Oxygen vacancy chemistry in oxide cathodes

Secondary batteries are a core technology for clean energy storage and conversion systems, to reduce environmental pollution and alleviate the energy crisis. Oxide cathodes play a vital role in revolutionizing battery technology due to their high capacity and voltage for oxide-based batteries. Howev...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 53; no. 7; pp. 332 - 3326
Main Authors Zhang, Yu-Han, Zhang, Shu, Hu, Naifang, Liu, Yuehui, Ma, Jun, Han, Pengxian, Hu, Zhiwei, Wang, Xiaogang, Cui, Guanglei
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 02.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Secondary batteries are a core technology for clean energy storage and conversion systems, to reduce environmental pollution and alleviate the energy crisis. Oxide cathodes play a vital role in revolutionizing battery technology due to their high capacity and voltage for oxide-based batteries. However, oxygen vacancies (OVs) are an essential type of defect that exist predominantly in both the bulk and surface regions of transition metal (TM) oxide batteries, and have a crucial impact on battery performance. This paper reviews previous studies from the past few decades that have investigated the intrinsic and anionic redox-mediated OVs in the field of secondary batteries. We focus on discussing the formation and evolution of these OVs from both thermodynamic and kinetic perspectives, as well as their impact on the thermodynamic and kinetic properties of oxide cathodes. Finally, we offer insights into the utilization of OVs to enhance the energy density and lifespan of batteries. We expect that this review will advance our understanding of the role of OVs and subsequently boost the development of high-performance electrode materials for next-generation energy storage devices. This review focuses on the chemical thermodynamics and reaction kinetics of intrinsic and anionic redox-mediated oxygen vacancies in oxide cathodes.
AbstractList Secondary batteries are a core technology for clean energy storage and conversion systems, to reduce environmental pollution and alleviate the energy crisis. Oxide cathodes play a vital role in revolutionizing battery technology due to their high capacity and voltage for oxide-based batteries. However, oxygen vacancies (OVs) are an essential type of defect that exist predominantly in both the bulk and surface regions of transition metal (TM) oxide batteries, and have a crucial impact on battery performance. This paper reviews previous studies from the past few decades that have investigated the intrinsic and anionic redox-mediated OVs in the field of secondary batteries. We focus on discussing the formation and evolution of these OVs from both thermodynamic and kinetic perspectives, as well as their impact on the thermodynamic and kinetic properties of oxide cathodes. Finally, we offer insights into the utilization of OVs to enhance the energy density and lifespan of batteries. We expect that this review will advance our understanding of the role of OVs and subsequently boost the development of high-performance electrode materials for next-generation energy storage devices.Secondary batteries are a core technology for clean energy storage and conversion systems, to reduce environmental pollution and alleviate the energy crisis. Oxide cathodes play a vital role in revolutionizing battery technology due to their high capacity and voltage for oxide-based batteries. However, oxygen vacancies (OVs) are an essential type of defect that exist predominantly in both the bulk and surface regions of transition metal (TM) oxide batteries, and have a crucial impact on battery performance. This paper reviews previous studies from the past few decades that have investigated the intrinsic and anionic redox-mediated OVs in the field of secondary batteries. We focus on discussing the formation and evolution of these OVs from both thermodynamic and kinetic perspectives, as well as their impact on the thermodynamic and kinetic properties of oxide cathodes. Finally, we offer insights into the utilization of OVs to enhance the energy density and lifespan of batteries. We expect that this review will advance our understanding of the role of OVs and subsequently boost the development of high-performance electrode materials for next-generation energy storage devices.
Secondary batteries are a core technology for clean energy storage and conversion systems, to reduce environmental pollution and alleviate the energy crisis. Oxide cathodes play a vital role in revolutionizing battery technology due to their high capacity and voltage for oxide-based batteries. However, oxygen vacancies (OVs) are an essential type of defect that exist predominantly in both the bulk and surface regions of transition metal (TM) oxide batteries, and have a crucial impact on battery performance. This paper reviews previous studies from the past few decades that have investigated the intrinsic and anionic redox-mediated OVs in the field of secondary batteries. We focus on discussing the formation and evolution of these OVs from both thermodynamic and kinetic perspectives, as well as their impact on the thermodynamic and kinetic properties of oxide cathodes. Finally, we offer insights into the utilization of OVs to enhance the energy density and lifespan of batteries. We expect that this review will advance our understanding of the role of OVs and subsequently boost the development of high-performance electrode materials for next-generation energy storage devices.
Secondary batteries are a core technology for clean energy storage and conversion systems, to reduce environmental pollution and alleviate the energy crisis. Oxide cathodes play a vital role in revolutionizing battery technology due to their high capacity and voltage for oxide-based batteries. However, oxygen vacancies (OVs) are an essential type of defect that exist predominantly in both the bulk and surface regions of transition metal (TM) oxide batteries, and have a crucial impact on battery performance. This paper reviews previous studies from the past few decades that have investigated the intrinsic and anionic redox-mediated OVs in the field of secondary batteries. We focus on discussing the formation and evolution of these OVs from both thermodynamic and kinetic perspectives, as well as their impact on the thermodynamic and kinetic properties of oxide cathodes. Finally, we offer insights into the utilization of OVs to enhance the energy density and lifespan of batteries. We expect that this review will advance our understanding of the role of OVs and subsequently boost the development of high-performance electrode materials for next-generation energy storage devices. This review focuses on the chemical thermodynamics and reaction kinetics of intrinsic and anionic redox-mediated oxygen vacancies in oxide cathodes.
Author Han, Pengxian
Hu, Naifang
Cui, Guanglei
Hu, Zhiwei
Liu, Yuehui
Ma, Jun
Wang, Xiaogang
Zhang, Shu
Zhang, Yu-Han
AuthorAffiliation Chinese Academy of Sciences
Qingdao Institute of Bioenergy and Bioprocess Technology
Qingdao New Energy Shandong Laboratory
Max Plank Institute for Chemical Physics of Solids
School of Future Technology
Shandong Energy Institute
Qingdao Industrial Energy Storage Research Institute
University of Chinese Academy of Sciences
AuthorAffiliation_xml – sequence: 0
  name: Qingdao Industrial Energy Storage Research Institute
– sequence: 0
  name: Qingdao New Energy Shandong Laboratory
– sequence: 0
  name: Shandong Energy Institute
– sequence: 0
  name: Chinese Academy of Sciences
– sequence: 0
  name: Qingdao Institute of Bioenergy and Bioprocess Technology
– sequence: 0
  name: Max Plank Institute for Chemical Physics of Solids
– sequence: 0
  name: School of Future Technology
– sequence: 0
  name: University of Chinese Academy of Sciences
Author_xml – sequence: 1
  givenname: Yu-Han
  surname: Zhang
  fullname: Zhang, Yu-Han
– sequence: 2
  givenname: Shu
  surname: Zhang
  fullname: Zhang, Shu
– sequence: 3
  givenname: Naifang
  surname: Hu
  fullname: Hu, Naifang
– sequence: 4
  givenname: Yuehui
  surname: Liu
  fullname: Liu, Yuehui
– sequence: 5
  givenname: Jun
  surname: Ma
  fullname: Ma, Jun
– sequence: 6
  givenname: Pengxian
  surname: Han
  fullname: Han, Pengxian
– sequence: 7
  givenname: Zhiwei
  surname: Hu
  fullname: Hu, Zhiwei
– sequence: 8
  givenname: Xiaogang
  surname: Wang
  fullname: Wang, Xiaogang
– sequence: 9
  givenname: Guanglei
  surname: Cui
  fullname: Cui, Guanglei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38354058$$D View this record in MEDLINE/PubMed
BookMark eNpt0ctLwzAcB_AgE_fQi3el4EUG1bzaJEeZbwY7qOeSJqnr6JqZtLL-90Y3JwxPvxw-vwffDEGvtrUB4BTBKwSJuNZEeQg5w4sDMEA0hTFllPbAABKYxhAi3AdD7xfhhViKj0CfcJJQmPABGM_W3bupo0-pZK26SM3NsvSN66Kyjuy61CZSsplbbfwxOCxk5c3Jto7A2_3d6-Qxns4eniY301gRwppYUI5TKhTLKaJEp0mKUEFh2FgwUrA8FwpKRYQw2CgNi0RLZmhieHCcakVG4HIzd-XsR2t8k4WLlKkqWRvb-gwLnCYY44QHerFHF7Z1dbguIxBzlFAuWFDnW9XmS6OzlSuX0nXZbwoBjDdAOeu9M8WOIJh9R5zdksnLT8TPAcM9rMpGNqWtGyfL6v-Ws02L82o3-u_XyBdJ1YRe
CitedBy_id crossref_primary_10_1039_D4TA05848H
crossref_primary_10_1016_j_fuel_2025_134555
crossref_primary_10_1016_j_nxmate_2024_100480
crossref_primary_10_1002_adma_202407644
crossref_primary_10_1016_j_jece_2024_115143
crossref_primary_10_1002_adma_202407029
crossref_primary_10_1021_acs_iecr_4c03713
crossref_primary_10_1007_s12598_024_03084_y
crossref_primary_10_1016_j_mtcomm_2025_111970
crossref_primary_10_1002_aenm_202404459
crossref_primary_10_1002_smll_202407361
crossref_primary_10_1016_j_jechem_2024_08_066
crossref_primary_10_1016_j_jechem_2024_11_005
crossref_primary_10_1021_acsnano_5c00974
crossref_primary_10_1021_acsami_5c00196
crossref_primary_10_1021_acs_jpcc_4c05866
crossref_primary_10_1016_j_est_2024_115123
crossref_primary_10_1016_j_cclet_2025_110851
crossref_primary_10_1016_j_jpowsour_2025_236558
crossref_primary_10_1016_j_jallcom_2025_178952
crossref_primary_10_1007_s40820_024_01570_7
crossref_primary_10_1038_s41467_024_54331_w
crossref_primary_10_1021_acsnano_4c14724
crossref_primary_10_1016_j_ensm_2025_104114
crossref_primary_10_1016_j_mssp_2025_109319
crossref_primary_10_1002_adma_202411311
crossref_primary_10_1039_D4SE01652A
crossref_primary_10_1002_adfm_202419994
crossref_primary_10_1021_acsanm_4c07014
crossref_primary_10_1016_j_cej_2024_156295
crossref_primary_10_1039_D4EE00415A
crossref_primary_10_1039_D4EE04266B
crossref_primary_10_1016_j_cej_2025_159902
crossref_primary_10_1002_adfm_202413782
crossref_primary_10_1016_j_cej_2025_161626
crossref_primary_10_1088_2053_1583_ad8939
crossref_primary_10_1016_j_fuel_2025_134281
crossref_primary_10_1039_D4SE01012D
crossref_primary_10_1016_j_jechem_2024_09_044
crossref_primary_10_1021_acsaem_4c01160
crossref_primary_10_1039_D4EE01618A
crossref_primary_10_1016_j_jpowsour_2025_236602
crossref_primary_10_1016_j_jcis_2024_11_148
crossref_primary_10_1016_j_jcis_2025_02_127
crossref_primary_10_1016_j_jelechem_2024_118910
crossref_primary_10_1016_j_jelechem_2025_118934
Cites_doi 10.1002/anie.202000262
10.1021/jacs.5b04040
10.1126/science.1122152
10.1002/adma.202000496
10.1038/s41586-019-1854-3
10.1038/ncomms12108
10.1038/s41586-022-04689-y
10.1002/anie.202010531
10.1002/adfm.202101239
10.1002/adma.201405763
10.1002/aenm.202201510
10.1002/anie.202219230
10.1038/s41560-020-00697-2
10.1038/s41560-022-01179-3
10.1126/science.aac8260
10.1016/j.jpowsour.2015.02.095
10.1039/D1EE03292E
10.1039/C7TA03878J
10.1002/adfm.202110295
10.1021/acsnano.3c06393
10.1038/s41467-023-39838-y
10.1021/acsnano.7b04617
10.1002/anie.201904469
10.1002/smll.202201014
10.1002/aenm.202101712
10.1038/srep11712
10.1002/aenm.201400498
10.1016/j.physleta.2009.05.071
10.1039/D0TA09521D
10.1021/acs.nanolett.1c01985
10.1002/adfm.202010095
10.1038/s41560-019-0508-x
10.1038/s41467-021-25610-7
10.1007/s11426-021-1103-6
10.1038/s41560-023-01289-6
10.1038/s41467-022-28793-9
10.1016/j.joule.2019.01.002
10.1002/adfm.201102648
10.1016/j.apcatb.2017.01.025
10.1039/C7EE03554C
10.1007/s12274-019-2377-9
10.1016/j.ensm.2022.12.029
10.1038/s41467-019-09408-2
10.1021/acsnano.0c08891
10.1007/s12274-021-3349-4
10.1002/smll.202207797
10.1002/aenm.202201323
10.1002/aenm.202301216
10.1016/j.joule.2018.11.014
10.1038/s41563-019-0572-4
10.1002/anie.202016334
10.1002/aenm.202202861
10.1002/aenm.202100552
10.1103/PhysRevB.65.035406
10.1021/acsenergylett.1c00750
10.1038/s41467-021-24155-z
10.1039/D2TA07413C
10.1021/acs.chemrev.2c00251
10.1016/j.esci.2021.10.003
10.1039/D0EE01694B
10.1038/s41565-019-0428-8
10.1021/acsami.8b01209
10.1038/s41560-020-0583-z
10.1002/adma.201807770
10.1063/1.1673290
10.1021/jacs.2c11640
10.1038/s41560-021-00780-2
10.1002/anie.201600687
10.1002/anie.202005337
10.1039/D1CS00442E
10.1103/PhysRevB.73.104301
10.1021/acs.nanolett.2c01401
10.1016/j.xcrp.2020.100028
10.1021/acsnano.9b05047
10.1038/nchem.2524
10.1021/acsenergylett.2c02509
10.1126/sciadv.aax9427
10.1002/adfm.202213215
10.1002/adma.202106402
10.1016/j.ssi.2011.04.007
10.1007/s11581-021-04167-x
10.1039/D0TA03358H
10.1002/adma.202207904
10.1002/adfm.201403409
10.1021/acsenergylett.2c00353
10.1002/adma.202207234
10.1038/ncomms7276
10.1002/anie.202000628
10.1002/sstr.202200343
10.1002/adfm.202100919
10.1002/aenm.202303797
10.1016/j.mattod.2021.09.013
10.1002/anie.202112508
10.1002/advs.201902413
10.1002/aenm.202202341
10.1002/aenm.201601266
10.1093/nsr/nwaa287
10.1016/S0167-2738(01)01022-0
10.1002/adfm.202004302
10.1038/s41524-020-0344-3
10.1007/978-3-319-14367-5
10.1038/s41467-020-18285-z
10.1039/D3EE02817H
10.1002/aenm.202101005
10.2109/jcersj.108.1257_462
10.1038/s41560-019-0409-z
10.1016/j.apcatb.2022.122087
10.1038/s41560-023-01233-8
10.1149/1.1836614
10.1016/j.ensm.2021.10.024
10.1016/j.mattod.2020.04.006
10.1016/j.ensm.2021.04.035
10.1021/jacs.2c03549
10.1080/13642819808206727
10.1021/cm901452z
10.1021/acsami.0c16648
10.1016/j.ssi.2020.115257
10.1021/jacs.3c08070
10.1038/s41467-019-11439-8
10.1039/C7EE03122J
10.1002/anie.201900444
10.1016/j.etran.2021.100118
10.1002/adma.201908285
10.1039/D0EE01607A
10.1002/advs.201900355
10.1103/PhysRevB.78.092106
10.1002/adfm.202215155
10.1016/j.electacta.2019.135313
10.1073/pnas.1019698108
10.1021/jacs.0c09961
10.3390/condmat4010005
10.1021/acs.nanolett.6b04502
10.1038/s41560-018-0184-2
10.1039/D3EE00435J
10.1021/acsnano.0c02237
10.1002/anie.201812472
10.1038/s41427-018-0056-z
10.1002/anie.202215131
10.1002/anie.202202894
10.1021/cm202415x
10.1002/adma.202208974
10.1002/aenm.202200022
10.1038/s41560-018-0207-z
10.1016/j.ensm.2023.01.029
10.1039/C8CS00322J
10.1038/nmat4810
10.1021/cm702546s
10.1002/aenm.201802586
10.1002/aenm.202200136
10.1002/aenm.201900551
10.1038/s41929-021-00715-w
10.1016/j.nxnano.2023.100011
10.1021/acsami.1c12684
10.1021/jacs.3c00117
10.1039/C5TA01445J
10.1038/s41467-018-03765-0
10.1126/science.aay9972
10.1038/s41578-019-0157-5
10.1016/j.joule.2017.10.008
10.1021/acs.chemmater.6b02870
10.1016/j.apcatb.2021.120680
10.1016/j.matt.2020.10.026
10.1038/s41560-021-00832-7
10.1039/C9CP05768D
10.1016/j.matt.2021.02.023
10.1038/s41578-021-00289-w
10.1002/adma.202106171
10.1038/s41560-021-00834-5
10.1002/smll.202300419
10.1038/s41560-019-0522-z
10.1016/j.apcatb.2010.07.015
10.1021/ja062027+
10.1103/PhysRevLett.104.193002
10.1021/acs.chemrev.2c00214
10.1016/j.chempr.2022.07.023
10.1021/jacs.1c08614
10.1149/1945-7111/ac0020
10.1021/acs.chemrev.1c00327
10.1002/adma.202103173
10.1039/C9EE02803J
10.1016/j.ensm.2022.01.054
10.1021/cm2031009
10.1149/2.079202jes
10.1039/C9CS00162J
10.1002/aenm.202200569
10.1103/PhysRevB.74.094105
10.1038/s41563-020-00816-0
10.1103/PhysRev.113.1222
10.1039/D0CS00137F
10.1002/adma.202005937
10.1002/aenm.201802105
10.1039/D2EE03527H
10.1002/adma.202005182
10.1016/j.ensm.2022.09.032
10.1007/s12598-021-01782-5
10.1038/s41560-023-01211-0
10.1016/j.nanoen.2020.105459
10.1039/C4CP01799D
10.1016/j.pmatsci.2022.101055
10.1039/D1EE03610F
10.1021/acsaem.0c01303
10.1016/j.jpowsour.2018.04.018
10.1002/adfm.201909192
10.1038/s41578-022-00416-1
10.1039/D0EE02917C
10.1038/186003a0
10.1021/cm070435m
10.1038/s41467-021-22099-y
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d3cs00872j
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 3326
ExternalDocumentID 38354058
10_1039_D3CS00872J
d3cs00872j
Genre Journal Article
Review
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29B
4.4
53G
5GY
6J9
705
70~
7~J
85S
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
COF
CS3
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
O9-
OK1
P2P
R7B
R7D
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
~02
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c337t-9482649c7b4143d65611f40835f73f7bb9c0ac399e2ecd0f5da7e45e861184dc3
ISSN 0306-0012
1460-4744
IngestDate Fri Jul 11 12:30:32 EDT 2025
Mon Jun 30 05:09:04 EDT 2025
Mon Jul 21 06:02:54 EDT 2025
Thu Apr 24 22:51:55 EDT 2025
Tue Jul 01 04:28:20 EDT 2025
Tue Dec 17 20:58:12 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c337t-9482649c7b4143d65611f40835f73f7bb9c0ac399e2ecd0f5da7e45e861184dc3
Notes Yu-Han Zhang received his BS degree in Applied Chemistry from Taiyuan University of Technology (TYUT) in 2021. He is currently a PhD candidate majoring in Materials Science under the supervision of Prof. Guanglei Cui at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (QIBEBT-CAS). Currently, his research interests lie in designing advanced cathode materials and their interfaces for solid-state lithium batteries.
Prof. Xiaogang Wang obtained his PhD degree in Applied Chemistry from the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CIAS-CAS) in 2009. From May 2009 to June 2011, he conducted postdoctoral research at institutions including the University of Texas at Austin and Michigan State University in the United States. In July 2011, he joined the Qingdao Institute of Bioenergy and Process Technology, Chinese Academy of Sciences (QIBEBT-CAS). His research topics include the design optimization and application of high-performance electrochemical energy materials and devices.
Dr Shu Zhang obtained her PhD degree in Condensed Matter Physics from the Institute of Physics, Chinese Academy of Sciences (IOP-CAS) in 2015. Now she is an assistant professor at the Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (QIBEBT-CAS). Her research centers on solid-state lithium batteries and the application of theoretical simulations in chemistry and materials science.
Prof. Jun Ma received her PhD degree in Condensed Matter Physics from the Institute of Physics, Chinese Academy of Sciences (IOP-CAS) in 2014. Since 2014, she has worked at the Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (QIBEBT-CAS). Her recent research interests include high-energy-density cathode materials, full solid-state batteries, energy storage mechanisms, and interface issues in batteries.
Prof. Zhiwei Hu is currently the leader of the X-Ray Spectroscopy Group at Max-Planck-Institute for Chemical Physics of Solids in Germany. He mainly uses synchrotron radiation spectroscopic methods to study charge spin, and orbital states in strong correlation systems of condensed matter from both theoretical and experimental aspects. His research includes magnetic, superconducting, multiferroic, new energy, environmental, and catalytic materials. He has published over 389 papers in top journals in physics, materials science, and chemistry, including more than 20 papers in Phys. Rev. Lett., 20 in Nat. Commun., several in Proc. Natl. Acad. Sci. U. S. A., as well as in Nat. Nanotechnol., Adv. Mater., J. Am. Chem. Soc., Angew. Chem., Int. Ed., Environ. Energy Sci., and Joule.
Prof. Guanglei Cui obtained his PhD degree from the Institute of Chemistry, Chinese Academy of Sciences (IC-CAS) in 2005. He then did postdoctoral research at Max-Planck-Institute for Polymer Research and Max-Planck-Institute for Solid State Research before joining Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (QIBEBT-CAS), in 2009. He is currently a professor and the leader of Solid Energy System Technology Center, the director of Energy Applied Technology Division of QIBEBT-CAS. His research topics include sustainable and highly efficient energy-storage materials, all-solid-state batteries, and novel energy devices. He has published more than 400 articles in international authoritative journals, such as Chem. Soc. Rev., Nat. Commun., J. Am. Chem. Soc., Angew. Chem. Int. Ed., Joule, Environ. Energy Sci., Adv. Mater., and Matter, in the fields of energy materials, chemistry, and devices among others, and has been cited more than 20 000 times.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-5987-7569
0000-0003-4054-2552
0000-0001-5016-8096
PMID 38354058
PQID 3028154897
PQPubID 2047503
PageCount 25
ParticipantIDs pubmed_primary_38354058
proquest_miscellaneous_2926522258
proquest_journals_3028154897
crossref_primary_10_1039_D3CS00872J
rsc_primary_d3cs00872j
crossref_citationtrail_10_1039_D3CS00872J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-02
PublicationDateYYYYMMDD 2024-04-02
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-02
  day: 02
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Sun (D3CS00872J/cit79/1) 2021; 32
Zhang (D3CS00872J/cit192/1) 2020; 6
Zhu (D3CS00872J/cit154/1) 2021; 1
Cai (D3CS00872J/cit63/1) 2023; 8
Liu (D3CS00872J/cit166/1) 2020; 142
Chen (D3CS00872J/cit184/1) 2020; 30
Kim (D3CS00872J/cit92/1) 2022; 12
Kong (D3CS00872J/cit117/1) 2019; 9
Fang (D3CS00872J/cit200/1) 2023; 16
Xiao (D3CS00872J/cit140/1) 2021; 60
Lee (D3CS00872J/cit24/1) 2019; 58
Wu (D3CS00872J/cit80/1) 2023; 19
Armstrong (D3CS00872J/cit209/1) 2006; 128
Zhang (D3CS00872J/cit134/1) 2022; 7
Wang (D3CS00872J/cit71/1) 2023
Wei (D3CS00872J/cit144/1) 2015; 137
House (D3CS00872J/cit50/1) 2020; 5
Luo (D3CS00872J/cit104/1) 2020; 59
Li (D3CS00872J/cit178/1) 2022; 22
He (D3CS00872J/cit21/1) 2021; 33
Hashimoto (D3CS00872J/cit90/1) 2008; 78
Lun (D3CS00872J/cit1/1) 2021; 20
Lin (D3CS00872J/cit113/1) 2023; 11
Yuan (D3CS00872J/cit41/1) 2017; 5
Sharifi-Asl (D3CS00872J/cit118/1) 2017; 17
Ouyang (D3CS00872J/cit162/1) 2009; 373
Meng (D3CS00872J/cit169/1) 2022; 144
Jung (D3CS00872J/cit119/1) 2021; 31
Zhu (D3CS00872J/cit54/1) 2020; 32
Ding (D3CS00872J/cit44/1) 2020; 59
Zhang (D3CS00872J/cit48/1) 2021; 8
Liu (D3CS00872J/cit69/1) 2018; 8
Wang (D3CS00872J/cit142/1) 2019; 10
Li (D3CS00872J/cit155/1) 2023
Wang (D3CS00872J/cit153/1) 2022; 15
Zhang (D3CS00872J/cit70/1) 2019; 4
Ou (D3CS00872J/cit40/1) 2015; 27
Wang (D3CS00872J/cit204/1) 2010; 100
Wan (D3CS00872J/cit135/1) 2021; 21
Yang (D3CS00872J/cit145/1) 2020; 49
Hu (D3CS00872J/cit89/1) 2020; 347
Zhang (D3CS00872J/cit74/1) 2022; 53
Zhang (D3CS00872J/cit99/1) 2021; 11
Feng (D3CS00872J/cit165/1) 2020; 22
Zhang (D3CS00872J/cit110/1) 2021; 299
Li (D3CS00872J/cit16/1) 2022; 13
Zuo (D3CS00872J/cit173/1) 2023; 145
Sun (D3CS00872J/cit127/1) 2020; 14
Li (D3CS00872J/cit27/1) 2017; 206
Yu (D3CS00872J/cit88/1) 2023; 35
Graham (D3CS00872J/cit208/1) 1970; 52
Yu (D3CS00872J/cit130/1) 2021; 6
House (D3CS00872J/cit195/1) 2020; 577
Csernica (D3CS00872J/cit52/1) 2021; 6
Yang (D3CS00872J/cit189/1) 2022; 44
Zuo (D3CS00872J/cit22/1) 2020; 13
Huang (D3CS00872J/cit95/1) 2022; 4
Sharifi-Asl (D3CS00872J/cit23/1) 2019; 9
Yang (D3CS00872J/cit194/1) 2018; 389
Chen (D3CS00872J/cit64/1) 2022; 8
Kang (D3CS00872J/cit149/1) 2006; 311
Qiao (D3CS00872J/cit58/1) 2018; 11
Song (D3CS00872J/cit84/1) 2023; 14
Wang (D3CS00872J/cit11/1) 2022; 13
Zhao (D3CS00872J/cit85/1) 2019; 58
House (D3CS00872J/cit59/1) 2021; 6
Tran (D3CS00872J/cit180/1) 2008; 20
Wei (D3CS00872J/cit102/1) 2021; 51
Li (D3CS00872J/cit133/1) 2021; 12
Rong (D3CS00872J/cit12/1) 2018; 2
Yuan (D3CS00872J/cit111/1) 2018; 10
Zhu (D3CS00872J/cit78/1) 2019; 4
Wang (D3CS00872J/cit2/1) 2018; 47
Zeng (D3CS00872J/cit31/1) 2021; 27
Lee (D3CS00872J/cit57/1) 2014; 4
Quilty (D3CS00872J/cit167/1) 2023; 123
Zhang (D3CS00872J/cit182/1) 2021; 4
Yuan (D3CS00872J/cit75/1) 2023
Sun (D3CS00872J/cit18/1) 2024; 17
Shin (D3CS00872J/cit35/1) 2012; 24
Xu (D3CS00872J/cit17/1) 2016; 55
Goodenough (D3CS00872J/cit107/1) 2009; 22
Chai (D3CS00872J/cit105/1) 2022; 18
Cronemeyer (D3CS00872J/cit28/1) 1959; 113
Wei (D3CS00872J/cit131/1) 2023; 56
Jupille (D3CS00872J/cit14/1) 2015
Kong (D3CS00872J/cit160/1) 2015; 3
Dong (D3CS00872J/cit9/1) 2023; 123
Chen (D3CS00872J/cit62/1) 2016; 28
Sathiya (D3CS00872J/cit206/1) 2015; 6
Wu (D3CS00872J/cit193/1) 2019; 4
Kong (D3CS00872J/cit124/1) 2021; 60
Jin (D3CS00872J/cit33/1) 2023; 62
Zhang (D3CS00872J/cit186/1) 2021; 12
Wei (D3CS00872J/cit128/1) 2022; 47
Ding (D3CS00872J/cit132/1) 2020; 38
Eum (D3CS00872J/cit82/1) 2023; 16
Reuter (D3CS00872J/cit91/1) 2001; 65
Toney (D3CS00872J/cit65/1) 2019; 4
Chu (D3CS00872J/cit4/1) 2021; 50
Hou (D3CS00872J/cit97/1) 2021; 11
Ren (D3CS00872J/cit20/1) 2022; 34
Qiu (D3CS00872J/cit26/1) 2016; 7
Yan (D3CS00872J/cit61/1) 2019; 14
Park (D3CS00872J/cit176/1) 2022; 34
Nakamura (D3CS00872J/cit43/1) 2021; 9
Hao (D3CS00872J/cit191/1) 2021; 31
Ahmed (D3CS00872J/cit168/1) 2019; 13
Chu (D3CS00872J/cit10/1) 2024; 18
Wu (D3CS00872J/cit56/1) 2023; 145
Eum (D3CS00872J/cit66/1) 2020; 19
Li (D3CS00872J/cit7/1) 2019; 48
Menéndez (D3CS00872J/cit188/1) 2020; 6
Dai (D3CS00872J/cit197/1) 2019; 3
Kim (D3CS00872J/cit73/1) 2021; 11
Liu (D3CS00872J/cit83/1) 2022; 606
Hou (D3CS00872J/cit125/1) 2022; 7
Zhang (D3CS00872J/cit115/1) 2022; 122
Bi (D3CS00872J/cit138/1) 2015; 283
House (D3CS00872J/cit51/1) 2023; 8
Maxisch (D3CS00872J/cit161/1) 2006; 73
Qiu (D3CS00872J/cit47/1) 2022; 12
Lee (D3CS00872J/cit183/1) 2020; 7
Kim (D3CS00872J/cit139/1) 2011; 23
Xiao (D3CS00872J/cit156/1) 2019; 5
Guo (D3CS00872J/cit15/1) 2021; 33
Kang (D3CS00872J/cit94/1) 2021; 4
Franchini (D3CS00872J/cit158/1) 2021; 6
Kim (D3CS00872J/cit152/1) 2017; 16
Nakamura (D3CS00872J/cit46/1) 2020; 3
Clément (D3CS00872J/cit147/1) 2020; 13
Yang (D3CS00872J/cit93/1) 2023
Rougier (D3CS00872J/cit150/1) 1996; 143
Dahéron (D3CS00872J/cit159/1) 2008; 20
Li (D3CS00872J/cit177/1) 2019; 10
Qiu (D3CS00872J/cit181/1) 2020; 1
Hu (D3CS00872J/cit210/1) 2024
Zhao (D3CS00872J/cit76/1) 2021; 6
Min (D3CS00872J/cit5/1) 2021; 14
Li (D3CS00872J/cit53/1) 2023; 62
Zhao (D3CS00872J/cit198/1) 2021; 143
Jiang (D3CS00872J/cit114/1) 2021; 14
Xiao (D3CS00872J/cit129/1) 2020; 59
Bianchini (D3CS00872J/cit136/1) 2019; 58
Song (D3CS00872J/cit36/1) 2021; 41
He (D3CS00872J/cit42/1) 2020; 330
Singer (D3CS00872J/cit174/1) 2018; 3
Qiao (D3CS00872J/cit55/1) 2021; 8
Wang (D3CS00872J/cit106/1) 2023; 133
Wang (D3CS00872J/cit68/1) 2019; 6
Zhang (D3CS00872J/cit25/1) 2022; 12
Kim (D3CS00872J/cit29/1) 2019; 3
McCalla (D3CS00872J/cit60/1) 2015; 350
Ou (D3CS00872J/cit108/1) 2018; 9
Nelson Weker (D3CS00872J/cit199/1) 2015; 25
Guo (D3CS00872J/cit77/1) 2021; 12
Zhou (D3CS00872J/cit72/1) 2022; 8
Zhang (D3CS00872J/cit120/1) 2019; 31
Liu (D3CS00872J/cit185/1) 2017; 11
Wang (D3CS00872J/cit123/1) 2023; 145
Zhou (D3CS00872J/cit170/1) 2023; 55
He (D3CS00872J/cit109/1) 2023; 322
Fan (D3CS00872J/cit38/1) 2015; 5
Wei (D3CS00872J/cit190/1) 2021; 64
Sun (D3CS00872J/cit201/1) 2021; 15
Hou (D3CS00872J/cit171/1) 2021; 39
Hennies (D3CS00872J/cit205/1) 2010; 104
Marrocchelli (D3CS00872J/cit103/1) 2012; 22
Lin (D3CS00872J/cit67/1) 2020; 30
Okamoto (D3CS00872J/cit98/1) 2011; 159
Ni (D3CS00872J/cit122/1) 2022; 12
Zhao (D3CS00872J/cit137/1) 2016; 7
Bak (D3CS00872J/cit203/1) 2018; 10
Xu (D3CS00872J/cit143/1) 2022; 61
Hon (D3CS00872J/cit30/1) 2000; 108
Yang (D3CS00872J/cit151/1) 2020; 32
Yoon (D3CS00872J/cit87/1) 2023; 8
Iguchi (D3CS00872J/cit163/1) 2009; 78
Liu (D3CS00872J/cit187/1) 2021; 4
Wang (D3CS00872J/cit179/1) 2023; 35
Zhan (D3CS00872J/cit141/1) 2018; 11
Zhu (D3CS00872J/cit37/1) 2023; 35
Tian (D3CS00872J/cit34/1) 2021; 31
Cai (D3CS00872J/cit121/1) 2023
Zheng (D3CS00872J/cit45/1) 2021; 13
Zhang (D3CS00872J/cit172/1) 2020; 32
Xiao (D3CS00872J/cit6/1) 2020; 13
Seo (D3CS00872J/cit49/1) 2016; 8
Århammar (D3CS00872J/cit196/1) 2011; 108
Sun (D3CS00872J/cit202/1) 2021; 79
Zhang (D3CS00872J/cit8/1) 2023; 2
Nakayama (D3CS00872J/cit175/1) 2020; 11
Zhao (D3CS00872J/cit3/1) 2020; 370
Zhao (D3CS00872J/cit96/1) 2021; 60
Feng (D3CS00872J/cit157/1) 2022; 15
Geng (D3CS00872J/cit207/1) 2020; 8
Jia (D3CS00872J/cit19/1) 2023
Hu (D3CS00872J/cit126/1) 2018; 3
Luo (D3CS00872J/cit81/1) 2023; 8
Shi (D3CS00872J/cit86/1) 2022; 12
Wang (D3CS00872J/cit101/1) 2011; 193
Marzec (D3CS00872J/cit164/1) 2002; 146
Tompkins (D3CS00872J/cit13/1) 1960; 186
Kang (D3CS00872J/cit148/1) 2006; 74
House (D3CS00872J/cit146/1) 2020; 5
Mesnier (D3CS00872J/cit32/1) 2020; 12
Xu (D3CS00872J/cit100/1) 2022; 12
Pei (D3CS00872J/cit112/1) 2021; 168
Zu (D3CS00872J/cit39/1) 2019; 12
Qian (D3CS00872J/cit116/1) 2014; 16
References_xml – issn: 2015
  publication-title: Defects at Oxide Surfaces
  doi: Jupille Thornton
– volume: 60
  start-page: 2208
  year: 2021
  ident: D3CS00872J/cit96/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202000262
– volume: 137
  start-page: 8364
  year: 2015
  ident: D3CS00872J/cit144/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04040
– volume: 311
  start-page: 977
  year: 2006
  ident: D3CS00872J/cit149/1
  publication-title: Science
  doi: 10.1126/science.1122152
– volume: 32
  start-page: e2000496
  year: 2020
  ident: D3CS00872J/cit172/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000496
– volume: 577
  start-page: 502
  year: 2020
  ident: D3CS00872J/cit195/1
  publication-title: Nature
  doi: 10.1038/s41586-019-1854-3
– volume: 7
  start-page: 12108
  year: 2016
  ident: D3CS00872J/cit26/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12108
– volume: 606
  start-page: 305
  year: 2022
  ident: D3CS00872J/cit83/1
  publication-title: Nature
  doi: 10.1038/s41586-022-04689-y
– volume: 59
  start-page: 23061
  year: 2020
  ident: D3CS00872J/cit104/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202010531
– volume: 31
  start-page: 2101239
  year: 2021
  ident: D3CS00872J/cit34/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202101239
– volume: 27
  start-page: 2589
  year: 2015
  ident: D3CS00872J/cit40/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405763
– volume: 12
  start-page: 2201510
  year: 2022
  ident: D3CS00872J/cit122/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202201510
– volume: 62
  start-page: e202219230
  year: 2023
  ident: D3CS00872J/cit33/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202219230
– volume: 5
  start-page: 777
  year: 2020
  ident: D3CS00872J/cit50/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-00697-2
– volume: 8
  start-page: 159
  year: 2023
  ident: D3CS00872J/cit63/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-022-01179-3
– volume: 350
  start-page: 1516
  year: 2015
  ident: D3CS00872J/cit60/1
  publication-title: Science
  doi: 10.1126/science.aac8260
– volume: 283
  start-page: 211
  year: 2015
  ident: D3CS00872J/cit138/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.02.095
– volume: 15
  start-page: 1711
  year: 2022
  ident: D3CS00872J/cit157/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE03292E
– volume: 5
  start-page: 14697
  year: 2017
  ident: D3CS00872J/cit41/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA03878J
– volume: 32
  start-page: 2110295
  year: 2021
  ident: D3CS00872J/cit79/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202110295
– volume: 18
  start-page: 337
  issue: 1
  year: 2024
  ident: D3CS00872J/cit10/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c06393
– volume: 14
  start-page: 4149
  year: 2023
  ident: D3CS00872J/cit84/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39838-y
– volume: 11
  start-page: 8519
  year: 2017
  ident: D3CS00872J/cit185/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b04617
– volume: 58
  start-page: 10478
  year: 2019
  ident: D3CS00872J/cit24/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201904469
– volume: 18
  start-page: e2201014
  year: 2022
  ident: D3CS00872J/cit105/1
  publication-title: Small
  doi: 10.1002/smll.202201014
– volume: 11
  start-page: 2101712
  year: 2021
  ident: D3CS00872J/cit99/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202101712
– volume: 5
  start-page: 11712
  year: 2015
  ident: D3CS00872J/cit38/1
  publication-title: Sci. Rep.
  doi: 10.1038/srep11712
– volume: 4
  start-page: 1400498
  year: 2014
  ident: D3CS00872J/cit57/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201400498
– volume: 373
  start-page: 2796
  year: 2009
  ident: D3CS00872J/cit162/1
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2009.05.071
– volume: 9
  start-page: 3657
  year: 2021
  ident: D3CS00872J/cit43/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA09521D
– volume: 21
  start-page: 6875
  year: 2021
  ident: D3CS00872J/cit135/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c01985
– volume: 31
  start-page: 2010095
  year: 2021
  ident: D3CS00872J/cit119/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202010095
– volume: 4
  start-page: 1049
  year: 2019
  ident: D3CS00872J/cit78/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0508-x
– volume: 12
  start-page: 5267
  year: 2021
  ident: D3CS00872J/cit77/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25610-7
– volume: 64
  start-page: 1826
  year: 2021
  ident: D3CS00872J/cit190/1
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-021-1103-6
– volume: 8
  start-page: 1078
  year: 2023
  ident: D3CS00872J/cit81/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-023-01289-6
– volume: 13
  start-page: 1123
  year: 2022
  ident: D3CS00872J/cit16/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28793-9
– volume: 3
  start-page: 1064
  year: 2019
  ident: D3CS00872J/cit29/1
  publication-title: Joule
  doi: 10.1016/j.joule.2019.01.002
– volume: 22
  start-page: 1958
  year: 2012
  ident: D3CS00872J/cit103/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201102648
– volume: 206
  start-page: 300
  year: 2017
  ident: D3CS00872J/cit27/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.01.025
– volume: 11
  start-page: 299
  year: 2018
  ident: D3CS00872J/cit58/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE03554C
– volume: 12
  start-page: 2150
  year: 2019
  ident: D3CS00872J/cit39/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2377-9
– volume: 55
  start-page: 691
  year: 2023
  ident: D3CS00872J/cit170/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.12.029
– volume: 10
  start-page: 1692
  year: 2019
  ident: D3CS00872J/cit177/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09408-2
– volume: 15
  start-page: 1475
  year: 2021
  ident: D3CS00872J/cit201/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c08891
– volume: 14
  start-page: 4100
  year: 2021
  ident: D3CS00872J/cit114/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3349-4
– start-page: e2207797
  year: 2023
  ident: D3CS00872J/cit93/1
  publication-title: Small
  doi: 10.1002/smll.202207797
– volume: 12
  start-page: 2201323
  year: 2022
  ident: D3CS00872J/cit100/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202201323
– start-page: 2301216
  year: 2023
  ident: D3CS00872J/cit71/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202301216
– volume: 3
  start-page: 518
  year: 2019
  ident: D3CS00872J/cit197/1
  publication-title: Joule
  doi: 10.1016/j.joule.2018.11.014
– volume: 19
  start-page: 419
  year: 2020
  ident: D3CS00872J/cit66/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0572-4
– volume: 60
  start-page: 8258
  year: 2021
  ident: D3CS00872J/cit140/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202016334
– volume: 13
  start-page: 2202861
  year: 2022
  ident: D3CS00872J/cit11/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202202861
– start-page: e2307938
  year: 2023
  ident: D3CS00872J/cit19/1
  publication-title: Adv. Mater.
– volume: 11
  start-page: 2100552
  year: 2021
  ident: D3CS00872J/cit73/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100552
– volume: 65
  start-page: 035406
  year: 2001
  ident: D3CS00872J/cit91/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.65.035406
– volume: 6
  start-page: 2552
  year: 2021
  ident: D3CS00872J/cit76/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00750
– volume: 12
  start-page: 3863
  year: 2021
  ident: D3CS00872J/cit133/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24155-z
– volume: 11
  start-page: 68
  year: 2023
  ident: D3CS00872J/cit113/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA07413C
– volume: 123
  start-page: 811
  year: 2023
  ident: D3CS00872J/cit9/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00251
– volume: 1
  start-page: 13
  year: 2021
  ident: D3CS00872J/cit154/1
  publication-title: eScience
  doi: 10.1016/j.esci.2021.10.003
– volume: 13
  start-page: 4450
  year: 2020
  ident: D3CS00872J/cit22/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01694B
– volume: 14
  start-page: 602
  year: 2019
  ident: D3CS00872J/cit61/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0428-8
– volume: 10
  start-page: 16410
  year: 2018
  ident: D3CS00872J/cit111/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b01209
– volume: 5
  start-page: 191
  year: 2020
  ident: D3CS00872J/cit146/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0583-z
– volume: 31
  start-page: e1807770
  year: 2019
  ident: D3CS00872J/cit120/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807770
– volume: 52
  start-page: 2235
  year: 1970
  ident: D3CS00872J/cit208/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1673290
– volume: 145
  start-page: 5174
  year: 2023
  ident: D3CS00872J/cit173/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c11640
– volume: 6
  start-page: 781
  year: 2021
  ident: D3CS00872J/cit59/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00780-2
– volume: 55
  start-page: 5277
  year: 2016
  ident: D3CS00872J/cit17/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201600687
– volume: 59
  start-page: 14313
  year: 2020
  ident: D3CS00872J/cit129/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202005337
– volume: 50
  start-page: 13189
  year: 2021
  ident: D3CS00872J/cit4/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00442E
– volume: 73
  start-page: 104301
  year: 2006
  ident: D3CS00872J/cit161/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.73.104301
– volume: 22
  start-page: 4905
  year: 2022
  ident: D3CS00872J/cit178/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c01401
– volume: 1
  start-page: 100028
  year: 2020
  ident: D3CS00872J/cit181/1
  publication-title: Cell Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2020.100028
– volume: 13
  start-page: 10694
  year: 2019
  ident: D3CS00872J/cit168/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b05047
– volume: 8
  start-page: 692
  year: 2016
  ident: D3CS00872J/cit49/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2524
– volume: 8
  start-page: 417
  year: 2022
  ident: D3CS00872J/cit64/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c02509
– volume: 6
  start-page: eaax9427
  year: 2020
  ident: D3CS00872J/cit192/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax9427
– start-page: 2213215
  year: 2023
  ident: D3CS00872J/cit155/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202213215
– volume: 34
  start-page: e2106402
  year: 2022
  ident: D3CS00872J/cit176/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202106402
– volume: 193
  start-page: 32
  year: 2011
  ident: D3CS00872J/cit101/1
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2011.04.007
– volume: 27
  start-page: 3739
  year: 2021
  ident: D3CS00872J/cit31/1
  publication-title: Ionics
  doi: 10.1007/s11581-021-04167-x
– volume: 8
  start-page: 16515
  year: 2020
  ident: D3CS00872J/cit207/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA03358H
– volume: 35
  start-page: e2207904
  year: 2023
  ident: D3CS00872J/cit179/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202207904
– volume: 25
  start-page: 1622
  year: 2015
  ident: D3CS00872J/cit199/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201403409
– volume: 7
  start-page: 1687
  year: 2022
  ident: D3CS00872J/cit125/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c00353
– volume: 35
  start-page: e2207234
  year: 2023
  ident: D3CS00872J/cit88/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202207234
– volume: 6
  start-page: 6276
  year: 2015
  ident: D3CS00872J/cit206/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7276
– volume: 59
  start-page: 7778
  year: 2020
  ident: D3CS00872J/cit44/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202000628
– volume: 4
  start-page: 2200343
  year: 2022
  ident: D3CS00872J/cit95/1
  publication-title: Small Struct.
  doi: 10.1002/sstr.202200343
– volume: 31
  start-page: 2100919
  year: 2021
  ident: D3CS00872J/cit191/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202100919
– start-page: 2303797
  year: 2024
  ident: D3CS00872J/cit210/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202303797
– volume: 51
  start-page: 365
  year: 2021
  ident: D3CS00872J/cit102/1
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2021.09.013
– volume: 60
  start-page: 27102
  year: 2021
  ident: D3CS00872J/cit124/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202112508
– volume: 7
  start-page: 1902413
  year: 2020
  ident: D3CS00872J/cit183/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201902413
– volume: 12
  start-page: 2202341
  year: 2022
  ident: D3CS00872J/cit25/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202202341
– volume: 7
  start-page: 1601266
  year: 2016
  ident: D3CS00872J/cit137/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601266
– volume: 8
  start-page: nwaa287
  year: 2021
  ident: D3CS00872J/cit55/1
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwaa287
– volume: 146
  start-page: 225
  year: 2002
  ident: D3CS00872J/cit164/1
  publication-title: Solid State Ion.
  doi: 10.1016/S0167-2738(01)01022-0
– volume: 30
  start-page: 2004302
  year: 2020
  ident: D3CS00872J/cit184/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202004302
– volume: 6
  start-page: 76
  year: 2020
  ident: D3CS00872J/cit188/1
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-020-0344-3
– volume-title: Defects at Oxide Surfaces
  year: 2015
  ident: D3CS00872J/cit14/1
  doi: 10.1007/978-3-319-14367-5
– volume: 11
  start-page: 4452
  year: 2020
  ident: D3CS00872J/cit175/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18285-z
– volume: 17
  start-page: 210
  year: 2024
  ident: D3CS00872J/cit18/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE02817H
– volume: 11
  start-page: 2101005
  year: 2021
  ident: D3CS00872J/cit97/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202101005
– volume: 108
  start-page: 462
  year: 2000
  ident: D3CS00872J/cit30/1
  publication-title: J. Ceram. Soc. Jpn.
  doi: 10.2109/jcersj.108.1257_462
– volume: 4
  start-page: 594
  year: 2019
  ident: D3CS00872J/cit70/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0409-z
– volume: 322
  start-page: 122087
  year: 2023
  ident: D3CS00872J/cit109/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.122087
– volume: 8
  start-page: 482
  year: 2023
  ident: D3CS00872J/cit87/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-023-01233-8
– volume: 143
  start-page: 1168
  year: 1996
  ident: D3CS00872J/cit150/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1836614
– volume: 44
  start-page: 231
  year: 2022
  ident: D3CS00872J/cit189/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.10.024
– volume: 38
  start-page: 24
  year: 2020
  ident: D3CS00872J/cit132/1
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2020.04.006
– volume: 39
  start-page: 395
  year: 2021
  ident: D3CS00872J/cit171/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.04.035
– volume: 144
  start-page: 11338
  year: 2022
  ident: D3CS00872J/cit169/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c03549
– volume: 78
  start-page: 65
  year: 2009
  ident: D3CS00872J/cit163/1
  publication-title: Philos. Mag. B
  doi: 10.1080/13642819808206727
– volume: 22
  start-page: 587
  year: 2009
  ident: D3CS00872J/cit107/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm901452z
– volume: 12
  start-page: 52826
  year: 2020
  ident: D3CS00872J/cit32/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c16648
– volume: 347
  start-page: 115257
  year: 2020
  ident: D3CS00872J/cit89/1
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2020.115257
– volume: 145
  start-page: 22708
  year: 2023
  ident: D3CS00872J/cit123/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c08070
– volume: 10
  start-page: 3423
  year: 2019
  ident: D3CS00872J/cit142/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11439-8
– volume: 11
  start-page: 243
  year: 2018
  ident: D3CS00872J/cit141/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE03122J
– volume: 58
  start-page: 4323
  year: 2019
  ident: D3CS00872J/cit85/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201900444
– volume: 8
  start-page: 100118
  year: 2021
  ident: D3CS00872J/cit48/1
  publication-title: eTransportation
  doi: 10.1016/j.etran.2021.100118
– volume: 32
  start-page: e1908285
  year: 2020
  ident: D3CS00872J/cit151/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201908285
– volume: 13
  start-page: 3129
  year: 2020
  ident: D3CS00872J/cit6/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01607A
– volume: 6
  start-page: 1900355
  year: 2019
  ident: D3CS00872J/cit68/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900355
– volume: 78
  start-page: 092106
  year: 2008
  ident: D3CS00872J/cit90/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.78.092106
– start-page: 2215155
  year: 2023
  ident: D3CS00872J/cit121/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202215155
– volume: 330
  start-page: 135313
  year: 2020
  ident: D3CS00872J/cit42/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.135313
– volume: 108
  start-page: 6355
  year: 2011
  ident: D3CS00872J/cit196/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1019698108
– volume: 142
  start-page: 19745
  year: 2020
  ident: D3CS00872J/cit166/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c09961
– volume: 4
  start-page: 5
  year: 2019
  ident: D3CS00872J/cit193/1
  publication-title: Condens. Matter
  doi: 10.3390/condmat4010005
– volume: 17
  start-page: 2165
  year: 2017
  ident: D3CS00872J/cit118/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04502
– volume: 3
  start-page: 641
  year: 2018
  ident: D3CS00872J/cit174/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0184-2
– volume: 16
  start-page: 3053
  year: 2023
  ident: D3CS00872J/cit200/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE00435J
– volume: 14
  start-page: 6181
  year: 2020
  ident: D3CS00872J/cit127/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c02237
– volume: 58
  start-page: 10434
  year: 2019
  ident: D3CS00872J/cit136/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201812472
– volume: 10
  start-page: 563
  year: 2018
  ident: D3CS00872J/cit203/1
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-018-0056-z
– volume: 62
  start-page: e202215131
  year: 2023
  ident: D3CS00872J/cit53/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202215131
– volume: 61
  start-page: e202202894
  year: 2022
  ident: D3CS00872J/cit143/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202202894
– volume: 23
  start-page: 5388
  year: 2011
  ident: D3CS00872J/cit139/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm202415x
– volume: 35
  start-page: e2208974
  year: 2023
  ident: D3CS00872J/cit37/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202208974
– volume: 12
  start-page: 2200022
  year: 2022
  ident: D3CS00872J/cit47/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202200022
– volume: 3
  start-page: 690
  year: 2018
  ident: D3CS00872J/cit126/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0207-z
– volume: 56
  start-page: 495
  year: 2023
  ident: D3CS00872J/cit131/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2023.01.029
– volume: 47
  start-page: 6505
  year: 2018
  ident: D3CS00872J/cit2/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00322J
– volume: 16
  start-page: 454
  year: 2017
  ident: D3CS00872J/cit152/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4810
– volume: 20
  start-page: 583
  year: 2008
  ident: D3CS00872J/cit159/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm702546s
– volume: 9
  start-page: 1802586
  year: 2019
  ident: D3CS00872J/cit117/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802586
– volume: 12
  start-page: 2200136
  year: 2022
  ident: D3CS00872J/cit92/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202200136
– volume: 9
  start-page: 1900551
  year: 2019
  ident: D3CS00872J/cit23/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900551
– volume: 4
  start-page: 1050
  year: 2021
  ident: D3CS00872J/cit94/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00715-w
– volume: 2
  start-page: 100011
  year: 2023
  ident: D3CS00872J/cit8/1
  publication-title: Next Nanotechnol.
  doi: 10.1016/j.nxnano.2023.100011
– volume: 13
  start-page: 45528
  year: 2021
  ident: D3CS00872J/cit45/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c12684
– volume: 145
  start-page: 9596
  year: 2023
  ident: D3CS00872J/cit56/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c00117
– volume: 3
  start-page: 8489
  year: 2015
  ident: D3CS00872J/cit160/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA01445J
– start-page: e202304121
  year: 2023
  ident: D3CS00872J/cit75/1
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 1302
  year: 2018
  ident: D3CS00872J/cit108/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03765-0
– volume: 370
  start-page: 708
  year: 2020
  ident: D3CS00872J/cit3/1
  publication-title: Science
  doi: 10.1126/science.aay9972
– volume: 5
  start-page: 105
  year: 2019
  ident: D3CS00872J/cit156/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0157-5
– volume: 2
  start-page: 125
  year: 2018
  ident: D3CS00872J/cit12/1
  publication-title: Joule
  doi: 10.1016/j.joule.2017.10.008
– volume: 28
  start-page: 6656
  year: 2016
  ident: D3CS00872J/cit62/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02870
– volume: 299
  start-page: 120680
  year: 2021
  ident: D3CS00872J/cit110/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.120680
– volume: 4
  start-page: 164
  year: 2021
  ident: D3CS00872J/cit182/1
  publication-title: Matter
  doi: 10.1016/j.matt.2020.10.026
– volume: 6
  start-page: 642
  year: 2021
  ident: D3CS00872J/cit52/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00832-7
– volume: 22
  start-page: 2054
  year: 2020
  ident: D3CS00872J/cit165/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP05768D
– volume: 4
  start-page: 1511
  year: 2021
  ident: D3CS00872J/cit187/1
  publication-title: Matter
  doi: 10.1016/j.matt.2021.02.023
– volume: 6
  start-page: 560
  year: 2021
  ident: D3CS00872J/cit158/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-021-00289-w
– volume: 34
  start-page: e2106171
  year: 2022
  ident: D3CS00872J/cit20/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202106171
– volume: 6
  start-page: 572
  year: 2021
  ident: D3CS00872J/cit130/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00834-5
– volume: 19
  start-page: 2300419
  year: 2023
  ident: D3CS00872J/cit80/1
  publication-title: Small
  doi: 10.1002/smll.202300419
– volume: 4
  start-page: 1014
  year: 2019
  ident: D3CS00872J/cit65/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0522-z
– volume: 100
  start-page: 84
  year: 2010
  ident: D3CS00872J/cit204/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2010.07.015
– volume: 128
  start-page: 8694
  year: 2006
  ident: D3CS00872J/cit209/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja062027+
– volume: 104
  start-page: 193002
  year: 2010
  ident: D3CS00872J/cit205/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.193002
– volume: 123
  start-page: 1327
  year: 2023
  ident: D3CS00872J/cit167/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00214
– volume: 8
  start-page: 2817
  year: 2022
  ident: D3CS00872J/cit72/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2022.07.023
– volume: 143
  start-page: 18652
  year: 2021
  ident: D3CS00872J/cit198/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c08614
– volume: 168
  start-page: 050532
  year: 2021
  ident: D3CS00872J/cit112/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ac0020
– volume: 122
  start-page: 5641
  year: 2022
  ident: D3CS00872J/cit115/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00327
– volume: 33
  start-page: e2103173
  year: 2021
  ident: D3CS00872J/cit15/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202103173
– volume: 13
  start-page: 345
  year: 2020
  ident: D3CS00872J/cit147/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE02803J
– volume: 47
  start-page: 51
  year: 2022
  ident: D3CS00872J/cit128/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.01.054
– volume: 24
  start-page: 543
  year: 2012
  ident: D3CS00872J/cit35/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm2031009
– volume: 159
  start-page: A152
  year: 2011
  ident: D3CS00872J/cit98/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.079202jes
– volume: 48
  start-page: 4655
  year: 2019
  ident: D3CS00872J/cit7/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00162J
– volume: 12
  start-page: 2200569
  year: 2022
  ident: D3CS00872J/cit86/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202200569
– volume: 74
  start-page: 094105
  year: 2006
  ident: D3CS00872J/cit148/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.74.094105
– volume: 20
  start-page: 214
  year: 2021
  ident: D3CS00872J/cit1/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-00816-0
– volume: 113
  start-page: 1222
  year: 1959
  ident: D3CS00872J/cit28/1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.113.1222
– volume: 49
  start-page: 4667
  year: 2020
  ident: D3CS00872J/cit145/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00137F
– volume: 33
  start-page: e2005937
  year: 2021
  ident: D3CS00872J/cit21/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202005937
– volume: 8
  start-page: 1802105
  year: 2018
  ident: D3CS00872J/cit69/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802105
– volume: 16
  start-page: 673
  year: 2023
  ident: D3CS00872J/cit82/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE03527H
– volume: 32
  start-page: e2005182
  year: 2020
  ident: D3CS00872J/cit54/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202005182
– volume: 53
  start-page: 492
  year: 2022
  ident: D3CS00872J/cit74/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.09.032
– volume: 41
  start-page: 179
  year: 2021
  ident: D3CS00872J/cit36/1
  publication-title: Rare Met.
  doi: 10.1007/s12598-021-01782-5
– volume: 8
  start-page: 351
  year: 2023
  ident: D3CS00872J/cit51/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-023-01211-0
– volume: 79
  start-page: 105459
  year: 2021
  ident: D3CS00872J/cit202/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105459
– volume: 16
  start-page: 14665
  year: 2014
  ident: D3CS00872J/cit116/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP01799D
– volume: 133
  start-page: 101055
  year: 2023
  ident: D3CS00872J/cit106/1
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2022.101055
– volume: 15
  start-page: 2356
  year: 2022
  ident: D3CS00872J/cit153/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE03610F
– volume: 3
  start-page: 9703
  year: 2020
  ident: D3CS00872J/cit46/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c01303
– volume: 389
  start-page: 188
  year: 2018
  ident: D3CS00872J/cit194/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.04.018
– volume: 30
  start-page: 1909192
  year: 2020
  ident: D3CS00872J/cit67/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201909192
– volume: 7
  start-page: 522
  year: 2022
  ident: D3CS00872J/cit134/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-022-00416-1
– volume: 14
  start-page: 2186
  year: 2021
  ident: D3CS00872J/cit5/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02917C
– volume: 186
  start-page: 3
  year: 1960
  ident: D3CS00872J/cit13/1
  publication-title: Nature
  doi: 10.1038/186003a0
– volume: 20
  start-page: 4815
  year: 2008
  ident: D3CS00872J/cit180/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm070435m
– volume: 12
  start-page: 1853
  year: 2021
  ident: D3CS00872J/cit186/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22099-y
SSID ssj0011762
Score 2.649273
SecondaryResourceType review_article
Snippet Secondary batteries are a core technology for clean energy storage and conversion systems, to reduce environmental pollution and alleviate the energy crisis....
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 332
SubjectTerms Cathodes
Cathodic cleaning
Clean energy
Electrode materials
Energy storage
Oxygen
Storage batteries
Thermodynamics
Transition metals
Title Oxygen vacancy chemistry in oxide cathodes
URI https://www.ncbi.nlm.nih.gov/pubmed/38354058
https://www.proquest.com/docview/3028154897
https://www.proquest.com/docview/2926522258
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagPcAF8SosFBQEF6gCWduJk2O1FC0VjwNbqZwiZ2KrQSiLuhtU-PXMxHayqIsEXKLE42RX_pzJN-PxDGPPbGLzVGl8kQSggWK1jrWVJgaTikwrmALQiu77D9n8RB6fpqehVrnfXbKuXsLPrftK_gdVbENcaZfsPyA7PBQb8BzxxSMijMe_wvjjxQ-UHXzXQDryAELxNnJiLC-ammK6qEC0jxMMCQlCjoAQsekzkl7yIX_u4vk4eUbX8lk3TganoRur_ReQYnuazt1tzrpm06vAXTDKpqNRkKch8SHOxilHmSWxVC5fY9CeLtWvnyVqQxUK77c04SrbqrETQQlPawEryo7Hv4zfpSFacBReZbsczQHUZ7uHR4u374b1oqnK_HqR-9chEa0oXo13_049LtkTyC7OQ9WXnl0sbrIb3iyIDh3Gt9gV095m12YB0DvshcM68lhHA9ZR00Y91lHA-i47eXO0mM1jX-ciBiHUOi4k2niyAFVJZK81Muzp1ErixlYJq6qqgEQDMknDDdSJTWutjExNjv1yWYPYYzvtsjX3WYSdkZJQ6Q6uZZZnhc01hzqvdApJxZMJex6GoASfBJ5qkXwt-2AEUZSvxexTP1zHE_Z06PvNpT7Z2ms_jGTpX41VKZC1ki1cqAl7MohxWGg1Srdm2a1KXvAsJW9DPmH3HALDz4jeHUmSPYRkaB6hfPAnwUN2fZzO-2xnfd6ZR0gb19VjP2d-ARHKanU
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxygen+vacancy+chemistry+in+oxide+cathodes&rft.jtitle=Chemical+Society+reviews&rft.au=Zhang%2C+Yu-Han&rft.au=Zhang%2C+Shu&rft.au=Hu%2C+Naifang&rft.au=Liu%2C+Yuehui&rft.date=2024-04-02&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=53&rft.issue=7&rft.spage=332&rft.epage=3326&rft_id=info:doi/10.1039%2Fd3cs00872j&rft.externalDocID=d3cs00872j
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon