state lithium batteries. Prof. Xiaogang Wang obtained his PhD degree in Applied Chemistry from the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CIAS-CAS) in 2009. From May 2009 to June 2011, he conducted postdoctoral research at institutions including the University of Texas at Austin and Michigan State University in the United States. In July 2011, he joined the Qingdao Institute of Bioenergy and Process Technology, Chinese Academy of Sciences (QIBEBT-CAS). His research topics include the design optimization and application of high-performance electrochemical energy materials and devices. Dr Shu Zhang obtained her PhD degree in Condensed Matter Physics from the Institute of Physics, Chinese Academy of Sciences (IOP-CAS) in 2015. Now she is an assistant professor at the Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (QIBEBT-CAS). Her research centers on solid-state lithium batteries and the application of theoretical simulations in chemistry and materials science. Prof. Jun Ma received her PhD degree in Condensed Matter Physics from the Institute of Physics, Chinese Academy of Sciences (IOP-CAS) in 2014. Since 2014, she has worked at the Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (QIBEBT-CAS). Her recent research interests include high-energy-density cathode materials, full solid-state batteries, energy storage mechanisms, and interface issues in batteries. Prof. Zhiwei Hu is currently the leader of the X-Ray Spectroscopy Group at Max-Planck-Institute for Chemical Physics of Solids in Germany. He mainly uses synchrotron radiation spectroscopic methods to study charge spin, and orbital states in strong correlation systems of condensed matter from both theoretical and experimental aspects. His research includes magnetic, superconducting, multiferroic, new energy, environmental, and catalytic materials. He has published over 389 papers in top journals in physics, materials science, and chemistry, including more than 20 papers in Phys. Rev. Lett., 20 in Nat. Commun., several in Proc. Natl. Acad. Sci. U. S. A., as well as in Nat. Nanotechnol., Adv. Mater., J. Am. Chem. Soc., Angew. Chem., Int. Ed., Environ. Energy Sci., and Joule. Prof. Guanglei Cui obtained his PhD degree from the Institute of Chemistry, Chinese Academy of Sciences (IC-CAS) in 2005. He then did postdoctoral research at Max-Planck-Institute for Polymer Research and Max-Planck-Institute for Solid State Research before joining Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (QIBEBT-CAS), in 2009. He is currently a professor and the leader of Solid Energy System Technology Center, the director of Energy Applied Technology Division of QIBEBT-CAS. His research topics include sustainable and highly efficient energy-storage materials, all-solid-state batteries, and novel energy devices. He has published more than 400 articles in international authoritative journals, such as Chem. Soc. Rev., Nat. Commun., J. Am. Chem. Soc., Angew. Chem. Int. Ed., Joule, Environ. Energy Sci., Adv. Mater., and Matter, in the fields of energy materials, chemistry, and devices among others, and has been cited more than 20 000 times. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-5987-7569 0000-0003-4054-2552 0000-0001-5016-8096 |
PMID | 38354058 |
PQID | 3028154897 |
PQPubID | 2047503 |
PageCount | 25 |
ParticipantIDs | pubmed_primary_38354058 proquest_miscellaneous_2926522258 proquest_journals_3028154897 crossref_primary_10_1039_D3CS00872J rsc_primary_d3cs00872j crossref_citationtrail_10_1039_D3CS00872J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-02 |
PublicationDateYYYYMMDD | 2024-04-02 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Chemical Society reviews |
PublicationTitleAlternate | Chem Soc Rev |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Sun (D3CS00872J/cit79/1) 2021; 32 Zhang (D3CS00872J/cit192/1) 2020; 6 Zhu (D3CS00872J/cit154/1) 2021; 1 Cai (D3CS00872J/cit63/1) 2023; 8 Liu (D3CS00872J/cit166/1) 2020; 142 Chen (D3CS00872J/cit184/1) 2020; 30 Kim (D3CS00872J/cit92/1) 2022; 12 Kong (D3CS00872J/cit117/1) 2019; 9 Fang (D3CS00872J/cit200/1) 2023; 16 Xiao (D3CS00872J/cit140/1) 2021; 60 Lee (D3CS00872J/cit24/1) 2019; 58 Wu (D3CS00872J/cit80/1) 2023; 19 Armstrong (D3CS00872J/cit209/1) 2006; 128 Zhang (D3CS00872J/cit134/1) 2022; 7 Wang (D3CS00872J/cit71/1) 2023 Wei (D3CS00872J/cit144/1) 2015; 137 House (D3CS00872J/cit50/1) 2020; 5 Luo (D3CS00872J/cit104/1) 2020; 59 Li (D3CS00872J/cit178/1) 2022; 22 He (D3CS00872J/cit21/1) 2021; 33 Hashimoto (D3CS00872J/cit90/1) 2008; 78 Lun (D3CS00872J/cit1/1) 2021; 20 Lin (D3CS00872J/cit113/1) 2023; 11 Yuan (D3CS00872J/cit41/1) 2017; 5 Sharifi-Asl (D3CS00872J/cit118/1) 2017; 17 Ouyang (D3CS00872J/cit162/1) 2009; 373 Meng (D3CS00872J/cit169/1) 2022; 144 Jung (D3CS00872J/cit119/1) 2021; 31 Zhu (D3CS00872J/cit54/1) 2020; 32 Ding (D3CS00872J/cit44/1) 2020; 59 Zhang (D3CS00872J/cit48/1) 2021; 8 Liu (D3CS00872J/cit69/1) 2018; 8 Wang (D3CS00872J/cit142/1) 2019; 10 Li (D3CS00872J/cit155/1) 2023 Wang (D3CS00872J/cit153/1) 2022; 15 Zhang (D3CS00872J/cit70/1) 2019; 4 Ou (D3CS00872J/cit40/1) 2015; 27 Wang (D3CS00872J/cit204/1) 2010; 100 Wan (D3CS00872J/cit135/1) 2021; 21 Yang (D3CS00872J/cit145/1) 2020; 49 Hu (D3CS00872J/cit89/1) 2020; 347 Zhang (D3CS00872J/cit74/1) 2022; 53 Zhang (D3CS00872J/cit99/1) 2021; 11 Feng (D3CS00872J/cit165/1) 2020; 22 Zhang (D3CS00872J/cit110/1) 2021; 299 Li (D3CS00872J/cit16/1) 2022; 13 Zuo (D3CS00872J/cit173/1) 2023; 145 Sun (D3CS00872J/cit127/1) 2020; 14 Li (D3CS00872J/cit27/1) 2017; 206 Yu (D3CS00872J/cit88/1) 2023; 35 Graham (D3CS00872J/cit208/1) 1970; 52 Yu (D3CS00872J/cit130/1) 2021; 6 House (D3CS00872J/cit195/1) 2020; 577 Csernica (D3CS00872J/cit52/1) 2021; 6 Yang (D3CS00872J/cit189/1) 2022; 44 Zuo (D3CS00872J/cit22/1) 2020; 13 Huang (D3CS00872J/cit95/1) 2022; 4 Sharifi-Asl (D3CS00872J/cit23/1) 2019; 9 Yang (D3CS00872J/cit194/1) 2018; 389 Chen (D3CS00872J/cit64/1) 2022; 8 Kang (D3CS00872J/cit149/1) 2006; 311 Qiao (D3CS00872J/cit58/1) 2018; 11 Song (D3CS00872J/cit84/1) 2023; 14 Wang (D3CS00872J/cit11/1) 2022; 13 Zhao (D3CS00872J/cit85/1) 2019; 58 House (D3CS00872J/cit59/1) 2021; 6 Tran (D3CS00872J/cit180/1) 2008; 20 Wei (D3CS00872J/cit102/1) 2021; 51 Li (D3CS00872J/cit133/1) 2021; 12 Rong (D3CS00872J/cit12/1) 2018; 2 Yuan (D3CS00872J/cit111/1) 2018; 10 Zhu (D3CS00872J/cit78/1) 2019; 4 Wang (D3CS00872J/cit2/1) 2018; 47 Zeng (D3CS00872J/cit31/1) 2021; 27 Lee (D3CS00872J/cit57/1) 2014; 4 Quilty (D3CS00872J/cit167/1) 2023; 123 Zhang (D3CS00872J/cit182/1) 2021; 4 Yuan (D3CS00872J/cit75/1) 2023 Sun (D3CS00872J/cit18/1) 2024; 17 Shin (D3CS00872J/cit35/1) 2012; 24 Xu (D3CS00872J/cit17/1) 2016; 55 Goodenough (D3CS00872J/cit107/1) 2009; 22 Chai (D3CS00872J/cit105/1) 2022; 18 Cronemeyer (D3CS00872J/cit28/1) 1959; 113 Wei (D3CS00872J/cit131/1) 2023; 56 Jupille (D3CS00872J/cit14/1) 2015 Kong (D3CS00872J/cit160/1) 2015; 3 Dong (D3CS00872J/cit9/1) 2023; 123 Chen (D3CS00872J/cit62/1) 2016; 28 Sathiya (D3CS00872J/cit206/1) 2015; 6 Wu (D3CS00872J/cit193/1) 2019; 4 Kong (D3CS00872J/cit124/1) 2021; 60 Jin (D3CS00872J/cit33/1) 2023; 62 Zhang (D3CS00872J/cit186/1) 2021; 12 Wei (D3CS00872J/cit128/1) 2022; 47 Ding (D3CS00872J/cit132/1) 2020; 38 Eum (D3CS00872J/cit82/1) 2023; 16 Reuter (D3CS00872J/cit91/1) 2001; 65 Toney (D3CS00872J/cit65/1) 2019; 4 Chu (D3CS00872J/cit4/1) 2021; 50 Hou (D3CS00872J/cit97/1) 2021; 11 Ren (D3CS00872J/cit20/1) 2022; 34 Qiu (D3CS00872J/cit26/1) 2016; 7 Yan (D3CS00872J/cit61/1) 2019; 14 Park (D3CS00872J/cit176/1) 2022; 34 Nakamura (D3CS00872J/cit43/1) 2021; 9 Hao (D3CS00872J/cit191/1) 2021; 31 Ahmed (D3CS00872J/cit168/1) 2019; 13 Chu (D3CS00872J/cit10/1) 2024; 18 Wu (D3CS00872J/cit56/1) 2023; 145 Eum (D3CS00872J/cit66/1) 2020; 19 Li (D3CS00872J/cit7/1) 2019; 48 Menéndez (D3CS00872J/cit188/1) 2020; 6 Dai (D3CS00872J/cit197/1) 2019; 3 Kim (D3CS00872J/cit73/1) 2021; 11 Liu (D3CS00872J/cit83/1) 2022; 606 Hou (D3CS00872J/cit125/1) 2022; 7 Zhang (D3CS00872J/cit115/1) 2022; 122 Bi (D3CS00872J/cit138/1) 2015; 283 House (D3CS00872J/cit51/1) 2023; 8 Maxisch (D3CS00872J/cit161/1) 2006; 73 Qiu (D3CS00872J/cit47/1) 2022; 12 Lee (D3CS00872J/cit183/1) 2020; 7 Kim (D3CS00872J/cit139/1) 2011; 23 Xiao (D3CS00872J/cit156/1) 2019; 5 Guo (D3CS00872J/cit15/1) 2021; 33 Kang (D3CS00872J/cit94/1) 2021; 4 Franchini (D3CS00872J/cit158/1) 2021; 6 Kim (D3CS00872J/cit152/1) 2017; 16 Nakamura (D3CS00872J/cit46/1) 2020; 3 Clément (D3CS00872J/cit147/1) 2020; 13 Yang (D3CS00872J/cit93/1) 2023 Rougier (D3CS00872J/cit150/1) 1996; 143 Dahéron (D3CS00872J/cit159/1) 2008; 20 Li (D3CS00872J/cit177/1) 2019; 10 Qiu (D3CS00872J/cit181/1) 2020; 1 Hu (D3CS00872J/cit210/1) 2024 Zhao (D3CS00872J/cit76/1) 2021; 6 Min (D3CS00872J/cit5/1) 2021; 14 Li (D3CS00872J/cit53/1) 2023; 62 Zhao (D3CS00872J/cit198/1) 2021; 143 Jiang (D3CS00872J/cit114/1) 2021; 14 Xiao (D3CS00872J/cit129/1) 2020; 59 Bianchini (D3CS00872J/cit136/1) 2019; 58 Song (D3CS00872J/cit36/1) 2021; 41 He (D3CS00872J/cit42/1) 2020; 330 Singer (D3CS00872J/cit174/1) 2018; 3 Qiao (D3CS00872J/cit55/1) 2021; 8 Wang (D3CS00872J/cit106/1) 2023; 133 Wang (D3CS00872J/cit68/1) 2019; 6 Zhang (D3CS00872J/cit25/1) 2022; 12 Kim (D3CS00872J/cit29/1) 2019; 3 McCalla (D3CS00872J/cit60/1) 2015; 350 Ou (D3CS00872J/cit108/1) 2018; 9 Nelson Weker (D3CS00872J/cit199/1) 2015; 25 Guo (D3CS00872J/cit77/1) 2021; 12 Zhou (D3CS00872J/cit72/1) 2022; 8 Zhang (D3CS00872J/cit120/1) 2019; 31 Liu (D3CS00872J/cit185/1) 2017; 11 Wang (D3CS00872J/cit123/1) 2023; 145 Zhou (D3CS00872J/cit170/1) 2023; 55 He (D3CS00872J/cit109/1) 2023; 322 Fan (D3CS00872J/cit38/1) 2015; 5 Wei (D3CS00872J/cit190/1) 2021; 64 Sun (D3CS00872J/cit201/1) 2021; 15 Hou (D3CS00872J/cit171/1) 2021; 39 Hennies (D3CS00872J/cit205/1) 2010; 104 Marrocchelli (D3CS00872J/cit103/1) 2012; 22 Lin (D3CS00872J/cit67/1) 2020; 30 Okamoto (D3CS00872J/cit98/1) 2011; 159 Ni (D3CS00872J/cit122/1) 2022; 12 Zhao (D3CS00872J/cit137/1) 2016; 7 Bak (D3CS00872J/cit203/1) 2018; 10 Xu (D3CS00872J/cit143/1) 2022; 61 Hon (D3CS00872J/cit30/1) 2000; 108 Yang (D3CS00872J/cit151/1) 2020; 32 Yoon (D3CS00872J/cit87/1) 2023; 8 Iguchi (D3CS00872J/cit163/1) 2009; 78 Liu (D3CS00872J/cit187/1) 2021; 4 Wang (D3CS00872J/cit179/1) 2023; 35 Zhan (D3CS00872J/cit141/1) 2018; 11 Zhu (D3CS00872J/cit37/1) 2023; 35 Tian (D3CS00872J/cit34/1) 2021; 31 Cai (D3CS00872J/cit121/1) 2023 Zheng (D3CS00872J/cit45/1) 2021; 13 Zhang (D3CS00872J/cit172/1) 2020; 32 Xiao (D3CS00872J/cit6/1) 2020; 13 Seo (D3CS00872J/cit49/1) 2016; 8 Århammar (D3CS00872J/cit196/1) 2011; 108 Sun (D3CS00872J/cit202/1) 2021; 79 Zhang (D3CS00872J/cit8/1) 2023; 2 Nakayama (D3CS00872J/cit175/1) 2020; 11 Zhao (D3CS00872J/cit3/1) 2020; 370 Zhao (D3CS00872J/cit96/1) 2021; 60 Feng (D3CS00872J/cit157/1) 2022; 15 Geng (D3CS00872J/cit207/1) 2020; 8 Jia (D3CS00872J/cit19/1) 2023 Hu (D3CS00872J/cit126/1) 2018; 3 Luo (D3CS00872J/cit81/1) 2023; 8 Shi (D3CS00872J/cit86/1) 2022; 12 Wang (D3CS00872J/cit101/1) 2011; 193 Marzec (D3CS00872J/cit164/1) 2002; 146 Tompkins (D3CS00872J/cit13/1) 1960; 186 Kang (D3CS00872J/cit148/1) 2006; 74 House (D3CS00872J/cit146/1) 2020; 5 Mesnier (D3CS00872J/cit32/1) 2020; 12 Xu (D3CS00872J/cit100/1) 2022; 12 Pei (D3CS00872J/cit112/1) 2021; 168 Zu (D3CS00872J/cit39/1) 2019; 12 Qian (D3CS00872J/cit116/1) 2014; 16 |
References_xml | – issn: 2015 publication-title: Defects at Oxide Surfaces doi: Jupille Thornton – volume: 60 start-page: 2208 year: 2021 ident: D3CS00872J/cit96/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202000262 – volume: 137 start-page: 8364 year: 2015 ident: D3CS00872J/cit144/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b04040 – volume: 311 start-page: 977 year: 2006 ident: D3CS00872J/cit149/1 publication-title: Science doi: 10.1126/science.1122152 – volume: 32 start-page: e2000496 year: 2020 ident: D3CS00872J/cit172/1 publication-title: Adv. Mater. doi: 10.1002/adma.202000496 – volume: 577 start-page: 502 year: 2020 ident: D3CS00872J/cit195/1 publication-title: Nature doi: 10.1038/s41586-019-1854-3 – volume: 7 start-page: 12108 year: 2016 ident: D3CS00872J/cit26/1 publication-title: Nat. Commun. doi: 10.1038/ncomms12108 – volume: 606 start-page: 305 year: 2022 ident: D3CS00872J/cit83/1 publication-title: Nature doi: 10.1038/s41586-022-04689-y – volume: 59 start-page: 23061 year: 2020 ident: D3CS00872J/cit104/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202010531 – volume: 31 start-page: 2101239 year: 2021 ident: D3CS00872J/cit34/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202101239 – volume: 27 start-page: 2589 year: 2015 ident: D3CS00872J/cit40/1 publication-title: Adv. Mater. doi: 10.1002/adma.201405763 – volume: 12 start-page: 2201510 year: 2022 ident: D3CS00872J/cit122/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202201510 – volume: 62 start-page: e202219230 year: 2023 ident: D3CS00872J/cit33/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202219230 – volume: 5 start-page: 777 year: 2020 ident: D3CS00872J/cit50/1 publication-title: Nat. Energy doi: 10.1038/s41560-020-00697-2 – volume: 8 start-page: 159 year: 2023 ident: D3CS00872J/cit63/1 publication-title: Nat. Energy doi: 10.1038/s41560-022-01179-3 – volume: 350 start-page: 1516 year: 2015 ident: D3CS00872J/cit60/1 publication-title: Science doi: 10.1126/science.aac8260 – volume: 283 start-page: 211 year: 2015 ident: D3CS00872J/cit138/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.02.095 – volume: 15 start-page: 1711 year: 2022 ident: D3CS00872J/cit157/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE03292E – volume: 5 start-page: 14697 year: 2017 ident: D3CS00872J/cit41/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA03878J – volume: 32 start-page: 2110295 year: 2021 ident: D3CS00872J/cit79/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202110295 – volume: 18 start-page: 337 issue: 1 year: 2024 ident: D3CS00872J/cit10/1 publication-title: ACS Nano doi: 10.1021/acsnano.3c06393 – volume: 14 start-page: 4149 year: 2023 ident: D3CS00872J/cit84/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-39838-y – volume: 11 start-page: 8519 year: 2017 ident: D3CS00872J/cit185/1 publication-title: ACS Nano doi: 10.1021/acsnano.7b04617 – volume: 58 start-page: 10478 year: 2019 ident: D3CS00872J/cit24/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201904469 – volume: 18 start-page: e2201014 year: 2022 ident: D3CS00872J/cit105/1 publication-title: Small doi: 10.1002/smll.202201014 – volume: 11 start-page: 2101712 year: 2021 ident: D3CS00872J/cit99/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202101712 – volume: 5 start-page: 11712 year: 2015 ident: D3CS00872J/cit38/1 publication-title: Sci. Rep. doi: 10.1038/srep11712 – volume: 4 start-page: 1400498 year: 2014 ident: D3CS00872J/cit57/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201400498 – volume: 373 start-page: 2796 year: 2009 ident: D3CS00872J/cit162/1 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2009.05.071 – volume: 9 start-page: 3657 year: 2021 ident: D3CS00872J/cit43/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA09521D – volume: 21 start-page: 6875 year: 2021 ident: D3CS00872J/cit135/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c01985 – volume: 31 start-page: 2010095 year: 2021 ident: D3CS00872J/cit119/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202010095 – volume: 4 start-page: 1049 year: 2019 ident: D3CS00872J/cit78/1 publication-title: Nat. Energy doi: 10.1038/s41560-019-0508-x – volume: 12 start-page: 5267 year: 2021 ident: D3CS00872J/cit77/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25610-7 – volume: 64 start-page: 1826 year: 2021 ident: D3CS00872J/cit190/1 publication-title: Sci. China: Chem. doi: 10.1007/s11426-021-1103-6 – volume: 8 start-page: 1078 year: 2023 ident: D3CS00872J/cit81/1 publication-title: Nat. Energy doi: 10.1038/s41560-023-01289-6 – volume: 13 start-page: 1123 year: 2022 ident: D3CS00872J/cit16/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28793-9 – volume: 3 start-page: 1064 year: 2019 ident: D3CS00872J/cit29/1 publication-title: Joule doi: 10.1016/j.joule.2019.01.002 – volume: 22 start-page: 1958 year: 2012 ident: D3CS00872J/cit103/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201102648 – volume: 206 start-page: 300 year: 2017 ident: D3CS00872J/cit27/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2017.01.025 – volume: 11 start-page: 299 year: 2018 ident: D3CS00872J/cit58/1 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE03554C – volume: 12 start-page: 2150 year: 2019 ident: D3CS00872J/cit39/1 publication-title: Nano Res. doi: 10.1007/s12274-019-2377-9 – volume: 55 start-page: 691 year: 2023 ident: D3CS00872J/cit170/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.12.029 – volume: 10 start-page: 1692 year: 2019 ident: D3CS00872J/cit177/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09408-2 – volume: 15 start-page: 1475 year: 2021 ident: D3CS00872J/cit201/1 publication-title: ACS Nano doi: 10.1021/acsnano.0c08891 – volume: 14 start-page: 4100 year: 2021 ident: D3CS00872J/cit114/1 publication-title: Nano Res. doi: 10.1007/s12274-021-3349-4 – start-page: e2207797 year: 2023 ident: D3CS00872J/cit93/1 publication-title: Small doi: 10.1002/smll.202207797 – volume: 12 start-page: 2201323 year: 2022 ident: D3CS00872J/cit100/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202201323 – start-page: 2301216 year: 2023 ident: D3CS00872J/cit71/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202301216 – volume: 3 start-page: 518 year: 2019 ident: D3CS00872J/cit197/1 publication-title: Joule doi: 10.1016/j.joule.2018.11.014 – volume: 19 start-page: 419 year: 2020 ident: D3CS00872J/cit66/1 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0572-4 – volume: 60 start-page: 8258 year: 2021 ident: D3CS00872J/cit140/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202016334 – volume: 13 start-page: 2202861 year: 2022 ident: D3CS00872J/cit11/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202202861 – start-page: e2307938 year: 2023 ident: D3CS00872J/cit19/1 publication-title: Adv. Mater. – volume: 11 start-page: 2100552 year: 2021 ident: D3CS00872J/cit73/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100552 – volume: 65 start-page: 035406 year: 2001 ident: D3CS00872J/cit91/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.65.035406 – volume: 6 start-page: 2552 year: 2021 ident: D3CS00872J/cit76/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00750 – volume: 12 start-page: 3863 year: 2021 ident: D3CS00872J/cit133/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24155-z – volume: 11 start-page: 68 year: 2023 ident: D3CS00872J/cit113/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA07413C – volume: 123 start-page: 811 year: 2023 ident: D3CS00872J/cit9/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00251 – volume: 1 start-page: 13 year: 2021 ident: D3CS00872J/cit154/1 publication-title: eScience doi: 10.1016/j.esci.2021.10.003 – volume: 13 start-page: 4450 year: 2020 ident: D3CS00872J/cit22/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01694B – volume: 14 start-page: 602 year: 2019 ident: D3CS00872J/cit61/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0428-8 – volume: 10 start-page: 16410 year: 2018 ident: D3CS00872J/cit111/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b01209 – volume: 5 start-page: 191 year: 2020 ident: D3CS00872J/cit146/1 publication-title: Nat. Energy doi: 10.1038/s41560-020-0583-z – volume: 31 start-page: e1807770 year: 2019 ident: D3CS00872J/cit120/1 publication-title: Adv. Mater. doi: 10.1002/adma.201807770 – volume: 52 start-page: 2235 year: 1970 ident: D3CS00872J/cit208/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1673290 – volume: 145 start-page: 5174 year: 2023 ident: D3CS00872J/cit173/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c11640 – volume: 6 start-page: 781 year: 2021 ident: D3CS00872J/cit59/1 publication-title: Nat. Energy doi: 10.1038/s41560-021-00780-2 – volume: 55 start-page: 5277 year: 2016 ident: D3CS00872J/cit17/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201600687 – volume: 59 start-page: 14313 year: 2020 ident: D3CS00872J/cit129/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202005337 – volume: 50 start-page: 13189 year: 2021 ident: D3CS00872J/cit4/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00442E – volume: 73 start-page: 104301 year: 2006 ident: D3CS00872J/cit161/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.73.104301 – volume: 22 start-page: 4905 year: 2022 ident: D3CS00872J/cit178/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c01401 – volume: 1 start-page: 100028 year: 2020 ident: D3CS00872J/cit181/1 publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2020.100028 – volume: 13 start-page: 10694 year: 2019 ident: D3CS00872J/cit168/1 publication-title: ACS Nano doi: 10.1021/acsnano.9b05047 – volume: 8 start-page: 692 year: 2016 ident: D3CS00872J/cit49/1 publication-title: Nat. Chem. doi: 10.1038/nchem.2524 – volume: 8 start-page: 417 year: 2022 ident: D3CS00872J/cit64/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c02509 – volume: 6 start-page: eaax9427 year: 2020 ident: D3CS00872J/cit192/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aax9427 – start-page: 2213215 year: 2023 ident: D3CS00872J/cit155/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202213215 – volume: 34 start-page: e2106402 year: 2022 ident: D3CS00872J/cit176/1 publication-title: Adv. Mater. doi: 10.1002/adma.202106402 – volume: 193 start-page: 32 year: 2011 ident: D3CS00872J/cit101/1 publication-title: Solid State Ion. doi: 10.1016/j.ssi.2011.04.007 – volume: 27 start-page: 3739 year: 2021 ident: D3CS00872J/cit31/1 publication-title: Ionics doi: 10.1007/s11581-021-04167-x – volume: 8 start-page: 16515 year: 2020 ident: D3CS00872J/cit207/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA03358H – volume: 35 start-page: e2207904 year: 2023 ident: D3CS00872J/cit179/1 publication-title: Adv. Mater. doi: 10.1002/adma.202207904 – volume: 25 start-page: 1622 year: 2015 ident: D3CS00872J/cit199/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201403409 – volume: 7 start-page: 1687 year: 2022 ident: D3CS00872J/cit125/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c00353 – volume: 35 start-page: e2207234 year: 2023 ident: D3CS00872J/cit88/1 publication-title: Adv. Mater. doi: 10.1002/adma.202207234 – volume: 6 start-page: 6276 year: 2015 ident: D3CS00872J/cit206/1 publication-title: Nat. Commun. doi: 10.1038/ncomms7276 – volume: 59 start-page: 7778 year: 2020 ident: D3CS00872J/cit44/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202000628 – volume: 4 start-page: 2200343 year: 2022 ident: D3CS00872J/cit95/1 publication-title: Small Struct. doi: 10.1002/sstr.202200343 – volume: 31 start-page: 2100919 year: 2021 ident: D3CS00872J/cit191/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100919 – start-page: 2303797 year: 2024 ident: D3CS00872J/cit210/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202303797 – volume: 51 start-page: 365 year: 2021 ident: D3CS00872J/cit102/1 publication-title: Mater. Today doi: 10.1016/j.mattod.2021.09.013 – volume: 60 start-page: 27102 year: 2021 ident: D3CS00872J/cit124/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202112508 – volume: 7 start-page: 1902413 year: 2020 ident: D3CS00872J/cit183/1 publication-title: Adv. Sci. doi: 10.1002/advs.201902413 – volume: 12 start-page: 2202341 year: 2022 ident: D3CS00872J/cit25/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202202341 – volume: 7 start-page: 1601266 year: 2016 ident: D3CS00872J/cit137/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601266 – volume: 8 start-page: nwaa287 year: 2021 ident: D3CS00872J/cit55/1 publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwaa287 – volume: 146 start-page: 225 year: 2002 ident: D3CS00872J/cit164/1 publication-title: Solid State Ion. doi: 10.1016/S0167-2738(01)01022-0 – volume: 30 start-page: 2004302 year: 2020 ident: D3CS00872J/cit184/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202004302 – volume: 6 start-page: 76 year: 2020 ident: D3CS00872J/cit188/1 publication-title: npj Comput. Mater. doi: 10.1038/s41524-020-0344-3 – volume-title: Defects at Oxide Surfaces year: 2015 ident: D3CS00872J/cit14/1 doi: 10.1007/978-3-319-14367-5 – volume: 11 start-page: 4452 year: 2020 ident: D3CS00872J/cit175/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18285-z – volume: 17 start-page: 210 year: 2024 ident: D3CS00872J/cit18/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE02817H – volume: 11 start-page: 2101005 year: 2021 ident: D3CS00872J/cit97/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202101005 – volume: 108 start-page: 462 year: 2000 ident: D3CS00872J/cit30/1 publication-title: J. Ceram. Soc. Jpn. doi: 10.2109/jcersj.108.1257_462 – volume: 4 start-page: 594 year: 2019 ident: D3CS00872J/cit70/1 publication-title: Nat. Energy doi: 10.1038/s41560-019-0409-z – volume: 322 start-page: 122087 year: 2023 ident: D3CS00872J/cit109/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.122087 – volume: 8 start-page: 482 year: 2023 ident: D3CS00872J/cit87/1 publication-title: Nat. Energy doi: 10.1038/s41560-023-01233-8 – volume: 143 start-page: 1168 year: 1996 ident: D3CS00872J/cit150/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1836614 – volume: 44 start-page: 231 year: 2022 ident: D3CS00872J/cit189/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.10.024 – volume: 38 start-page: 24 year: 2020 ident: D3CS00872J/cit132/1 publication-title: Mater. Today doi: 10.1016/j.mattod.2020.04.006 – volume: 39 start-page: 395 year: 2021 ident: D3CS00872J/cit171/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.04.035 – volume: 144 start-page: 11338 year: 2022 ident: D3CS00872J/cit169/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c03549 – volume: 78 start-page: 65 year: 2009 ident: D3CS00872J/cit163/1 publication-title: Philos. Mag. B doi: 10.1080/13642819808206727 – volume: 22 start-page: 587 year: 2009 ident: D3CS00872J/cit107/1 publication-title: Chem. Mater. doi: 10.1021/cm901452z – volume: 12 start-page: 52826 year: 2020 ident: D3CS00872J/cit32/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c16648 – volume: 347 start-page: 115257 year: 2020 ident: D3CS00872J/cit89/1 publication-title: Solid State Ion. doi: 10.1016/j.ssi.2020.115257 – volume: 145 start-page: 22708 year: 2023 ident: D3CS00872J/cit123/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c08070 – volume: 10 start-page: 3423 year: 2019 ident: D3CS00872J/cit142/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11439-8 – volume: 11 start-page: 243 year: 2018 ident: D3CS00872J/cit141/1 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE03122J – volume: 58 start-page: 4323 year: 2019 ident: D3CS00872J/cit85/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201900444 – volume: 8 start-page: 100118 year: 2021 ident: D3CS00872J/cit48/1 publication-title: eTransportation doi: 10.1016/j.etran.2021.100118 – volume: 32 start-page: e1908285 year: 2020 ident: D3CS00872J/cit151/1 publication-title: Adv. Mater. doi: 10.1002/adma.201908285 – volume: 13 start-page: 3129 year: 2020 ident: D3CS00872J/cit6/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01607A – volume: 6 start-page: 1900355 year: 2019 ident: D3CS00872J/cit68/1 publication-title: Adv. Sci. doi: 10.1002/advs.201900355 – volume: 78 start-page: 092106 year: 2008 ident: D3CS00872J/cit90/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.78.092106 – start-page: 2215155 year: 2023 ident: D3CS00872J/cit121/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202215155 – volume: 330 start-page: 135313 year: 2020 ident: D3CS00872J/cit42/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.135313 – volume: 108 start-page: 6355 year: 2011 ident: D3CS00872J/cit196/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1019698108 – volume: 142 start-page: 19745 year: 2020 ident: D3CS00872J/cit166/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c09961 – volume: 4 start-page: 5 year: 2019 ident: D3CS00872J/cit193/1 publication-title: Condens. Matter doi: 10.3390/condmat4010005 – volume: 17 start-page: 2165 year: 2017 ident: D3CS00872J/cit118/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04502 – volume: 3 start-page: 641 year: 2018 ident: D3CS00872J/cit174/1 publication-title: Nat. Energy doi: 10.1038/s41560-018-0184-2 – volume: 16 start-page: 3053 year: 2023 ident: D3CS00872J/cit200/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE00435J – volume: 14 start-page: 6181 year: 2020 ident: D3CS00872J/cit127/1 publication-title: ACS Nano doi: 10.1021/acsnano.0c02237 – volume: 58 start-page: 10434 year: 2019 ident: D3CS00872J/cit136/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201812472 – volume: 10 start-page: 563 year: 2018 ident: D3CS00872J/cit203/1 publication-title: NPG Asia Mater. doi: 10.1038/s41427-018-0056-z – volume: 62 start-page: e202215131 year: 2023 ident: D3CS00872J/cit53/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202215131 – volume: 61 start-page: e202202894 year: 2022 ident: D3CS00872J/cit143/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202202894 – volume: 23 start-page: 5388 year: 2011 ident: D3CS00872J/cit139/1 publication-title: Chem. Mater. doi: 10.1021/cm202415x – volume: 35 start-page: e2208974 year: 2023 ident: D3CS00872J/cit37/1 publication-title: Adv. Mater. doi: 10.1002/adma.202208974 – volume: 12 start-page: 2200022 year: 2022 ident: D3CS00872J/cit47/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202200022 – volume: 3 start-page: 690 year: 2018 ident: D3CS00872J/cit126/1 publication-title: Nat. Energy doi: 10.1038/s41560-018-0207-z – volume: 56 start-page: 495 year: 2023 ident: D3CS00872J/cit131/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2023.01.029 – volume: 47 start-page: 6505 year: 2018 ident: D3CS00872J/cit2/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00322J – volume: 16 start-page: 454 year: 2017 ident: D3CS00872J/cit152/1 publication-title: Nat. Mater. doi: 10.1038/nmat4810 – volume: 20 start-page: 583 year: 2008 ident: D3CS00872J/cit159/1 publication-title: Chem. Mater. doi: 10.1021/cm702546s – volume: 9 start-page: 1802586 year: 2019 ident: D3CS00872J/cit117/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802586 – volume: 12 start-page: 2200136 year: 2022 ident: D3CS00872J/cit92/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202200136 – volume: 9 start-page: 1900551 year: 2019 ident: D3CS00872J/cit23/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900551 – volume: 4 start-page: 1050 year: 2021 ident: D3CS00872J/cit94/1 publication-title: Nat. Catal. doi: 10.1038/s41929-021-00715-w – volume: 2 start-page: 100011 year: 2023 ident: D3CS00872J/cit8/1 publication-title: Next Nanotechnol. doi: 10.1016/j.nxnano.2023.100011 – volume: 13 start-page: 45528 year: 2021 ident: D3CS00872J/cit45/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c12684 – volume: 145 start-page: 9596 year: 2023 ident: D3CS00872J/cit56/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c00117 – volume: 3 start-page: 8489 year: 2015 ident: D3CS00872J/cit160/1 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA01445J – start-page: e202304121 year: 2023 ident: D3CS00872J/cit75/1 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 1302 year: 2018 ident: D3CS00872J/cit108/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03765-0 – volume: 370 start-page: 708 year: 2020 ident: D3CS00872J/cit3/1 publication-title: Science doi: 10.1126/science.aay9972 – volume: 5 start-page: 105 year: 2019 ident: D3CS00872J/cit156/1 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0157-5 – volume: 2 start-page: 125 year: 2018 ident: D3CS00872J/cit12/1 publication-title: Joule doi: 10.1016/j.joule.2017.10.008 – volume: 28 start-page: 6656 year: 2016 ident: D3CS00872J/cit62/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b02870 – volume: 299 start-page: 120680 year: 2021 ident: D3CS00872J/cit110/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.120680 – volume: 4 start-page: 164 year: 2021 ident: D3CS00872J/cit182/1 publication-title: Matter doi: 10.1016/j.matt.2020.10.026 – volume: 6 start-page: 642 year: 2021 ident: D3CS00872J/cit52/1 publication-title: Nat. Energy doi: 10.1038/s41560-021-00832-7 – volume: 22 start-page: 2054 year: 2020 ident: D3CS00872J/cit165/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP05768D – volume: 4 start-page: 1511 year: 2021 ident: D3CS00872J/cit187/1 publication-title: Matter doi: 10.1016/j.matt.2021.02.023 – volume: 6 start-page: 560 year: 2021 ident: D3CS00872J/cit158/1 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00289-w – volume: 34 start-page: e2106171 year: 2022 ident: D3CS00872J/cit20/1 publication-title: Adv. Mater. doi: 10.1002/adma.202106171 – volume: 6 start-page: 572 year: 2021 ident: D3CS00872J/cit130/1 publication-title: Nat. Energy doi: 10.1038/s41560-021-00834-5 – volume: 19 start-page: 2300419 year: 2023 ident: D3CS00872J/cit80/1 publication-title: Small doi: 10.1002/smll.202300419 – volume: 4 start-page: 1014 year: 2019 ident: D3CS00872J/cit65/1 publication-title: Nat. Energy doi: 10.1038/s41560-019-0522-z – volume: 100 start-page: 84 year: 2010 ident: D3CS00872J/cit204/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2010.07.015 – volume: 128 start-page: 8694 year: 2006 ident: D3CS00872J/cit209/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja062027+ – volume: 104 start-page: 193002 year: 2010 ident: D3CS00872J/cit205/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.193002 – volume: 123 start-page: 1327 year: 2023 ident: D3CS00872J/cit167/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00214 – volume: 8 start-page: 2817 year: 2022 ident: D3CS00872J/cit72/1 publication-title: Chem doi: 10.1016/j.chempr.2022.07.023 – volume: 143 start-page: 18652 year: 2021 ident: D3CS00872J/cit198/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c08614 – volume: 168 start-page: 050532 year: 2021 ident: D3CS00872J/cit112/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ac0020 – volume: 122 start-page: 5641 year: 2022 ident: D3CS00872J/cit115/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00327 – volume: 33 start-page: e2103173 year: 2021 ident: D3CS00872J/cit15/1 publication-title: Adv. Mater. doi: 10.1002/adma.202103173 – volume: 13 start-page: 345 year: 2020 ident: D3CS00872J/cit147/1 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE02803J – volume: 47 start-page: 51 year: 2022 ident: D3CS00872J/cit128/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.01.054 – volume: 24 start-page: 543 year: 2012 ident: D3CS00872J/cit35/1 publication-title: Chem. Mater. doi: 10.1021/cm2031009 – volume: 159 start-page: A152 year: 2011 ident: D3CS00872J/cit98/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.079202jes – volume: 48 start-page: 4655 year: 2019 ident: D3CS00872J/cit7/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00162J – volume: 12 start-page: 2200569 year: 2022 ident: D3CS00872J/cit86/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202200569 – volume: 74 start-page: 094105 year: 2006 ident: D3CS00872J/cit148/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.74.094105 – volume: 20 start-page: 214 year: 2021 ident: D3CS00872J/cit1/1 publication-title: Nat. Mater. doi: 10.1038/s41563-020-00816-0 – volume: 113 start-page: 1222 year: 1959 ident: D3CS00872J/cit28/1 publication-title: Phys. Rev. doi: 10.1103/PhysRev.113.1222 – volume: 49 start-page: 4667 year: 2020 ident: D3CS00872J/cit145/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00137F – volume: 33 start-page: e2005937 year: 2021 ident: D3CS00872J/cit21/1 publication-title: Adv. Mater. doi: 10.1002/adma.202005937 – volume: 8 start-page: 1802105 year: 2018 ident: D3CS00872J/cit69/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802105 – volume: 16 start-page: 673 year: 2023 ident: D3CS00872J/cit82/1 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE03527H – volume: 32 start-page: e2005182 year: 2020 ident: D3CS00872J/cit54/1 publication-title: Adv. Mater. doi: 10.1002/adma.202005182 – volume: 53 start-page: 492 year: 2022 ident: D3CS00872J/cit74/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.09.032 – volume: 41 start-page: 179 year: 2021 ident: D3CS00872J/cit36/1 publication-title: Rare Met. doi: 10.1007/s12598-021-01782-5 – volume: 8 start-page: 351 year: 2023 ident: D3CS00872J/cit51/1 publication-title: Nat. Energy doi: 10.1038/s41560-023-01211-0 – volume: 79 start-page: 105459 year: 2021 ident: D3CS00872J/cit202/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105459 – volume: 16 start-page: 14665 year: 2014 ident: D3CS00872J/cit116/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP01799D – volume: 133 start-page: 101055 year: 2023 ident: D3CS00872J/cit106/1 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2022.101055 – volume: 15 start-page: 2356 year: 2022 ident: D3CS00872J/cit153/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE03610F – volume: 3 start-page: 9703 year: 2020 ident: D3CS00872J/cit46/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c01303 – volume: 389 start-page: 188 year: 2018 ident: D3CS00872J/cit194/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.04.018 – volume: 30 start-page: 1909192 year: 2020 ident: D3CS00872J/cit67/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201909192 – volume: 7 start-page: 522 year: 2022 ident: D3CS00872J/cit134/1 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-022-00416-1 – volume: 14 start-page: 2186 year: 2021 ident: D3CS00872J/cit5/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02917C – volume: 186 start-page: 3 year: 1960 ident: D3CS00872J/cit13/1 publication-title: Nature doi: 10.1038/186003a0 – volume: 20 start-page: 4815 year: 2008 ident: D3CS00872J/cit180/1 publication-title: Chem. Mater. doi: 10.1021/cm070435m – volume: 12 start-page: 1853 year: 2021 ident: D3CS00872J/cit186/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22099-y |
SSID | ssj0011762 |
Score | 2.649273 |
SecondaryResourceType | review_article |
Snippet | Secondary batteries are a core technology for clean energy storage and conversion systems, to reduce environmental pollution and alleviate the energy crisis.... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 332 |
SubjectTerms | Cathodes Cathodic cleaning Clean energy Electrode materials Energy storage Oxygen Storage batteries Thermodynamics Transition metals |
Title | Oxygen vacancy chemistry in oxide cathodes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38354058 https://www.proquest.com/docview/3028154897 https://www.proquest.com/docview/2926522258 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagPcAF8SosFBQEF6gCWduJk2O1FC0VjwNbqZwiZ2KrQSiLuhtU-PXMxHayqIsEXKLE42RX_pzJN-PxDGPPbGLzVGl8kQSggWK1jrWVJgaTikwrmALQiu77D9n8RB6fpqehVrnfXbKuXsLPrftK_gdVbENcaZfsPyA7PBQb8BzxxSMijMe_wvjjxQ-UHXzXQDryAELxNnJiLC-ammK6qEC0jxMMCQlCjoAQsekzkl7yIX_u4vk4eUbX8lk3TganoRur_ReQYnuazt1tzrpm06vAXTDKpqNRkKch8SHOxilHmSWxVC5fY9CeLtWvnyVqQxUK77c04SrbqrETQQlPawEryo7Hv4zfpSFacBReZbsczQHUZ7uHR4u374b1oqnK_HqR-9chEa0oXo13_049LtkTyC7OQ9WXnl0sbrIb3iyIDh3Gt9gV095m12YB0DvshcM68lhHA9ZR00Y91lHA-i47eXO0mM1jX-ciBiHUOi4k2niyAFVJZK81Muzp1ErixlYJq6qqgEQDMknDDdSJTWutjExNjv1yWYPYYzvtsjX3WYSdkZJQ6Q6uZZZnhc01hzqvdApJxZMJex6GoASfBJ5qkXwt-2AEUZSvxexTP1zHE_Z06PvNpT7Z2ms_jGTpX41VKZC1ki1cqAl7MohxWGg1Srdm2a1KXvAsJW9DPmH3HALDz4jeHUmSPYRkaB6hfPAnwUN2fZzO-2xnfd6ZR0gb19VjP2d-ARHKanU |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxygen+vacancy+chemistry+in+oxide+cathodes&rft.jtitle=Chemical+Society+reviews&rft.au=Zhang%2C+Yu-Han&rft.au=Zhang%2C+Shu&rft.au=Hu%2C+Naifang&rft.au=Liu%2C+Yuehui&rft.date=2024-04-02&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=53&rft.issue=7&rft.spage=332&rft.epage=3326&rft_id=info:doi/10.1039%2Fd3cs00872j&rft.externalDocID=d3cs00872j |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |